Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion

Measuring Diversity of Preferences

Vahid M. Hashemi

joint work with Ulle Endriss

ILLC, University of Amsterdam

March 20, 2015

Introduction ●OO	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Diversity				
Introduction	1			

- Real world vs. synthetic preference profiles
- Diverse vs. consensus preferences
 - Iess diverse: better behavior?
 - fewer paradoxes
 - easier to reach an agreement
 - less disappointment

Introduction OOO	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Diversity				

$ \begin{array}{c} 2: a \succ b \succ c \\ 2: b \succ c \succ a \\ 2: c \succ a \succ b \end{array} $ $ \begin{array}{c} 3: a \succ b \succ c \\ 3: c \succ b \succ c \\ 0: c \atop a \atop b \atop b$	$\begin{array}{c} c \\ a \\ \end{array} \begin{array}{c} 1: a \succ b \succ c \\ 1: a \succ c \succ b \\ 1: b \succ a \succ c \\ 1: b \succ c \succ a \\ 1: c \succ a \succ b \\ 1: c \succ b \succ a \end{array}$	$2: a \succ b \succ c$ $2: b \succ a \succ c$ $2: a \succ c \succ b$	
--	--	--	--

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
000				
Diversity				

$2: a \succ b \succ c$ $2: b \succ c \succ a$ $2: c \succ a \succ b$	$3: a \succ b \succ c$ $3: c \succ b \succ a$	$1: a \succ b \succ c$ $1: a \succ c \succ b$ $1: b \succ a \succ c$ $1: b \succ c \succ a$ $1: c \succ a \succ b$ $1: c \succ b \succ a$	$2: a \succ b \succ c$ $2: b \succ a \succ c$ $2: a \succ c \succ b$
3	2	6	3

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Diversity				

$2: a \succ b \succ c$ $2: b \succ c \succ a$ $2: c \succ a \succ b$	$3: a \succ b \succ c$ $3: c \succ b \succ a$	$1: a \succ b \succ c$ $1: a \succ c \succ b$ $1: b \succ a \succ c$ $1: b \succ c \succ a$ $1: c \succ a \succ b$ $1: c \succ b \succ a$	$2: a \succ b \succ c$ $2: b \succ a \succ c$ $2: a \succ c \succ b$	
3	2	6	3	
6	6	6	5	

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
000				
Diversity				

$2: a \succ b \succ c$ $2: b \succ c \succ a$ $2: c \succ a \succ b$	$3: a \succ b \succ c$ $3: c \succ b \succ a$	$1: a \succ b \succ c$ $1: a \succ c \succ b$ $1: b \succ a \succ c$ $1: b \succ c \succ a$ $1: c \succ a \succ b$ $1: c \succ b \succ a$	$2: a \succ b \succ c$ $2: b \succ a \succ c$ $2: a \succ c \succ b$
3	2	6	3
6	6	6	5
12	9	15	12

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
000				
Diversity				

$2: a \succ b \succ c$ $2: b \succ c \succ a$ $2: c \succ a \succ b$	$3: a \succ b \succ c$ $3: c \succ b \succ a$	$1: a \succ b \succ c$ $1: a \succ c \succ b$ $1: b \succ a \succ c$ $1: b \succ c \succ a$ $1: c \succ a \succ b$ $1: c \succ b \succ a$	$2: a \succ b \succ c$ $2: b \succ a \succ c$ $2: a \succ c \succ b$
3	2	6	3
6	6	6	5
12	9	15	12
2	3	3	2

Introduction OOO	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Diversity				

$2: a \succ b \succ c$ $2: b \succ c \succ a$ $2: c \succ a \succ b$	$3: a \succ b \succ c$ $3: c \succ b \succ a$	$1: a \succ b \succ c$ $1: a \succ c \succ b$ $1: b \succ a \succ c$ $1: b \succ c \succ a$ $1: b \succ c \succ a$ $1: c \succ a \succ b$ $1: c \succ b \succ a$	$2: a \succ b \succ c$ $2: b \succ a \succ c$ $2: a \succ c \succ b$
3	2	6	3
6	6	6	5
12	9	15	12
2	3	3	2
4(2+2+2) = 24	9 * 3 = 27	$\frac{6}{2}(1+1+2+2+3) = 27$	4(1+1+2) = 16

Introduction OO●	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Diversity				
Outline				

- 2 Measuring Preference Diversity
 - Notation
 - Preference Diversity Orderings and Indices
 - Specific preference diversity indices

