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INTRODUCTION

This document originally served as a set of lecture notes, supporting the course with the
same name that I taught at the Arizona Winter School 2024 on “Abelian Varieties”.

Abelian varieties are important objects in arithmetic geometry. When studying their rational
points, we can make use of the fact that they are group varieties. That is, the rational points
over a fixed field form a group, which provides us with useful extra structure. In this course,
we will consider abelian varieties over fields of positieve characteristic p, in particular super-
singular abelian varieties, and study geometric and arithmetic properties of their moduli spaces.

In the outline below, every section roughly corresponded to one lecture.

e Section 1 provides an introduction to abelian varieties over finite fields of characteristic p.

e Section 2 discusses the moduli space A, of g-dimensional principally polarised abelian
varieties. For its characteristic p fibre, we will study its geometric structure by means
of several stratifications by invariants.

e From Section 3 onwards, we specialise to the supersingular locus S; C A,. In this
section we will study its geometry, explicitly in low dimensions, and generally using flag
type quotients and the foliation by central leaves.

e Section 4 treats the arithmetic of Sy, focussing on the endomorphism rings/algebras and
automorphism groups of the abelian varieties, using masses and linking these to class
number computations for quaternion algebras.
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1. ABELIAN VARIETIES OVER FINITE FIELDS

1.1. Introduction.

To get started, in this first section we will collect some useful information about abelian varieties,
in particular when they are defined over finite fields. This is a vast topic and many good
references on it already exist: see e.g. [40,48,64,75,77] and the 2024 PAWS notes of Lassina
Dembélé. Here, we have therefore been quite selective and only included notions we will need
later in the course. For a more extensive overview, you are encouraged to consult the above-
mentioned references.

Subsection 1.2 deals with abelian varieties over fields of any characteristic (zero or positive)
and heavily builds on the definitions contained in the prelude to this volume. In Subsection 1.3
we will specialise to the situation of characteristic p > 0, since this will be the main focus in this
course. In characteristic p, interesting behaviour appears that does not occur in characteristic
zero; we will exploit this in the next sections.

1.2. Abelian varieties (in any characteristic).
Throughout this subsection, we let K be any field of any characteristic. We let K denote its
algebraic closure.

The formal definitions of the following are given in the common prelude to this volume and
have therefore been omitted from this chapter:

e An abelian variety over K — here denoted by X;

Its dual abelian variety XV = Pic% K

Homomorphisms and isogenies f : X — Y between abelian varieties;

(Principal) polarisations A : X — XV of X;

Simple abelian varieties;

Endomorphisms, the endomorphism ring End(X ) and endomorphism algebra End’(X) =
End(X) ®z Q of X;

In this chapter, we will use the following notation:

o We will write X ~ Y if the abelian varieties X and Y are isogenous, and we may call it
a K-isogeny if we want to emphasise when an isogeny is defined over K.

e If we want to emphasise that the endomorphisms are K-endomorphisms, we may write
Endg(X). When we consider the geometric endomorphisms, we will always write

e Any abelian variety X admits a polarisation of some degree. If it admits a principal
polarisation A, we say that (X, \), or simply X, is a principally polarised abelian variety.

Theorem 1.1 (Poincaré reducibility). Any abelian variety X (# 0) over K is K-isogenous to
a product

(1) X ~ Y ox ke

where the Y; are pairwise non-isogenous simple abelian varieties. Moreover, the abelian varieties
Y and multiplicities k; are uniquely determined (up to K-isogeny).

When X is simple, its endomorphism algebra is a division algebra, since any non-zero ele-
ment f € End’(X) (of degree n) is invertible (namely, by 1g).

When X is not simple, and admits an isogeny decomposition as in (1), we get that End®(X) =
Maty, (End®(Y7)) x ... x Maty, (End’(Y;.)), since Hom(Y;, Y;) = 0 whenever i # j.

For simple abelian varieties (and hence for general ones) we can say more. Recall that any
abelian variety X admits a polarisation A of some degree. This implies that its endomorphism
algebra End®(X) has a positive involution a + A™' o a¥ o \, called the Rosati involution. Such
division algebras with positive involutions have been classified as follows.

Theorem 1.2 (Albert’s Classification). The endomorphism algebra E = End®(X) of a simple

g-dimensional abelian variety X over K 1is isomorphic to one of the following:
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(I) A totally real field of degree dividing g;
(IT) A totally indefinite quaternion division algebra over a totally real field (i.e. split at each
infinite place);
(III) A totally definite quaternion division algebra over a totally real field (i.e. non-split at
each infinite place);
(IV) A central division algebra whose centre is a CM-field, i.e. a totally imaginary quadratic
extension of a totally real field.

Example 1.3. For an elliptic curve (i.e. a one-dimensional abelian variety) E over K we
either have Endg (E) = Z or Endg (F) is an order in either a quadratic imaginary field or in
a quaternion division algebra over Q. In the first case we have EndO(E) = @, in the latter
cases the endomorphism algebra is either a quadratic imaginary extension of QQ or a quaternion
algebra over Q. If char(K) = 0 then the endomorphism algebra is necessarily commutative, so
the quaternion case happens only when char(K) = p > 0; the quaternion algebra is then the
definite quaternion algebra ) oo ramified at p and infinity.

Now let X be a g-dimensional abelian variety and assume that ¢ is a prime number that
is coprime to the characteristic of K. Multiplication by ¢ is an endomorphism of X for any
n > 1, denoted by [¢"], whose kernel is a finite group scheme of rank (¢7)%9. This group scheme
is étale by our assumption (¢, char(K)) = 1; in particular, it is determined by its K-points and
the action of Gx = Gal(K/K) on it.

Definition 1.4. Let X[¢"] denote the kernel of [£"]. The {-adic Tate module of X is the inverse
limit 7(X) = im X [¢"](K) where the transition maps are given by multiplication by ¢:

X["(K) <& X["(E).

It is a free Zy-module of rank 2g, which inherits a (Zs-linear) Gi-structure. Further, let Vy(X) =
To(X) ®z, Qg; this is a 2g-dimensional Q-vector space.

Any isogeny f : X — Y between abelian varieties, which is surjective with finite kernel by
definition, induces an injective map T, f : Ty X — T,Y with finite cokernel, and an isomorphism
Vof : Vi(X) — Vi(Y). Importantly, this association is injective, as proved by Weil:

Theorem 1.5. Mapping f — Tpf gives an injection
Hom(X,Y) ®z Zy — Homgz, (. (Te(X), Te(Y)).

In the next subsection, we will see how to modify these constructions when the chosen prime £
equals the characteristic p of the field. Moreover, in the setting of finite fields of characteris-
tic p # £, Theorem 1.5 is also surjective, cf. [68].

1.3. Abelian varieties in characteristic p.

From now on, we will assume our abelian varieties to be defined over a field of characteristic p
for some prime p > 0. In particular, we fix the following notation: we let F, be a finite field
extension of the prime field IF,,, and we let k = Fp be their algebraic closure.

1.3.1. Frobenius and Verschiebung.
Whenever you are in characteristic p, you can be sure to find Frobeniuses lurking around. There
are in fact a couple of different ones to distinguish.

Definition 1.6. For any scheme S in characteristic p (so pOg = 0), the absolute Frobenius
Fs : S — S is the identity on the topological space |S| and acts as the p-power map on the
structure sheaf, i.e. f +— fP for all f € Og.
The relative Frobenius is defined in the relative setting, i.e. for schemes g : X — S where S
is a scheme of characteristic p. Let X = X X5 Fg S be the scheme fitting in the Cartesian
3



diagram
xX®) 5 X
| g
s, 9
Since g o F'x = Fs o g, this diagram induces a morphism Fy/g: X — X (P); this is the relative
Frobenius. It is an S-morphism, while the absolute Frobenius Fx generally is not.

We could do the same for any power p", obtaining the n-th iterate F acting by f + fP" on
functions, and F)’}/S c X o X0,

We may apply the above either to an abelian scheme X — S, i.e. a smooth proper S-group
scheme whose fibres are all abelian varieties, or to an abelian variety X when S is the spectrum
of a field of characteristic p. If S = Spec(F,) with ¢ = p", then F§ = F)’}/S : X — X; this map
is also denoted by wx and called the geometric Frobenius or Frobenius endomorphism of X.
By extension of scalars, we obtain geometric Frobeniuses over any field extension of I, as well.
Later on, we will mostly take S = Spec(k).

Finally, there is also an arithmetic Frobenius opn for any n > 1; this is the topological
generator of the absolute Galois group Gr,,, = Gal(k/Fpn) of Fyn.

Dually, since an abelian scheme over a scheme S of characteristic p is commutative and flat,
then there exists a Verschiebung morphism Vyg : X® — X such that Vx/s o Fx;s = [plx
and Fy/s o Vx/g = [plxw- For an abelian variety X over a field K of characteristic p, both

dim(X)

Fx/k and Vi are isogenies of degree p . We can similarly iterate the Verschiebung to

obtain V)’}/s; then VX”/S o F)@/S = [p"]x.

1.3.2. Characteristic polynomial of Frobenius.
We will now study the Frobenius endomorphism 7x of X in more detail. For ease of notation,
we will write 7 instead of mx when the abelian variety X is clear from context.

Recall that 7, being an isogeny from X to itself, induces maps Tym : Ty(X) — Tp(X) and
Vir @ Vo(X) — Vy(X) for any ¢ # p; both maps are also denoted by mp. The latter has
a characteristic polynomial hr(z) = det(x - id — Vpm). It turns out that this characteristic
polynomial has coefficients in Z and is independent of the prime £.

Definition 1.7. We say h.(z) € Z[z] is the characteristic polynomial of Frobenius m on X. It
is also called the Weil polynomial of X.

The above construction yields characteristic polynomials for any endomorphism of X. That
for m however has special properties and significance. First we list some properties.

Theorem 1.8. Let X be a g-dimensional abelian variety over K = F, with Frobenius m = 7x.

(1) The characteristic polynomial h(x) has degree 2g.

(2) All complex roots of hr(x) have absolute value \/q. They are called (g-) Weil numbers.

(3) The roots come in pairs: if « is a root then so is @ = q/a. Any real root appears with
even multiplicity.

The significance of h, is twofold. First of all, there is a direct relation to point counting
on X. The main realisation for this is that F,=-rational points on X are fixed by 7'¢.
For any variety over F,, not necessarily an abelian variety, its point counts over field extensions
are encoded in its zeta function.
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Definition 1.9. The zeta function of a variety V' over Fy is

m
Z(V,x) = exp Z me— € Q[[z]], where Ny, = |V (Fgm)| for any m > 1.
m>1 m
Theorem 1.10. We use the same notation as in Thereom 1.8 and choose a factorisation
hr(x) = Hfﬁl(x — ;) over Z. For any m > 1, we have

29

Furthermore,

Z(X,z) =
where for any 0 < r < 2g, we take

B = [I (e ap)e) €zl
1<51<...<jr<2g
Secondly, we may equivalently use the Frobenius endomorphism, Weil polynomials and Weil
numbers to determine abelian varieties up to isogeny.
We say that two ¢-Weil numbers 7, " are conjugate, denoted m ~ 7', if they have the same
minimal polynomial over Q.

Theorem 1.11. Let X,Y be two abelian varieties over Fy. As mentioned below Theorem 1.5,
we have an isomorphism

(2) Hom(X,Y) ®z Z¢ — Homg, g, |(Tu(X), T,(Y)).

From this, it can be shown that two simple abelian varieties X,Y with respective Frobenius
endomorphisms wx, my are isogenous if and only if hry = hry, if and only if Z(X,z) = Z(Y, x).
Moreover, for every q- Weil number there exists a simple abelian variety over Fy with this Weil
number. That is, mapping an abelian variety X to its Frobenius endomorphism wx yields a
bijection

(3) { simple abelian varieties over Fy }/ ~ < { q-Weil numbers }/ ~ .

Theorem 1.11 is often called the Honda-Tate theorem; injectivity in Equation (3) was proven
by Tate [70] and surjectivity by Honda [23].

1.3.3. p-torsion in characteristic p.

In Definition 1.4 we considered the ¢"-torsion group schemes X [¢"] when ¢ is coprime to the
characteristic of the field, which is étale and of rank (¢7)24™(X) By contrast, the p"-torsion
group scheme X [p"] in characteristic p is not étale. As a consequence, the rank of its étale part
is smaller, and at most p"dmX),

Definition 1.12. Let X be an abelian variety over a field of characteristic p with algebraic
closure k. The p-rank of X, denoted f(X), is the integer f such that

(X [p)(k)| = p”.
When dim(X) = g, we have 0 < f < g.

Definition 1.13. Assume we are in the same setting as Definition 1.12. When f(X) = g, the
abelian variety is called ordinary.

Ordinary varieties are called this way because generically the p-rank is as large as it can be.

Example 1.14. Suppose that g = dim(X) = 1, so X is an elliptic curve. Then 0 < f(X) <1,
so the p-rank of X is either 0 or 1. If f(X) =1 = g, the elliptic curve is ordinary. If f(X) =0,
then X[p](k) = {0}, i.e. the elliptic curve has no p-torsion points. In this case it is called a
supersingular elliptic curve.
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Example 1.14 allows us to give the following definition.

Definition 1.15. Again let X be a g-dimensional abelian variety over a field of characteristic p
with algebraic closure k. Then X is supersingular if, over k, it is isogenous to a product of g
supersingular elliptic curves:

X ~p By X ... x B,

with E;[p](k) = {0} for all 1 < i < g, and superspecial if, over k, it is moreover isomorphic to
such a product:
X ~p By x ... x Ey.

Supersingular abelian varieties will be the main players in the second half of this course.
They are called supersingular not because they are singular, but because they are much rarer
than ordinary varieties.

The following result shows that all superspecial abelian varieties of the same dimension > 2
are k-isomorphic, and hence that all supersingular abelian varieties of the same dimension > 2
are k-isogenous.

Proposition 1.16. (Deligne, [52, Theorem 6.2], [67, Theorem 3.5]) Letn > 2 and let Ex, . .., Eay,
be supersingular elliptic curves over k =1T,. Then E1 X ... x E, ~ E 11 X ... X Ea,.

Remark 1.17. There is a number of equivalent definitions of supersingularity. One such is
the following: an abelian variety X over F, is supersingular if all of its Weil numbers « satisfy
that a/,/q is a complex root of unity. In Subsection 2.3 we will see that two other definitions

are that its p-divisible group is k-isogenous to G? 1dim(X )

, or that its Newton polygon is a line
segment of unique slope 1/2.

From the above, it may seem that we could have equivalently defined a supersingular abelian
variety to have p-rank zero. While supersingular abelian varieties will always have p-rank zero,

the other implication holds only in dimensions 1 and 2.

We also saw in Definition 1.4 how to construct ¢-adic Tate modules of X over K for any
prime ¢ coprime to char(K). This construction thus also works well when working over fields
of characteristic p, as long as £ # p. The analogous p-adic Tate module of a g-dimensional
abelian variety X would have rank f < g (instead of 2g), so we lose some information with this
construction. Instead, we therefore work with the p-divisible group.

Definition 1.18. (cf. [69, Definition 2.1]) Let X be an abelian variety over a field of charac-
teristic p. Its p-divisible group is the direct limit

X[p™] = lim X[p"]

of the inductive system (X [p"])n>1 of group schemes with respect to the natural inclusions

in @ X[p"] < X[p"*1] for which the sequences 0 — X [p"] Iy X [p" 1] P x [p"*1] are exact.

The rank of each X [p"] as a group scheme is (p")24™ X hence the height of X [p*°] is 2 dim(X).

A notion closely related to the p-divisible group of an abelian variety is its Dieudonné module.
We first define Dieudonné modules in general, cf. [40, §5.2].

Definition 1.19. Let K be a perfect field of characteristic p (e.g. K = F, or K = k = F,).
Let W = W(K) be the ring of infinite Witt vectors over K with an automorphism o induced
from the automorphism z — 2P on K. A Dieudonné module over K is a finite W-module
equipped with a o-linear map F' (Frobenius) and a ¢~ !-linear map V (Verschiebung) satisfying
FV =VF =np.

Define A = lim WIF, V]/p"W[F,V] (i.e. we view F,V as indeterminates) with the relations
FV =VF = p and commutation rules wV = Vo(w) and Fw = o(w)F for all w € W. Then a
Dieudonné module is a left A-module which is finitely generated as a W-module.
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There is an anti-equivalence G — M (G) between finite commutative group schemes G over K
of p-power rank (p") and left A-modules M(G) of finite W-length (n). We now use this to
determine the Dieudonné module of an abelian variety through its p-divisible group.

Definition 1.20. Let X be an abelian variety over a field K of characteristic p. Its (contravari-
ant) Dieudonné module is

M(X) = M(X[p™]) = lim M (X[p"]),

where for each n,
M(X[p"]) := lim Hom (X[p"], W),

where Wy, is the m-th Witt group scheme (a ring scheme defined by equipping A’ with Witt
vector addition and multiplication), so that the formal scheme hgm Wy = W gives a ring
isomorphism W(K) ~ W (K), cf. [40, §5.1]. Then M (X[p"]) is a free W/p"W-module of rank
2dim(X) for every n, and the Dieudonné module of X is free of rank 2dim(X) over W.

The Frobenius and Verschiebung maps on abelian varieties translate into semi-linear operators
on their Dieudonné modules. While their definition might seem a bit cumbersome, the structure
of these modules is well understood and explicit, making Dieudonné modules great tools with
which to study abelian varieties.

In fact, many important results about abelian varieties (about their moduli spaces, deforma-
tions, etc.), some of which are contained in the later sections of these notes, were proved by first
proving the corresponding result for Dieudonné modules. To make these notes as self-contained
and computation-light as possible, I have omitted these proofs, referring to the reference instead.

For now, the main thing to take away is that Dieudonné modules are really the “right” objects
to study, since the analogue of Tate’s theorem (Theorem 1.5, Equation (2)) now holds:

Theorem 1.21. If XY are two abelian varieties over a finite field K = Fy, then there is an
isomorphism

(4) Hom(X,Y) ®z Z, — Homa(M(Y), M(X)).

Note that the order on the right-hand side of Equation (4) is the opposite of that in (2), by
contravariance of the Dieudonné module.

Remark 1.22. The p-torsion and p-divisible group of an abelian variety gives rise to other
invariants of the abelian variety, such as the Newton polygon and the Ekedahl-Oort type. We
will define and study these in detail in the next section.

1.3.4. The a-number.

To conclude this section we introduce the a-number, another important invariant of abelian
varieties which we will use many times in the next sections. We first define the group scheme «,
appearing in its definition.

Definition 1.23. Let oy, denote the finite group scheme representing R — Spec(R][x]/(z?)) for
any ring R of characteristic p. In other words, it is the kernel of the Frobenius morphism on
the additive group G,.

It can be shown that o, is one of the three non-isomorphic group schemes over k of rank p,
the others being p, and Z/pZ; the latter are each other’s Cartier dual, while o, is self-dual.

