

We discuss, then we decide: Reliability based preference change

Sujata Ghosh Indian Statistical Institute, Chennai sujata@isichennai.res.in

(joint work with Fernando R. Velázquez-Quesada)

ILLC Workshop on Collective Decision Making March 19-20, 2015

which restaurant to go?

and Samota tak the

Barbara

Chiara

When a man a market

who is the better candidate ?

WWWWWWWWWWWWWWWWWWWWWWW

what this talk is not about !

7 8422

14 MAR & ANYAR

- dialogues, speech acts, argumentation
- aggregation of preferences
- interplay of knowledge, beliefs and preferences

L' DE LANGE DE ME

what is this talk about ?

- + ×+22

1 Mar 1 4 - 10149

- modeling discussions in an implicit way
 - public announcement of preference orderings

" De Lore de 18 4

- changing of preferences based on some intuitive policies
- effect of reliability of agents
- decision making
 - attaining unanimity
 - attaining stability

disclaimers !

7 84EL

STREET & BATTER

a an anna an the sa

ordering assumptions

the start was shown

• preference vs. reliability

in the Plant of the second second

• more questions than answers

the semantic model

THE MAN A BANK

A preference & reliability (PR) frame is a tuple $F = \langle W, \{\leq_i, \leq_i\}_{i \in \mathbb{A}} \rangle$ where

in the summary by the

- $W \neq \emptyset$ is a set of **possible worlds**,
- $\leq_i \subseteq (W \times W)$, a total preorder, is agent *i*'s *preference relation* over worlds,
- $\leq_i \subseteq (\mathbf{A} \times \mathbf{A})$, a total order, is agent *i*'s *reliability relation* over agents.

 $w \leq_i u$: "for agent *i*, world *w* is at least as preferable as world *u*" $j \leq_i j$ " "for agent *i*, agent *j*" is at least as reliable than agent *j*"

$$\leq_{a}: \{\mathbf{0}\} \rightarrow \{\mathbf{3}\} \rightarrow \{\mathbf{2}\} \rightarrow \{\mathbf{4}\} \quad \leq_{a}: a \rightarrow b \rightarrow c$$

$$\leq_{b}: \{\mathbf{0}\} \rightarrow \{\mathbf{4}, \mathbf{2}\} \rightarrow \{\mathbf{3}\} \quad \leq_{b}: b \rightarrow c \rightarrow a$$

$$\leq_{c}: \{\mathbf{0}\} \rightarrow \{\mathbf{2}\} \rightarrow \{\mathbf{3}, \mathbf{4}\} \quad \leq_{c}: a \rightarrow b \rightarrow c$$

more on preference and reliability

the a survey of a fighting in the Low dias the the second which the first and the further the

Given a **PR** frame $F = \langle W, \{\leq_i, \leq_i\}_{i \in \mathbb{A}} \rangle$, define

• *i*'s 'strictly less preferable' relation:

$$w <_i u$$
 iff_{def} $w \leq_i u$ and $u \not\leq_i w$

• *i*'s 'equally preferable' relation:

 $w \simeq_i u$ iff_{def} $w \leq_i u$ and $u \leq_i w$

- *i*'s most preferred worlds in a set $U \subseteq W$: $Max_i(U) := \{v \in U \mid u \leq_i v \text{ for every } u \in U\}$
- *i*'s most reliable agent:

$$mr(i) = j$$
 iff_{def} $j' \leq_i j$ for every $j' \in \mathbb{A}$

possible notions of upgrade

Low did to the second which the stand of a fairing

general lexicographic upgrade

and the states of the states of

in the same start the second

- A *lexicographic list* \mathcal{R} over W is a finite non-empty list whose elements are indexes of preference orderings over $W(\mathcal{R}[1])$ has the highest priority).
- Given \mathcal{R} , define $\leq_{\mathcal{R}} \subseteq (W \times W)$ as

$$w \leq_{\mathcal{R}} u \quad iff_{def} \quad \left(w \leq_{\mathcal{R}[|\mathcal{R}|]} u \wedge \bigwedge_{k=1}^{|\mathcal{R}|-1} w \simeq_{\mathcal{R}[k]} u \right) \vee \underbrace{\bigvee_{k=1}^{|\mathcal{R}|-1} \left(w <_{\mathcal{R}[k]} u \wedge \bigwedge_{\ell=1}^{k-1} w \simeq_{\mathcal{R}[\ell]} u \right)}_{1}$$

JAN. 4 . 14149

- the general lexicographic upgrade generalizes the drastic, radical and tie breaker upgrades
- the **general lexicographic** upgrade **preserves** reflexivity, transitivity, antisymmetry, totality and 'disconnectedness'

an transferred

• the **conservative** upgrade **is not** an instance of **general lexicographic** upgrade

which restaurant to go?

upgrading preferences

who is the better candidate ?

upgrading preferences

conservative upgrade

and the stand of the states

in the Lowestor by Far

and a large to the A fideria

Kin & two wash's more

conservative upgrade

7 8422

general layered upgrade

"P's A BASE STREET

Dr. Low dias by they

• A *layered list* S over W is a finite (possibly empty) list of pairwise disjoint subsets of W together with the index of a preference ordering over W(S[1]) has the highest priority).

