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Logics for Social Choice Theory

Quite a few logics for Social Choice: [1, 2, 4, 5, 6, 7, 9, 11, 12, 13].

What is logic useful for? (list borrowed from [8])

• formal representation and retrieval

• makes hidden assumptions explicit

• confirms existing results

• cleans up proofs

• suggests new proof strategies

• helps find new results (inc. new types of results)

• helps review work

To test the expressive power of the modal logic of social choice functions
proposed by Troquard et al. [12], Ulle Endriss and I gave a syntactic
proof Arrow’s Theorem.
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The setting

Given a set of alternatives X , we suppose each agent has a preference
over these alternatives, namely a reflexive, antisymmetric, complete, and
transitive relation over X .
Question: given a set of agents N, how do we aggregate the preferences
of individuals into a unique collective preference?

Let L(X ) denote the set of all such linear orders. Call <i the ballot
provided by agent i . A profile is an n-tuple (<1, . . . ,<n) ∈ L(X )n of
such ballots. Indicate with Nw

x<y the set of agents preferring x over y in
profile w .

Definition
A resolute social choice function is a function F : L(X )n → X mapping
any given profile of ballots to a single winning alternative.
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The properties of a SCF

Three properties are mentioned in the statement of Arrow’s Theorem:
Independence of Irrelevant Alternatives (IIA), Pareto efficiency and
Dictatorship.

Definition
A SCF F satisfies IIA if, for every pair of profiles w ,w ′ ∈ L(X )n and
every pair of distinct alternatives x , y ∈ X with Nw

x<y = Nw ′

x<y , F (w) = x
implies F (w ′) 6= y .

Definition
A SCF F is Pareto efficient if, for every profile w ∈ L(X )n and every pair
of distinct alternatives x , y ∈ X with Nw

x<y = N, we obtain F (w) 6= y .

Definition
A SCF F is a dictatorship if there exists an agent i ∈ N (the dictator)
such that, for every profile w ∈ L(X )n, we obtain F (w) = topw

i .
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The theorem

We are ready to state Arrow’s Theorem itself:

Theorem (Arrow)
Any SCF for > 3 alternatives that satisfies IIA and the Pareto condition
is a dictatorship.
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A proof

We present a well known proof of the theorem [5, 10], exploiting the
notion of decisive coalition.

Definition
A coalition C ⊆ N is decisive over a pair of alternatives (x , y) ∈ X 2 if
C ⊆ Nw

x<y entails F (w) 6= y .

A coalition C ⊆ N is weakly decisive over (x , y) ∈ X 2 if C = Nw
x<y

entails F (w) 6= y .
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A proof

The general strategy of the proof is the following.

1 If a coalition is weakly decisive over one pair then it is decisive over
any pair.

2 By 1, if a coalition C is decisive over any pair and C is partitioned
into two disjoint sets C1 and C2 then one of the two latter sets must
be decisive over any pair (Contraction Lemma).

3 By Pareto the whole set N is decisive over all pairs; by repeated
application of Contraction Lemma we infer that there is a singleton
coalition that is decisive over any pair, i.e. a dictator.
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Syntax

Troquard et al. [12] introduced a modal logic, called Λscf[N,X ], to reason
about resolute SCF’s as well as the agents’ truthful preferences. We use
a fragment of this logic, called here L[N,X ].

Definition
The language of L[N,X ] is the following:

ϕ ::= p | x | ¬ϕ |ϕ ∨ ψ |3Cϕ

where p ∈ {pix<y | i ∈ N and x , y ∈ X}, x ∈ X and C ⊆ N.
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Semantics

Definition
A model is a triple M = 〈N,X ,F 〉, consisting of a finite set of agents N
with n = |N|, a finite set of alternatives X , and a SCF F : L(X )n → X .

Definition
Let M be a model. We write M,w |= ϕ to express that the formula ϕ is
true at the world w = (<1, . . . ,<n) ∈ L(X )n in M. Define:

• M,w |= pix<y iff x <i y

• M,w |= x iff F (w) = x

• M,w |= ¬ϕ iff M,w 6|= ϕ

• M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ

• M,w |= 3Cϕ iff M,w ′ |= ϕ for some world
w ′ =(<′

1, . . . ,<
′
n) ∈ L(X )n with <i = <′

i for all i ∈ N \ C .
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Notation

We can encode some semantic notions into formulas:

balloti (w) := pix1<x2 ∧ pix2<x3 ∧ · · · ∧ pixm−1<xm

encodes the ballot of agent i .