Definition 1.24. Again let X be an abelian variety over a field K of characteristic p. Its
a-number is
a(X) := dimg Hom(ay,, X).

The a-number does not depend on the ground field, so we could replace K with any extension
here, and we will later often use k = E, instead.

The a-number of a Dieudonné module M is dimg M/(F, V)M, where F,V respectively denote
the semi-linear Frobenius and Verschiebung operators. Then a(X) = a(M (X)).
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Remark 1.25. When g = dim(X), we have 0 < a(X) < g, and even 0 < a(X) + f(X) < g.
Generically, the a-number of a non-ordinary abelian variety (with f(X) < g) is 1.

Superspecial abelian varieties have maximal a-number g = dim(X) by definition (Defini-
tion 1.15). In fact the converse holds too, cf. [55, Theorem 2.

2. THE MODULI SPACE .Ag OF PRINCIPALLY POLARISED ABELIAN VARIETIES

2.1. Introduction.

In the previous section, we collected some useful facts to study abelian varieties over finite fields
and their arithmetic properties. Now, rather than considering individual abelian varieties, we
will develop the tools that are needed to consider families of abelian varieties. This will enable
us to study the variation in arithmetic properties of the abelian varieties.

To this end, we will use the concept of a moduli space, discussed in Subsection 2.2. Very
roughly speaking, the points of a moduli space correspond to isomorphism classes of varieties.
The main advantage of working with moduli spaces is that these are (at least in favourable
cases like Ag4) themselves schemes, whose geometry we can study.

We will define the moduli space A, = Ay 1 of principally polarised g-dimensional abelian
varieties, which was first constructed by Mumford in [46]. This moduli space is defined over Z,
but we will mostly be interested in the characteristic p fibre A, ® F),, which for ease of notation
will again be denoted A, (Notation 2.10).

Example 2.1. You might already be familiar with the moduli space A; ® C of elliptic curves
over the complex numbers. By complex uniformisation, for any elliptic curve E/C we have a
description E(C) ~ C/A as a complex torus with some lattice A. Two such complex tori are
isomorphic if and only if the corresponding lattices are homothetic, i.e. they differ by a complex
scalar. Every homothety class of lattices has a representative Z @ Z7 for some 7 in the complex
upper-half plane $ = {z € C : im(z) > 0}. Now $) carries an action of SLa(Z) through linear
fractional transformations - or rather of I' = SLy(Z)/{%Id}, since £Id both act trivially. The
upshot is that points of the quotient space I' \ $) correspond to isomorphism classes of complex
elliptic curves, so we can think of this space as “the moduli space of complex elliptic curves”.

In Subsections 2.3 and 2.4 we will introduce four different stratifications on Ay, which are
defined using different (isogeny or isomorphism) invariants of the abelian varieties corresponding
to the moduli points. Again roughly speaking, a stratification is a certain way in which to break
up a space into disjoint locally closed subsets. Often, it is easier to study individual strata than
to study them all at the same time.

First, in Subsection 2.3, we will treat the p-rank and Newton (polygon) stratifications, which
are determined by isogeny invariants of respectively the p-rank and the p-divisible group of the
abelian varieties. The Newton stratification is a refinement of the p-rank stratification, i.e. the
p-rank is constant on each Newton stratum.

Second, in Subsection 2.4 we construct the a-number and Ekedahl-Oort stratifications, which
are defined in terms of isomorphism invariants, namely the a-number and the canonical filtration
of the p-torsion subscheme of the abelian varieties, respectively. The Ekedahl-Oort stratification
is a refinement of the a-number stratification, as well as of the p-rank stratification (since if
p-torsion subschemes are isomorphic, their sets of k-rational points have the same cardinality).

2.2. The moduli space A,.

A moduli space (or moduli scheme) gives a way of classifying, or parametrising, a set of objects.
In algebraic geometry, these objects are typically algebraic varieties; for us, the objects will be
abelian varieties. There are two flavours of moduli spaces, which we define as follows.

Definition 2.2. Let F : {Scheme} — {Set} be a contravariant functor that sends any scheme S
to the set of isomorphism classes of objects over S.

(1) A coarse moduli space is a scheme F with a natural transformation F' — Hom(—, F),
such that over an algebraically closed field k, the k-rational points F (k) are in bijection
8



with the set F'(k). Moreover, we require that for any other scheme F’ with this property,
the natural transformation ' — Hom(—, F’) factors uniquely through ' — Hom(—, F).

(2) A fine moduli space is a scheme § representing F', i.e. for each scheme S we have an iso-
morphism F(S) = Hom(S,§). There is a universal family (namely, the unique element
of F(§) = Hom(F,§) corresponding to the identity map), which has the property that
any family of objects over S is uniquely a pullback of it.

In other words, while the fine moduli space actually represents the functor F' if it exists,
the coarse moduli space does not have a universal family, but comes as close as possible to
representing F'. The existence of a universal family (and hence of a fine moduli space) can be
obstructed by the existence of non-trivial automorphisms of the objects. An alternative solution
to this, taken in the prelude to this volume, is to work with (moduli) stacks; however, we will
not use this terminology in this course.

The following functor was first introduced in this way by Mumford [49] in the 1960’s. For
several notions mentioned below (abelian schemes, polarisations, and level-n structures) you
may want to consult the prelude to this volume.

Definition 2.3. For integers g,d,n > 1, consider the functor
Ag7d7n : S = {<X7 )\7 U)}

where for any locally noetherian base scheme S on which n is invertible, the image is the set of
isomorphism classes of triples with X/S a g-dimensional abelian scheme, A a polarisation on X
of degree d?, and o : (Z/nZ)% = X|[n] a level-n structure on X/S.

We will mostly be interested in the case where S = Spec(K) for a field K. Note that in
Definition 2.3 we allow n = 1; we write Ay g = Ay 4.1. Further setting d = 1 means that we are
restricting ourselves to principally polarised abelian varieties; we write Ay = Ay 1.

Theorem 2.4. (cf. [49, Theorems 7.9 and 7.10])

(1) For n > 3, the functor Agq, is represented by a fine moduli scheme, denoted Ay gy,
which is defined over Spec(Z[1/n]) and quasi-projective.

(2) For any g,d,n > 1, this functor has a coarse moduli space, often again denoted Agy 4,
which is defined over Spec(Z[1/n]) and quasi-projective.

Corollary 2.5. The coarse moduli space Ay of principally polarised abelian varieties (with
level-1 structure) exists over Spec(Z) and is quasi-projective.

Theorem 2.6. (cf. [24, pp. 106-107] and [53, Theorem 2.4.1]) For any d and n (including
d=n=1), the moduli space Ag 4, — Spec(Z[1/n]) has relative dimension g(g+ 1)/2, and is
smooth over Spec(Z[1/dn]) if n > 3.

Example 2.7. We saw in Example 2.1 how to construct a coarse moduli space I'\ 9, with
I' = SLy(Z)/{£Id} and $ = {z € C : im(z) > 0}, of elliptic curves over C by viewing
E(C) ~ C/A as a complex torus. For higher-dimensional principally polarised abelian varieties
X over C, say of dimension g, we can similarly identify X (C) ~ CY9/A for some lattice A C CY.
Again similarly, we find a coarse moduli space Ay ® C ~ I'y \ )y, where I'y = Spy,(Z) (and
where again {£Id} act trivially) and where $; = {M € Maty(C) : im(M) > 0, M = M'} is the
Siegel upper-half plane. Considering abelian varieties with level-n structure (with respect to a
choice of primitive n-th root of unity) comes down to considering the quotient I'y(n) \ £, where
Ly(n) = {A € Spyy(Z) : A = Idyy mod n}.

Example 2.8. While Example 2.1 treated elliptic curves over C, we can consider elliptic curves
and their moduli space over any field K. If K = K is algebraically closed, the j-invariant of
an elliptic curve effectively encodes its isomorphism class over K. Thus a coarse moduli space
for elliptic curves is obtained by mapping a curve E to its j-invariant j(E) on the affine line A'
(“the j-line”). A fine moduli space generally does not exist because elliptic curves may have
non-trivial automorphisms.
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Remark 2.9. The moduli space Ay, and more generally A, 4, have been studied in detail by
many mathematicians after Mumford. A detailed discussion is beyond the scope of these notes;
here we only mention some facts (cf. also [11, §3, pp. 4-9]).

e Chai and Faltings proved that A, ® K is irreducible for any field K, cf. [12].

e A result attributed to Freitag, Tai and Mumford states that A, ® C is of general type
for g > 7, cf. [47].

e The space A, is not compact; over the years several different compactifications of A,
have been constructed by Satake [66], Baily-Borel [2], Chai and Faltings [12], and Alex-
eev [1].

Notation 2.10. In this course, we will only work in characteristic p (with p > 0). Thus, we will
only consider the fibre A;®F,. To ease notation, we will denote this again by A,. Moreover, we
will sometimes further ease the notation by identifying A, with A4 (k), where k = F,, e.g. when
writing “(X,A) € A,” to mean the principally polarised abelian variety (X, \) over k.

Later in this section, we will be concerned with various stratifications of Ay:

Definition 2.11. A stratification of a scheme X is a partition of X into a disjoint union of
finitely many closed or locally closed subsets. A good stratification satisfies the extra property
that the Zariski closure of each stratum is a union of the stratum itself and lower-dimensional
strata.

2.3. The p-rank and Newton stratifications.

We introduce two stratifications on Ay, which are respectively determined by the p-rank of the
abelian variety and the isogeny type of the p-divisible group of the abelian variety; the latter is
combinatorially encoded in the Newton polygon of the abelian variety.

Both stratifications are therefore isogeny invariants, meaning that in each, two isogenous
abelian varieties will lie in the same stratum. Furthermore, the stratification by Newton polygon
is a refinement of the stratification by p-rank, since truncations of isogenous p-divisible groups
will yield isogenous p-torsion schemes.

Below, we will state the main facts about p-rank strata, and spend most of our time on the
Newton stratification.

2.3.1. The p-rank stratification.

Recall from Definition 1.12 that the p-rank f(X) of X/k is the integer f such that | X [p](k) | = p/.
The p-rank is an isogeny invariant, and 0 < f(X) < g = dim(X). Below, we first give an alter-
native definition. Then we define the p-rank strata V; and study some of their properties.

Definition 2.12. Let X be an abelian variety over a field of characteristic p with algebraic
closure k.

We may equivalently define the p-rank of X as the stable rank of its Hasse-Witt matrix. This
matrix is a representation of the action of the induced Frobenius map F* on the Cech coho-
mology, i.e. F*: H'(X,0x) — H'(X,Ox). Its stable, or semi-simple, rank is the dimension
of the semisimple part of H'(X,Ox) under this action, i.e.

f=dim (X, Ox)s = dim(NSZim((F*)™)).
Definition 2.13. For any 0 < f < g, consider the subset
Vi={z = (X,}) € Ag(k) : f(X) < [}.

We call such an Vy a (closed) p-rank stratum. We see that Vy C Vyy; for any f < g — 1.
The V; form closed subschemes of Ay by [54, Corollary 1.5], since the p-rank decreases under
specialisation, i.e. for any abelian scheme, the p-rank of any geometric fibre is at most equal to
the p-rank of the generic fibre.

One of the first results on the V; was the following, originally stated by Oort for not necessarily
algebraically closed fields k.
10



Lemma 2.14. (cf. [54, Lemmas 1.4 and 1.6]) Let S be an irreducible k-scheme and X — S an
abelian scheme. Let f be the p-rank of the generic fibre and let W C S be the closed subset over
which the fibre has p-rank at most f — 1. Then either W = () or every component of W has
codimension 1 in S.

Denoting an irreducible component of Vy by Wy, this lemma says that if Wy_; € Wy and
We_1 # Wy, then dim(Wy) — dim(Wy_1) = 1. For any f < g, it follows inductively that the
codimension of any Wy in A, is at most g — f.

To prove the following result, Koblitz [35] establishes the reverse inequality, by computing
the codimension of the Zariski tangent space to any Vy via local deformations of the abelian
varieties.

Theorem 2.15. (cf. [35, Theorem 7.(1)]) For any 0 < f < g, we have
codim(Wy) =g — f.

In the same theorem, Koblitz establishes that V; is smooth at those abelian varieties whose
Hasse-Witt matrix has (full) rank g — 1.

Remark 2.16. It follows from Theorem 2.15 that each irreducible component W; contains an
open dense set of points with p-rank f; otherwise W; would be an irreducible component of
Vi—1 and then codim(Wy) < g — f + 1, contradiction. Hence, the p-rank strata form a good
stratification of A, in the sense of Definition 2.11.

Example 2.17. (cf. [35, § 11, p. 193]) Let g = 2, so dim(A3) =3 and 0 < f < 2, s0 Vo = As.
In [35, § 8], Koblitz shows how to conveniently normalise Hasse-Witt matrices by making suitable
choices of basis for H'(X,Ox). For g = 2 this yields four “isomorphism” types of normalised
Hasse-Witt matrices, with the following representatives:

b1 6o Go) Go)

e The abelian varieties X with p-rank f(X) = 2 have Hasse-Witt matrix ().

e The abelian varieties with p-rank f(X) = 1 have Hasse-Witt matrix (3 ). Theorem 2.15
yields that codim(V;) =2 —1 =1, so dim(V;) = 2.

e The abelian varieties with p-rank zero have Hasse-Witt matrix either (§§) or (3 ); these
correspond to (non-superspecial) supersingular and superspecial surfaces, respectively.
Theorem 2.15 yields that dim(Vp) = 1. (In fact Vp = Ss is precisely the supersingular
locus, which indeed has dimension [22/4] = 1.)

e V1 and Vj are both singular precisely at the abelian varieties with Hasse-Witt matrix
(39); in both cases these are isolated points, conic (A1) singularities in V; and ordinary
(p+ 1)-points in V. These points correspond precisely to superspecial abelian varieties.

Five years after Koblitz’ results, Norman and Oort [50] generalise Theorem 2.15 to abelian
varieties that are polarised but not principally polarised, i.e. to the moduli space A, 4. Rather
than directly studying deformations of abelian varieties, Norman-Oort prove facts about defor-
mation spaces of the corresponding Dieudonné modules. Their result can be stated as follows.

Theorem 2.18. (cf. [50, Theorems 3.1 and 4.1])

(1) Let Vi be the closed subscheme of UF 1 Agq of abelian varieties with p-rank at most f.
Any irreducible component Wy of Vi has codimension g — f. Its generic point has
a-number 1.

(2) The generic point of any component of Ay q is an ordinary abelian variety (with mazimal

_ ~ ~ o 9(g+1)
p-rank f(X) = g) and the dimension of each component is L=

2.3.2. The Newton polygon stratification.

To any abelian variety X we can associate a Newton polygon, which is an isogeny invariant that

depends on the canonical decomposition of its p-divisible group. We therefore first provide a

general decomposition result for p-divisible groups up to k-isogeny due to Manin (Theorem 2.19),
11



then give its form for p-divisible groups of abelian varieties (Theorem 2.21), and describe how to
attach a Newton polygon to this data (Definition 2.23). Then we define the Newton (polygon)
strata and study some of their properties.

Recall the definition of the p-divisible group X[p*>°] of an abelian variety X over k from
Definition 1.18. The following result gives a decomposition result for any p-divisible group (not
necessarily coming from an abelian variety) up to k-isogeny.

Theorem 2.19. (cf. [41, §I1.4], see also [6, §IV.4]) Any p-divisible group Y is k-isogenous to a
finite direct product

Y ~k H Gmi,nia
[

where for any pair of coprime integers (m,n), G, n s the unique (up to isogeny) isosimple p-
divisible group whose dimension is m, whose height is m +n, and whose dual has dimension n.

Remark 2.20. When (m,n) = (1,0), Gy, , is the formal group of G,,; when (m,n) = (0,1) it
is Qp/Z,, and otherwise it is a local-local group scheme. We see that an ordinary elliptic curve
has p-divisible group G, @ Go,1 while a supersingular elliptic curve has p-divisible group G 1.

Since any abelian variety admits a polarisation (of some degree), its Dieudonné module admits
a quasi-polarisation; this is equivalent to a symmetry condition on its p-divisible group which
implies that whenever a G, ,, occurs in the isogeny decomposition, so does its dual Gy, ,, (with
the same multiplicity). Thus, for p-divisible groups of abelian varieties, Theorem 2.19 specialises
to the following statement.

Theorem 2.21. (cf. [41, §IV.3, Theorem 4.1], see also [40, §1.4]) Any p-divisible group X [p*°]
of an abelian variety X is k-isogenous to a direct product

(5) X[p™] ~ H (Gmi,ni ® Gnumi) @ G?j @ (Gl,O ® GO,l)era

for m;,m; € Zsq coprime, and 0 < s, f such that s + f < g. This decomposition is also called
the formal isogeny type of X.

Remark 2.22. We see from Theorem 2.21 that X is supersingular if X [p™] ~y, Gﬁfim(){); this
is in fact an equivalent definition of supersingularity. We also see that f is the p-rank of X and
in particular that X is ordinary if X [p™®] ~ (G10 @ G 1)®4mX),

Using the formal isogeny type of an abelian variety X, we now construct its Newton polygon.
This procedure generalises to any p-divisible group.

Definition 2.23. (cf. [57, §1.6]) Let X be a g-dimensional abelian variety over k with formal
isogeny type given by (5). To every G,,, we associate a slope A = m"in and a multiplicity
m+n. Arrange the slopes in non-decreasing order. This determines a (“g-dimensional”) Newton
polygon starting at (0,0) and ending at (2g, g), by joining line segments of the prescribed slopes
A with length equal to their respective multiplicities. We denote it by N (X).

The Newton polygon is lower convex and has its breakpoints at integral coordinates, since
every slope appears with a multiplicity that is a multiple of its denominator. By symmetry
of (5), the Newton polygon is also symmetric, in the sense that any slope A appears with the
same multiplicity as the slope 1 — A.

Notation 2.24. The ordinary Newton polygon is often denoted p and the supersingular one o.

Example 2.25. The slopes of a g-dimensional ordinary abelian variety are 0 and 1, each with
multiplicity ¢ (since G1 has slope 1/(1 4 0) =1 and Gg; has slope 0/(0 + 1) = 0); those of a
supersingular abelian variety are 1/2 everywhere (since G, has slope 1/(1+1) =1/2).
Below we have drawn the Newton polygon of an ordinary threefold and that of a supersingular
threefold (so g = 3).
12
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Manin conjectured in [41, §IV.5, Conjecture 2, p. 76] that the converse of his Theorem 2.21
also holds. That is, he conjectured that every formal isogeny type of the form (5) (or equiva-
lently, every symmetric Newton polygon as in Definition 2.23) occurs as N'(X) for some abelian
variety X in any positive characteristic. This was first proved independently by Honda and
Serre, cf. [70, p. 98]. It was later reproved by Oort using deformation theory, cf. [57, §5]. The
latter methods were also used to prove strong results on Newton polygon strata (see Theo-
rem 2.34), as we will explain below.