• Given S, define $\leq_S \subseteq (W \times W)$ as

$$w \leq_{\mathcal{S}} u \quad iff_{def} \quad \left(w \leq_{\mathcal{S}_{Def}} u \land \left(\{w, u\} \cap \bigcup_{k=1}^{|\mathcal{S}|} \mathcal{S}[k] = \emptyset \lor \bigvee_{k=1}^{|\mathcal{S}|} \{w, u\} \subseteq \mathcal{S}[k] \right)$$
$$\vee \qquad \bigvee_{k=1}^{|\mathcal{S}|} \left(u \in \mathcal{S}[k] \land w \notin \bigcup_{\ell=1}^{k} \mathcal{S}[\ell] \right)$$

- the **general layered** upgrade **generalizes** the **conservative** upgrade mentioned earlier
- the **general layered** upgrade **preserves** reflexivity, transitivity, antisymmetry, totality and (under an extra condition) 'disconnectedness'
- <u>under totality</u>, any ordering generated by a **general lexicographic** upgrade can be generated by a **general layered** upgrade, but in general this is not the case.

general lexicolayered upgrade

84624

THE AR ANTES

• Given \mathcal{RS} , define $\leq_{\mathcal{RS}} \subseteq (W \times W)$ as

144.44 AN149

- the general lexicolayered upgrade generalizes both general lexicographic upgrade and general layered upgrade
- the **general lexicolayered** upgrade **preserves** reflexivity, transitivity, antisymmetry, totality and (under an extra condition) 'disconnectedness'

from frames to models

the stand of A fighting in the Low dias the fight a second with the fight and the said the shirt the

276 mar & Tarr 50 25 251

the static language

Formulas (φ, ψ, \ldots) and relational expressions (π, σ, \ldots) in *Lare given, respectively, by*

The words to man when the state of the second to the second to be the second to be the second to the

 $\varphi, \psi ::= p \mid j \sqsubseteq_i j' \mid \neg \varphi \mid \varphi \lor \psi \mid \langle \pi \rangle \varphi$ $\pi, \sigma ::= 1 \mid \leq_i \mid \geq_i \mid ?(\varphi, \psi) \mid -\pi \mid \pi \cup \sigma \mid \pi \cap \sigma$

where $p \in \mathbf{P}$ and $i, j, j' \in \mathbf{A}$.

Define

- the constants \top , \bot and the connectives \land , \rightarrow , \leftrightarrow as usual.
- for every π , the modal operator $[\pi]$ as usual:

 $[\pi] \varphi := \neg \langle \pi \rangle \neg \varphi$

• for every π , the modal operator π (the window' operator) as:

 $\pi \varphi \coloneqq [-\pi] \neg \varphi$

the semantic interpretation

WYYY STRAND A MARKA

Let (M, w) be a **PR** state with $M = \langle W, \{\leq_i, \leq_i\}_{i \in \mathbb{A}}, V \rangle$. Define, simultaneously for every φ and every π , the satisfaction relation $\Vdash \subseteq (\text{'states'} \times \text{'formulas'})$ and the relation $R_{\pi} \subseteq (W \times W)$ as

(<i>M</i> , <i>w</i>) ⊩ <i>p</i>	iff	$w \in V(p)$
$(M,w) \Vdash j \sqsubseteq_i j'$	iff	$j \leq_i j'$
(<i>M</i> , <i>w</i>) ⊩ ¬ <i>φ</i>	iff	(<i>M</i> , <i>w</i>) ⊮ <i>φ</i>
$(M,w) \Vdash \varphi \lor \psi$	iff	$(M,w) \Vdash \varphi$ or $(M,w) \Vdash \psi$
(<i>M</i> , <i>w</i>) ⊩ ⟨π⟩ φ	iff	there is $u \in W$ such that $R_{\pi}wu$ and $(M, u) \Vdash \varphi$

and

observe how ...

Stand & Mirag

the dynamic language

Language $\mathcal{L}_{\{fx,fy,fxy\}}$ extends \mathcal{L} with modalities $\langle fx_{\mathcal{R}}^i \rangle$, $\langle fy_{\mathcal{S}}^i \rangle$ and $\langle fxy_{\mathcal{RS}}^i \rangle$ for every lexicographic list \mathcal{R} , layered list \mathcal{S} , lexicolayered list \mathcal{RS} and every agent $i \in A$. Given a **PR** state (M, w),

