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What is logic useful for? (list borrowed from [8])

e formal representation and retrieval

e makes hidden assumptions explicit

e confirms existing results

e cleans up proofs

e suggests new proof strategies

e helps find new results (inc. new types of results)
e helps review work

To test the expressive power of the modal logic of social choice functions
proposed by Troquard et al. [12], Ulle Endriss and | gave a syntactic
proof Arrow’s Theorem.
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The setting

Given a set of alternatives X, we suppose each agent has a preference
over these alternatives, namely a reflexive, antisymmetric, complete, and
transitive relation over X.

Question: given a set of agents N, how do we aggregate the preferences
of individuals into a unique collective preference?



The setting

Given a set of alternatives X, we suppose each agent has a preference
over these alternatives, namely a reflexive, antisymmetric, complete, and
transitive relation over X.

Question: given a set of agents N, how do we aggregate the preferences
of individuals into a unique collective preference?

Let £(X) denote the set of all such linear orders. Call =; the ballot
provided by agent i. A profile is an n-tuple (3=1,...,%,) € L(X)" of
such ballots. Indicate with Ni_  the set of agents preferring x over y in
profile w.

Definition
A resolute social choice function is a function F : £(X)" — X mapping
any given profile of ballots to a single winning alternative.
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The properties of a SCF

Three properties are mentioned in the statement of Arrow’s Theorem:
Independence of Irrelevant Alternatives (11A), Pareto efficiency and
Dictatorship.

Definition
A SCF F satisfies llA if, for every pair of profiles w, w’ € ,C(X)” and

every pair of distinct alternatives x,y € X with Nit_ = N, F(w) = x
implies F(w') # y.

Definition
A SCF F is Pareto efficient if, for every profile w € £(X)" and every pair
of distinct alternatives x,y € X with NX = N, we obtain F(w) # y.

Definition
A SCF F is a dictatorship if there exists an agent i € N (the dictator)
such that, for every profile w € £(X)", we obtain F(w) = top?.



The theorem

We are ready to state Arrow’s Theorem itself:
Theorem (Arrow)

Any SCF for > 3 alternatives that satisfies IIA and the Pareto condition
is a dictatorship.
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A proof

We present a well known proof of the theorem [5, 10], exploiting the
notion of decisive coalition.

Definition

A coalition C C N is decisive over a pair of alternatives (x,y) € X2 if
C C N, entails F(w) # y.

A coalition C C N is weakly decisive over (x,y) € X* if C = N,
entails F(w) # y.
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A proof

The general strategy of the proof is the following.

@ If a coalition is weakly decisive over one pair then it is decisive over
any pair.

® By 1, if a coalition C is decisive over any pair and C is partitioned
into two disjoint sets C; and C, then one of the two latter sets must
be decisive over any pair (Contraction Lemma).

© By Pareto the whole set N is decisive over all pairs; by repeated
application of Contraction Lemma we infer that there is a singleton
coalition that is decisive over any pair, i.e. a dictator.
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Troquard et al. [12] introduced a modal logic, called ASf[N, X], to reason
about resolute SCF's as well as the agents’ truthful preferences. We use
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Syntax

Troquard et al. [12] introduced a modal logic, called ASf[N, X], to reason
about resolute SCF's as well as the agents’ truthful preferences. We use
a fragment of this logic, called here L[N, X].

Definition
The language of L[N, X] is the following:

o u= plx|opleVY|Ocy

Wherepe{p)’;ky\iENandx,yEX},xeXand CCN.
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Semantics

Definition
A model is a triple M = (N, X, F), consisting of a finite set of agents N
with n = |N|, a finite set of alternatives X, and a SCF F : L(X)" — X.