Definition 2.26. Consider the set of g-dimensional symmetric Newton polygons. We put a
partial ordering on this set, by defining that o < g for two polygons o and f if no point of «
lies strictly below 5. We say “« lies above 7.

Example 2.27. We see from Example 2.25 that ¢ < p. In fact ¢ < £ < p for any other
symmetric Newton polygon &, so & will lie strictly between p and o.

4

p dashed, o solid

Definition 2.28. For any g-dimensional symmetric Newton polygon £, we define the subsets
We = {(X,A) € Ag : N(X) < ¢}
We = {(X,\) € Ay : N(X) = ¢}
It was proved by Katz (cf. [34, Theorem 2.3.1, Corollary 2.3.2]) that the W are closed, hence
the WEO are locally closed. Both are called Newton polygon strata; often the W¢ are closed
strata while the Wé0 are open strata. The stratification by {VVg0 }e is a good stratification of Ay.
Remark 2.29. In Definition 1.12 we gave two equivalent definitions of the p-rank of an abelian
variety X over k. A third equivalent definition is that the p-rank of X equals the number of
zero slopes in the Newton polygon of X. The lowest Newton polygon with prescribed p-rank
fisa=f1,00+(g—f—-1,1)+ (1,9 —f—1)+ f(0,1), according to [56, Remark 3.3]. That
means that W, =V}, i.e. the p-rank f stratum coincides with the Newton stratum of a.

Definition 2.30. (cf. [58, §1.9]) For any g-dimensional symmetric Newton polygon &, define
A& ={(z,y) €ZXZ:y <z <g,(z,y) <&}
sdim(€) = A(©)]

13



That is, A(&) contains all the integral lattice points strictly within the g x g region lying
above ¢, and sdim(§) gives the number of such lattice points.

Remark 2.31. For general g, you may convince yourself that sdim(p) = w and sdim(o) =

Lﬁj. These numbers have an important geometric meaning: we have already seen that

1
dim(Ay) = w and we will see in Theorem 3.15 that the dimension of the supersingular locus

Sy equals L%J. This is no coincidence: we will see in Theorem 2.34.(3) that sdim(¢) = dim(Wy)
for any symmetric Newton polygon £. By definition W, = S, explaining the second result; for
the first, we note that the ordinary locus in 4, is open and dense.

Example 2.32. For p and o as given in Example 2.25, we determine A (&) in the images below.
The elements of A are marked by circles; the dashed line is the line y = .

A(p) A(o)

We see that sdim(p) = 6 and sdim(c) = 2 when g = 3. We also see that the longest chain of
Newton polygons o < ... < p has length sdim(p) — sdim(o) = 4.

Now consider an abelian scheme X — S over a base scheme S in characteristic p. Grothendieck
proved, cf. [6, §IV.7], that if Xy is a specialisation of &, then N (Xo) < N(&})), i.e. the Newton
polygon goes up under specialisation. He conjectured the converse, which was proved by Oort
(announced in [56], proved in [57] and [58, Corollary 3.2]): if o = N (Xp) is the (necessarily
symmetric) Newton polygon of a principally polarised abelian variety Xy, and a < 8 for some
other symmetric Newton polygon [, then there exists an irreducible scheme S and a principally
polarised abelian scheme X — S such that its special fibre is X and its generic fibre X, has
Newton polygon N (&;) = f.

Remark 2.33. The principally polarised condition on Xy is important: for any g > 3 there exist
counterexamples to Grothendieck’s conjecture with non-principally polarised abelian varieties,
cf. [57, Remark 6.4] and [33, Remark 6.10].

As alluded to above, Grothendieck’s conjecture was proved by studying deformations of p-
divisible groups: one needs both deformations within a Newton polygon stratum to obtain a
scheme X with a(X;) = 1, and deformations of (p-divisible groups of) such abelian varieties of
a-number 1 to other Newton polygon strata. To deform within a Newton polygon stratum, a
purity result due to de Jong and Oort [29, Theorem 4.1] is used, which says that if the Newton
polygon jumps in a family of p-divisible groups (over an irreducible noetherian scheme) then it
already jumps in codimension 1.

More importantly for us, these techniques imply the following results for Newton strata W;:

Theorem 2.34. (cf. [56, Theorem 2.6], [57, Theorem 3.4], [58, Theorem 4.1]) Let & be a sym-
metric Newton polygon and let W C We be an irreducible component of the Newton stratum We.

(1) Generically on W, the Newton polygon is &.
(2) Generically on W, the a-number is 1, unless & = p (for which the a-number is 0).

(3) The dimension of W is sdim(€).
14



It was already noted in [56, Theorem 2.6.(c)] that W is connected whenever g > 1 (since
every irreducible component W C W, contains an irreducible component of the supersingular
locus W) and conjectured in [58, §5.1] that W is geometrically irreducible for any & # o. The
latter was proven ten years later by Chai and Oort using monodromy arguments:

Theorem 2.35. (cf. [5, Theorem 3.1]) For any g-dimensional symmetric Newton polygon &
such that § # o, the Newton stratum We C Ay (and hence also Wgo) is geometrically irreducible.

2.4. The a-number and Ekedahl-Oort stratifications.

We now introduce two other stratifications on 4,. They are respectively determined by the
a-number of the abelian variety, cf. Definition 1.24, and by combinatorial data attached to the
p-torsion scheme of an abelian variety, introduced by Ekedahl and Oort.

It is worth noting that both stratifications are determined by isomorphism invariants, while
the p-rank and Newton stratifications introduced in Subsection 2.3 were defined by isogeny
invariants (of the p-torsion and p-divisble group).

The a-number stratification is easier to define, but harder to analyse than the Ekedahl-Oort
stratification. Moreover, the latter refines the former: that is, each a-number stratum is a
disjoint union of Ekedahl-Oort strata. Therefore, we will say relatively little about a-number
strata, focussing on setting up the theory needed for the Ekedahl-Oort stratification.

2.4.1. The a-number stratification.
Recall the definition of the a-number a(X) := dimj Hom(a,, X) of an abelian variety X over k
(Definition 1.24).

The a-number is an isomorphism invariant, and we may use it to define a stratification with
strata consisting of abelian varieties with the same a-number; cf. [10,71].

Definition 2.36. For any 0 < n < g, consider the subsets
T, =Ag(a>n) :={z=(X,\) € Ay : a(X) > n}; and let
Ag(n) =={z = (X,\) € Ay : a(X) = n}.

The T), are closed, while the A4 (n) are locally closed. We see that T}, D T;,41 for any n < g—1,
and hence the T}, form a good stratification of A,.

The locus T, = Ay(g) consists of all superspecial abelian varieties by [55], and hence has
dimension zero. It is reducible, since it consists of a number of superspecial points. For any
n < g — 1 however, T), is irreducible, by [71, Theorem 2.11], see also [59, Corollary 1.5] for the
the case of T7.

In [10, Theorem 12.5], Ekedahl and van der Geer compute the cycle classes of the T, in the
Chow ring CH@(JEQ). In the same paper, they also compute the cycle classes of the p-rank
strata, and of the Ekedahl-Oort strata which we will soon define.

In Subsection 3.5.1 we will give more precise results on the a-number stratification on the
supersingular locus Sy, as defined in [40, § 9.9-9.11], which are due to Harashita. On Aj,
we generally obtain more interesting results than for a-number strata by considering their
refinement by Ekedahl-Oort strata, which we introduce next.

2.4.2. The Ekedahl-Oort stratification.
As mentioned above, the definition of the Ekedahl-Oort stratification is more involved, since
we will first need to define and characterise several types of filtrations on group schemes in
characteristic p. We then apply this to the p-torsion group scheme X|[p] of a (principally
polarised) abelian variety to obtain the stratification A, = U,S,; some of its properties are
listed in Theorem 2.51.

The main reference for the Ekedahl-Oort stratification is [59]. The description of the strata
in terms of Weyl group elements can be found in [10].
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Notation 2.37. Recall the relative Frobenius and Verschiebung morphisms from Definition 1.6.
Here we will consider them for group schemes G over S = Spec(k) and should therefore denote
them by Fg/;, and Vg, respectively. For ease of notation however, we will write F' and V/
throughout this section.

Definition 2.38. A finite flat commutative group scheme G over k — or more generally over any
base scheme in characteristic p — is a BT (“Barsotti-Tate truncated level one group scheme”)
if it satisfies:

im(V:GP = @) =ker(F: G — GP), im(F:G— GP)=ker(V:GP = @).
Since V o F'= F' oV = [p], this implies that [p]g =0, i.e. G is annihilated by p.
A BT, is symmetric if it admits an isomorphism to its Cartier dual: ¢ : G = GP.

For an abelian variety X over k, or over any field K of characteristic p, we see that the
p-torsion subscheme X|[p] is a BT;. If X admits a polarisation of degree coprime to p, e.g. a
principal polarisation, then X[p] is symmetric.

On any BT, we can act by Frobenius and Verschiebung, their powers and their inverses. On
a symmetric BT, we can moreover act on any finite subscheme H C G via

—(H) :=ker(G & GP - HP).
We now use these actions to introduce filtrations on BT; group schemes over k.

Definition 2.39. Let G be a BTy over a field K of characteristic p.
(1) The canonical filtration of G

0=GoC...CGs=V(G)C...CG=G
is obtained inductively as the finite set
{w(G) : w is a finite word in V and F~1};
if G is symmetric, its canonical filtration is equivalently obtained as the finite set
{w'(G) : w' is a finite word in V and —}.

One can think of first applying V? to G for all i > 0, then applying F~7 to these images
for all j > 0, et cetera; if the rank of G is p”, this process stabilises after 2(r — 1) steps,
in the sense that we stop producing new group schemes.

(2) For G that is also symmetric, a good filtration of G is a filtration

0=GoC...CGs=V(G)C...CGes =G
into subgroup schemes G; such that G; # Gy for all 0 < i < 2s—1, and —(G;) = Gas—;
for all 0 < j < 2s. Moreover, every G; for i < s is the image of Verschiebung acting
on Gg-p ) for some j and every such image occurs this way.
Every canonical filtration is a good filtration, by [59, Proposition 5.4], of minimal length.

(3) A final filtration of G of rank p" is a good filtration of maximal (even) length r where
each GG; has respective rank p*.

Example 2.40. Let ¢ = 3. Consider a supersingular abelian threefold X over k with a-
number 2. Then it follows from [17, Theorem 5.1.(2)], building on results in [16] on supersingular
Dieudonné modules, that the canonical filtration of G = X[p] is of the form

0=GpCG1 CG2CG3C G4 C G5 CGe =0,
where as finite words in V and F~!, we have
Go=0, Gi=V*G), G:=VF'V(Q),
Gs=V(G), Gy=F V@), Gs=FV(G), Gs=G=X]p.
This is shown by choosing explicit bases and representing V' and — as matrices (note that in [17]

words in F, | are considered, which is equivalent).
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To these filtrations, we now attach a type, which we will see in Theorem 2.43 determines G
up to isomorphism over k = [,

Definition 2.41. (1) The canonical type attached to the canonical filtration of G is the
triple of functions

T={v:{0,...,;t} = {0,...,s}, f:{0,...,t} = {s,...,t},p:{0,...,t} = Z>0}

such that:
e Via V(G;) =G, l) we keep track of the action of Verschiebung;
e Via F71(G;) = Gy(;) we keep track of the action of F~1;

e Via rank(G;) = pp ’) we encode the ranks.
The functions v and f are non-decreasing and surjective and by [59, Lemma 2.4] satisfy

v(i+1) > o(i) & fi+1) = f@i);
v(i+1) =v(i) < f(i+1) > f2);
f@@) +v() =t+i.
The function p is strictly increasing and satisfies p(0) = 0. More generally, any triple

7 = (v, f, p) satisfying these conditions is called a canonical type.
(2) If G is symmetric, so t = 2s for some s, then its canonical type further satisfies

fG) =25 —v(2s —j) =s+j—v(j);
p(J+1) = p(j) = p(2s —j) — p(2s —j — 1).
Any triple 7 = (v, f, p) satisfying all conditions above forms a symmetric canonical type.

(3) On any good filtration, by [59, Proposition 5.5] the analogously defined functions v, f
on {0,...,2s} further satisfy

v(j)=v(l+1) ev2r—j) =v@2r—j—1)+1;
v(j)<v(+1)=v(+1)=v() +1.
Example 2.42. In the setting of Example 2.40, where s = g = 3, the canonical type is given
by:
v:4{0,1,2,3,4,5,6} — {0,1,2,3}
v(0) =v(1)=v(2) =0, v(3)=v(4) =1, v(5) =2, v(6) =3;
f:{0,1,2,3,4,5,6} — {3,4,5,6}
f(0)=3,f(1) =4,f(2) = f(3) =5, f(4) = f(5) = f(6) = 6;
p:{0,1,2,3,4,5,6} — Z>
p(i) =i for all 0 < i < 6.

Theorem 2.43. (cf. [65, Proposition 3.5], [42, Theorem 4.7], [59, Theorem 9.4]) If the BT,
group schemes G and G’ have the same canonical type, then they are k-isomorphic: G ~ G'.

Remark 2.44. We see that every canonical filtration gives rise to a canonical type. Conversely,
it is claimed in [59, Remark 2.8] that every canonical type arises from a canonical filtration of
some BTy; in [65, Remark 3.7] it is pointed out that every canonical type occurs through some
filtration of a BT, but that might be a strict refinement of the canonical filtration.

Remark 2.45. As is explained in [71, § 2|, for an abelian variety X we may equivalently
define the canonical filtration of the p-torsion group scheme X|[p| and its canonical type by
considering its de Rham cohomology H CllR(X ); on this space we also have actions of Frobenius
and Verschiebung, that are moreover adjoints under the symplectic form.
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Definition 2.46. (1) A final sequence is a function ¢ : {0,1,...,2s} — Z>( satisfying

P(0) =0;
Y(2s) = s;

(i) <Yi+1) < (i) 4+ 1 forall 0 <i < 2s;

) +1=p(i+1) o p(2s—1) = (25 —i — 1).

(2) An elementary sequence is a function ¢ : {0,1,...,s} — Z>¢ satisfying
©(0) = 0;
e(t) <p(i+1)<ep@E)+1forald<i<s.

Because of the conditions ¥(0) = 0 = ¢(0), we may view both types of sequences as functions
on {1,...,2s} and {1,..., s}, respectively.

We define a partial ordering < on the set of 2° elementary sequences by
(6) ¢ <o e ¢ (i) <p() forall 0 <i < s.

The smallest stratum with this ordering is therefore ¢ = (0,0,...,0); this corresponds to the
superspecial locus.

We can turn a final sequence 9 into an elementary sequence by truncating it, i.e. by restrict-
ing ¥ to {0,1,...,s}. Conversely, we can “stretch” an elementary sequence to a final sequence
by defining p(2s — i) = (i) + s — i for all 0 < i < s. Thus, the data of an elementary sequence
is equivalent to that of a final sequence, and we will use them interchangeably in the sequel.

Further, we can inductively define an elementary sequence ¢ corresponding to a symmetric
canonical type 7 = (v, f,p) as follows: having defined {¢(0),¢(1),...,¢(p(i))} with p(i) <
p(i+1) < s, we determine the next p(i+ 1) — p(i) entries, yielding {¢(0), p(1),...,¢(p(i+1))},
by taking

e(p(i+1)) >...>0(p@E)+1) > e(p@) ifv@E) <ov(@+1).

Alternatively, we may refine the canonical filtration giving rise to 7 into a final filtration of
length 2s and set (i) = dim(F'G;) for all 0 < i < s. This final filtration may not be unique,
but its type will be and hence also the final sequence. Conversely, Oort gives a “canonical
construction” to obtain a canonical type from a final sequence, cf. [59, p. 18]. We will not need
it in this course.

{w(p(i +1))=...=¢(p(i) +1) = (p()) ifv(i)=v(i+1);

Example 2.47. Taking the canonical type of Example 2.42, we see that p(i+ 1) — p(i) = 1 for
all 7, and so we inductively define the following elementary sequence one step at a time:

@ = (¢(0), (1), 0(2),»(3)) = (0,0,0,1).

That is, the value of ¢ jumps exactly when that of v does.

Definition 2.48. For any g > 1, the Weyl group W, ~ (Z/27Z)9 x Sy of the symplectic
group Spy,, is the permutation group

Wy={we Sy :w(i)+w2g+1—i)=2¢9+1foralll<i<g}
=(o;=(i,i+1)(29 —1,2g+1—3) forall 1 <i< g, and o, = (9,9 + 1))
generated by the reflections oy,.. ., 0y.

The Bruhat-Chevalley order on Wy, denoted <pc, for any two elements w : (1,...,2g) —
(w(1),...,w(2g)) and W' : (1,...,2g9) — (W'(1),...,w'(2g)) is defined by

w <pc w' & for all 1 <d < g, the dth-largest element of (w(1),...,w(d))

< the dth-largest element of (w'(1),...,w'(d)).
18
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To a symmetric canonical type 7 = (v, f, p) we can associate a Weyl group element of W as
follows: write all 1 <14 < s for which v(i) = v(i — 1) in increasing order as S = {ij,i2,...}. Also
write the complement of S in {1,...,s} in increasing order, as S¢ = {ji, j2,...}. Now define
the permutation w : (1,2,...,2s) — (w(1),...,w(2s)) in Sas via

k if £ = iy, for some k;
wl) =< s+k if £ = jj, for some k;
2s+1—w(i) ifl=2s+1—1qforsome0<i<s;

Then w € Wy by construction and by the symmetry properties of v. In particular, the sequence
(w(1),...,w(2s)) is uniquely determined by the subsequence (w(1),...w(s)).

Example 2.49. Following up with Examples 2.40, 2.42, and 2.47, we see that v(i) = v(i — 1)
holds for i € S = {1,2}. Its complement in {1,2,3} is therefore S¢ = {3}. This yields the
permutation

w: (1727 3747576) H (1727473’ 57 6)7
which equals the transposition (3,4) = o3.

We now apply the theory above to G = X|[p], the symmetric p-torsion scheme of rank p?¢
of a principally polarised abelian variety X over k (where the symmetry is induced from the
principal polarisation). So from now on, we work with r = 2s = 2g.

We have already seen how the canonical filtration on X [p] is determined up to k-isomorphism
by its (symmetric) canonical type 7 = (v, f,p), and that we can equivalently express this
information in terms of a final sequence ¥ or an elementary sequence . Finally, the Weyl
group construction allows us to attach a Weyl group element w to .

Definition 2.50. For each elementary sequence ¢, we let
Sy = {(X,\) € Ay(k) : the elementary sequence corresponding to X|[p] is ¢}.
Then S, is called the Ekedahl-Oort stratum in A, corresponding to ¢.

The result below collects the most important statements about the Ekedahl-Oort strata in A,
proven in several (cited) references.