$$\begin{array}{ll} (M,w) \Vdash \langle \mathbf{fx}_{\mathcal{R}}^{i} \rangle \varphi & iff & \left(fx_{\mathcal{R}}^{i}(M),w\right) \Vdash \varphi \\ (M,w) \Vdash \langle \mathbf{fy}_{\mathcal{S}}^{i} \rangle \varphi & iff & \left(fy_{\mathcal{S}}^{i}(M),w\right) \Vdash \varphi \\ (M,w) \Vdash \langle \mathbf{fxy}_{\mathcal{RS}}^{i} \rangle \varphi & iff & \left(fxy_{\mathcal{RS}}^{i}(M),w\right) \Vdash \varphi \end{array}$$

where

- the **PR** model $f_{\mathcal{R}}^{i}(M)$ is exactly as **M** except in \leq_{i} , which is now given by $\leq_{\mathcal{R}}$,
- the **PR** model $fy^i_{\mathcal{S}}(M)$ is exactly as **M** except in \leq_i , which is now given by $\leq_{\mathcal{S}}$.
- the **PR** model $fxy^i_{\mathcal{RS}}(M)$ is exactly as **M** except in \leq_i , which is now given by $\leq_{\mathcal{RS}}$.

expressing the restaurant situation

Weith Amarian Advert

 $\mathbf{M} \models \langle \leq_{\text{Barbara}} \rangle$

	$\textcircled{\baselinetwidth} \longrightarrow \textcircled{\baselinetwidth} \longrightarrow \base$	Alan	-	→ 🔝 –	
1	$\textcircled{3} \rightarrow \textcircled{3} \rightarrow \textcircled{3}$	Barbara	-	→ 🔝 -	→ 🚔
	$\textcircled{\baselinetwidth} \longrightarrow \textcircled{\baselinetwidth} \longrightarrow \base$	Chiara	- 196	→ 🚵 -	

unanimity and stability

Training & Barris

Let $\mathbf{F} = \langle \mathbf{W}, \{\leq_i, \leq_i\}_{i \in \mathbb{A}} \rangle$ be a **PR** frame and $\mathbf{B} = \{a_1, \ldots, a_m\} \subseteq \mathbb{A}$ a set of agents.

in the Low start of the

• There is **unanimity** among agents in **B** at **F** when

$$\leq_{a_1} = \cdots = \leq_{a_m}$$

• There is stability among agents in **B** at **F** under a given preference upgrade policy f when $F_{\gamma}|_{B} = F_{\gamma+1}|_{B}$ for every $\gamma \ge 1$

with $F_1 := F$ and $F_{\gamma+1} := f(F_{\gamma+1})$.

simple general results

and the stand a diverse

• under general layered upgrade, unanimity does not imply stability

Non Therman tak their in Dr. Low dies by Edite

• under general lexicographic upgrade, unanimity implies stability

the drastic upgrade case

WHEN STREET & MITTER

Dr. Low contract the serve

Let $\mathbf{F} = \langle \mathbf{W}, \{\leq_i, \leqslant_i\}_{i \in \mathbb{A}} \rangle$ be a **PR** frame where the \leq_i are all different. The iterative application of drastic upgrade over the agents' individual preference starting from **F** reaches unanimity (and hence stability) if and only if

there is $\ell \in \mathbb{N}$ such that $\alpha_{a_1}[\ell] = \cdots = \alpha_{a_n}[\ell]$

with α_a agent a's reliability stream from **F**.

the lexicographic upgrade case

Lexicographic upgrade: if agent *i*'s reliability ordering is given by $a_1 \leq_i \cdots \leq_i a_n$, then

 $w \leq_i' u$ iff_{def} $(w <_{a_n} u)$ or $(w \simeq_{a_n} u)$ and $w <_{a_{n-1}} u)$ or \cdots

Same and the taken and

or $(w \simeq_{a_n} u \text{ and } \cdots \text{ and } w \simeq_{a_2} u \text{ and } w \leq_{a_1} u)$

Let $\mathbf{F} = \langle W, \{\leq_i, \leqslant_i\}_{i \in \mathbb{A}} \rangle$ be a **PR** frame; let $\mathbf{F}' = \langle W, \{\leq'_i, \leqslant_i\}_{i \in \mathbb{A}} \rangle$ be the result of lexicographic upgrades at **F**. If $u \simeq'_j v$ for some agent $j \in \mathbb{A}$, then such 'tie' will not be broken by further applications of such upgrade.

After applying the lexicographic upgrade once, further applications behave exactly as the drastic upgrade.

which restaurant to go : original situation

which restaurant to go : upgrading once

which restaurant to go : upgrading twice

conclusion

144-14 A. MAY42

- preference and reliability models
- preference upgrades based on reliability
- logical language to express these notions
- unanimity and stability

future work

- 7 84LL

STRACT ANTAS

- characterizing unanimity and stability
- weakening the relational properties
- reliability dynamics
- knowledge belief manipulation
- combining deliberative and aggregative perspectives

Dr. Low corners

future work

- characterizing unanimity and stability
- weakening the relational properties
- reliability dynamics
- knowledge belief manipulation
- combining deliberative and aggregative perspectives

What can we logicians offer ?