profile(w) := ballot1(w) ∧ ballot2(w) ∧ · · · ∧ ballotn(w)

profile(w) is true at world w , and only there; hence nominals, i.e.,
formulas uniquely identifying worlds [3], are definable within this logic at
no extra cost.

profile(w)(x , y) :=
∧
i∈N

{pix<y | x <i y} ∧
∧
i∈N

{piy<x | y <i x}
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Axiomatization

1 all propositional tautologies

2 formulas pix<y are arranged in a linear order

3 2i (ϕ→ ψ)→ (2iϕ→ 2iψ) (K(i))

4 2iϕ→ ϕ (T(i))

5 ϕ→ 2i3iϕ (B(i))

6 3i2jϕ↔ 2j3iϕ (confluence)

7 2C12C2ϕ↔ 2C1∪C2ϕ (union)

8 2∅ϕ↔ ϕ (empty coalition)

9 (3ip ∧3i¬p)→ (2jp ∨2j¬p), where i 6= j (exclusive)

10 3iballoti (w) (ballot)

11 3C1δ1 ∧3C2δ2 → 3C1∪C2(δ1 ∧ δ2) (cooperation)

12
∨

x∈X (x ∧
∧

y∈X\{x} ¬y) (resolute)

13 (profile(w) ∧ ϕ)→ 2N(profile(w)→ ϕ) (functional)



Nice results

The logic L[N,X ] behaves well:

Lemma
Determining whether a formula in the language of L[N,X ] is valid is a
decidable problem.

Theorem
The logic L[N,X ] is sound and complete w.r.t. the class of models of
SCF’s.
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Properties

Here is how the aforementioned properties are coded in the logical
language:

IIA :=
∧

w∈L(X )n

∧
x∈X

∧
y∈X\{x}

[3N(profile(w) ∧ x)→ (profile(w)(x , y)→ ¬y)]

P :=
∧
x∈X

∧
y∈X\{x}

[(∧
i∈N

pix<y

)
→ ¬y

]

D :=
∨
i∈N

∧
x∈X

∧
y∈X\{x}

(
pix<y → ¬y

)



Proof

We use the following formula to encode decisiveness of C over (x , y):

Cdec(x , y) :=

(∧
i∈C

pix<y

)
→ ¬y

If C is decisive on every pair, we will simply write Cdec.

We define a weakly decisive coalition C for (x , y) as a coalition that can
bar y from winning if exactly the agents in C prefer x to y :

Cwdec(x , y) :=

∧
i∈C

pix<y ∧
∧
i 6∈C

piy<x

→ ¬y
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Proof

We first prove that every possible profile exists in the semantics:

Lemma (Universal domain)
For every possible profile w ∈ L(X )n, we have ` 3Nprofile(w).

Proof.
Take any w . Then ballot1(w) encodes the preferences of the first agent.
By axiom (10) we have 31ballot1(w), and similarly we get 32ballot2(w).
Because ballot1(w) and ballot2(w) contain different atoms, we can apply
axiom (11) and obtain 3{1,2}(ballot1(w) ∧ ballot2(w)). We repeat this
reasoning for all the finitely many agents in N to prove 3Nprofile(w).
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Proof

Lemma (1)
Consider a language parametrised by X such that |X | > 3. Then for any
coalition C ⊆ N and any two distinct alternatives x , y ∈ X , we have that:

` P ∧ IIA ∧ Cwdec(x , y)→ Cdec

Lemma (2, Contraction Lemma)
Consider a language parametrised by X such that |X | > 3. Then for any
coalition C ⊆ N with and any two coalitions C1 and C2 that form a
partition of C , we have that:

` P ∧ IIA ∧ Cdec→ (C1dec ∨ C2dec)
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Proof

Theorem
Consider a language parametrised by X such that |X | > 3. Then we have:

` P ∧ IIA→ D

Proof.
We know P is equivalent to Ndec. Exploiting the premise P ∧ IIA, we
can apply the Contraction Lemma and prove that one of two disjoint
subsets of N is decisive. Repeating the process finitely many times (we
have finitely many agents), we can show that one of the singletons that
form N is decisive. But this is tantamount to deriving D, i.e. saying that
there exist a dictator.



Further work

The plan for the near future:

• Encode more commonly studied notions of voting theory in the logic
considered here and prove other results such as May’s Theorem or
Sen’s approach to rights.

• Exploit the computational feasibility of modal logic by working on an
optimised implementation.
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