Theorem 2.51. Let g > 1 and consider Ay in characteristic p.

(1) Every Ekedahl-Oort stratum S, is non-empty and quasi-affine. All irreducible compo-
nents of S, have dimension Y 9_, p(i) (cf. [59, Theorem 1.2]).

(2) If ¢ # (0,...,0), i.e. outside of the superspecial locus, the Zariski closure S, of S, is
connected (cf. [59, Theorem 1.3]).

(3) In fact, if Sy, € Sy, where Sy is the supersingular locus, then S, is irreducible (cf. [10,
Theorem 11.5]). Otherwise it is reducible for sufficiently large g and p (cf. [16, Corol-
lary 3.5.5]).

(4) Any stratum is locally closed, and its Zariski closure is a union of the stratum itself and
lower-dimensional strata (cf. [59, Theorem 1.3 and Proposition 3.2]).

(5) The a-number of a stratum S, is g — p(g) (cf. [59, p.56]).

(6) The p-rank of a stratum S, is max{i : (i) =i} (cf. [59, p.56]).

Proof. We sketch the proof of the fact that dim(S,) = >.7_; ¢(i). Fix an abelian variety
(X0, o) in S,. By choosing an explicit (“standard”) basis for the Dieudonné module of X[p]
and constructing deformations of (Xg, Ag) that still lie inside S, explicitly in terms of this basis,
it is shown that dim(S,) > >~7_, (i), cf. [59, Proposition 10.1].

On the other hand, [59, Proposition 11.1] shows that if ¢’ < ¢ with Y7 (¢(i) — ¢'(i)) = 1,
then S,y C S, (note the typo in the statement in [59]). This follows again by using explicit
computations with bases for Dieudonné modules to obtain a deformation of (Y, 110) in S, whose
generic fibre corresponds to ¢'. By forming chains of elementary sequences that differ at one
place, and repeatedly applying the proposition, this shows that dim(S,) < >9_; ¢(i), so we
have equality. O
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Corollary 2.52. The Ekedahl-Oort strata form a good stratification (cf. Definition 2.11) of Ag,
in which the boundary of any stratum is the union of all lower-dimensional strata meeting
it. Moreover, we see from Theorem 2.51.(5) that it refines both the a-number and the p-rank
stratifications.

Remark 2.53. Theorem 2.51 mentions the Zariski closure of the Ekedahl-Oort strata. These
closures turn out to be rather complicated to describe in detail.

In particular, it follows from [59, Proposition 11.1] that if ¢/ < ¢ (as in (6)), then S,y C S,
is contained in the Zariski closure of Sy, but in [59, Example 14.3], we see that the converse
does not hold: S,y € S, % ¢’ < .

On the other hand, in [10] Ekedahl and van der Geer construct a flag space over A, that
admits a stratification by elements of the Weyl group Wy, where the inclusion relation between
strata is given precisely by the order <pc (see (7)). While projecting these strata from the flag
space to A, yields the Ekedahl-Oort strata on Ay, in [10, Example 9.5] they give examples that
show that S,y C S, # w' <pc w, where w, w’ are the Weyl group elements associated to ¢, ¢/,
respectively.

Finally, it was shown by Wedhorn (cf. [76, Theorem 5.4] and [62, Theorem 6.2]) that the
closure relation for Ekedahl-Oort strata can be fully understood through so-called shuffles: i.e.
Sy C STO & there exists u € Wy such that U’LU/(’LU()’]U’LUO’]) <pc w, where as above w,w’
are the respective Weyl group elements associated to ¢, ¢, and where W; = { w € W, :
w({1,2,...,9}) = {1,2,...,9} } and wo; € W is defined so that wg (i) = g + 1 — ¢ for all
1<1<g.

Example 2.54. In Examples 2.40, 2.42 and 2.47 we have seen one example of a stratum in
g = 3, namely S o1y (omitting ¢(0) = 0 from the notation), which determines the Weyl group
element w = o3. It has a-number 2 = 3 — ¢(3) and p-rank 0 by Theorem 2.51.(5). All strata
with a-number a = g — 1 are classified in [59, Theorem 8.3].

The other elementary sequences for g = 3 and the corresponding Weyl group elements are as
follows, cf. [71, p. 15]:

% w a-number | p-rank
0,0,0) id 3 0
(0,0,1) o3 2 0
(O, 1, 1) 0903 2 0
(O, 1,2) 0309203 1 0
(1, 1, 1) 010203 2 1
(1,1,2) 03010203 1 1
(1,2,2) | 0903010203 1 2
(1,2,3) | 030203010203 0 3

Remark 2.55. We close this subsection with a historical remark. In 1975, Kraft classified BT}
group schemes over an algebraically closed field k, cf. [37], building on work of Gelfand and
Ponomarev in [13]. This classification was reobtained by Oort and is heavily used in [59] and
subsequent papers about the Ekedahl-Oort stratification.

Moonen generalises the stratification in [42] to Shimura varieties of PEL-type, also using
Weyl groups. Later, in [43] Moonen and Wedhorn generalise even further, replacing canon-
ical filtrations by other combinatorial constructions, called F-zips, which can be defined for
any smooth proper morphism of schemes X — S in characteristic p. Zips were also used by
Viehmann-Wedhorn [72] to study Ekedahl-Oort (and Newton polygon) stratifications for good
reductions of Shimura varieties of PEL-type, and by Zhang [83] for Shimura varieties of Hodge
type. A more detailed treatment of the theory of Shimura varieties lies outside the scope of this
course.

20



3. THE GEOMETRY OF &g

3.1. Introduction and S;.

So far, we have considered the moduli space of g-dimensional principally polarised abelian
varieties, and we have studied stratifications on A, in characteristic p. We have seen in Subsec-
tion 1.3.3 that supersingularity is a phenomenon that only occurs in characteristic p. We define
the supersingular locus

Sg={z=(X,\) € A; : X is supersingular}.

This is a Zariski closed algebraic subset of A, which can be given an induced reduced scheme
structure. Moreover, it can be viewed as the (coarse) moduli space of supersingular abelian
varieties, cf. [40, § 13.12-13.14]. Finally, we see from Remark 2.22, and from the fact that any
two g-dimensional supersingular abelian varieties are k-isogenous (cf. Proposition 1.16), that
every g-dimensional supersingular abelian variety over k has the same Newton polygon, namely
the line segment with unique slope 1/2, and therefore that S, = W, is a Newton stratum in A,.

Example 3.1. When g = 1, the supersingular locus &1 consists of all supersingular elliptic
curves. (Recall that elliptic curves are canonically pricipally polarised.) It is a zero-dimensional
space, i.e. a finite set, whose cardinality is known by the work of Deuring [7], Eichler [8] and
Igusa [28] to be

1 0 ifp=1 (mod 12);
(8) |S1] = VJHJ +41 ifp=2,3,57 (mod 12);
2 ifp=11 (mod 12).

We will revisit the idea of counting supersingular elliptic curves and higher-dimensional abelian
varieties, also up to automorphisms, in Section 4. With | - | we will always mean honest cardi-
nality.

In this section, we still study the geometry of S,. First, in Subsection 3.2, we will look
closely at the case g = 2, before treating general g in Subsection 3.3. Next, in Subsection 3.4
we will put a foliation structure on Sy and in Subsection 3.5 we will see how the a-number and
Ekedahl-Oort stratifications introduced in Subsection 2.4 restrict to S,.

3.2. Supersingular abelian surfaces: Ss.

As a warm-up, in this subsection we treat the case ¢ = 2. That is, we give an explicit construc-
tion of principally polarised supersingular abelian surfaces over an algebraically closed field &
of characteristic p > 0, due to Moret-Bailly [45]. This description will have direct consequences
for the geometry of Sa, as shown by Katsura and Oort [32].

Recall from Definition 1.15 that a superspecial abelian variety Xg of dimension g over k is
isomorphic to a product of g supersingular elliptic curves. Equivalently, by [55, Theorem 2],
it satisfies a(Xp) = dimy Hom(a,, Xo) = ¢g. Furthermore, recall from Proposition 1.16 that all
g-dimensional superspecial abelian varieties are k-isomorphic; we use the latter fact as follows.

Notation 3.2. Fix a supersingular elliptic curve Ey over k that is defined over 2, with
Frobenius endomorphism g, = —p.
Using Notation 3.2, any superspecial abelian surface over k satisfies
Xo ~ Ey x Ey.
A non-superspecial supersingular abelian surface X will have a(X) = 1. By [55, Corollary 7],
(9) X =~ (Eo x Eo)/u(ap)

for some immersion ¢ : o, — ap X ap — Ey X Ey. Since Endg () ~ k, we can write ¢ = (a,b)
for some a,b € k; since the embedding only depends on the ratio a/b, we will view (a,b) as a
point on IP’}C.
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Note that the above describes unpolarised abelian varieties; we will now consider polarised
abelian varieties. In general, a superspecial abelian variety can be equipped with many differ-
ent polarisations. The construction in Example 3.3 shows how polarisations descend from a
superspecial surface F; x Fs to a supersingular surface obtained as its quotient.

Example 3.3. (Moret-Bailly, [45, II, Appendice]) Let E;, E5 be supersingular elliptic curves
with respective points at infinity O;,03. The superspecial abelian surface Xg = E; x Ej
admits a polarisation induced by the ample line bundle £y = Ox,(E; x Oz + O1 x E5)®P. The
kernel K (L) of the polarisation is Xo[p] and hence of order p*, and it comes equipped with an
alternating form e : K (Lg) x K(Lo) = Gyp.

Via an explicit calculation on the Dieudonné module of K(Ly) one can find a subgroup H
satisfying H ~ a) and HY/H ~ ap X oy, Where H*' is orthogonal to H with respect to e%o.
Consider then the quotient surface A = Xy/H. By [45, Théoreme 4.1 and Proposition 4.2],
the line bundle £y descends to a line bundle £ on A which induces a polarisation with kernel
K(L) ~ oy x ap. In particular, it follows that a(A4) = 2, so A is also superspecial. Moreover,
we may assume that £ is symmetric, i.e. [-1]% (L) ~ L.

We will now see how the polarised superspecial surface A constructed above is used to produce
families of polarised supersingular abelian surfaces over ]P’,lc. This may be viewed as a polarised
analogue of Equation (9). The following holds in characteristic p > 2; for similar results when
p =2, see [44].

For ease of notation, let S = P} with homogeneous coordinate (X,Y). Also let
K = ap x oy = Speck[a]/(a”) x Speck[5]/(5");
Ks=Kx 8= Spec@s[a,ﬁ]/(ap,ﬁp).

Consider the subgroup scheme N of Kg defined by Ya — X = 0 (denoted by H in [45]);
since N has rank p, it is locally isomorphic to ay, x S. Next, form the quotient X = Ag/N of
Ag = A x S. These objects fit into the following diagram, where the top row is exact and the
triangle and square commute.

1 N

As u X
AA \S/
\ (k)/

Spec

The Moret-Bailly construction.

There is a unique line bundle M on X such that 7*M ~ Lg (or equivalently, 7*M ~ prj(L)),
which by construction induces a principal polarisation on X'. The cokernel of ¢*¢.(M) — M is
an effective relative (“theta”) divisor D — S.

The fibration, also denoted by ¢ : D — S, is nontrivial and defines a surface that is shown to
be non-singular and of general type. For s € S(k), the fibre D; is either a smooth genus 2 curve
on the surface X5 or two elliptic curves meeting transversally; by [45, Proposition 2.5.(i)], the
number of singular fibres is 5p—5. In both cases the fibre induces a principal polarisation on Xj.
Finally, note that the commuting triangle in the diagram shows that each X is supersingular.

In conclusion, g : (X, D) — S is a (“Moret-Bailly”) family of principally polarised supersin-
gular abelian surfaces over k. Such a family exists for any ample line bundle £ (or polarisation)
on A with kernel isomorphic to ay, X .
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Remark 3.4. In [61], Pieper shows that the whole family is determined by two of its singular
fibres. He moreover describes the family explicitly by finding the defining equations for the
hyperelliptic curves Cy such that the irreducible fibres are X ~ Jac(Cs) as principally polarised
abelian varieties.

The above has far-reaching implications for the geometry of Ss. Previously, it was known
that every irreducible component of S is a rational curve, cf. [54, proof of Corollary 4.7].
Katsura-Oort [32] build on Moret-Bailly’s results and prove that moreover any irreducible com-
ponent of Sy is the image of a Moret-Bailly family. From this, it follows that the number of
irreducible components of Sy is equal to the number of isomorphism classes of Moret-Bailly
families (X, D) — S, cf. [32, Theorem 2.7]. This number is determined in [32, Theorem 5.7],
invoking [27, Theorem 2.15], to be the class number ho(1,p); we will introduce these in Sub-
section 4.2.2 and define them formally in Definition 4.12. Knowing the exact values of some of
these class numbers, this implies the following result:

Theorem 3.5. (cf. [32, Theorem 5.8]) Sy is irreducible if and only if p < 11.

Remark 3.6. In the same article, the authors also describe the automorphisms of a Moret-
Bailly family preserving the relative polarisation D, which turn out to be determined by their
actions on the 5p — 5 singular fibres of the family, cf. [32, Theorem 4.1]. In addition, the
normalisation of each irreducible component of Ss is shown to be isomorphic to ]P’,lC /G for some
group G C Aut(IP’}C) which is itself the quotient of the group of automorphisms acting on the
singular fibres of the corresponding family by the —1-map; the final chapters of the article are
devoted to studying the groups G that occur (depending on p) and their ramification groups.

3.3. Polarised flag type quotients: S, for general g.

In this subsection, we will give a geometric description of g-dimensional supersingular abelian
varieties for general g > 1 in terms of polarised flag type quotients (PFTQs), a construction
due to Li-Oort [40]. We will see how this reduces to Moret-Bailly families when g = 2 and give
an equally explicit description of the case g = 3. Furthermore, by studying the moduli space P,
of g-dimensional PFTQs we will determine the dimension and the number of components of S,
in Theorems 3.15 and 3.16, respectively.

The general idea behind (polarised) flag type quotients is that any supersingular abelian va-
riety X can be connected to a superspecial abelian variety through a purely inseparable isogeny.
The kernel of this isogeny is formed out of successive extensions of a; group schemes; we can
use this information to break up the isogeny into a chain of isogenies with prescribed kernel
ranks. If X is principally polarised, we may also equip the superspecial abelian variety and
all quotient abelian varieties appearing in this chain with suitable — generally not principal! —
polarisations that are compatible with the isogenies.

Before giving the formal definition of flag type quotients, we recall some notions and introduce
some notation. As in Notation 3.2, let Fy/ 2 be the supersingular elliptic curve with Frobenius
endomorphism 7g, = —p. And as in Definition 1.6, let S be a scheme of characteristic p, let
X — S be an abelian scheme, and let

Fx/s:X = X® resp. Vysg: X® - X

be the relative Frobenius resp. Verschiebung morphism on X, where we write X(® := X x S, FgS.
If there is no risk of confusion, we will drop the subscripts on the relative Frobenius and
Verschiebung morphisms. The kernel ker(f) of a morphism f : X — Y of abelian varieties is
also denoted X|[f].

Definition 3.7. (cf. [40, § 2.4]) An a-group G of a-rank r is a finite flat commutative group
scheme over an [F-scheme S on which the relative Frobenius and Verschiebung satisfy Fiz,5 = 0
and Vg5 = 0; it is locally isomorphic to aj, x S.

23



Definition 3.8. (cf. [40, § 3.2, 3.6]) Let the notation be as above and let g > 1.

(1) A g-dimensional flag type quotient (FTQ) is a chain of abelian schemes, each over an

[F,2-scheme S,

(Yo, pe) : Yy1 225 Y, 5 27 25 Y,
such that:
(i) Yyo1 = Ef X Spec(F, ) S, with Fy chosen as in Notation 3.2;
(ii) ker(p;) is an a-group of a-rank i for all 1 <i < g — 1.
In particular, each Y; is supersingular.

(2) Let p be a polarisation on Ef such that ker(n) = E§[F] if g is even and ker(u) = 0 if
g is odd, i.e. such that ker(pl9=D/2y) = EJ[F9~1]. For any such y, a g-dimensional
polarised flag type quotient (PFT(Q) with respect to p is a chain of polarised abelian
schemes over an [F2-scheme S

(Yo, Aoy pa) + (Ygo1, Ag—1) 225 (Yyoo, Ag—2) -+ 22 (Y1, 01) 25 (Yo, M),

such that:

(i7) (Yg—h )‘9—1) - (Egﬂﬂ(gil)/%:u) XSpec(Fpg) S;

(ii) ker(p;) is an a-group of a-rank i for all 1 <1i < g —1;

(iii) ker(\;) CY;[Vio Fid]forall 0 <i<g—1and0<j < |%], where F = Fy, /s and
V =VWys.

In particular, \g is a principal polarisation on Yj.

(3) An isomorphism of g-dimensional PFTQs is a chain of isomorphisms (f;)o<i<g—1 of
polarised abelian varieties, compatible with the isogenies p;, such that S;_1 = idy,_,.
Isomorphism is denoted by ~.

(4) A g-dimensional (polarised) flag type quotient (Y, pe) is said to be rigid if

ker(Y, 1 — Y;) = ker(Y,_1 — Yo) N Y, 4[F9 7], for1<i<g-1.
We will say more about the rigidity condition in Remark 3.14.

Remark 3.9. Note that to introduce polarisations on flag type quotients in the definition above,
we worked with an F,2-scheme S instead of an F)-scheme. This is because all endomorphisms
of Ep are defined over Fyz, ie., Endp , (Ey) ~ Endg(Ep X Spec(F 2) Spec(k)), with Ep as in
Notation 3.2; so in particular every polarisation p on Ef is defined over F,2, and to be able to
choose i such that ker(u) = Ej[F] when g is even, we must work over F,2. When dealing with
moduli spaces, we will often choose S =k = F,.

Example 3.10. We return to the case g = 2. That is, we consider Eg and a polarisation u
such that ker(u) = EZ[F] = a; x a;. Then a polarised flag type quotient looks like

(10) (B, 1) = (Yo, o) = (Eg /e, Ao)

where \g is a principal polarisation. When Yj is not superspecial, there exists a unique p
on Eg and a unique isogeny to Yy compatible with the polarisations. Note that rigidity (4) is
automatically satisfied, since oy, ~ ker(E2? — Yp) and E3[F] = o X ayp.

We see that the PFTQ in this case is determined by an embedding oy, — E3; recall from
Subsection 3.2 that such an embedding is determined by a point on IP,{;. This point is also called
a Moret-Bailly parameter. Indeed, comparing Equations (10) and (9) and recalling how Moret-
Bailly families provide polarised analogues of (9), we conclude that a Moret-Bailly family and
a 2-dimensional PFTQ carry the same information.

