Intro 00	Existing Results	Extending the Framework: Position Change	Results 000	Open Questions

Walking a mile in your shoes: an Escape from Arrovian Impossibilities

Constanze Binder

Faculty of Philosophy Erasmus Institute for Philosophy and Economics (EIPE) Erasmus University Rotterdam

ILLC Workshop on Collective Decision Making March 19-20, 2015 University of Amsterdam

Intro ●○	Existing Results Extending the Framework: Position Change		Results 000	Open Questions
The Li	terature			

Social Choice Approach to Justice (Sen 2009)

- Comparative Approach
- Action-Guidance
- Facilitating Reexamination of Unquestioned Values & Convictions

Intro ●○	Existing Results Extending the Framework: Position Change		Results 000	Open Questions
The Literature				

Social Choice Approach to Justice (Sen 2009)

- Comparative Approach
- Action-Guidance
- Facilitating Reexamination of Unquestioned Values & Convictions

(How) Is the Social Choice Framework suited to address these points?

Intro ○●	Existing Results	Extending the Framework: Position Change	Results 000	Open Questions
Outlin	е			

- The Social Choice Framework: Lessons from Existing Results
- Extending the Social Choice Framework
 - Procedure of Position Change
 - Position Change and a Domain Condition
 - Result: Value Overlap is sufficient for Action-Guidance
- Some Conclusions
- Open Questions & Future Research

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
	000			

The Social Choice Framework

- X finite set of alternatives
- R binary relation on X
- $\{1, \ldots, m\}$ set of individuals
- $(R_1, \ldots, R_m) \in \mathbb{R}^m$ profile of (strict) preference orderings
- $f: \mathcal{R}^m \to \mathcal{R}$

Example

R_1	R_2	R ₃	R
X	X	X	X
y	У	y y	<i>y</i>
Z	Ζ	Z	Z
			·

Intro 00	Existing Results	Extending the Framework: Position Change	Results 000	Open Questions
Spec	ification of 'Ac	ction-Guidance'		

What is required for 'Action-Guidance'? What are the necessary and sufficient conditions for *R* to induce a choice function?

- Optimization: Acyclicity and Completeness of R
- Maximization: Acyclicity of R

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
	000			

Insights of Existing Results in Social Choice Theory

- Impossibility of transitive and complete social ranking (Arrow 1953)
- Possibility of acyclic social ranking (Sen 1970)

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
	000			

Insights of Existing Results in Social Choice Theory

- Impossibility of transitive and complete social ranking (Arrow 1953)
- Possibility of acyclic social ranking (Sen 1970)

Problem

- Problem: social ranking cyclic and/or (highly) incomplete
- Escape Routes:
 - Domain Restrictions: Arbitrary?
 - 'Biting the Incompleteness Bullet': How convincing are the 'complete parts' (Weak Pareto)? Problem of Parochial Values!

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
		•000		

Extending the Framework: Procedure of Position Change

Changing Perspectives: Extending the Framework

$d \in \mathcal{R}^m$	$ R_1 $	R_2		R_m	d *
R_1	<i>R</i> _{1,1}	<i>R</i> _{1,2}		$R_{1,m}$	R_1^*
R_2	<i>R</i> _{2,1}	<i>R</i> _{2,2}		R _{1,m} R _{2,m}	$egin{array}{c} R_1^* \ R_2^* \end{array}$
÷	:	÷	÷	÷	÷
R_m	<i>R_{m,1}</i>	<i>R</i> _{<i>m</i>,2}		$R_{m,m}$	R_m^*

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
		•000		

Extending the Framework: Procedure of Position Change

Changing Perspectives: Extending the Framework

$\pmb{d}\in\mathcal{R}^{\pmb{m}}$	R_1	R_2		R_m	d *
R_1	<i>R</i> _{1,1}	<i>R</i> _{1,2}		$R_{1,m}$	$egin{array}{c} R_1^* \ R_2^* \end{array}$
R_2	<i>R</i> _{2,1}	<i>R</i> _{2,2}		R _{1,m} R _{2,m}	R_2^*
:	÷	÷	÷	÷	÷
R _m	<i>R_{m,1}</i>	<i>R</i> _{<i>m</i>,2}		$R_{m,m}$	R_m^*

Implications for Acyclicity and/or Completeness of R?

Intro 00	Existing Results	Extending the Framework: Position Change	Results	Open Questions

Position Change: No Arbitrary Changes

• For all $x, y \in X$, for all $i \in \{1, ..., m\}$, $xP_iy\&yP_i^*x \Rightarrow$ for some $j \in N, yP_jx$.

