Arrow's Theorem in Modal Logic

Giovanni Ciná
Joint work with Ulle Endriss

20/03/2015

Institute for Logic, Language and Computation

Logics for Social Choice Theory

Quite a few logics for Social Choice: $[1,2,4,5,6,7,9,11,12,13]$.

Logics for Social Choice Theory

Quite a few logics for Social Choice: $[1,2,4,5,6,7,9,11,12,13]$. What is logic useful for? (list borrowed from [8])

- formal representation and retrieval
- makes hidden assumptions explicit
- confirms existing results
- cleans up proofs
- suggests new proof strategies
- helps find new results (inc. new types of results)
- helps review work

Logics for Social Choice Theory

Quite a few logics for Social Choice: $[1,2,4,5,6,7,9,11,12,13]$. What is logic useful for? (list borrowed from [8])

- formal representation and retrieval
- makes hidden assumptions explicit
- confirms existing results
- cleans up proofs
- suggests new proof strategies
- helps find new results (inc. new types of results)
- helps review work

To test the expressive power of the modal logic of social choice functions proposed by Troquard et al. [12], Ulle Endriss and I gave a syntactic proof Arrow's Theorem.

Outline

(1) Arrow's Theorem
(2) A proof
(3) A logic
(4) Encoding the proof

Outline

(1) Arrow's Theorem
(2) A proof
(3) A logic
(4) Encoding the proof

The setting

Given a set of alternatives X, we suppose each agent has a preference over these alternatives, namely a reflexive, antisymmetric, complete, and transitive relation over X.
Question: given a set of agents N, how do we aggregate the preferences of individuals into a unique collective preference?

The setting

Given a set of alternatives X, we suppose each agent has a preference over these alternatives, namely a reflexive, antisymmetric, complete, and transitive relation over X.
Question: given a set of agents N, how do we aggregate the preferences of individuals into a unique collective preference?
Let $\mathcal{L}(X)$ denote the set of all such linear orders. Call \succcurlyeq_{i} the ballot provided by agent i. A profile is an n-tuple $\left(\succcurlyeq_{1}, \ldots, \succcurlyeq_{n}\right) \in \mathcal{L}(X)^{n}$ of such ballots. Indicate with $N_{x \succcurlyeq y}^{w}$ the set of agents preferring x over y in profile w.

Definition

A resolute social choice function is a function $F: \mathcal{L}(X)^{n} \rightarrow X$ mapping any given profile of ballots to a single winning alternative.

The properties of a SCF

Three properties are mentioned in the statement of Arrow's Theorem: Independence of Irrelevant Alternatives (IIA), Pareto efficiency and Dictatorship.

The properties of a SCF

Three properties are mentioned in the statement of Arrow's Theorem: Independence of Irrelevant Alternatives (IIA), Pareto efficiency and Dictatorship.
Definition
A SCF F satisfies IIA if, for every pair of profiles $w, w^{\prime} \in \mathcal{L}(X)^{n}$ and every pair of distinct alternatives $x, y \in X$ with $N_{x \succcurlyeq y}^{w}=N_{x \succcurlyeq y}^{w}, F(w)=x$ implies $F\left(w^{\prime}\right) \neq y$.

The properties of a SCF

Three properties are mentioned in the statement of Arrow's Theorem: Independence of Irrelevant Alternatives (IIA), Pareto efficiency and Dictatorship.

Definition

A SCF F satisfies IIA if, for every pair of profiles $w, w^{\prime} \in \mathcal{L}(X)^{n}$ and every pair of distinct alternatives $x, y \in X$ with $N_{x \succcurlyeq y}^{w}=N_{x \succcurlyeq y}^{w}, F(w)=x$ implies $F\left(w^{\prime}\right) \neq y$.

Definition

A SCF F is Pareto efficient if, for every profile $w \in \mathcal{L}(X)^{n}$ and every pair of distinct alternatives $x, y \in X$ with $N_{x \geqslant y}^{w}=N$, we obtain $F(w) \neq y$.

The properties of a SCF

Three properties are mentioned in the statement of Arrow's Theorem: Independence of Irrelevant Alternatives (IIA), Pareto efficiency and Dictatorship.

