# Voting in Parallel Universes <br> ILLC Workshop on Collective Decision Making 2015 

Stéphane Airiau


joint work with Justin Kruger and Jérôme Lang LAMSADE - Université Paris-Dauphine

## Voting

- There is no perfect voting rule
- There is no consensus on using a particular rule
- Ties do occur
- Some voting rules tend to have a large set of winners.

Can we use existing rules to define rules that are more decisive and less sensitive to tie-breaking rules?

## Notations

- $N$ is the set of $n$ voters
- $C$ is the set of $m$ candidates
- each voter has a preference $\succ_{i}$ over the set of candidates.
We assume the preference is a linear order over the set of candidates
We can also view a linear order as a permutation.
So we will write $\mathcal{S}(X)$ the set of all permutations/linear orders on the set $X$.
- a profile is an element of $\mathcal{S}(C)^{n}$, i.e. a vector $\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle$

Definition ((Irresolute) Social Choice Function)
A social choice function is a mapping $f: \mathcal{S}(C)^{n} \rightarrow 2^{C}$

The set $f\left(\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle\right)$ is the set of winners.

Dealing with Ties

- breaking ties by breaking anonymity: we break a tie using the preference of a special voter (e.g. the president of a committee breaks the ties, or the oldest)
$\Rightarrow$ not all voters are equal
- breaking ties by breaking neutrality: we break a tie using some relation over the candidates: break the ties in favor of the oldest/yougest candidate or using lexicographic order on their names
$\Rightarrow$ not all candidates are equal
We will focus on the approach breaking neutrality.
Definition (Permutation rule)
We call a permutation rule a mapping

$$
f: \mathcal{S}(C)^{n} \times \mathcal{S}(C) \rightarrow C
$$

We can view $f$ as an irresolute voting rule attached with a tie-breaking rule $\triangleright$.

Given a permutation rule $f$, we can define two new irresolute voting rules:
union rule uf: $\mathcal{S}(C)^{n} \rightarrow 2^{C}$ such that

$$
u f\left(\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle\right)=\left\{c \in C|\exists \triangleright \in \mathcal{S}(C)| f\left(\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle, \triangleright\right)=c\right\}
$$

This rule selects the candidates that win at least once with a permutation rule.
$\operatorname{argmax}$ rule af : $\mathcal{S}(C)^{n} \rightarrow 2^{C}$ such that

$$
a f\left(\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle\right)=\max _{c \in C}\left|\left\{\triangleright \in \mathcal{S}(C) \mid f\left(\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle, \triangleright\right)=c\right\}\right|
$$

This rule selects the candidates that most often win over all permutation rules.

A Social Decision scheme if a mapping

$$
\mathcal{S}(C) \rightarrow \Delta(C)
$$

where $\Delta(C)$ denotes the set of all probability distributions over the set of candidates.
frequency rule Given a permutation rule $f$, we can define a new social decision scheme $p f: \mathcal{S}(C)^{n} \rightarrow 2^{C}$ such that

$$
p f\left(\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle\right)(c)=\frac{\left|\left\{\triangleright \in \mathcal{S}(C) \mid f\left(\left\langle\succ_{1}, \ldots, \succ_{n}\right\rangle, \triangleright\right)=c\right\}\right|}{n!}
$$

Case study: Single Transferable Vote (also called Instant Run-Off Voting)

STV is an iterative rule that works as follows:

- at each round, each voter casts a ballot containing its favourite candidate
- We cound the number of votes for each candidate
- if a voter obtains a majority: it is elected
- otherwise we eliminate the candidate with the smallest number of votes and we iterate the process with the reduced set of candidates
- the process eventually stops as either a candidates gets the majority or because it is the only candidate left
$\Rightarrow$ there can be ties between candidates that got the smallest number of votes!


## Example

- 10 voters named $1,2, \ldots, 10$
- 3 candidates $a, b$ and $c$
- we note the preference $a \succ b \succ c$ as $a b c$
number
of voters
4
3
2
1
$a$ gets 4 votes, $b$ and $c$ are tied with 3
$\Rightarrow$ two universes: one where $b$ is eliminated the other where $c$ is eliminated
- when $b$ is removed: $c$ wins
- when $c$ is removed: $a$ and $b$ are tied again!

Conitzer, Ronglie and Xia (IJCAI-09) called this STV with parallel universes.

## Tree representation



- For each leaf nodes, we must count the number of tie-breaking rules that satisfy the "constraints"
$\Rightarrow$ "counting the linear extensions" and it is a \#-P complete problem.
- when ties are always between only two candidates, we can count in polynomial time.
- There is a tie between two candidates $a$ and $b$ at node V
- There are three types of constraints:
- $x_{i} \triangleright a$ (it cannot be $a \triangleright x_{i}$ as otherwise $a$ would have been eliminated); let assume there are $k$ such constraints
- $y_{j} \triangleright b$; let us assume $l$ such constraints
- constraints that contains neither $a$ nor $b$
- note that we cannot have $x_{i}=y_{j}$ for all $1 \leqslant i \leqslant k, 1 \leqslant j \leqslant l$
- we cannot have a constraint that include a $x_{i}$ and a $y_{j}$ (e.g. $x_{i} \triangleright y_{j}$ or $y_{j} \triangleright x_{i}$ for all $1 \leqslant i \leqslant k, 1 \leqslant j \leqslant l$ )
$\bullet$ For the branch corresponding to the constraint $a \triangleright b$ : count the number of sequences of length $k+l+2$ for interspersing $x_{1} x_{2} \ldots x_{k} a$ with $y_{1} y_{2} \ldots y_{l} b$ such that $a$ is before $b$.
$\Rightarrow$ choose the position of $k+1$ elements (corresponding to the $x_{i}$ and $a$ ) among the $k+l+1$ possible positions
$\Rightarrow$ choose $k+1$ elements from a set of $k+l+1$ elements.
- Assume a tie between three candidates, say $a, b$ and $c$.
- say we eliminate $a$, the constraints down this branch are $a \triangleright b$ and $a \triangleright c$.
- the following constraints are feasible:
- $x_{i} \triangleright a$
- $y_{j} \triangleright b$
- $z_{k} \triangleright c$
- It is now possible to have a constraint $x_{i} y_{j}$ as there could have been a tie between $x_{i}, y_{i}$ and $a$ in which $x_{i}$ is eliminated.
- our combinatorics argument will not work in this case.


## 3 candidates Anonynous Culture

How often do we need to break a tie?



## Sampling Impartial Culture


sampling 100,000 profiles with impartial culture number of times a tie-breaking rule is needed

## Decisiveness - Sampling Impartial Culture


sampling 10,000 profiles with impartial there is a unique winner

## Future Work

- Banks: there is a polynomial algorithm to get one Banks winner
$\Rightarrow$ union rule provides all Banks winner
$\Rightarrow$ argmax rule discriminates among all Banks winner
- Complexity: we conjecture \#-P complete for STV
- axiomatic: if the voting rule has some properties, what is conserved by union and argmax. Immediate for some axioms, not clear for others.
- Top Cycle tends to have a large winner set. Does the argmax rule helps to improve decisiveness?
- Comparison with perturbation method (Freeman, Conitzer, Brill AAMAS-15)
- Social Decision Scheme: we can propose particular SDS using our frequency rule. What are the properties of such rules?