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
		0000		

Position Change: Effective Empathy Outweighs Disagreement

$d \in \mathcal{R}^m$	$ R_1 $	xP ₂ y	yP ₃ x	d*
xP ₁ y	<i>R</i> _{1,1}	<i>xP</i> _{1,2} <i>y</i>	<i>yP</i> _{1,3} <i>x</i>	yP_1^*x
R_2	<i>R</i> _{2,1}	$R_{2,2}$	$R_{2,3}$	R_2^*
R_3	<i>R</i> _{3,1}	<i>R</i> _{3,2}	$R_{3,3}$	<i>R</i> ₃ *

• For all
$$x, y \in X$$
, for all $i \in \{1, ..., m\}$,
 $xP_iy \& yP_i^*x \Rightarrow$ for some $j \in N, yP_jx$.

2 For all $x, y \in X$, for all $i \in \{1, ..., m\}$, # $\{(x, y, i) \in X \times X \times \{1, ..., m\} | xP_i y \text{ and } yP_i^*x\} >$ > # $\{\{x, y\} \subseteq X|$ there is some $i, j \in \{1, ..., m\}$ such that $xP_i y$ and $yP_j x\}$.

Intro 00	Existing Results	Extending the Framework: Position Change	Results 000	Open Questions

Position Change: Reasoned Change

- For all $x, y \in X$, for all $i \in \{1, ..., m\}$, $xP_iy\&yP_i^*x \Rightarrow$ for some $j \in N, yP_jx$.
- **2** For all $x, y \in X$, for all $i \in \{1, ..., m\}$, $\#\{(x, y, i) \in X \times X \times \{1, ..., m\} | xP_i y \text{ and } yP_i^*x\} >$ $> \#\{\{x, y\} \subseteq X | \text{ there is some } i, j \in \{1, ..., m\} \text{ such that } xP_i y \text{ and } yP_j x\}.$
- **③** For all $x, y \in X$, for all $i \in \{1, ..., m\}$, [$xP_iy\&yP_i^*x$] ⇒ [there is no j such that $yP_jx\&xP_i^*y$].

Intro 00	Existing Results	Extending the Framework: Position Change	Results ●○○	Open Questions

Results: Simple Majority Rule

Theorem

Let X = 3 and m = 3. If $F : \mathbb{R}^m \to \mathcal{D}^*, \mathcal{D}^* \subseteq \mathbb{R}^m$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^* satisfies Condition Value Overlap.

Intro 00	Existing Results	Extending the Framework: Position Change	Results ●○○	Open Questions

Results: Simple Majority Rule

Theorem

Let X = 3 and m = 3. If $F : \mathbb{R}^m \to \mathcal{D}^*, \mathcal{D}^* \subseteq \mathbb{R}^m$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^* satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $R_i \mid_{\{x,y,z\}}$ denote the restriction of binary relation R_i to the alternatives x, y and z. $\mathcal{D}^* \subseteq \mathcal{R}^m$ satisfies Value Overlap if, and only if, $\mathcal{D}^* = \{ d \in \mathcal{R}^m \mid \text{for all} \\ x, y, z \in X, \bigcap_{i=1}^{i=m} R_i \mid_{\{x,y,z\}} \neq \{(x, x), (y, y), (z, z)\} \}.$

Intro 00	Existing Results	Extending the Framework: Position Change	Results ●○○	Open Questions

Results: Simple Majority Rule

Theorem

Let X = 3 and m = 3. If $F : \mathbb{R}^m \to \mathcal{D}^*, \mathcal{D}^* \subseteq \mathbb{R}^m$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^* satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $R_i \mid_{\{x,y,z\}}$ denote the restriction of binary relation R_i to the alternatives x, y and z. $\mathcal{D}^* \subseteq \mathcal{R}^m$ satisfies Value Overlap if, and only if, $\mathcal{D}^* = \{ d \in \mathcal{R}^m \mid \text{for all} \\ x, y, z \in X, \bigcap_{i=1}^{i=m} R_i \mid_{\{x,y,z\}} \neq \{(x, x), (y, y), (z, z)\} \}.$

Theorem (Follows from Fishburn 1970)

If $\mathcal{D}^* \subseteq \mathcal{R}^m$ satisfies Value Overlap, then Simple Majority Rule yields a transitive social ranking.

Intro 00	Existing Results	Extending the Framework: Position Change	Results o●o	Open Questions

Theorem

Let X = 3 and m = 3. If $F : \mathcal{R}^m \to \mathcal{D}^*, \mathcal{D}^* \subseteq \mathcal{R}^m$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^* satisfies Condition Value Overlap.