Axiomatic Analysis

- Axioms
- Results

Experimental Analysis

- Diversity distribution across cultures
- Impact on social choice-theoretic effects

5 Conclusion

Introduction 000	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Notation				
Basic Defin	itions			

Individuals $\mathcal{N} = \{1, 2, ..., n\}$, finite set of *n* individuals (voters) Alternatives $\mathcal{X} = \{x_1, ..., x_m\}$, finite set of *m* alternatives (candidates) Preferences Members of $\mathcal{L}(\mathcal{X})$ (the set of strict linear orders over \mathcal{X}) Profile $\mathbf{R} = (R_1, ..., R_n) \in \mathcal{L}(\mathcal{X})^n$, vector of preference orders

Example

For $\mathcal{X} = \{a, b, c\}$ and 5 voters, a possible profile is:

 $\mathbf{R} = (abc, abc, acb, cab, cba)$

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
	0000			
Preference Diversit	y Orderings and Indices			
PDO & F	PDI			

Definition (Preference diversity index)

A preference diversity index (PDI) is a function $\Delta : \mathcal{L}(\mathcal{X})^n \to \mathbb{R}^+ \cup \{0\}$, mapping profiles to the nonnegative reals, that respects $\Delta(R, \ldots, R) = 0$ for any $R \in \mathcal{L}(\mathcal{X})$.

A PDI Δ is *normalised* if it maps any given profile to the interval [0, 1], and the maximum of 1 is reached for at least one profile, i.e., $\max{\{\Delta(\mathbf{R}) \mid \mathbf{R} \in \mathcal{L}(\mathcal{X})^n\}} = 1$.

Definition (Preference diversity order)

A **preference diversity order** (PDO) is a weak order \succeq declared on the space of preference profiles $\mathcal{L}(\mathcal{X})^n$ that respects $\mathbf{R} \succeq (\mathbf{R}, \ldots, \mathbf{R})$ for all $\mathbf{R} \in \mathcal{L}(\mathcal{X})^n$ and all $\mathbf{R} \in \mathcal{L}(\mathcal{X})$.

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
000	0000	000	00	
Preference Diversity	Orderings and Indices			
PDO & P	DI			

Definition (Preference diversity index)

A preference diversity index (PDI) is a function $\Delta : \mathcal{L}(\mathcal{X})^n \to \mathbb{R}^+ \cup \{0\}$, mapping profiles to the nonnegative reals, that respects $\Delta(R, \ldots, R) = 0$ for any $R \in \mathcal{L}(\mathcal{X})$.

A PDI Δ is *normalised* if it maps any given profile to the interval [0, 1], and the maximum of 1 is reached for at least one profile, i.e., $\max{\{\Delta(\mathbf{R}) \mid \mathbf{R} \in \mathcal{L}(\mathcal{X})^n\}} = 1$.

Definition (Preference diversity order)

A preference diversity order (PDO) is a weak order \succeq declared on the space of preference profiles $\mathcal{L}(\mathcal{X})^n$ that respects $\mathbf{R} \succeq (\mathbf{R}, \ldots, \mathbf{R})$ for all $\mathbf{R} \in \mathcal{L}(\mathcal{X})^n$ and all $\mathbf{R} \in \mathcal{L}(\mathcal{X})$.

OOO	OO●O	OOO	OO	Conclusio
Specific preference	diversity indices			
Specific	preference diversity ir	ndices		
Definitio	n (support-based PDI)			

 $\Delta \ell_{supp}^{\ell=k}(\mathbf{R})$: number of ordered k-tuples of alternatives occurring in at least one individual preference in profile \mathbf{R} .

 $\Delta_{\text{SUDD}}^{\ell=m}(\mathbf{R})$: simple support-based PDI, counts number of different preferences in \mathbf{R} .

Definition (distance-based PDI)

 $\Delta_{dist}^{\Phi, 0}(R)$: aggregated (e.g., $\Phi = \Sigma$) distance (δ) between all pairs of individual preferences in profile R.

Kendall tau distance: $K(R, R') = \frac{1}{2} \cdot |\{(x, y) \mid xRy \text{ and } yR'x\}$

Definition (compromise-based PDI

 $\Delta_{com}^{\Phi,F}(R)$: aggregated (e.g., $\Phi = \Sigma$) Kendall tau distance of individual preferences in R to a compromise preference F(R) (e.g., F = Borda rule).