Definition
Let M be a model. We write M, w |= ¢ to express that the formula ¢ is
true at the world w = (%=1,...,%=,) € £(X)" in M. Define:

e M, w }:pi?y iff x =y

o M,w = x iff F(w) = x

o M,w = - iff M,w £ ¢

e MwkEooVyiff MiwEpor Miw E

e Miw | Oy iff Myw' = ¢ for some world

w' =01, ..., =0 € LX) with = = =/ forall i e N\ C.
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Notation

We can encode some semantic notions into formulas:
balloti(w) = P, A Prgsxs N A P
encodes the ballot of agent /.
profile(w) := ballot;(w) A ballota(w) A - - - A ballot,(w)

profile(w) is true at world w, and only there; hence nominals, i.e.,
formulas uniquely identifying worlds [3], are definable within this logic at
no extra cost.

profile(w)(x,y) = N{pls, | x =i y} A N\{Phox | ¥ =i x}
ieN ieN



Axiomatization

@ all propositional tautologies

® formulas pj(ky are arranged in a linear order

© Di(p = ¢) = (Qip = O) - (K()))

0@ Tip— o (T(i))

@ ¢ — 0i%ip  (B(1)

0 <¢i0jp <> 0;Cjp  (confluence)

@ Oq0gy < Oquge  (union)

® Oyp <> ¢ (empty coalition)

O (Cip A Oj=p) — (Ojp Vv O;=p), where i # j (exclusive)
@ O;ballot;(w)  (ballot)

® O Aol = Oque(d1 Ada)  (cooperation)

® Viex(X AN N\jexy(xy ) (resolute)

® (profile(w) A ) — Op(profile(w) — )  (functional)



Nice results

The logic L[N, X] behaves well:

Lemma
Determining whether a formula in the language of L[N, X] is valid is a
decidable problem.

Theorem

The logic L[N, X] is sound and complete w.r.t. the class of models of
SCF's.
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Properties

Here is how the aforementioned properties are coded in the logical

language:

1A

ANARA

weL(X)"xeX yeX\{x}
[On(profile(w) A x) — (profile(w)(x,y) — —y)]

A A [(Ar)~]

xeX yeX\{x} ieN

VA A =)

ieEN xeX yeX\{x}
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Proof

We use the following formula to encode decisiveness of C over (x,y):

Cdec(x,y) = </\ pi>y> =y

ieC

If C is decisive on every pair, we will simply write Cdec.
We define a weakly decisive coalition C for (x,y) as a coalition that can
bar y from winning if exactly the agents in C prefer x to y:

Cwdec(x,y) = /\ Piw A /\ P}}x -y
iec igc
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For every possible profile w € L(X)", we have = <y profile(w).



Proof

We first prove that every possible profile exists in the semantics:

Lemma (Universal domain)
For every possible profile w € L(X)", we have = <y profile(w).

Proof.

Take any w. Then ballot; (w) encodes the preferences of the first agent.
By axiom (10) we have &pballot;(w), and similarly we get $oballoty(w).
Because ballot;(w) and ballot(w) contain different atoms, we can apply
axiom (11) and obtain Oy 5y (balloty(w) A balloty(w)). We repeat this
reasoning for all the finitely many agents in N to prove Oyprofile(w). O



Proof

Lemma (1)

Consider a language parametrised by X such that |X| > 3. Then for any
coalition C C N and any two distinct alternatives x,y € X, we have that:
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Proof

Lemma (1)

Consider a language parametrised by X such that |X| > 3. Then for any
coalition C C N and any two distinct alternatives x,y € X, we have that:

F P ANAN Cwdec(x, y) — Cdec

Lemma (2, Contraction Lemma)

Consider a language parametrised by X such that |X| > 3. Then for any
coalition C C N with and any two coalitions C; and C, that form a
partition of C, we have that:

F P AIHAAN Cdec — (CidecV Cydec)



Proof

Theorem
Consider a language parametrised by X such that |X| > 3. Then we have:

FPAIIA—D

Proof.

We know P is equivalent to Ndec. Exploiting the premise P A lIA, we
can apply the Contraction Lemma and prove that one of two disjoint
subsets of N is decisive. Repeating the process finitely many times (we
have finitely many agents), we can show that one of the singletons that
form N is decisive. But this is tantamount to deriving D, i.e. saying that
there exist a dictator. O



Further work

The plan for the near future:

e Encode more commonly studied notions of voting theory in the logic
considered here and prove other results such as May's Theorem or
Sen’s approach to rights.

e Exploit the computational feasibility of modal logic by working on an
optimised implementation.
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