Definition

A SCF F satisfies IIA if, for every pair of profiles $w, w^{\prime} \in \mathcal{L}(X)^{n}$ and every pair of distinct alternatives $x, y \in X$ with $N_{x \succcurlyeq y}^{w}=N_{x \succcurlyeq y}^{w}, F(w)=x$ implies $F\left(w^{\prime}\right) \neq y$.

Definition

A SCF F is Pareto efficient if, for every profile $w \in \mathcal{L}(X)^{n}$ and every pair of distinct alternatives $x, y \in X$ with $N_{x \supsetneqq y}^{w}=N$, we obtain $F(w) \neq y$.

Definition

A SCF F is a dictatorship if there exists an agent $i \in N$ (the dictator) such that, for every profile $w \in \mathcal{L}(X)^{n}$, we obtain $F(w)=$ top $_{i}^{w}$.

The theorem

We are ready to state Arrow's Theorem itself:
Theorem (Arrow)
Any SCF for $\geqslant 3$ alternatives that satisfies IIA and the Pareto condition is a dictatorship.

Outline

(1) Arrow's Theorem
(2) A proof
(3) A logic
(4) Encoding the proof

A proof

We present a well known proof of the theorem [5, 10], exploiting the notion of decisive coalition.

A proof

We present a well known proof of the theorem [5,10 , exploiting the notion of decisive coalition.

Definition
A coalition $C \subseteq N$ is decisive over a pair of alternatives $(x, y) \in X^{2}$ if $C \subseteq N_{x \succcurlyeq y}^{w}$ entails $F(w) \neq y$.
A coalition $C \subseteq N$ is weakly decisive over $(x, y) \in X^{2}$ if $C=N_{x \succcurlyeq y}^{w}$ entails $F(w) \neq y$.

A proof

The general strategy of the proof is the following.
(1) If a coalition is weakly decisive over one pair then it is decisive over any pair.

A proof

The general strategy of the proof is the following.
(1) If a coalition is weakly decisive over one pair then it is decisive over any pair.
(2) By 1 , if a coalition C is decisive over any pair and C is partitioned into two disjoint sets C_{1} and C_{2} then one of the two latter sets must be decisive over any pair (Contraction Lemma).

A proof

The general strategy of the proof is the following.
(1) If a coalition is weakly decisive over one pair then it is decisive over any pair.
(2) By 1 , if a coalition C is decisive over any pair and C is partitioned into two disjoint sets C_{1} and C_{2} then one of the two latter sets must be decisive over any pair (Contraction Lemma).
(3) By Pareto the whole set N is decisive over all pairs; by repeated application of Contraction Lemma we infer that there is a singleton coalition that is decisive over any pair, i.e. a dictator.

Outline

(1) Arrow's Theorem
(2) A proof
(3) A logic
(4) Encoding the proof

Syntax

Troquard et al. [12] introduced a modal logic, called $\Lambda^{\text {scf }}[N, X]$, to reason about resolute SCF's as well as the agents' truthful preferences. We use a fragment of this logic, called here $L[N, X]$.

Syntax

Troquard et al. [12] introduced a modal logic, called $\Lambda^{\text {scf }}[N, X]$, to reason about resolute SCF's as well as the agents' truthful preferences. We use a fragment of this logic, called here $L[N, X]$.
Definition
The language of $L[N, X]$ is the following:

$$
\varphi \quad::=p|x| \neg \varphi|\varphi \vee \psi| \diamond_{c} \varphi
$$

where $p \in\left\{p_{x \succcurlyeq y}^{i} \mid i \in N\right.$ and $\left.x, y \in X\right\}, x \in X$ and $C \subseteq N$.

Semantics

Definition

A model is a triple $M=\langle N, X, F\rangle$, consisting of a finite set of agents N with $n=|N|$, a finite set of alternatives X, and a SCF $F: \mathcal{L}(X)^{n} \rightarrow X$.

Semantics

Definition

A model is a triple $M=\langle N, X, F\rangle$, consisting of a finite set of agents N with $n=|N|$, a finite set of alternatives X, and a SCF $F: \mathcal{L}(X)^{n} \rightarrow X$.