Example

$$\begin{split} & \Delta_{supp}^{\ell = m}(abc, abc, acb, cab, cba) = 4 \\ & \Delta_{disf}^{\Sigma, K}(abc, abc, acb, cab, cba) = 0 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 1 = 16 \\ & \Delta_{com}^{\Sigma, Ronda}(abc, abc, acb, cab, cba) = \sum_{r \in R} K(acb, r) = 1 + 1 + 0 + 1 + 2 = 5 \end{split}$$

OOO	Measuring Preterence Diversity ○○●○	Axiomatic Analysis	Experimental Analysis	Conclusion
Specific preference	diversity indices			
Specific p	preference diversity in	ndices		

Definition (support-based PDI)

 $\Delta \ell_{supp}^{\ell=k}(\mathbf{R})$: number of ordered k-tuples of alternatives occurring in at least one individual preference in profile \mathbf{R} .

 $\Delta_{\text{SUDD}}^{\ell=m}(\mathbf{R})$: simple support-based PDI, counts number of different preferences in \mathbf{R} .

Definition (distance-based PDI)

 $\Delta_{dist}^{\Phi,\delta}(\mathbf{R})$: aggregated (e.g., $\Phi = \Sigma$) distance (δ) between all pairs of individual preferences in profile \mathbf{R} .

Kendall tau distance: $K(R, R') = \frac{1}{2} \cdot |\{(x, y) \mid xRy \text{ and } yR'x\}|$

Definition (compromise-based PDI)

 $\Delta_{com}^{\Phi,r}(R)$: aggregated (e.g., $\Phi = \Sigma$) Kendall tau distance of individual preferences in R to a compromise preference F(R) (e.g., F = Borda rule).

くロン 人間 シスヨン ヨン しんの

Example

$$\begin{split} & \Delta_{supp}^{\ell = m}(abc, abc, acb, cab, cba) = 4 \\ & \Delta_{disf}^{\Sigma, K}(abc, abc, acb, cab, cba) = 0 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 1 = 16 \\ & \Delta_{com}^{\Sigma, Ronda}(abc, abc, acb, cab, cba) = \sum_{r \in R} K(acb, r) = 1 + 1 + 0 + 1 + 2 = 5 \end{split}$$

OOO	Measuring Preterence Diversity ○○●○	Axiomatic Analysis	Experimental Analysis	Conclusion
Specific preference	diversity indices			
Specific p	preference diversity in	ndices		

Definition (support-based PDI)

 $\Delta \ell_{supp}^{\ell=k}(\mathbf{R})$: number of ordered k-tuples of alternatives occurring in at least one individual preference in profile \mathbf{R} .

 $\Delta_{\text{SUDD}}^{\ell=m}(\mathbf{R})$: simple support-based PDI, counts number of different preferences in \mathbf{R} .

Definition (distance-based PDI)

 $\Delta_{dist}^{\Phi,\delta}(\mathbf{R})$: aggregated (e.g., $\Phi = \Sigma$) distance (δ) between all pairs of individual preferences in profile \mathbf{R} .

Kendall tau distance: $K(R, R') = \frac{1}{2} \cdot |\{(x, y) \mid xRy \text{ and } yR'x\}|$

Definition (compromise-based PDI)

 $\Delta_{com}^{\Phi,F}(\mathbf{R})$: aggregated (e.g., $\Phi = \Sigma$) Kendall tau distance of individual preferences in \mathbf{R} to a compromise preference $F(\mathbf{R})$ (e.g., F = Borda rule).

Example

$$\begin{split} & \Delta_{supp}^{\ell=m}(abc, abc, acb, cab, cba) = 4 \\ & \Delta_{disf}^{\Sigma,K}(abc, abc, acb, cab, cba) = 0 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 1 = 16 \\ & \Delta_{com}^{\Sigma,Barda}(abc, abc, acb, cab, cba) = \sum_{r \in R} K(acb, r) = 1 + 1 + 0 + 1 + 2 = 5 \end{split}$$

Introduction	Measuring Preterence Diversity ○○●○	Axiomatic Analysis	Experimental Analysis	Conclusion
Specific preference	diversity indices			
Specific p	preference diversity in	ndices		

Definition (support-based PDI)

 $\Delta \ell_{supp}^{\ell=k}(\mathbf{R})$: number of ordered k-tuples of alternatives occurring in at least one individual preference in profile \mathbf{R} .

 $\Delta_{\text{SUDD}}^{\ell=m}(\mathbf{R})$: simple support-based PDI, counts number of different preferences in \mathbf{R} .