Definition 3.11. Let P, (resp. P, ,) denote the moduli space over F,. of g-dimensional

(resp. rigid) polarised flag type quotients with respect to the polarisation p. That is, Py,

(resp. 73;7 u) is the projective (resp. quasi-projective) scheme over [, representing the functor
F,2—schemes — Set

p
S" +— { (resp. rigid) g-dim. PFTQs over S’ w.r.t. u}/ ~ .
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Indeed, 73;’ ., 1s an open subscheme of P, ,. It is geometrically irreducible (in fact, non-singular
and geometrically integral) of dimension L%J.

Example 3.12. For g = 2 it follows from Example 3.10 that Ps ,, ~ IP’%F 5
p

Example 3.13. (cf. [26, § 3.3.2]) Suppose now that g = 3. Then P3, is a two-dimensional
geometrically irreducible scheme over F,. by [40, § 9.4]. Its structure is independent of the
choice of p by [40, § 3.10]. The map

T ((YQ,)\Q) — (Yly)\l) — (YQ,AO» — ((YQ,/\Q) — (Yly)\l))
induces a morphism 7 : P3 ,, — P? whose image is isomorphic to the Fermat curve
C: XPH 4 xPt g xP =

As a fibre space over C, P3, is isomorphic to Pc(O(—1) @ O(1)); see [40, § 9.3-9.4] and [31,
Proposition 3.5].

According to [40, § 9.4] (cf. [31, Definition 3.14]), there is a section s : C' — T' C P3, of 7,
and 'Pé# = 733,# —T.

We can derive several key facts about the geometry &, from that of Ps/m’ cf. [40, § 4]. The
connection between these moduli spaces is the following: projection to the last member of a

PFTQ gives an F,-morphism

pry : P;w — Sy,
(Yov)\hpt) = (va)\O)

Moreover, for every supersingular principally polarised (Yp, Ag) there exists at least one, and at
most finitely many PFTQs, each with respect to a suitable polarisation p, whose last member
is geometrically isomorphic to (Yp, Ag). That is, the Fp-morphism

(11) pry HP;# — Sy,
I

where the disjoint union runs over all suitable polarisations p of Ej, is surjective and generically
finite. The generic fibre over any irreducible component of S; has a-number 1 and is contained
in the image of P, for a unique p.

Remark 3.14. The projection pr, exists also for P, ,, but in this case it could blow down
a component of Py, to a proper closed subset of S;. Only after restriction to Pflw we are
guaranteed to obtain a surjective and generically finite morphism. This explains why we had
to introduce the notion of rigidity. This condition is generally harmless, in the sense that for
a general supersingular principally polarised abelian variety, a PFTQ of which it is the last
member is unique and automatically rigid.

It follows that the dimension and the number of irreducible components of S, are determined
by those of Py ,. For the dimension, we see that the closure of each pry(Py ,) yields an irreducible

component of Sy, which therefore has dimension L%J. Thus:

2

Theorem 3.15. (cf. [40, Theorem 4.9.(1)]) For any g > 1, we have dim(S,) = | % ].

For the number of irreducible components, one shows that a generic supersingular abelian
variety has a-number 1, and that in this case there is a unique polarisation p and a PFTQ with
respect to g of which it is the last member [51, Theorem 2.2]. Hence, the number of irreducible
components of S; equals the number of polarisations p on Ef satisfying ker(pllo—1/2 ) =
E§[F971]. We can deduce (from Proposition 4.21 for instance) that this number is again a class
number (as in Definition 4.12). That is:
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Theorem 3.16. (cf. [40, Theorem 4.9.(ii)]) The number of irreducible components of Sy is

he(p,1) if g is odd;
hg(1,p) if g is even.

One may ask when the number of components is 1, i.e. when S, is geometrically irreducible.
The following result gives a complete answer.

Theorem 3.17. The superingular locus Sy is geometrically irreducible if and only if one of the
following three cases holds:
(i) g=1 and p € {2,3,5,7,13};
(i) g =2 and p € {2,3,5,7,11};
(iii) (9,p) = (3,2) or (9,p) = (4,2).

Proof. This is [26, Theorem 5.20.(i)], which itself follows from the class number one result [26,
Theorem 2.10]. The first case is classical, and can be found e.g. in the list in [73, p. 155], though
loc. cit. also provides an alternative proof. U

Example 3.18. Suppose again that ¢ = 3 and use the notation of Example 3.13. We saw that
dim(P; ,) = 2 in Example 3.13 and Theorem 3.15 confirms that dim(S,;) = 2; the projection
map pry contracts the section 7' to a point. The number of components of S3 is h3(p,1) by
Theorem 3.16 - this was proven separately in [33, Theorem 6.7]. This number is 1 for p = 2 and
> 1 for all p > 3.

We may define the a-number of a point of Pz, by putting a(y) := a(prg(y)) for y € Ps (k).
Using this, we can refine our structural results on Ps,, as follows. Writing a point y € Ps3 (k)
as (t,u), where t = 7(y) and u € 7~ 1(t) =: P}(k), by [40, § 9.3-9.4] we see:

(i) If y € T then a(y) = 3.
(ii) If t € C(F,2), then a(y) > 2. Moreover, a(y) = 3 if and only if u € P} (F,2).

(iii) We have a(y) = 1 if and only if y ¢ T and t ¢ C(F2).

S

C(52)

x
K

A4
7%

X
(@)

A schematic picture of Pz, as a P!'-bundle over the Fermat curve C.

Remark 3.19. Flag type quotients first appeared in 1978 in [51]. More precisely, [51, Theo-
rem 2.2.(1)] describes any supersingular abelian variety as the quotient of a superspecial abelian
variety by a “flag type subgroup scheme” K = Ky O K; 2 ... O K,_1 = 0 whose quotients
K;_1/K,; are a-groups of a-rank i for all 1 < i < g — 1. Further, [51, Theorem 3.3] classifies
polarised flag type quotients for abelian varieties with a-number 1 (above which the flag type
quotient is unique and of maximal length) by quasi-polarised flag varieties of supersingular
Dieudonné modules.
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A little over a decade later, a slightly different definition of (polarised) flag type quotients
was given in [33, Definitions 4.1-4.2], with any a-number. They are used to construct families of
principally polarised supersingular abelian threefolds, and eventually to prove that the number
of irreducible components of S3 is hg(p, 1), cf. [33, Theorem 6.7].

At around the same time, [39] also considers flag type quotients (here called “flag type level
structures”); these are equipped with an index, which is an increasing sequence of g integers
between 0 and g prescribing the a-ranks of the kernels of the isogenies p; as a-groups. This
extra structure yields a fine moduli space, and we will see it is used in the proof of Theorem 3.29.
This article is where the notion of rigidity is first mentioned (as corresponding to the smallest
possible index).

3.4. Foliation of §; by central leaves and isogeny leaves.

In this subsection, we will put a geometric, so-called foliation structure on S, using the notions
of central leaves and isogeny leaves. These are introduced in [60] and defined more generally as
closed subsets of Newton strata I/Vé0 , so considering them for S, = W2 amounts to considering
a special case of the general theory. We will study some geometric properties of the leaves and
the “almost-product” structure they form.

We first give the definition of a central leaf, which you should view as a geometric isomorphism
class of p-divisible groups.

Definition 3.20. Let g > 1. For a point x = (X, Ao) € Ay(k), define the central leaf passing
through z to be

Cz) = {(X;A) € Ag(k) : (X, A)[p™] = (Xo, Ao) [p™]}-

Suppose that (Xg, Ag) has Newton polygon £. We collect some first facts about the dimensions
of central leaves.

Proposition 3.21. (cf. [60, Theorem 3.3, Theorem 3.13])
(1) With notation as in Definition 3.20, the central leaf passing through x is a closed subset

C(x) C Wg.

It is also a locally closed smooth subscheme of Ay which is pure of dimension c¢ depending
only on the Newton polygon §; that is, all irreducible components of C(z) have the same
dimension.

(2) An isogeny between principally polarized abelian varieties x = (Xo, o) — y = (Yo, po)
induces a finite-to-finite isogeny correspondence between the central leaves through x
andy, i.e. ak-schemeT and finite surjections T — C(x), T — C(y), so that dim(C(x)) =
dim(C(y)).

In other words, since the Newton polygon & is an isogeny invariant, we see that all
central leaves in the same Newton polygon stratum have the same dimension cg.

Thus, the dimension of a central leaf passing through z = (X, \o) depends only on the
Newton polygon & of (X, A\g) — and conversely, every Newton polygon stratum W£0 is a disjoint
union of central leaves. We have the following dichotomy, cf. [3, Proposition 1], see also [26,
Proposition 5.1

Proposition 3.22. With notation as above, we have dim(C(x)) = 0 if and only if (Xo, Ao)
is supersingular, i.e. if and only if £ = o. In other words, the central leaf passing through a
non-supersingular principally polarised abelian variety is positive-dimensional.

When considering the zero-dimensional central leaves through supersingular points, one may
ask when they have the smallest possible cardinality 1; then the supersingular abelian variety is
uniquely determined by its p-divisible group. We answered this in the following result, where p
denotes the characteristic of k = E,.

27



Theorem 3.23. (cf. [26, Theorem 5.20.(ii)]) Let C(x) be the central leaf in Ay passing through
a point x = (Xo,\o) € Sy(k). Then C(x) consists of one element if and only if one of the
following three cases holds:
(i) g=1 and p € {2,3,5,7,13};
(i) g =2 and p = 2,3;
(iii) g =3, p=2 and a(z) > 2.

Theorem 3.23 immediately implies that a central leaf passing through a supersingular point
x € Sy(k) is irreducible if and only if one of the conditions (i)-(iii) is satisfied. By contrast,
Chai-Oort prove the following:

Proposition 3.24. (cf. [5, Theorem 4.1)) The central leaf C(x) passing through any non-super-
singular point x € Ay(k) is irreducible.

Recall the moduli space Ay 1, of principally polarised abelian varieties with level n structure,
defined before Theorem 2.4. Below, we will consider its characteristic p fibre Ay 1, ® F),, which
we will again denote by Ay 1, for ease of notation, as for Ay, cf. Notation 2.10. Furthermore,
assume that n > 3 is coprime to p. The reason that Ay, appears is that it is a fine moduli
space, while A, is a coarse one; so in particular Ay 1, carries a universal family, say (X, Ax).

Definition 3.25. (cf. [60, §4.1-4.3]) Let ¢ > 1. An isogeny leaf of A, is a maximal closed
integral subscheme I of A, such that there exist: a principally polarised abelian variety (M, )
over k, a scheme 7' of finite type over k, a surjective morphism T' — I,,, where I, := I X 4, Ag1n
is the base change of I to Ay 1, and an isogeny ¢ : (M, 1) — (X, A\x) ®4,,, T, such that every
geometric fibre of ¢ is formed out of successive extensions of «y, group schemes.

For each z € Ay(k), there is a closed reduced subscheme I(z) of A, whose irreducible
components are the isogeny leaves containing x. In other other words, there are only finitely
many isogeny leaves containing x and I(z) is their union, with the induced reduced scheme
structure.

The scheme Z(x) is a proper k-scheme [60, Proposition 4.11] and for z and y in the same
central leaf, the formal completions of Z(x) and Z(y) are isomorphic [60, Proposition 4.12].

You should think of an isogeny leaf through = = (Xo, Ag) as consisting of all abelian varieties
(Yo, o) € Agy(k) that are isogenous to (Xo, Ag) via an iterated a,-isogeny (i.e. whose kernel is
a repeated ay-extension). In particular, such isogenies have p-power degree and can change the
p-divisible group. By contrast, prime-to-p isogenies leave the p-divisible group unchanged. So
while the former move you along an isogeny leaf, the latter move you within a central leaf.

Applying degree-¢ isogenies can be viewed as an action on Ag(k), the so-called Hecke-¢-
action, which restricts to an action on individual central leaves by the previous observation.
(Similarly, we can define Hecke-ay-actions on isogeny leaves using iterated cy-isogenies.) In
fact, Ekedahl-Oort strata are also preserved under Hecke-f-actions.

The orbits in A, of this action are called Hecke-(¢-)orbits. The Hecke Orbit Conjecture
(cf. [60, Conjectures 6.1-6.2]) asserts that the Hecke-f-orbit in A, through a moduli point z
is Zariski dense in its central leaf C(z). It was proven by Chai in [3, Theorem 2] for ordinary
abelian varieties — showing in fact that the orbit is dense in A4, — and in [4] for any principally
polarised abelian variety.

The following result explains the geometric interplay between central and isogeny leaves.

Proposition 3.26. (cf. [60, Theorem 5.3, Corollary 5.7]) Let V C Wgo C Ay be any irreducible
component of a Newton stratum. Then there exists a finite surjective k-morphism

d:DxJ—V,

where D, J are integral k-schemes of finite type, such that
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(1) For any d € D(k), the image ®({d} x J) is an isogeny leaf in V and any isogeny leaf
'V can be found this way;
(2) For any j € J(k), the image ®(D x {j}) is a central leaf in V and any central leaf in V
can be found this way.
Hence, every central leaf in V intersects every isogeny leaf in V non-trivially, creating an
“almost-product structure”.

We derive the following result on the dimensions of the isogeny leaves.

Proposition 3.27. All isogeny leaves in Wg have the same dimension i¢, which only depends
on the Newton polygon &.

Proof. For a fixed Newton polygon &, the dimension of each irreducible component W of Wg is
the same, write d¢ = sdim(§), cf. Definition 2.30. In Proposition 3.21.(2) we also saw that each
central leaf in Wg(k) has the same dimension c¢. The almost-product structure then implies

that the dimension of any isogeny leaf in V' must be i¢ = d¢ — c¢¢ and hence only depends
on £. O

Remark 3.28. In the notation of the previous proposition, it follows from Proposition 3.22,
together with Theorem 3.15 and the paragraph preceding it, that in the supersingular case

2
g = |
zg—dg—{zlJ.

3.5. Stratifications restricted to S,.

In Section 2 we introduced the p-rank, Newton polygon, a-number, and Ekedahl-Oort strat-
ifications on 4,. Recall that the supersingular locus S, is itself a Newton stratum, which is
contained in the p-rank zero stratum. In this subsection, we will restrict the a-number and
Ekedahl-Oort stratifications to S5 and study their properties.

3.5.1. The a-number stratification on S,.
The a-number strata on S, were first defined in [40, § 9.9-9.11] and are comprehensively dealt
with by Harashita in [14]. We define

Sgla>n):={z=(X,\) €S;:a(X)>n};
Sg(n) :=={x = (X,\) € Sy : a(X) =n}.
The former is a closed subscheme of S, the latter is locally closed.

The projection morphism of Equation (11) induces a surjective and generically finite k-
morphism

(12) pro s [ [Py u(a) = Syla),

where the disjoint union again runs over all suitable polarisations p of EJ and where 73;7 u(a) is
the moduli space of rigid PFTQs whose last member (Yp, A\g) has a-number a.

Thus, the results in [14] are obtained by studying P, ,(a). As in [40] for the results in
Subsection 3.3, (moduli spaces of ) PFTQs of abelian varieties in turn are studied by considering
the corresponding (moduli spaces of) chains — also called PFTQs — of Dieudonné modules.

Theorem 3.29. (cf. [14, Theorem 3.15, Theorem 4.17])

1) The Zariski closure S5(a) of Sy(a) is connected unless a = g and satisfies
g g
Sg(a) = Uar>aSg(a’).
(2) Every irreducible component of Sy(a) has the same dimension

g?—a’+1
1 .
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(3) The number of irreducible components of Sy(a) is

(9-2)/2 hy(1,p if g is even, a is odd,
((g a—1)/2
(Eg i)%) p.1) if g is odd, a is odd,
(Eg/i;/l? 1)+ ((gg{;?;l)hg(l’p) if g is even, a is even;
19/2-1 ~1)/2-1 e -
((g . /1 /2) (1,p) + ((gga—)l/)/2—1)h9(p’ 1)  if g is odd, a is even.

Sketch of the proof. By introducing new (“good”) bases © for the Dieudonné module of the first
and last members of a PFTQ (respectively (Yy_1,Ag—1) and (Y, Ag)), we get an open covering
e U © of the moduli space Ny of rigid PFTQs of Dieudonné modules, by for each © grouping
together in U® those PFTQs whose last member is written in basis ©. The moduli space Ny is
isomorphic to 77;  up to inseparable isomorphism. Let U 9( ) denote the subscheme of Ny of
PFTQs of Dieudonné modules with a-number a.

For any choice ©, the action of Frobenius and Verschiebung on the Dieudonné module of
(Yo, Ao) can be nicely expressed in terms of the chosen basis, and the a-number of Y; can be
read off from the rank of the matrix of the coefficients. All such matrices with the same rank
therefore form a period domain V,,, such that there is an étale surjective map U@(a) — Vyg.a-

The irreducible components of the V, , are determined by completely explicit computations,
that immediately also determine the connected Zariski closure Vg , = Up>Vy 0/, dimension

92%1‘%1} and number of irreducible components of each V,,. This shows parts (1) and (2)

of the theorem, using the connectedness result [59, Theorem 1.1].

For part (3), the number of irreducible components of Sg(a) is shown to be > o, [Aql,
where I, , denotes the set of irreducible components of the moduli space Dy(a) of supersingular
Dieudonné modules with a-number a, and where |A,| denotes the number of suitable polarisa-
tions on EJ with kernel prescribed by x. In other words, for each component of Dy(a) there
are |A,| components of Sy(a). Finally, |, 4| is explicitly and combinatorially determined using
results from [39] and shown to be equal to the number of components of V,,, while |A,| is

proved to be a class number hy(p, 1) or hy(1,p) (cf. Definition 4.12); multiplying yields (3). O

3.5.2. The Ekedahl-Oort stratification on S.
In general, the intersections of Ekedahl-Oort strata and Newton strata in A, is not well under-
stood. Restricting to Sy however, we can say a few things.

First of all, there is a combinatorial criterion for when an Ekedahl-Oort stratum is supersin-
gular, i.e. is fully contained in S:

Proposition 3.30. (cf. [5, Theorem 4.8, Step 2|), [59, Theorem 8.3.(II)] Let S, be the Ekedahl-
Oort stratum in Ag associated with an elementary sequence p. Then S, C Sy if and only if

o(r) =0 forr = L%J

Sketch of the proof. Suppose first that ¢(r) = 0 and let Ny € Ny C ... C Nyy = X|[p] be a
corresponding final filtration. The condition ¢(r) = 0 means that F' and V' are both zero on
Ngr /Ny, which in turn means that X/N, is superspecial. Since X/N, ~ X, we conclude that
X is supersingular, hence S, C S,.

The other implication is shown by constructing a counterexample, namely by exhibiting
a Newton polygon and corresponding “minimal” p-divisible group such that the associated
elementary sequence ¢’ satisfies 0 = ¢'(1) = ¢/(2) = ... = ¢/(r — 1) but ¢'(r) = 1, and
Sy € 8y. O

Recall from the discussion following Definition 2.48 that Ekedahl-Oort strata are also classified
by elements of the Weyl group W, of Spy ; in fact, the set of elementary sequences of length g
is in bijection with the subset

IWg ={weW,: w_l(l) <... < w_l(g)} cWw,.
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Next, for any 0 < ¢ < g, define
"Wl = {we Wy :w(i)=iforalli<g—c}
and
Twio =twld —Iwlel for 0 <e<g, "W =id.