Definition

Let M be a model. We write $M, w \models \varphi$ to express that the formula φ is true at the world $w=\left(\succcurlyeq_{1}, \ldots, \succcurlyeq_{n}\right) \in \mathcal{L}(X)^{n}$ in M. Define:

- $M, w \models p_{x \succcurlyeq y}^{i}$ iff $x \succcurlyeq_{i} y$
- $M, w \models x$ iff $F(w)=x$
- $M, w \models \neg \varphi$ iff $M, w \not \models \varphi$
- $M, w \models \varphi \vee \psi$ iff $M, w \models \varphi$ or $M, w \models \psi$
- $M, w \models \diamond_{c} \varphi$ iff $M, w^{\prime} \models \varphi$ for some world $w^{\prime}=\left(\succcurlyeq_{1}^{\prime}, \ldots, \succcurlyeq_{n}^{\prime}\right) \in \mathcal{L}(X)^{n}$ with $\succcurlyeq_{i}=\succcurlyeq_{i}^{\prime}$ for all $i \in N \backslash C$.

Notation

We can encode some semantic notions into formulas:

$$
\operatorname{ballot}_{i}(w):=p_{x_{1} \succcurlyeq x_{2}}^{i} \wedge p_{x_{2} \succcurlyeq x_{3}}^{i} \wedge \cdots \wedge p_{x_{m-1} \succcurlyeq x_{m}}^{i}
$$ encodes the ballot of agent i.

Notation

We can encode some semantic notions into formulas:

$$
\operatorname{ballot}_{i}(w):=p_{x_{1} \succcurlyeq x_{2}}^{i} \wedge p_{x_{2} \succcurlyeq x_{3}}^{i} \wedge \cdots \wedge p_{x_{m-1} \succcurlyeq x_{m}}^{i}
$$

encodes the ballot of agent i.

$$
\text { profile }(w):=\text { ballot }_{1}(w) \wedge \text { ballot }_{2}(w) \wedge \cdots \wedge \text { ballot }_{n}(w)
$$

profile(w) is true at world w, and only there; hence nominals, i.e., formulas uniquely identifying worlds [3], are definable within this logic at no extra cost.

Notation

We can encode some semantic notions into formulas:

$$
\operatorname{ballot}_{i}(w):=p_{x_{1} \succcurlyeq x_{2}}^{i} \wedge p_{x_{2} \succcurlyeq x_{3}}^{i} \wedge \cdots \wedge p_{x_{m-1} \succcurlyeq x_{m}}^{i}
$$

encodes the ballot of agent i.

$$
\text { profile }(w):=\text { ballot }_{1}(w) \wedge \text { ballot }_{2}(w) \wedge \cdots \wedge \text { ballot }_{n}(w)
$$

profile(w) is true at world w, and only there; hence nominals, i.e., formulas uniquely identifying worlds [3], are definable within this logic at no extra cost.

$$
\operatorname{profile}(w)(x, y):=\bigwedge_{i \in N}\left\{p_{x \succcurlyeq y}^{i} \mid x \succcurlyeq_{i} y\right\} \wedge \bigwedge_{i \in N}\left\{p_{y \succcurlyeq x}^{i} \mid y \succcurlyeq_{i} x\right\}
$$

Axiomatization

(1) all propositional tautologies
(2) formulas $p_{x \succcurlyeq y}^{i}$ are arranged in a linear order
(3) $\square_{i}(\varphi \rightarrow \psi) \rightarrow\left(\square_{i} \varphi \rightarrow \square_{i} \psi\right) \quad(\mathrm{K}(i))$
(4) $\square_{i} \varphi \rightarrow \varphi \quad(\mathrm{~T}(i))$
(5) $\varphi \rightarrow \square_{i} \diamond_{i} \varphi \quad(\mathrm{~B}(i))$
© $\diamond_{i} \square_{j} \varphi \leftrightarrow \square_{j} \diamond_{i} \varphi \quad$ (confluence)
(7) $\square_{C_{1}} \square_{C_{2}} \varphi \leftrightarrow \square_{C_{1} \cup C_{2}} \varphi$ (union)
(8 $\square_{\emptyset} \varphi \leftrightarrow \varphi \quad$ (empty coalition)
© $\left(\diamond_{i} p \wedge \diamond_{i} \neg p\right) \rightarrow\left(\square_{j} p \vee \square_{j} \neg p\right)$, where $i \neq j$ (exclusive)
$10 \diamond_{i}$ ballot $_{i}(w)$ (ballot)
(1) $\diamond_{C_{1}} \delta_{1} \wedge \diamond_{C_{2}} \delta_{2} \rightarrow \diamond_{C_{1} \cup C_{2}}\left(\delta_{1} \wedge \delta_{2}\right) \quad$ (cooperation)
(12. $\bigvee_{x \in X}\left(x \wedge \bigwedge_{y \in X \backslash\{x\}} \neg y\right) \quad$ (resolute)
(13) (profile $(w) \wedge \varphi) \rightarrow \square_{N}($ profile $(w) \rightarrow \varphi) \quad$ (functional)