Definition (distance-based PDI)

 $\Delta_{dist}^{\Phi,\delta}(\mathbf{R})$: aggregated (e.g., $\Phi = \Sigma$) distance (δ) between all pairs of individual preferences in profile \mathbf{R} .

Kendall tau distance: $K(R, R') = \frac{1}{2} \cdot |\{(x, y) \mid xRy \text{ and } yR'x\}|$

Definition (compromise-based PDI)

 $\Delta_{com}^{\Phi,F}(\mathbf{R})$: aggregated (e.g., $\Phi = \Sigma$) Kendall tau distance of individual preferences in \mathbf{R} to a compromise preference $F(\mathbf{R})$ (e.g., F = Borda rule).

Example

$$\begin{split} &\Delta_{supp}^{\ell=m}(abc, abc, acb, cab, cba) = 4 \\ &\Delta_{dist}^{\Sigma,K}(abc, abc, acb, cab, cba) = 0 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 1 = 16 \\ &\Delta_{com}^{\Sigma,Borda}(abc, abc, acb, cab, cba) = \sum_{r \in I\!\!R} K(acb, r) = 1 + 1 + 0 + 1 + 2 = 5 \end{split}$$

イロン 不良 とくほう イロン 一日

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
	0000			
Specific preference divers	ity indices			

	2 : abc 2 : bca 2 : cab	3 : abc 3 : cba	1 : abc 1 : acb 1 : bac 1 : bca 1 : cab 1 : cba	2 : abc 2 : bac 2 : acb
$\Delta_{\rm supp}^{\ell=m}$	3	2	6	3
$\Delta_{\rm supp}^{\ell=2}$	6	6	6	5
$\Delta_{\textit{dist}}^{\Sigma,D}$	12	9	15	12
$\Delta_{\textit{dist}}^{\Sigma,K}$	24	27	27	16
$\Delta_{dist}^{\Sigma,S}$	24	18	24	16
$\Delta_{dist}^{\max,K}$	2	3	3	2

Introduction 000	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Axioms				
Axioms				

Axioms are used to evaluate/categorize methods.

PDO's are easier to deal with analytically. The results will also apply to PDI's indirectly.

A PDO \succeq is **anonymous** if, for every permutation $\sigma : \mathcal{N} \to \mathcal{N}$, we have $(R_1, \ldots, R_n) \sim (R_{\sigma(1)}, \ldots, R_{\sigma(n)})$.

A PDO \succeq is **neutral** if, for every permutation $\tau : \mathcal{X} \to \mathcal{X}$, we have $(R_1, \ldots, R_n) \sim (\tau(R_1), \ldots, \tau(R_n))$.

A PDO > is strongly discernible if no two profiles are equally diverse, unless due to anonymity and neutrality.

A PDO \succeq is weakly discernible if R being unanimous and R' not being unanimous together imply $R' \succ R$.

A PDO \succ is support-invariant if SUPP(R) = SUPP(R') implies $R \sim R'$.

Support-invariance \implies anonymity.

A PDO \succeq is **independent** if it is the case that $R \succcurlyeq R'$ if and only if $R \oplus R \succcurlyeq R' \oplus R$ for every two profiles $R, R' \in \mathcal{L}(\mathcal{X})^n$ and every preference $R \notin \text{SUPP}(R) \cup \text{SUPP}(R')$.

Introduction 000	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Results				
Theoretic	cal results			

Basic axioms are satisfied by most PDO's:

Fact

Every PDO induced by a PDI of the form $\Delta_{dist}^{\ell=k}$, $\Delta_{dist}^{\Phi,\delta}$, or $\Delta_{com}^{\Phi,F}$ with $k \in \{1, \ldots, m\}$, $\Phi \in \{\Sigma, \max\}, \delta \in \{K, S, D\}$, and F being an anonymous and neutral social welfare function is anonymous, neutral, and weakly discernible.

Other axioms lead to impossibilities or narrow characterisations:

Proposition

For m > 2 and n > m!, no PDO can be both support-invariant and strongly discernable.

Proposition

A PDO is support-invariant, **independent**, and weakly discernible if and only if it is the simple support-based PDO.

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Results				
Theoretica	al results			

Basic axioms are satisfied by most PDO's:

Fact

Every PDO induced by a PDI of the form $\Delta_{supp}^{\ell=k}$, $\Delta_{dist}^{\Phi,\delta}$, or $\Delta_{com}^{\Phi,F}$ with $k \in \{1, \ldots, m\}$, $\Phi \in \{\Sigma, \max\}$, $\delta \in \{K, S, D\}$, and F being an anonymous and neutral social welfare function is anonymous, neutral, and weakly discernible.