With this notation, we can equivalently reformulate Proposition 3.30 as follows:

Proposition 3.31. (cf. [16, Lemma 2.5.4, Remark 2.5.7, Proposition 3.1.5]) Let w be the Weyl

group element associated with an elementary sequence . Then S, C Sy if and only if w € IWg(C)
fore < 5]

Remark 3.32. Also in [16], Harashita gives descriptions of certain unions of supersingular
Ekedahl-Oort strata in terms of Deligne-Lusztig varieties. This description is then used to
confirm that supersingular Ekedahl-Oort strata are reducible (whereas the non-supersingular
strata are irreducible, by [10, Theorem 11.5]). It was refined by Hoeve [22], who described single
supersingular Ekedahl-Oort strata in terms of so-called fine Deligne-Lusztig varieties.

We have seen two equivalent ways of determining which Ekedahl-Oort strata are fully con-
tained in Sgy; recall also that S, is a Newton stratum.

In [15], Harashita extends the above to other Newton strata, by giving a necessary and
sufficient condition for an Ekedahl-Oort stratum S, to be fully contained in the Newton locus
Zy consisting of moduli points in A, for which the first slope (when the slopes are written
in increasing order) of their associated Newton polygon is greater than or equal to a rational
number A. In Harashita’s notation, we have §; = Z 1. The condition is derived from the main

result [15, Theorem 4.1], which combinatorially determines the first Newton slope A, associated
with any generic moduli point in S, and is as follows:

Proposition 3.33. (cf. [15, Corollary 4.2]) With notation as above, we have S, C Zy if and
only if Ay > .

In addition to supersingular Ekedahl-Oort strata, there might also be strata that intersect
S, non-trivially, without being fully contained in it. Below, we give a few low-dimensional
examples.

Example 3.34. Let ¢ = 2. The Ekedahl-Oort strata of p-rank zero are those corresponding
to the elementary sequences (0,0) and (0,1) by Theorem 2.51.(6). Since L%j =|3] =1and
both these sequences ¢ satisfy ¢(1) = 0, we see that both Ekedahl-Oort strata of p-rank zero are
supersingular, as expected: for g = 2, the notions of p-rank zero and supersingularity coincide.

Example 3.35. Let g = 3. The Ekedahl-Oort strata of p-rank zero are precisely the S, for
¢ € {(0,0,0),(0,0,1),(0,1,1),(0,1,2)}, by Theorem 2.51.(6). These strata have respective a-
numbers 3, 2, 2 and 1, also by Theorem 2.51.(5). In particular, we conclude that S(0,1,2) N S3 is
the a-number 1 locus of S, so it is Zariski dense in S3 by [40, Theorem 4.9(iii)].

Next, we have L%J = 3] = 2 so Proposition 3.30 implies that S, is supersingular for
v =(0,0,0),(0,0,1).

It remains to consider the stratum S 1 ;). However, for ¢ = (0,1,1) we compute that A\, = %,
cf. [15, Definition 3.1], and using Proposition 3.33 we see that this stratum is fully contained
in another Newton polygon stratum, corresponding to the slope sequence (%, %, %, %, %, %), and
therefore does not intersect Ss.

We conclude that

S3 = S(0.00) US(0.01) U (S(0,1,2) N Ss)
describes the Ekedahl-Oort stratification of S3. In particular, we see that the other a-number
strata are given by S3(2) = S(g,0,1) and S3(3) = S,0,0)- See [17, Theorem 5.1] for the same

result with a different proof, using Weyl group elements.
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Example 3.36. (cf. [26, Proposition 5.13]) Let g = 4.

The Ekedahl-Oort strata of p-rank zero are precisely the S, for those ¢ appearing in Fig-
ure 3, according to Theorem 2.51.(6). Their a-numbers are as indicated by their colours, by
Theorem 2.51.(5).

(0,1,2,3)ar
/

(07 17 2> 2)&:2

(0,1,1,2)0-

/N

/
(0,1,1,1)0= (0,0,1,2)4=2
\

\

(07 07 17 1)(1:3

(07 07 07 1)a:3

(07 07 07 0)(1:4

Ekedahl-Oort strata of p-rank zero in dimension g = 4. The a-numbers of the
strata are included as indices. Strata are connected by a line if the lower one is
contained in the Zariski closure of the upper one.

By Proposition 3.30, the strata fully contained in Sy are precisely the S, for ¢ = (0,0,0,0),
(0,0,0,1), (0,0,1,1), and (0,0,1,2).

The other Newton strata of p-rank zero correspond to the slope sequences (%, %, 351313 5 g)
and (i, %, %, %, %, %, %, %) and are denoted respectively by W1 and W1

We read off from Figure 3 that S 1 23) N Sy is the a- number 1 locus of S84, so it is Zariski
dense by [40, Theorem 4.9(iii)].

By [15, Corollary 4.2 and Lemma 5.12] we see that S 129) C Wi by minimality of the
associated p-divisible group. Similarly, from [15, Corollary 4.2 and Proposition 7.1], we obtain
that S1,1,1) C W%, again by minimality.

Finally, we read off from Figure 3 that

S(0,1,1,2) = (5(0,1,1,2) N W%) U (S0,1,1,2) NSa) -

Now Theorem 3.29.(3) implies that S4(2) has hys(1,p) + ha(p,1) many irreducible components
of two types, of which those of the type corresponding to So,1,2) yield h4(1,p) many; see
also [40, § 9.9]. Hence, the intersection S 1,12) N Sy must yield the other hy(p,1) components
and thus be non-empty.

We conclude that

Ss = (S(0,1,2,3) NS4) US(0,0,0,0) U S(0,0,0,1)

U S0,0,1,1) U S0,0,1,2) U (3(0,1,1,2) N 34) )
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where each intersection is non-empty and S 1,2,.3) NS4 is dense. In particular, we read off the
a-number strata as

105

54(4) = ©(0,0,0,0)5
S4(3) = S(0,0,0,1) U S(0,0,1,1);
S4(2) = S(0,0,1,2) U (S0,1,1,2) N Sa) -

4. THE ARITHMETIC OF S,

4.1. Introduction.

In the previous section, we saw different geometric aspects of S, as the moduli space of super-
singular abelian varieties. In this section, we will use these notions to prove arithmetic results
about supersingular abelian varieties. In particular, we will be looking at the key question: How
many supersingular abelian varieties are there?

This question is not very precisely stated. First of all, we will always fix a dimension g and
a characteristic p (> 0) of the field k = F,. Recall also that the abelian varieties in S, are
principally polarised by definition.

It turns out to be useful to first ask how many superspecial abelian varieties there are. This
is because there is a direct connection between superspecial abelian varieties and equivalence
classes of lattices in quaternion Hermitian spaces; hence, the final number is a class number.
(This connection is maybe not completely surprising, if you remember from Example 1.3 that
the endomorphism algebra of a supersingular elliptic curve over k is a quaternion algebral)

In Subsection 4.2 we will therefore first spend some time on quaternion algebras and quater-
nion Hermitian spaces and state what is known about their class numbers. It turns out that
these are very hard to compute in general. A more accessible quantity is the mass, which you
should view as a weighted count, namely, weighted by automorphisms: the mass of a finite
set S, whose elements have a notion of automorphisms, is

1
Mass(S) := Z TAut(s)]"
sesS
Masses of genera of lattices in quaternion Hermitian spaces have been determined in full gen-
erality; see Proposition 4.17.

In Subsection 4.3 we explain the connection between these lattices and superspecial abelian
varieties; the latter may also be non-principally polarised. We let A4, denote the set of
isomorphism classes of superspecial g-dimensional abelian varieties with degree-p?¢ polarisations
(so 0 < ¢ < |g/2]). Using the connection with lattices, we determine mass of any Ay pe in
Theorem 4.23.

Finally, in Subsection 4.4 we explain how to use superspecial masses to compute the mass
of supersingular central leaves, through so-called minimal isogenies. Once you know the mass
of a central leaf, knowing the cardinality of the central leaf is equivalent to understanding the
automorphism groups of the abelian varieties; and these groups are key arithmetic invariants
in many applications.

4.2. Class numbers for quaternion algebras.

We now take a break from abelian varieties for a while to consider quaternion algebras and
quaternion Hermitian spaces. We introduce the class number in this setting, as a count of
equivalence classes, and the mass, which is a weighted count of the classes. Then we will briefly
discuss what is known about these quantities, starting with the work of Eichler from 1938. A
comprehensive reference for quaternion algebras is [74].

4.2.1. Quaternion algebras.
Let B be a quaternion algebra over Q. Denote the natural involution on B by x +— T; it is the
unique standard (i.e. zz € Q for all z in B) involution of the first kind, cf. [74, § 3.2].
An order in B is a Z-lattice (of maximal rank) that is also a subring. Let O be a maximal
order of B, i.e. maximal with respect to containment. For example, the matrix ring Mo (Z)
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is a maximal order in Ms(Q); it is in fact the unique maximal order up to conjugacy, cf. [74,
Corollary 10.5.5].

For any prime p we may consider the completion B, = B®qgQ, of B at p. This is either split,
i.e. isomorphic to the matrix algebra M>(Q,), or ramified, i.e. isomorphic the unique division
algebra over Q,. We also consider the place oo at infinity, i.e. Bo, = B ®g R: then B ramifies
at 0o if By is isomorphic to the Hamilton quaternions and split if it is isomorphic to Ma(R).

A quaternion algebra B over QQ ramifies only at finitely many places, and the number of
ramified places is even by class field theory. Moreover, a quaternion algebra over Q, or indeed
over any global field, is determined up to isomorphism by its finite set of ramified places. The
finite square-free product of finite ramified places is called the discriminant of B. Further, B
is called indefinite if it is split at oo, and definite if it is ramified at oc.

Notation 4.1. For any prime number p, let ) be the quaternion algebra over Q that is
ramified exactly at p and oco. It has discriminant p.

Example 4.2. Explicit representations of ), » for any p are given for example in [74, Exam-
ple 14.2.13]. When p = 2 for instance, we can take

B=(-1,-1)g = (1,i,j,ij : i* = —1,5% = =1, ji = —ij).
To any lattice L in B we can associate its left order
OL(L)={be B:bL C L}
and its right order
OR(L)={beB:LbC L}
It is invertible if there exists another lattice L’ such that
LL' =O0%(L)=0KL) and [L'L=0%T)=0%xL).

For any order A in B, a (right) A-ideal I of B is a lattice I in B such that A C OE(I). The
(right) class of I is

Ir:={J=al:a€ B*}
and the right class set of A is
Clgr(A) := {[I]g : I is an invertible right A-ideal}.

We could have equivalently defined left ideals, left classes and the left class set; the latter is in
bijection with the right class set through the involution on B. Both are finite, cf. [74, Theorem
17.1.1], and their cardinality is called the class number of A, denoted h(A). An ideal that is
both a left and a right ideal is called a two-sided ideal.

FEichler computed the class number for the maximal orders of definite quaternion algebras
over Q. A literal translation yields:

Theorem 4.3. (cf. [8, Satz 2]) Let B be a definite quaternion algebra over Q with mazimal
order O and discriminant d. The class number of O is 1 if d =2 or 3, and for d > 5 it equals

1 h 2h
h(O) = D p—1)+ ?2 + ?3, where
pld

(13) b if d is divisible by u odd primes, all congruent to 3 mod 4;
g =

otherwise;

|
—N—
O N
i
—

B vl if d is divisible by v primes unequal to 3, all congruent to 2 mod 3;
5T 0 otherwise.
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Corollary 4.4. When B = Qp o for p > 5, with discriminant d = p, Theorem 4.3 gives,
cf. [7, p. 266]:

—

= ifp=1 (mod 12);
S 4+1  ifp=5 (mod 12);
)

3

14 h(O) =< 12
(14) ©) ET41 ifp=7 (mod 12);

P42 fp=11 (mod 12).

Comparing Equation (14) with (8) shows that h(O) = |S1]. As we will see in the next sub-
section, this is not a coincidence.

In the same article, Eichler also proves a formula for a “weighted” class number, which for
definite quaternion algebras over Q simplifies to the following, cf. [74, Theorem 25.1.1]:

Theorem 4.5. (cf. [8, Satz 1]) Let B be a definite quaternion algebra over Q with mazimal
order O and discriminant d. Then

1 1
1) 2 orwr iy - edle

[I]LeCly, pld

The significance of Theorem 4.5 is the following: The elements of the unit group O%(I)*
are the automorphisms of the O-ideal I, whereas the units of the lattice Z in Q are 1. The
finite quotient OK(1)*/{£1} is also called the reduced automorphism group of I. In other
words, the left hand side of (15) counts the classes in Clz(O), but by dividing by the (reduced)
automorphisms, we are counting them up to symmetry. Note that the right hand side of (15)
is a lot cleaner than that of (13).

4.2.2. Quaternion Hermitian spaces.

The definite quaternion algebra B over (Q with involution z — =, discriminant d and maximal
order O as above can be viewed as a one-dimensional quaternion Hermitian space. We now
generalise to higher-dimensional quaternion Hermitian spaces, following [19, § 1], cf. [26, § 2.2].

Definition 4.6. A positive-definite quaternion Hermitian space over B of rank n is a pair (V, f)
where V' is a Q-vector space and an n-dimensional left B-module, and f : V x V — B is a
Q-bilinear form satisfying:

(i) flaz,y) =af(z,y) and f(x,ay) = f(z,y)a;

(iii) f(z,z) >0 and f(z,z) = 0 only when = = 0,

foralla € B and xz,y € V.

For each rank n there is a unique isomorphism class (V, f); we could take V = B®™ and the
Hermitian form f((z;)s, (vi)i) = Y_; Ti¥;-

Notation 4.7. For each prime p, we define O, := O ®z Z,, B, := B®gQp, and V), :=V ®q Q,.
We further let G = G(V, f) be the group of similitudes of (V, f):
(16) G={aeGLp(V): f(za,ya) = n(a)f(z,y) Va,yeV },

where n(a) € Q is a scalar depending only on «, and similarly let G, = G(V,, f,) be the group
of similitudes of (V}, fp). Taking V = B®" and f((x;);, (vi)i) = >_; x:iy; as above, we see that

(17) G = {a € GL,(B) : aa = n(a)l,, n(a) € Q*}.

A lattice L C V is called a left O-lattice if OL C L. An O-submodule M of an O-lattice L
is called an O-sublattice of L; then M is an O-lattice in the B-module BM, possibly of smaller
rank.
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Definition 4.8. Two O-lattices L1 and Lo are equivalent, denoted Ly ~ Lo, if there exists an
a € G such that Ly = Lja; equivalence of two O)-lattices is defined analogously. Two O-lattices
Ly and Ly are in the same genus if (L1), ~ (L2), for all primes p, i.e. if they are everywhere
locally equivalent.

Definition 4.9. The norm N(L) of an O-lattice L is the two-sided O-ideal generated by all
elements f(x,y) with x,y € L. If L is maximal among the O-lattices having the same norm
N(L), then it is called a mazimal O-lattice. Maximal O,-lattices in V,, are defined analogously.
An O-lattice L is maximal if and only if the O,-lattice L, := L ®zZ, is maximal for all primes p.

If a prime p does not divide the discriminant d of B, then there is a unique equivalence class
of maximal Op-lattices in V},, represented by the standard unimodular lattice (O}, f = I,,).

If p|d and n > 1, then there are two equivalence classes of maximal O)p-lattices in V,
represented respectively by the principal lattice (O, f = 1,) and the non-principal lattice
(M,0,)®m=) @ 02, In), where ¢ = |n/2], where II, is a uniformising element in O, with
II,I1, = p, and where J,, = anti-diag(1,...,1) is the anti-diagonal identity matrix of size n.
(This is equivalent to the lattice NV, in [40, (4.6.3)] and [27, p. 140].)

Since a genus is determined by choosing an equivalence class at every prime, we see that
there are 2¢ genera of maximal O-lattices in V when n > 2, where ¢ is the number of primes
dividing the discriminant d of B.

Definition 4.10. For any positive integer n and any pair (di, d2) of positive integers such that
d = dyda, let L, (d1,d2) be the genus consisting of maximal O-lattices in (V] f) of rank n such
that for all primes p|d; (resp. p|d2) the local Op-lattice (Ly, f) belongs to the principal class
(resp. the non-principal class).

There are two extreme cases: the genus £,(d,1) is the principal genus, and L,,(1,d) is the
non-principal genus.

Let [£,(d1,d2)] be the set of (global) equivalence classes of lattices in £,,(d1, d2).

By considering all completions of our lattices, i.e. by viewing them adelically, the following
lemma follows from the definitions.

Lemma 4.11. Let Ay denote the finite adeles of Q and let 7 be the profinite completion of Z.
Fiz a lattice Ly € Ly (dy,d2). There is a natural map

(18) [Ln(d1, d2)] = U\G(Ay)/G(Q),

where U is the stabiliser of Ly ® Z in G(Ay), which is an isomorphism of pointed sets, sending
Lo to the trivial element.

Definition 4.12. The cardinality of [£,(d1,d2)],
hn(dy, da) = |[Ln(d1, d2)]|
is called the class number of the genus L, (dy,d2).

Thus, we see that Theorem 4.3 computed the class number h(O) = hi(p,1). Analogous to
Theorem 4.5, we also introduce a version of the class number that is weighted by automorphisms.

Definition 4.13. The mass M,(dy,dz) of [L,(d1,d2)] is

1
(19) Mn(dla d2) = Mass([ﬁn(d1,d2)]) = Z m’
Le[ﬁn(d11d2)]

where Aut(L) := {a € G: La = L}.

Remark 4.14. We see that if & € Aut(L) then n(a) = 1 in (16), since n(a) > 0 and also
n(a) € Z* = {#+1}. We could set G' := {a € G : n(a) = 1} and define the genus, [£,(d1,dz)],
the class number and the mass with respect to G! instead. It turns out that the latter three
are not affected by this change, cf. [26, Lemma 2.5].
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We finish this subsection by giving a brief account of known results for the class numbers
and masses just defined.

After the one-dimensional results of Eichler (n = 1), the class numbers in the two-dimensional
case (n = 2) were determined by Hashimoto-Ibukiyama in a series of papers from the 1980s,
using an arithmetic trace formula. In [19] they compute the class number of the principal genus.
In [20] and [21], they consider every other genus for n = 2; the former contains the statements,
while the latter contains the proofs. For any genus, they first compute the mass and then the
class number; generally, the mass is a more accessible quantity than the class number.

Proposition 4.15. (cf. [19, Proposition 9], attributed to Thara) For any n > 2, we have

30)  MdD = C(Z)'CM)"”'C@”)'1!'3!"”'(2”_1)!HH(pi+(—1)i),

(27)n(n+1) o il

where ((s) denotes the Riemann zeta function.