Nice results

The logic $L[N, X]$ behaves well:
Lemma
Determining whether a formula in the language of $L[N, X]$ is valid is a decidable problem.

Theorem
The logic $L[N, X]$ is sound and complete w.r.t. the class of models of SCF's.

Outline

(1) Arrow's Theorem
(2) A proof
(3) A logic
(4) Encoding the proof

Properties

Here is how the aforementioned properties are coded in the logical language:

$$
\begin{aligned}
I I A:= & \bigwedge_{w \in \mathcal{L}(X)^{n}} \bigwedge_{x \in X} \bigwedge_{y \in X \backslash\{x\}} \\
& {\left[\diamond_{N}(\operatorname{profile}(w) \wedge x) \rightarrow(\text { profile }(w)(x, y) \rightarrow \neg y)\right] } \\
P:= & \bigwedge_{x \in X} \bigwedge_{y \in X \backslash\{x\}}\left[\left(\bigwedge_{i \in N} p_{x \succcurlyeq y}^{i}\right) \rightarrow \neg y\right] \\
D:= & \bigwedge_{i \in N} \bigwedge_{x \in X} \bigwedge_{y \in X \backslash\{x\}}\left(p_{x \succcurlyeq y}^{i} \rightarrow \neg y\right)
\end{aligned}
$$

Proof

We use the following formula to encode decisiveness of C over (x, y) :

$$
\operatorname{Cdec}(x, y):=\left(\bigwedge_{i \in C} p_{x \succcurlyeq y}^{i}\right) \rightarrow \neg y
$$

If C is decisive on every pair, we will simply write C dec.

Proof

We use the following formula to encode decisiveness of C over (x, y) :

$$
\operatorname{Cdec}(x, y):=\left(\bigwedge_{i \in C} p_{x \gtrless y}^{i}\right) \rightarrow \neg y
$$

If C is decisive on every pair, we will simply write C dec.
We define a weakly decisive coalition C for (x, y) as a coalition that can bar y from winning if exactly the agents in C prefer x to y :

$$
\operatorname{Cwdec}(x, y):=\left(\bigwedge_{i \in C} p_{x \succcurlyeq y}^{i} \wedge \bigwedge_{i \notin C} p_{y \succcurlyeq x}^{i}\right) \rightarrow \neg y
$$

Proof

We first prove that every possible profile exists in the semantics:
Lemma (Universal domain)
For every possible profile $w \in \mathcal{L}(X)^{n}$, we have $\vdash \diamond_{N}$ profile (w).

Proof

We first prove that every possible profile exists in the semantics:
Lemma (Universal domain)
For every possible profile $w \in \mathcal{L}(X)^{n}$, we have $\vdash \diamond_{N}$ profile (w).
Proof.
Take any w. Then ballot $t_{1}(w)$ encodes the preferences of the first agent. By axiom (10) we have \diamond_{1} ballot $t_{1}(w)$, and similarly we get \diamond_{2} ballot $2(w)$. Because ballot $t_{1}(w)$ and ballot $_{2}(w)$ contain different atoms, we can apply axiom (11) and obtain $\diamond_{\{1,2\}}\left(\right.$ ballot $_{1}(w) \wedge$ ballot $\left._{2}(w)\right)$. We repeat this reasoning for all the finitely many agents in N to prove \diamond_{N} profile (w).