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
			000	

Theorem

Let X = 3 and m = 3. If $F : \mathcal{R}^m \to \mathcal{D}^*, \mathcal{D}^* \subseteq \mathcal{R}^m$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^* satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $R_i \mid_{\{x,y,z\}}$ denote the restriction of binary relation R_i to the alternatives x, y and $z. \mathcal{D}^* \subseteq \mathcal{R}^m$ satisfies Value Overlap if, and only if, $\mathcal{D}^* = \{d \in \mathcal{R}^m \mid \text{for all} \\ x, y, z \in X, \bigcap_{i=m}^{i=m} R_i \mid_{\{x,y,z\}} \neq \{(x, x), (y, y), (z, z)\}\}.$

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
			000	

Theorem

Let X = 3 and m = 3. If $F : \mathcal{R}^m \to \mathcal{D}^*, \mathcal{D}^* \subseteq \mathcal{R}^m$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^* satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $R_i \mid_{\{x,y,z\}}$ denote the restriction of binary relation R_i to the alternatives x, y and z. $\mathcal{D}^* \subseteq \mathcal{R}^m$ satisfies Value Overlap if, and only if, $\mathcal{D}^* = \{d \in \mathcal{R}^m \mid \text{for all} \\ x, y, z \in X, \bigcap_{i=1}^{i=m} R_i \mid_{\{x,y,z\}} \neq \{(x,x), (y,y), (z,z)\}\}.$

Theorem

If $\mathcal{D}^* \subseteq \mathcal{R}^m$ satisfies Value Overlap, then a Quota Rule generates an acyclic binary relation if, (a) *m* is odd and $\frac{m+1}{2} \leq p$ or (b) *m* is even and $\frac{m}{2} + 1 \leq p$.

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
			000	

Theorem

Let X = 3 and m = 3. If $F : \mathcal{R}^m \to \mathcal{D}^*, \mathcal{D}^* \subseteq \mathcal{R}^m$, satisfies Axiom 1, 2 and 3 then \mathcal{D}^* satisfies Condition Value Overlap.

Definition (Value Overlap)

Let $R_i \mid_{\{x,y,z\}}$ denote the restriction of binary relation R_i to the alternatives x, y and z. $\mathcal{D}^* \subseteq \mathcal{R}^m$ satisfies Value Overlap if, and only if, $\mathcal{D}^* = \{d \in \mathcal{R}^m \mid \text{for all} \\ x, y, z \in X, \bigcap_{i=1}^{i=m} R_i \mid_{\{x,y,z\}} \neq \{(x, x), (y, y), (z, z)\}\}.$

Theorem

If $\mathcal{D}^* \subseteq \mathcal{R}^m$ satisfies Value Overlap, then a Quota Rule generates an acyclic binary relation if, (a) *m* is odd and $\frac{m+1}{2} \leq p$ or (b) *m* is even and $\frac{m}{2} + 1 \leq p$.

If p = m, Value Overlap restricts incompleteness.

Intro 00	Existing Results	Extending the Framework: Position Change	Results ○○●	Open Questions
Some	First Conclus	sions		

- (Social) Choice Framework allows for Specification of 'Action-Guidance'
- Lessons from Existing Results: Action-Guidance Limited!

Intro 00	Existing Results	Extending the Framework: Position Change	Results ○○●	Open Questions
Some	First Conclu	sions		

- (Social) Choice Framework allows for Specification of 'Action-Guidance'
- Lessons from Existing Results: Action-Guidance Limited!
- Extending the Framework:
 - Acyclicity Guaranteed for all $\frac{m+1}{2} \le p \le m$ (if *m* is odd) and $\frac{m}{2} + 1 \le p \le m$ (if *m* is even)
 - Incompleteness Restricted!

Intro 00	Existing Results	Extending the Framework: Position Change	Results	Open Questions
Open	Questions &	Future Research		

• How Convincing is Completeness?

Intro	Existing Results	Extending the Framework: Position Change	Results	Open Questions
				0000

How Convincing is Completeness?

Example

R_1	R_2	R ₃		<i>R</i> *1	<i>R</i> * ₂	<i>R</i> *3
X	Ζ	X		X	X	X
y y	x	Ζ	→	У	У	y
Ζ	y	y		Ζ	Ζ	Ζ

Intro 00	Existing Results	Extending the Framework: Position Change	Results 000	Open Questions

Open Questions & Future Research

How Convincing is Completeness?

'Reasoned Consensus' and 'Unreasoned Consensus'? Solution: Introducing an External Perspective?

Intro 00	Existing Results	Extending the Framework: Position Change	Results	Open Questions

Thank You.