Proposition 4.16. (cf. [21, Proposition 2.3]) For any di,ds, we have

(21) Ms(dy,d2) = %H(p—l)(ﬁ—i—l)n(ﬁ—l).

- 27.3
pldy pldz

In [27, § 2], Ibukiyama-Katsura-Oort determine explicit representations of lattices: The class
number results of Eichler [8] imply that these are all of the form L = O™z for some = € GL,(B),
and Lemmas 2.3 and 2.6 of loc. cit. give explicit forms of x for £,(d,1) for any n > 2 and
for £2(1,d), respectively.

In [18], Hashimoto computed the class number of the principal genus when n = 3 for prime
discriminants d = p.

The class number of any genus, for any n,dy, ds is currently still out of reach. However, we
did find the mass in this generality, by comparing it to the mass M, (d, 1) in (20) of the principal
genus and computing arithmetic volumes of the automorphism groups.

Proposition 4.17. (cf. [26, Proposition 2.6]) We have

(22) My (dy,d2) = vy [ Lu(p, 1) - T] Ln(1,p),
pldi pldz

where

(23) Up 1= H |C(1;2i)|7
=1

for each n > 1, where

n

(24) Lo(p, 1) == [ [ + (-1))

i=1
for each prime p and n > 1, and where

[T ("2 -1 if n =2c is even;
25 L’I’L 17 = __ c+2 . ) ‘ ‘
) r) {@1);92041“1) I, ("2 =1)  ifn=2c+1 is odd.

4.3. Mass formulae for superspecial abelian varieties.

In the previous subsection, we saw how we may count certain equivalence classes of lattices,
either directly to obtain the class number, or weighted by automorphisms to obtain the mass.
Now, we would like to do something similar for abelian varieties over k. This will turn out
to be a very closely related problem, as we have already seen several times in Section 3 (in
Theorems 3.5, 3.16, 3.17 and 3.29).

In this setting, a genus corresponds to a set of isomorphism classes of abelian varieties in
an isogeny class that are “everywhere locally isomorphic”, i.e. that have isomorphic f-adic
Tate modules for all primes ¢ # p and isomorphic p-divisible groups (or equivalently, Dieudonné
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modules). Since k is algebraically closed, in fact any two abelian varieties of the same dimension
are locally isomorphic at all £ # p.

Now we focus again on supersingular abelian varieties over k, which are all inseparably
isogenous. A genus of supersingular abelian varieties is nothing other than a central leaf,
consisting of all abelian varieties with isomorphic p-divisible group, and S, is a disjoint union
of a finite number of genera.

The mass of the central leaf C(z) through a point z = (X, \) € Sy(k) is defined to be

1
(26) Mass(C(z)) := > A )|
(X7, \)eC(x)
Computing these in low dimension will be the topic of Subsection 4.4.

For superspecial abelian varieties, we can say even more: the p-divisible group of a super-
special abelian variety of a given dimension is unique up to isomorphism. For the analogous
statement for polarised abelian varieties, we proceed as follows. For each integer 0 < ¢ < |g/2],
let Ay e denote the set of isomorphism classes of g-dimensional polarised superspecial abelian
varieties (X{, Xj) whose polarisation X{ satisfies ker(\j) ~ a2¢. (Recall from Definition ?? that
the degree of any polarisation is a square.) Then the polarised p-divisible group associated to
any member in Ag,e is unique up to isomorphism, cf. [40, Proposition 6.1]. In particular, if
x = (Xo, Ao) is superspecial and principally polarised, then C(z) = Ag 1.

In this subsection, we will determine the mass

1
M JA _—
)= D Rag )
(XGA0)ENG pe
of Agpe for any g > 1 and any 0 < ¢ < |g/2|. First, we will explain the general idea of the
connection between polarisations and quaternion Hermitian spaces, cf. [40, § 8.7] and [27, § 2.2].

4.3.1. Deuring’s correspondence.

Let us first consider the case g = 1 again. Elliptic curves are superspecial if and only if they
are supersingular, and they are canonically and uniquely principally polarised, so the set Aj
consists of all isomorphism classes of supersingular elliptic curves over k.

The endomorphism algebra of any supersingular elliptic curve E over k (with principal po-
larisation A) is isomorphic to the definite quaternion algebra B = Q) o ramified at p and oo,
cf. Example 1.3, and its endomorphism ring is a maximal order in ()) . Under the isomorphism
we identify the involution x +— T on () With the involution

f=Ff=Xtof oA
on End’(E), where f¥ : EV — EV is the dual of f (cf. Definition ??); this is called the Rosati
involution relative to .
In 1941, Deuring (cf. [7, §10.2]) described a bijective correspondence between the ideal classes

in @)~ and isomorphism classes of supersingular elliptic curves over k, using mostly algebraic
language. Using Eichler’s results, he concludes the following.

Corollary 4.18. (cf. [7, § 10.3]) The number |A;1| of isomorphism classes of supersingular
elliptic curves over k equals the class number h(O), given in Corollary 4.4.

Remark 4.19. Deuring remarked (cf. [7, p. 266]) that deriving the number of isomorphism
classes of supersingular elliptic curves directly seemed to be “nicht leicht” (not easy). In 1958,
Igusa proved in [28] that it was possible, by computing the number of supersingular j-invariants
by algebraic methods.

Here, we will use more modern terminology to (roughly) describe Deuring’s correspondence,
see also e.g. [59, 7.12-7.13], [30], [38, Appendice], [26, §4].
Choose the supersingular elliptic curve FEy defined over 2 as in Notation 3.2, and fix iso-
morphisms
End{(Ep) ~ Qpoo, Endi(Ep) ~ O.
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For any supersingular elliptic curve E over k (including E = Ey), we consider the map
(27) E — Homy(Ey, E).

The right-hand side of (27) is a (left) Endy(Ey)-ideal via pre-composition, and the (right) order
of the ideal is identified with End;(E). Since Endg(Ep) ~ O is maximal, the right order of a
left O-ideal is automatically also maximal. Moreover, taking the right orders of representatives
of all left O-ideals yields all isomorphism classes of maximal orders in B, .. Conversely, there
is a map

(28) I—I1®0 Ey

from O-ideals to supersingular elliptic curves. Both (27) and (28) define functors. Together
they show one can go back and forth between supersingular elliptic curves and O-ideals, in a
way which implies that the number of isomorphism classes of supersingular elliptic curves equals
the class number h(O).

Remark 4.20. Waterhouse (cf. [75, Theorem 4.5]) establishes an analogous correspondence to
Deuring’s for finite fields, using that every ideal in a maximal order is a so-called kernel ideal.
See also [36, §5.3] where the correspondence is turned into a categorical equivalence.

4.3.2. From polarisations to quaternion Hermitian spaces.

Deuring’s correspondence has analogues in higher dimensions and for non-principal polarisa-
tions. Superspecial abelian varieties of dimension g are unique up to isomorphism, so without
loss of generality they are isomorphic to EJ with Ej as in Notation 3.2. Counting their isomor-
phism classes thus corresponds to counting the number of polarisations on EJ. In particular,
for any g > 1 and 0 < ¢ < |g/2] there is a one-to-one correspondence

(29) Agpe +— { polarisations 1 on Ef such that ker(u) ~ a;}.

The polarisations on EJ are translated into quaternionic language by the following propo-

sition. Note that one polarisation on Eg is A = )\89 9. where \g is the canonical polarisation
on Ej.

Proposition 4.21. For g > 2, we have one-to-one correspondences
{ polarisations p on Ef }/ ~+«—{ f € My(O): f = ?v is positive-definite }/ ~

(30)
«— { left O- lattices in B¥9 }/ ~ .

Here, the first map is induced from mapping a polarisation p on Ef to A lope End(Ej). This
map restricts to equivalence classes: on the left hand side of (30), polarisations are equivalent
if they differ up to an automorphism of E§ and on the right hand side, f ~ f' are equivalent
if there exists k € GL4(O) such that % o fok = f'. The second map is given by f (’)f?v;
here, equivalence ~ of O-lattices is as in Definition 4.8.

Equation (29) implies that to conclude anything about Ag,c, we need to show how the
correspondences in Proposition 4.21 keep track of the kernels of the polarisations. This is done
in [40, Theorem 8.7], which says that a polarisation uniquely determines a genus of O-lattices,
and conversely, that a genus uniquely determines the polarisation through its kernel (equipped
with a quasi-polarisation, i.e. a map between the kernel and its Cartier dual).

In particular, we obtain that the genus corresponding to principal polarisations is the principal
genus L4(p,1) (cf. [27, Theorem 2.10]) and that the genus corresponding to polarisations with

maximal kernel ~ %2)[9/ 2 is the non-principal genus L£4(1,p) (cf. [40, § 4.6-4.8], see also [27,
Theorem 2.15] for the case g = 2). We will confirm this below in Remark 4.24.

More generally, for any genus we have a double coset description, analogous to that for
quaternion Hermitian lattices in Lemma 4.11. To state it, recall the definition of the group of
similitudes

G ={a € GLy(Qp o) : at@ = n(a)l,, n(a) € Q*}.
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from (17), and that of G* = {a € G : n(a) = 1} from Remark 4.14. For any z = (Xp, \g) in
Ay pe, we now define the group scheme G, over Z so that its group of R-valued points for any
commutative ring R is

(31) Gao(R) = {a € (End(Xo) ®z R)* : a' Ao = Ao}

Then G,, ® Q does not depend on our choice of abelian variety (Xp, Ag), since any two are
isogenous, so we may choose (Xo, \o) = (E§, )\%g ) where A\g, is the canonical polarisation on

Ey, and deduce that moreover G, ® Q ~ G'. We slightly abusively view Uy pe := Gy, (2) as an
open compact subgroup of both G, (A¢) and of the isomorphic group GY'(A £)-

Lemma 4.22. (cf. [78, Theorem 2.1]) Fiz any xo = (Xo, Ao) in Agpe and define G4, as in (31)
and Ug pe as above. Then there is a natural bijection of pointed sets, mapping (Xo, Ao) to the
trivial element:

(32) Agpe = Gag(Q\Gag(Ay) /Gy (Z) = GHQNG (Ay) /Ugpe.

4.3.3. Mass computations.

The correspondences in (29) and Proposition 4.21 enable the computation of the mass, if not
the class number, of A, ,e in general, by using the results for masses and class numbers of
quaternion Hermitian spaces. Let us summarise the main results in the literature.

In dimension g = 2, similar to Igusa’s result [28], Katsura-Oort counted the isomorphism
classes of superspecial principally polarised abelian surfaces over k in [33] using geometric
methods (exploiting that these surfaces are all Jacobians) to confirm the results of Hashimoto-
Ibukiyama in [19].

For principally polarised superspecial abelian varieties of any dimension g, Ekedahl deter-
mined Mass(Ag 1) as a direct result of the computation of M,y(d,1) in Proposition 4.15, and
separately computed a mass formula for the set of superspecial abelian varieties with indecom-
posable principal polarisation in [9, Theorem 7.2].

For non-principally polarised superspecial abelian varieties, Yu gave a mass formula for the
case ¢ = |g/2], cf. [79, Theorem 6.6]. Finally, Harashita provided the formula for general
0 < ¢ < |g/2] by applying to G a mass formula for certain algebraic groups due to Prasad [63];
using the functional equation for ((s), we can write it as follows, cf. [26, Theorem 3.1].

Theorem 4.23. (cf. [16, Proposition 3.5.4]) For any g > 1 and 0 < ¢ < |g/2|, we have
Mass(Agpe) = v+ Ly pe,

where vy is as defined in Equation (23), and where

(33) L -—gﬁc( "+(_1y).ﬁ( 42 _ ) L* 1)
v i=1 ! i=1 g [ (0% — DI — 1)

Remark 4.24. Comparing Equation (33) with Equations (24) and (25), we see that L, 0 =
Ly(p,1) and that for ¢ = |g/2],
(34) I [T, (p*2-1) if g = 2c¢ is even;

o D TS (%% — 1) i g =2+ 1is odd,
so that Ly pe = Ly(1,p). That is, the extremal values 0 and |g/2] of ¢ correspond to the mass of
the principal and non-principal mass, respectively. On the other hand, the values 0 < ¢ < |g/2]
have no direct interpretation in terms of quaternion Hermitian spaces; in the next subsection
we will see how they are still related through minimal isogenies.

Remark 4.25. With the notation as above, the functor Hom(Fy, —) induces an equivalence
between the category of fractionally polarised superspecial abelian varieties over k£ and the
category of positive-definite Hermitian right O-lattices (cf. [26, Corollary 4.9], see also [59, 7.12—
7.14] for an integral statement). So, also in this sense, “superspecial abelian varieties are directly
determined by Hermitian lattices”.
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4.4. Minimal isogenies and mass formulae for supersingular abelian varieties.

The previous subsection showed how to compute masses, and in some cases class numbers, of
superspecial abelian varieties, by linking them to lattices in quaternion Hermitian spaces. In
this subsection, we will discuss how to compute masses, and in some cases class numbers, for
supersingular abelian varieties. That is, we aim to compute the mass Mass(C(z)) (cf. (26))
of the central leaf passing through any supersingular abelian variety = (X, \) € Sy(k), and
ultimately the cardinality |C(x)|.

These computations are sometimes enabled by the existence of minimal isogenies. That
is, we exploit the fact that any supersingular abelian variety is (“minimally”) isogenous to a
unique, possibly non-principally polarised, superspecial abelian variety. The minimal isogeny
then allows us to compare the mass of the supersingular abelian variety = with that of a
superspecial one, by comparing Mass(C(x)) with a suitable Mass(Ag pc).

Until now, masses of supersingular abelian varieties have only been explicitly computed for
surfaces [25,82] and threefolds [31]; in these cases, the comparison factors between supersingular
and superspecial masses have been worked out explicitly using Dieudonné module computations.
We will present these results in Subsections 4.4.2 and 4.4.3, after explaining the general theo-
retical idea in Subsection 4.4.1.

4.4.1. Mintmal isogenies.
The following lemma defines minimal isogenies of supersingular abelian varieties through their
universal (minimality) property.

Lemma 4.26. Let X be a supersingular abelian variety over k. Then there exists a pair ()Z' ®),
where X is a superspecial abelian variety and ¢ : X — X is an Zsogeny such that for any pair
(X', ¢') as above there exists a unique isogeny p: X' — X such that ¢’ = po p.

Proof. See [40, Lemma 1.8], though its proof contains a gap, as pointed out in [31, Remark 3.17].
See also [80, Corollary 4.3] for an independent proof. O

Definition 4.27. Let X be a supersingular abelian variety over k. We call the isogeny ¢ :
X — X of Lemma 4.26 the minimal isogeny of X.

Remark 4.28. There is the following dual notion, sometimes also called the minimal isogeny:
for any X as above, there exists a pair (Z,7), where Z is a superspecial abelian variety and
v : X — Z is an isogeny such that for any other pair (Z’,+') there exists a unique isogeny
p: Z — Z' such that 4/ = po~. We will not use this in this course.

When z = (X, ) is a (principally) polarised supersingular abelian variety with minimal
isogeny ¢ : X — X, we may consider the (not necessarily principally) polarised superspecial
abelian variety T = (X )\) where \ = ©* A is the pullback of the polarisation on X.

Recall from Lemma 4.22 that for any 0 < ¢ < |g/2] we have a double coset description

(35) Agpe = Gx(Q\Cx(Af)/GH(2) = GH QNG (A) /Uy,
where the group scheme Gz/Z satisfies

G3(R) = {a € (End(X) @z R)” : a'Xa = A}

for any commutative ring R, and where we fix an isomorphism Gz ® Q ~ G'. Analogously
defining the group scheme G, for z = (X, \), ﬁxmg an isomorphism G, ® Q ~ G, and consid-
ering the open compact subgroup U, = G,(Z ) also as an open compact subgroup of G'(Ay),
a similar double coset description also holds for the central leaf C(z) of the abelian variety x,
cf. [81, Theorems 2.2 and 4.6]:

(36) C(z) ~ GHQ)\G (Ay)/U,.
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Lemma 4.29. (cf. [26, Lemma 5.2]) For every point x € Sy(k), there exists a (non-canonical)
surjective morphism

7 C(x) = Agpe

for some integer 0 < ¢ < |g/2|. Moreover, we can choose a base point x. in Agpe so that
Gz(Zy) is contained in Gy (Zy) and m is induced from the identity map

(37) CHQ\G (Ay)/Us — GHQ\G" (Af)/ Vs,
where Uy, ~ ch(i).

Remark 4.30. Since any two supersingular abelian varieties z = (X, \) and 2’ = (X', \) have
isomorphic ¢-adic Tate modules at all primes ¢ # p, the corresponding groups G.(][, “p Zy) and
Gy (11, “p Zy) are conjugate inside Gl(AZ}), where AI} denotes the prime-to-p adeles. That is,

“the corresponding groups G4 (Z) and G,/ (Z) only differ at p”.

This observation also explains why in the statement of Lemma 4.29 we are comparing the
groups G.(Z,) and G (Z,) at p, while in Equation (37) we see the adelic groups U, ~ G(Z)
and U, ~ ch(z).

Moreover, by Tate’s theorem at p, cf. Theorem 1.21, at p we have that G(Z,) ~ Aut((X, \)[p>])
is isomorphic to the automorphism group of the p-divisible group.

The existence of the surjection 7 : C(x) = Ag e in Lemma 4.29 follows from abstract results
about the algebraic group G'; however, its relation with the minimal isogeny can be seen as
follows. Let ¢ : & = (X,\) — # = (X, A) the be minimal isogeny for z and pick 0 < ¢ < |g/2]
such that that Z € Agpe. Then U, C Uz := Gg(i) Further, viewing all groups inside G'(A),
we see from (35) and (36) that the natural map

(38) GHQ\GY (Ay) /Uy — GHQ\G (Ay)/Us

induces a surjection C(z) — Ag pe.

If the open compact subgroup Uz is maximal, then Uz is conjugate to Uy pe for some 0 <
¢ < |g/2| and the map 7 : Ay - Agpe in Lemma 4.29 is realised by the minimal isogeny ¢.
Maximality holds for ¢ < 4, so in small dimensions, we may use Lemma 4.29 to compare
supersingular masses to superspecial masses. In general, this comparison is achieved using
minimal isogenies via the following proposition.

Proposition 4.31. (cf. [31, Proposition 2.12]) The minimal isogeny ¢ : T = ()?,X) — x =
(X, \) induces an injective map ¢* : End(X[p™]) — End(X[p*>]), and if Uz is conjugate
to Ugpe for some 0 < ¢ < |g/2], then we have

(39) Mass(C(2)) = [Aut((X, )[p]) : Aut((X, \)[p*])] - Mass(Ag y0).