Proof

Lemma (1)

Consider a language parametrised by X such that $|X| \geqslant 3$. Then for any coalition $C \subseteq N$ and any two distinct alternatives $x, y \in X$, we have that:

$$
\vdash P \wedge I I A \wedge C w d e c(x, y) \rightarrow C d e c
$$

Proof

Lemma (1)

Consider a language parametrised by X such that $|X| \geqslant 3$. Then for any coalition $C \subseteq N$ and any two distinct alternatives $x, y \in X$, we have that:

$$
\vdash P \wedge I I A \wedge C w d e c(x, y) \rightarrow C d e c
$$

Lemma (2, Contraction Lemma)

Consider a language parametrised by X such that $|X| \geqslant 3$. Then for any coalition $C \subseteq N$ with and any two coalitions C_{1} and C_{2} that form a partition of C, we have that:

$$
\vdash P \wedge I I A \wedge C \operatorname{dec} \rightarrow\left(C_{1} \operatorname{dec} \vee C_{2} d e c\right)
$$

Proof

Theorem
Consider a language parametrised by X such that $|X| \geqslant 3$. Then we have:

$$
\vdash P \wedge I I A \rightarrow D
$$

Proof.

We know P is equivalent to $N d e c$. Exploiting the premise $P \wedge I I A$, we can apply the Contraction Lemma and prove that one of two disjoint subsets of N is decisive. Repeating the process finitely many times (we have finitely many agents), we can show that one of the singletons that form N is decisive. But this is tantamount to deriving D, i.e. saying that there exist a dictator.

Further work

The plan for the near future:

- Encode more commonly studied notions of voting theory in the logic considered here and prove other results such as May's Theorem or Sen's approach to rights.
- Exploit the computational feasibility of modal logic by working on an optimised implementation.

References I

Thomas Ågotnes，Wiebe van der Hoek，and Michael Wooldridge． On the logic of preference and judgment aggregation． Autonomous Agents and Multiagent Systems，22（1）：4－30， 2011.
國 Bernhard Beckert，Rajeev Goré，Carsten Schürmann，Thorsten Bormer，and Jian Wang．
Verifying voting schemes． Journal of Information Security and Applications，19（2）：115－129， 2014.

國 Patrick Blackburn，Maarten de Rijke，and Yde Venema．
Modal Logic．
Cambridge University Press， 2001.
國 Felix Brandt and Christian Geist．
Finding strategyproof social choice functions via SAT solving．
In Proc．13th International Conference on Autonomous Agents and
Multiagent Systems（AAMAS－2014）， 2014.

References II

目
Ulle Endriss.
Logic and social choice theory.
In A. Gupta and J. van Benthem, editors, Logic and Philosophy Today, volume 2, pages 333-377. College Publications, 2011.

Christian Geist and Ulle Endriss.
Automated search for impossibility theorems in social choice theory: Ranking sets of objects.
Journal of Artificial Intelligence Research, 40:143-174, 2011.
Umberto Grandi and Ulle Endriss.
First-order logic formalisation of impossibility theorems in preference aggregation.
Journal of Philosophical Logic, 42(4):595-618, 2013.

References III

围 Christoph Lange, Colin Rowat, and Manfred Kerber. The ForMaRE Project: Formal mathematical reasoning in economics.
In Intelligent Computer Mathematics, pages 330-334.
Springer-Verlag, 2013.
Tobias Nipkow.
Social choice theory in HOL: Arrow and Gibbard-Satterthwaite.
Journal of Automated Reasoning, 43(3):289-304, 2009.
(A. K. Sen.
Social choice theory.
In K. J. Arrow and M. D. Intriligator, editors, Handbook of
Mathematical Economics, volume 3. North-Holland, 1986.
囯 P. Tang and F. Lin.
Computer-aided proofs of Arrow's and other impossibility theorems. Artificial Intelligence, 173(11):1041-1053, 2009.

References IV

Nicolas Troquard, Wiebe van der Hoek, and Michael Wooldridge. Reasoning about social choice functions.Journal of Philosophical Logic, 40(4):473-498, 2011.
目 F. Wiedijk.
Arrow's Impossibility Theorem.
Formalized Mathematics, 15(4):171-174, 2007.