Other axioms lead to impossibilities or narrow characterisations:

Proposition

For m > 2 and n > m!, no PDO can be both support-invariant and strongly discernable.

Proposition

A PDO is support-invariant, **independent**, and weakly discernible if and only if it is the simple support-based PDO.

Introduction 000	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Results				
Table of I	Results			

	$\Delta_{supp}^{\ell=k}$	$\Delta_{\textit{dist}}^{\Sigma,\delta}$	$\Delta_{\textit{dist}}^{\max,\delta}$	$\Delta_{\mathit{com}}^{\Sigma,F}$	$\Delta_{com}^{\max,F}$
Anonymity	~	\checkmark	\checkmark	\checkmark	\checkmark
Neutrality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Strong discernibility	х	х	Х	Х	Х
Weak discernibility	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Support-invariance	\checkmark	х	\checkmark	Х	Х
Nonlocality	$n \leqslant k!$	\checkmark	Х	\checkmark	Х
Independence	k = m	х	х	х	х
Monotonicity	~	х	\checkmark	х	х
Swap-monotonicity	~	$\delta = K$	$\delta = K$	F is Arrovian	

(ロ)(部)(部)(第)(11/17)

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Experimen	tal analysis			

- Compare diversity of synthetic vs. real preference profiles
 - Impartial Culture assumption (IC): every possible profile is equally likely to occur
 - Course selection dataset (AGH): complete preferences of 153 students over 7 courses
- Relation between diversity and social choice-theoretic properties
 - Condorcet winner/cycle
 - agreement between voting rules
 - voter satisfaction

All profiles are preferences of 50 voters over 5 alternatives.

For each experiment we have drawn 1 million profiles from the relevant distribution.

```
Note that the number of all possible distinct profiles is: (5!)^{50} > 10^{100}
```

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Diversity distribution acro	oss cultures			
	1. III			

Diversity distribution across cultures

Preference diversity (x-axis) against frequency (y-axis) in IC and AGH. [n = 50, m = 5]

PDI	IC	AGH	PDI	IC	AGH	PDI	IC	AGH
$\Delta_{\rm supp}^{\ell=m}$	22	13	$\Delta_{\textit{dist}}^{\Sigma,D}$	34	244	$\Delta_{\mathit{com}}^{\!\Sigma,\mathit{Bor}}$	84	85
$\Delta_{\rm supp}^{\ell=2}$	1	2	$\Delta_{\textit{dist}}^{\Sigma,S}$	462	1170	$\Delta_{\mathit{com}}^{\Sigma,\mathrm{MG}}$	94	88
$\Delta_{supp}^{\ell=3}$	4	12	$\Delta_{dist}^{\Sigma,K}$	660	1561	$\Delta_{\textit{dist}}^{\max,K}$	2	3

Observed number of levels (n = 50, m = 5)

Diversity for
$$\Delta_{dist}^{\Sigma,K}$$
 / IC data (*x*-axis).

50

As diversity increases:

- the probability of encountering Condorcet cycles (winners) increases (decreases)
- average degree of agreement decreases
 - degree of agreement: $\frac{|W_1 \cap W_2|}{|W_1| \times |W_2|}$.
 - plurality rule has much more disagreement with other rules and it becomes worse as diversity increases
- average voter satisfaction decreases
 - voter satisfaction: number of alternatives below the (Borda) winner in the voter's preference
 - normalised to percent: average value is in the range of 50% 100%

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Conclusion				

- Preference diversity
 - Concept
 - Formal model
 - Axioms
 - Experiments
 - support our intuition/expectation

Introduction 000	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Future worl	k			

- Other options for measuring diversity
 - other distances and other aggregation operators (e.g., max-of-min)
 - for a given $\ell,$ maximum number of preferences with a common subpreference of length ℓ
 - for a given k, maximum length of a common subpreference of any k preferences
 - covering distance of the profile: how close a profile is to covering the full space of possibilities

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のへで

- measuring the distance from a single-peaked profile
- Normalization
 - Ratio
 - Percentile
 - Levels
- New axioms

Introduction	Measuring Preference Diversity	Axiomatic Analysis	Experimental Analysis	Conclusion
Future worl	k			

- Distinguish (real data) profiles
 - Objective
 - Subjective
- Structure of profiles
 - Polarized/Divided
 - Central