Walking a mile in your shoes: an Escape from Arrovian Impossibilities

Constanze Binder

Faculty of Philosophy
Erasmus Institute for Philosophy and Economics (EIPE)
Erasmus University Rotterdam

ILLC Workshop on Collective Decision Making March 19-20, 2015
University of Amsterdam

Social Choice Approach to Justice (Sen 2009)

- Comparative Approach
- Action-Guidance
- Facilitating Reexamination of Unquestioned Values \& Convictions

The Literature

Social Choice Approach to Justice (Sen 2009)

- Comparative Approach
- Action-Guidance
- Facilitating Reexamination of Unquestioned Values \& Convictions
(How) Is the Social Choice Framework suited to address these points?

Outline

- The Social Choice Framework: Lessons from Existing Results
- Extending the Social Choice Framework
- Procedure of Position Change
- Position Change and a Domain Condition
- Result: Value Overlap is sufficient for Action-Guidance
- Some Conclusions
- Open Questions \& Future Research

The Social Choice Framework

- X finite set of alternatives
- R binary relation on X
- $\{1, \ldots, m\}$ set of individuals
- $\left(R_{1}, \ldots, R_{m}\right) \in \mathcal{R}^{m}$ profile of (strict) preference orderings
- $f: \mathcal{R}^{m} \rightarrow \mathcal{R}$

Example

R_{1}	R_{2}	R_{3}
x	x	x
y	y	y
z	z	z

R
x
y
z

Specification of 'Action-Guidance'

> What is required for 'Action-Guidance'?
> What are the necessary and sufficient conditions for R to induce a choice function?

- Optimization: Acyclicity and Completeness of R
- Maximization: Acyclicity of R

Insights of Existing Results in Social Choice Theory

- Impossibility of transitive and complete social ranking (Arrow 1953)
- Possibility of acyclic social ranking (Sen 1970)

Insights of Existing Results in Social Choice Theory

- Impossibility of transitive and complete social ranking (Arrow 1953)
- Possibility of acyclic social ranking (Sen 1970)

Problem

- Problem: social ranking cyclic and/or (highly) incomplete
- Escape Routes:
- Domain Restrictions: Arbitrary?
- 'Biting the Incompleteness Bullet': How convincing are the 'complete parts' (Weak Pareto)? Problem of Parochial Values!

Extending the Framework: Procedure of Position Change

Changing Perspectives: Extending the Framework

$d \in \mathcal{R}^{m}$	R_{1}	R_{2}	\ldots	R_{m}	d^{*}
R_{1}	$R_{1,1}$	$R_{1,2}$	\ldots	$R_{1, m}$	R_{1}^{*}
R_{2}	$R_{2,1}$	$R_{2,2}$	\ldots	$R_{2, m}$	R_{2}^{*}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
R_{m}	$R_{m, 1}$	$R_{m, 2}$	\ldots	$R_{m, m}$	R_{m}^{*}

Extending the Framework: Procedure of Position Change

Changing Perspectives: Extending the Framework

$d \in \mathcal{R}^{m}$	R_{1}	R_{2}	\ldots	R_{m}	d^{*}
R_{1}	$R_{1,1}$	$R_{1,2}$	\ldots	$R_{1, m}$	R_{1}^{*}
R_{2}	$R_{2,1}$	$R_{2,2}$	\ldots	$R_{2, m}$	R_{2}^{*}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
R_{m}	$R_{m, 1}$	$R_{m, 2}$	\ldots	$R_{m, m}$	R_{m}^{*}

Implications for Acyclicity and/or Completeness of R ?

Position Change: No Arbitrary Changes

$d \in \mathcal{R}^{m}$	$x P_{1} y$	$x P_{2} y$	$x P_{3} y$	d^{*}
$x P_{1} y$	$x P_{1,1} y$	$x P_{1,2} y$	$x P_{1,3} y$	$x P_{1}^{* y}$
R_{2}	$R_{2,1}$	$R_{2,2}$	$R_{2,3}$	R_{2}^{*}
R_{3}	$R_{3,1}$	$R_{3,2}$	$R_{3,3}$	R_{3}^{*}

(1) For all $x, y \in X$, for all $i \in\{1, \ldots, m\}$, $x P_{i} y \& y P_{i}^{*} x \Rightarrow$ for some $j \in N, y P_{j} x$.

Position Change: Effective Empathy Outweighs Disagreement

$d \in \mathcal{R}^{m}$	R_{1}	$x P_{2} y$	$y P_{3} x$	d^{*}
$x P_{1} y$	$R_{1,1}$	$x P_{1,2} y$	$y P_{1,3} x$	$y P_{1, x}^{*}$
R_{2}	$R_{2,1}$	$R_{2,2}$	$R_{2,3}$	R_{2}^{*}
R_{3}	$R_{3,1}$	$R_{3,2}$	$R_{3,3}$	R_{3}^{*}

(1) For all $x, y \in X$, for all $i \in\{1, \ldots, m\}$, $x P_{i} y \& y P_{i}^{*} x \Rightarrow$ for some $j \in N, y P_{j} x$.
(2) For all $x, y \in X$, for all $i \in\{1, \ldots, m\}$, $\#\left\{(x, y, i) \in X \times X \times\{1, \ldots, m\} \mid x P_{i} y\right.$ and $\left.y P_{i}^{*} x\right\}>$ $>\#\{\{x, y\} \subseteq X \mid$ there is some $i, j \in\{1, \ldots, m\}$ such that $x P_{i} y$ and $\left.y P_{j} x\right\}$.

Position Change: Reasoned Change

$d \in \mathcal{R}^{m}$	R_{1}	$x P_{2} y$	$y P_{3} x$	d^{*}
$x P_{1} y$	$R_{1,1}$	$x P_{1,2} y$	$y P_{1,3} x$	$y P_{1}^{*} x$
R_{2}	$R_{2,1}$	$R_{2,2}$	$R_{2,3}$	R_{2}^{*}
$y P_{3} x$	$R_{3,1}$	$R_{3,2}$	$R_{3,3}$	$y P_{3}^{*} x$

(1) For all $x, y \in X$, for all $i \in\{1, \ldots, m\}, x P_{i} y \& y P_{i}^{*} x \Rightarrow$ for some $j \in N, y P_{j} x$.
(2) For all $x, y \in X$, for all $i \in\{1, \ldots, m\}$, $\#\left\{(x, y, i) \in X \times X \times\{1, \ldots, m\} \mid x P_{i} y\right.$ and $\left.y P_{i}^{*} x\right\}>$ $>\#\{\{x, y\} \subseteq X \mid$ there is some $i, j \in\{1, \ldots, m\}$ such that $x P_{i} y$ and $\left.y P_{j} x\right\}$.
(3) For all $x, y \in X$, for all $i \in\{1, \ldots, m\}$, $\left[x P_{i} y \& y P_{i}^{*} x\right] \Rightarrow\left[\right.$ there is no j such that $\left.y P_{j} x \& x P_{j}^{*} y\right]$.

Results: Simple Majority Rule

Theorem

Let $X=3$ and $m=3$. If $F: \mathcal{R}^{m} \rightarrow \mathcal{D}^{*}, \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^{*} satisfies Condition Value Overlap.

Results: Simple Majority Rule

Theorem

Let $X=3$ and $m=3$. If $F: \mathcal{R}^{m} \rightarrow \mathcal{D}^{*}, \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^{*} satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $\left.R_{i}\right|_{\{x, y, z\}}$ denote the restriction of binary relation R_{i} to the alternatives x, y and $z . \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$ satisfies Value Overlap if, and only if,
$\mathcal{D}^{*}=\left\{d \in \mathcal{R}^{m} \mid\right.$ for all
$\left.x, y, z \in X,\left.\bigcap_{i=1}^{i=m} R_{i}\right|_{\{x, y, z\}} \neq\{(x, x),(y, y),(z, z)\}\right\}$.

Results: Simple Majority Rule

Theorem

Let $X=3$ and $m=3$. If $F: \mathcal{R}^{m} \rightarrow \mathcal{D}^{*}, \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^{*} satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $\left.R_{i}\right|_{\{x, y, z\}}$ denote the restriction of binary relation R_{i} to the alternatives x, y and $z . \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$ satisfies Value Overlap if, and only if,
$\mathcal{D}^{*}=\left\{d \in \mathcal{R}^{m} \mid\right.$ for all
$\left.x, y, z \in X,\left.\bigcap_{i=1}^{i=m} R_{i}\right|_{\{x, y, z\}} \neq\{(x, x),(y, y),(z, z)\}\right\}$.

Theorem (Follows from Fishburn 1970)

If $\mathcal{D}^{*} \subseteq \mathcal{R}^{m}$ satisfies Value Overlap, then Simple Majority Rule yields a transitive social ranking.

Results: Action-Guidance

Abstract

Theorem Let $X=3$ and $m=3$. If $F: \mathcal{R}^{m} \rightarrow \mathcal{D}^{*}, \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^{*} satisfies Condition Value Overlap.

Results: Action-Guidance

Theorem

Let $X=3$ and $m=3$. If $F: \mathcal{R}^{m} \rightarrow \mathcal{D}^{*}, \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^{*} satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $\left.R_{i}\right|_{\{x, y, z\}}$ denote the restriction of binary relation R_{i} to the alternatives x, y and $z . \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$ satisfies Value Overlap if, and only if,
$\mathcal{D}^{*}=\left\{d \in \mathcal{R}^{m} \mid\right.$ for all
$\left.x, y, z \in X,\left.\bigcap_{i=1}^{i=m} R_{i}\right|_{\{x, y, z\}} \neq\{(x, x),(y, y),(z, z)\}\right\}$.

Results: Action-Guidance

Theorem

Let $X=3$ and $m=3$. If $F: \mathcal{R}^{m} \rightarrow \mathcal{D}^{*}, \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^{*} satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $\left.R_{i}\right|_{\{x, y, z\}}$ denote the restriction of binary relation R_{i} to the alternatives x, y and $z . \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$ satisfies Value Overlap if, and only if,
$\mathcal{D}^{*}=\left\{d \in \mathcal{R}^{m} \mid\right.$ for all
$\left.x, y, z \in X,\left.\bigcap_{i=1}^{i=m} R_{i}\right|_{\{x, y, z\}} \neq\{(x, x),(y, y),(z, z)\}\right\}$.

Theorem

If $\mathcal{D}^{*} \subseteq \mathcal{R}^{m}$ satisfies Value Overlap, then a Quota Rule generates an acyclic binary relation if,
(a) m is odd and $\frac{m+1}{2} \leq p$ or
(b) m is even and $\frac{m}{2}+1 \leq p$.

Results: Action-Guidance

Theorem

Let $X=3$ and $m=3$. If $F: \mathcal{R}^{m} \rightarrow \mathcal{D}^{*}, \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^{*} satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $\left.R_{i}\right|_{\{x, y, z\}}$ denote the restriction of binary relation R_{i} to the alternatives x, y and $z . \mathcal{D}^{*} \subseteq \mathcal{R}^{m}$ satisfies Value Overlap if, and only if,
$\mathcal{D}^{*}=\left\{d \in \mathcal{R}^{m} \mid\right.$ for all
$\left.x, y, z \in X,\left.\bigcap_{i=1}^{i=m} R_{i}\right|_{\{x, y, z\}} \neq\{(x, x),(y, y),(z, z)\}\right\}$.

Theorem

If $\mathcal{D}^{*} \subseteq \mathcal{R}^{m}$ satisfies Value Overlap, then a Quota Rule generates an acyclic binary relation if,
(a) m is odd and $\frac{m+1}{2} \leq p$ or
(b) m is even and $\frac{m}{2}+1 \leq p$.

If $p=m$, Value Overlap restricts incompleteness.

Some First Conclusions

- (Social) Choice Framework allows for Specification of 'Action-Guidance'
- Lessons from Existing Results: Action-Guidance Limited!

Some First Conclusions

- (Social) Choice Framework allows for Specification of 'Action-Guidance'
- Lessons from Existing Results: Action-Guidance Limited!
- Extending the Framework:
- Acyclicity Guaranteed for all

$$
\begin{aligned}
& \frac{m+1}{2} \leq p \leq m \text { (if } m \text { is odd) and } \\
& \frac{m}{2}+1 \leq p \leq m \text { (if } m \text { is even) }
\end{aligned}
$$

- Incompleteness Restricted!

Open Questions \& Future Research

- How Convincing is Completeness?

How Convincing is Completeness?

Example

R_{1}	R_{2}	R_{3}
x	z	x
y	x	z
z	y	y

$R *_{1}$	$R *_{2}$	$R *_{3}$
x	x	x
y	y	y
z	z	z

Open Questions \& Future Research

How Convincing is Completeness?

Example

R_{1}	R_{2}	R_{3}
x	z	x
y	x	z
z	y	y

$R *_{1}$	$R *_{2}$	$R *_{3}$
x	x	x
y	y	y
z	z	z

'Reasoned Consensus’ and 'Unreasoned Consensus'? Solution: Introducing an External Perspective?

Thank You.