Proof. The injectivity of ¢* follows since every endomorphism of X [p™°] lifts uniquely to an
endomorphism of X [p*] by [80, Proposition 4.8]. The comparison factor can be seen to equal

[Ui Uz N U:Jc]
U, : Uz N U] ’

cf. Remark 4.30. O

In conclusion, to compute the mass of (the central leaf of) a supersingular principally polarised
abelian variety = (X, \), we first need to find a suitable surjection C(z) — A4 e for some
0 < ¢ < |g/2], which exists by Lemma 4.29, and is in some cases induced from the minimal
isogeny of (X, A). If so, then we determine Mass(Ag ) using Theorem 4.23, and the comparison

factor [Aut((X, \)[p™]) : Aut((X, A\)[p™])] from Proposition 4.31, to compute Mass(C(z)).
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4.4.2. Supersingular abelian surfaces.

Let z = (X, A) be a principally polarised supersingular abelian surface over k. If X is superspe-
cial, then C(z) = Ay 0 so we know its mass by Theorem 4.23 with ¢ = 0 and its class number
|Ay 0| by Proposition 4.15 with n = 2, d = p (or equivalently, by Proposition 4.16, with d; = p,
dy =1).

Assume then that X is not superspecial, so it has a(X) = 1. The latter implies that that
there exists a unique PFTQ lying above (X, \); cf. Example 3.10. That is, there is a unique
(up to isomorphism) polarised superspecial abelian surface (Y7, A1) such that ker(\;) ~ 0412, and
an isogeny ¢ : (Y1, A1) = (X, \) of degree p that is compatible with polarisations. There is also
a unique polarisation p1 on Eg such that ker(u;) ~ ag and for which (Y7, A1) =~ (Eg, 1) ®F,» k.
Let t in PY(k) = ]P’}“(k) = {¢1 : (B, 1) ® k — (X, \) an isogeny of degree p} be the Moret-
Bailly parameter for (X, \).

The condition a(X) = 1 moreover implies that ¢t € P'(k) \ P!(F,2) = k \ F,2. We distinguish
two different cases: in the first case (I) we have t € k\ F4, and in the second case (II) we have
t € F,a \F,2. Roughly speaking, these cases correspond to the structure of End(.X) in the sense
that a larger field of definition of ¢ yields a smaller endomorphism ring.

The following results respectively give the class number |C(x)| and mass Mass(C(z)) in each
case.

Theorem 4.32. (cf. [25, Theorems 1.1 and 3.6]) Let x = (X, ) be a principally polarised
supersingular abelian surface over k with a(X) = 1 and Moret-Bailly parameter t, and let
h = |C(z)| be the corresponding class number.

(1) In Case (I), i.e. whent € k\ Fp, we have

)1 if p=2;
h = Pre*-1)(p*-1) ifp>3.

5760
(2) In Case (II), i.e. whent € Fpu\Fp2, we have
1 ifp=2;
h = p;(gsg_olf ifp=+1modb orp=>5;
1+ (P—3)(P+3)(p22—8381(')+8)(172+3p+8) if p=+2mod 5.

(3) For each case, we have h =1 if and only if p = 2,3.

Theorem 4.33. (cf. [82, Theorem 1.1]), [25, Proposition 3.3]) Let z = (X, \) and t € PY(k) be
as in Theorem 4.32. Then

LP
(40) Mass(C(x)) = 57607
where
;o {2e<p> (p'—1)(p* —p?) iftek\Fu (Case (1)),
Pl - D)t - p?), ift € Fpu \Fpe (Case (1I)),

with e(p) =0 if p=2 and e(p) =1 if p > 2.

By combining Theorems 4.32 and 4.33, we can derive quite precise information about the
automorphism groups of the supersingular surfaces, as the next result demonstrates.

Corollary 4.34. Let p = 2, and let 2’ = (X', X') be a principally polarised supersingular abelian
surface over k with a(X") = 1. Let ¢ : (B3 @k, 1) — (X', \') be the isogeny yielding a Moret-
2

Bailly parameter t € k\ F 2, where py is a polarisation on E? such that ker(p1) ~ ay,. Then

32 iftek\Fu (Case (1));

160, ift € Fpa\Fp (Case (II)).
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(41) [Aut(X', \)| = {



Proof. By Theorem 4.32, we have |C(2’)] = 1 in both cases. Then Theorem 4.33 for p = 2 yields

N ) 1/32 ift € k\Fp (Case (1));
Mass(Cla')) = {1/160, ifteFu\Fe  (Case (II)).

O

4.4.3. Supersingular abelian threefolds.
Recall the description of P, from Example 3.13 via the truncation map 7 as a Pl-bundle over
the Fermat curve C': Xfﬂ + Xg“ + X§+1 = 0, independent of the choice of u.

Recall also that we defined the a-number on points y € Pz, via a(y) := a(prg(y)) and
described the a-number loci in Example 3.18. As in that example, we will write a point y €
Ps (k) as a pair (¢,u), where ¢t = 7(y) is a point on C' and where u € 7~ 1(¢) =: P} (k) is a point
on the projective line above it.

The mass calculation will depend on the a-number, since the a-number of a supersingular
principally polarised abelian threefold (X, \) tells us how to derive its minimal isogeny from
the PFTQ lying over it, [31, Proposition 3.16]. If a(X) = 3, then X is superspecial already,
so the minimal isogeny is the identiy. On the other extreme, if a(X) = 1, then the PFTQ
(Yo, X2) — (Y1, A1) = (Yo, Ao) = (X, A) itself is the minimal isogeny. And if a(X) = 2, then the
minimal isogeny is (Y1, A1) — (X, A). In particular, then the minimal isogeny is of degree p and
ker(Ap) ~ ap, so that this case can be compared to the surface case from Subsection 4.4.2.

We define the mass of a point y = (¢,u) in P3 (k) by setting Mass(y) = Mass(C(x)) for

= pro(y). In [31] we determined the mass for any y € Ps,(k); the following theorems
summarise the main results.

Theorem 4.35. (cf. [31, Theorem A]) Let y = (t,u) € P3 ,(k) be a point such that t € C(F2);
then a(y) > 2 by Example 3.18. Then we have

Lp
Mass(y) = 51531 5.7
where
(p-DE*+DE*-1) if u € PH(Fy);
Ly=¢ (-1 +1)»* -1 -p? if u € P( p4)\]P)t( 2);
27 (p - P>+ D - VPP — 1) if u g P}(Fp),

where e(p) =0 if p=2 and e(p) =1 if p > 2.

Theorem 4.35 gives the mass formula for points with a-number greater than or equal to 2. To
describe the mass of points with a-number 1, we need to construct an auxiliary divisor D C Pé, w
cf. [31, Definition 5.16], and a function d : C(k) \ C(F,2) — {3,4,5,6}, cf. [31, Definition 5.12].
In [31, Proposition 5.13] it is shown how the value of this function is related to the field of
definition of the parameter ¢; roughly speaking, the larger the field of definition, the higher the
value of d. Further, the function d is surjective when p # 2, and it only takes value 3 when
p = 2. On the other hand, the divisor D encodes information about both parameters t and w.

Using this terminology, we have the following result.

Theorem 4.36. (cf. [31, Theorem BJ) Let y = (t,u) € P; (k) be a point such that t ¢ C(F2);
then a(y) = 1 by Exzample 3.18. Then we have

3
p° L
Mass(y) = J0.31.5.7 .p5 2
where
2-ewp2®(p? — )(p* = 1)(P° - 1)  if y ¢ D;
Ly =3p*D(p-1)(p* - 1)p° - 1) if t ¢ C(Fp) and y € D;

Pp* -1 -1 - 1) ift € C(Fy) and y € D,
)

where again e(p) =0 if p=2 and e(p) =1 if p > 2.
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As in the two-dimensional setting, in some cases we obtain precise information about the
automorphism groups of the threefolds, this time by considering reductions of endomorphism
rings (modulo a uniformiser of the maximal order of the quaternion division Qp-algebra). So
rather than finding the automorphism groups from the combination of masses and class numbers,
we now combine our knowledge of the mass and the automorphism groups in these cases to
obtain the class number. The results for the generic case are given below.

Theorem 4.37. (cf. [31, Theorem 6.4]) Let x = (X, \) be a supersingular principally polarised
abelian threefold with a(X) = 1, whose associated PFTQ is described by parameters (t,u) ¢ D.
(1) If p =2, then Aut(X,\) ~ C3.
(2) If p>5, orp=3 and d(t) = 6, then Aut(X,\) >~ C.

Corollary 4.38. (cf. [31, Corollary 6.5]) Under the same notation as above and assumptions
as in Theorem 4.37, we have:

(1) If p=2, then |C(x)| = 4.

(2) If p=3 and d(t) = 6, then |C(x)| = 3! - 13.

(3) If p =5, then

3+2d(t) ()2 _ 4 6 _
p (p° =" -1)"-1)

45



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

REFERENCES

. Valery Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. (2) 155 (2002),

no. 3, pp. 611-708.

. Walter Baily Jr. and Armand Borel, Compactification of arithmetic quotients of bounded symmetric domains,

Ann. of Math. (2) 84 (1966), pp. 442-528.

. Ching-Li Chai, Fvery ordinary symplectic isogeny class in positive characteristic is dense in the moduli,

Invent. Math. 121 (1995), no. 3, pp. 439-479.
, Hecke orbits on Siegel modular varieties, Geometric methods in algebra and number theory, Progr.
Math., vol. 235, Birkh&user Boston, Boston, MA, 2005, pp. 71-107.

. Ching-Li Chai and Frans Oort, Monodromy and irreducibility of leaves, Ann. of Math. (2) 173 (2011), no. 3,

pp. 1359-1396.

. Michel Demazure, Lectures on p-divisible groups., Springer-Verlag, Berlin-New York, 1972.
. Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkérper, Abh. Math. Sem. Hansischen

Univ. 14 (1941), pp. 197-272.

. Martin Eichler, Uber die Idealklassenzahl total definiter Quaternionenalgebren, Math. Z. 43 (1938), no. 1,

pp. 102-109.

. Torsten Ekedahl, On supersingular curves and abelian varieties, Math. Scand. 60 (1987), no. 2, pp. 151-178.
. Torsten Ekedahl and Gerard van der Geer, Cycle classes of the E-O stratification on the moduli of abelian

varieties, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269,
Birkh&user Boston, Boston, MA, 2009, pp. 567—636.

Carel Faber and Eduard Looijenga (eds.), Moduli of curves and abelian varieties, Aspects of Mathematics,
vol. E33, Friedr. Vieweg & Sohn, Braunschweig, 1999, The Dutch Intercity Seminar on Moduli.

Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3), vol. 22, Springer-Verlag, Berlin, 1990, With an appendix by David Mumford.

Israel Gelfand and Vladimir Ponomarev, Indecomposable representations of the Lorentz group, Uspehi Mat.
Nauk 23 (1968), no. 2 (140), pp. 3-60.

Shushi Harashita, The a-number stratification on the moduli space of supersingular abelian varieties, J. Pure
Appl. Algebra 193 (2004), no. 1-3, pp. 163-191.

, Ekedahl-Oort strata and the first Newton slope strata, J. Algebraic Geom. 16 (2007), no. 1, pp. 171—

199.

, Ekedahl-Oort strata contained in the supersingular locus and Deligne-Lusztig varieties, J. Algebraic
Geom. 19 (2010), no. 3, pp. 419-438.

Philipp Hartwig, On the reduction of the Siegel moduli space of abelian varieties of dimension 3 with Twahori
level structure, Minster J. Math. 4 (2011), pp. 185-226.

Ki-ichiro Hashimoto, Class numbers of positive definite ternary quaternion Hermitian forms, Proc. Japan
Acad. Ser. A Math. Sci. 59 (1983), no. 10, pp. 490-493.

Ki-ichiro Hashimoto and Tomoyoshi Ibukiyama, On class numbers of positive definite binary quaternion
Hermatian forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, pp. 549-601.

, On class numbers of positive definite binary quaternion Hermitian forms. II, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 28 (1981), no. 3, pp. 695—699.

, On class numbers of positive definite binary quaternion Hermitian forms. III, J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 30 (1983), no. 2, pp. 393-401.

Maarten Hoeve, Ekedahl-Oort strata in the supersingular locus, J. Lond. Math. Soc. (2) 81 (2010), no. 1,
pp. 129-141.

Taira Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), pp. 83-95.
Klaus Hulek and Gregory Sankaran, The geometry of Siegel modular varieties, Higher dimensional birational
geometry (Kyoto, 1997), Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 89-156.
Tomoyoshi Ibukiyama, Principal polarizations of supersingular abelian surfaces, J. Math. Soc. Japan 72
(2020), no. 4, pp. 1161-1180.

Tomoyoshi Ibukiyama, Valentijn Karemaker, and Chia-Fu Yu, When is a polarised abelian variety determined
by its p-divisible group?, Trans. Amer. Math. Soc. Ser. B 12 (2025), pp. 65-111.

Tomoyoshi Ibukiyama, Toshiyuki Katsura, and Frans Oort, Supersingular curves of genus two and class
numbers, Compositio Math. 57 (1986), no. 2, pp. 127-152.

Jun-ichi Igusa, Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. U.S.A.
44 (1958), pp. 312-314.

Aise de Jong and Frans Oort, Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13 (2000),
no. 1, pp. 209-241.

Bruce Jordan, Allan Keeton, Bjorn Poonen, Eric Rains, Nicholas Shepherd-Barron, and John Tate, Abelian
varieties isogenous to a power of an elliptic curve, Compos. Math. 154 (2018), no. 5, pp. 934-959.
Valentijn Karemaker, Fuetaro Yobuko, and Chia-Fu Yu, Mass formula and Oort’s conjecture for supersingular
abelian threefolds, Adv. Math. 386 (2021), Paper No. 107812, 52.

46



32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.
53.
54.
55.
56.
57.
58.
59.

60.
61.

62.
63.

64.

Toshiyuki Katsura and Frans Oort, Families of supersingular abelian surfaces, Compositio Math. 62 (1987),
no. 2, pp. 107-167.

, Supersingular abelian varieties of dimension two or three and class numbers, Algebraic geometry,
Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 253-281.

Nicholas Katz, Slope filtration of F-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978),
Vol. I, Astérisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 113-163.

Neal Koblitz, p-adic variation of the zeta-function over families of varieties defined over finite fields, Com-
positio Math. 31 (1975), no. 2, pp. 119-218.

David Kohel, Endomorphism rings of elliptic curves over finite fields, ProQuest LLC, Ann Arbor, MI, 1996,
Thesis (Ph.D.)—University of California, Berkeley.

Hanspeter Kraft, Kommutative algebraische Gruppen und Ringe, Lecture Notes in Mathematics, vol. Vol.
455, Springer-Verlag, Berlin-New York, 1975.

Kristin Lauter, The maximum or minimum number of rational points on genus three curves over finite fields,
Compositio Math. 134 (2002), no. 1, pp. 87-111, with an appendix by Jean-Pierre Serre.

Ke-Zheng Li, Classification of supersingular abelian varieties, Math. Ann. 283 (1989), no. 2, pp. 333-351.
Ke-Zheng Li and Frans Oort, Moduli of supersingular abelian varieties, Lecture Notes in Mathematics, vol.
1680, Springer-Verlag, Berlin, 1998.

Yuri Manin, Theory of commutative formal groups over fields of finite characteristic., Uspehi Mat. Nauk 114
(1963), no. 6, pp. 3-90.

Ben Moonen, Group schemes with additional structures and Weyl group cosets, Moduli of abelian varieties
(Texel Island, 1999), Progr. Math., vol. 195, Birkhauser, Basel, 2001, pp. 255-298.

Ben Moonen and Torsten Wedhorn, Discrete invariants of varieties in positive characteristic, Int. Math. Res.
Not. (2004), no. 72, pp. 3855-3903.

Laurent Moret-Bailly, Polarisations de degré 4 sur les surfaces abéliennes, C. R. Acad. Sci. Paris Sér. A-B
289 (1979), no. 16, pp. A787-AT790.

, Familles de courbes et de variétés abéliennes sur P!, no. 86, 1981, Seminar on Pencils of Curves of
Genus at Least Two, pp. 109-140.

David Mumford, The structure of the moduli spaces of curves and Abelian varieties, Actes du Congres
International des Mathématiciens (Nice, 1970), Tome 1, 1971, pp. 457-465.

, On the Kodaira dimension of the Siegel modular variety, Algebraic geometry—open problems (Rav-
ello, 1982), Lecture Notes in Math., vol. 997, Springer, Berlin, 1983, pp. 348-375.

, Abelian wvarieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Tata
Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008, with appendices
by C. P. Ramanujam and Yuri Manin, corrected reprint of the second (1974) edition.

David Mumford, John Fogarty, and Frances Kirwan, Geometric invariant theory, third ed., Ergebnisse der
Mathematik und ihrer Grenzgebiete (2), vol. 34, Springer-Verlag, Berlin, 1994.

Peter Norman and Frans Oort, Moduli of abelian varieties, Ann. of Math. (2) 112 (1980), no. 3, pp. 413-439.
Tadao Oda and Frans Oort, Supersingular abelian varieties., Proceedings of the International Symposium on
Algebraic Geometry (Kyoto Univ., Kyoto, 1977), 1978, pp. 595-621.

Arthur Ogus, Supersingular K3 crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol.
11, Astérisque, vol. 64, Soc. Math. France, Paris, 1979, pp. 3-86.

Frans Oort, Finite group schemes, local moduli for abelian varieties, and lifting problems, Compositio Math.
23 (1971), pp. 265-296.

, Subvarieties of moduli spaces, Invent. Math. 24 (1974), pp. 95-119.

|, Which abelian surfaces are products of elliptic curves?, Math. Ann. 214 (1975), pp. 35-47.

, Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991),
no. 5, pp. 385-389.

, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of Math. (2) 152
(2000), no. 1, pp. 183-206.

, Newton polygon strata in the moduli space of abelian varieties, Moduli of abelian varieties (Texel
Island, 1999), Progr. Math., vol. 195, Birkh&duser, Basel, 2001, pp. 417-440.

, A stratification of a moduli space of abelian varieties, Moduli of abelian varieties (Texel Island,
1999), Progr. Math., vol. 195, Birkhauser, Basel, 2001, pp. 345-416.

, Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc. 17 (2004), no. 2, pp. 267-296.
Andreas Pieper, Constructing all genus 2 curves with supersingular Jacobian, Res. Number Theory 8 (2022),
no. 2, Paper No. 32, 26.

Richard Pink, Torsten Wedhorn, and Paul Ziegler, Algebraic zip data, Doc. Math. 16 (2011), pp. 253-300.
Gopal Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Inst. Hautes Etudes Sci. Publ. Math.
(1989), no. 69, pp. 91-117, with an appendix by Moshe Jarden and the author.

Rachel Pries, A short guide to p-torsion of abelian varieties in characteristic p, Computational arithmetic
geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, pp. 121-129.

47



65.

66.
67.

68.
69.

70.

71.
72.
73.
74.
75.
76.
7.
78.
79.
80.

81.
82.

83.

Rachel Pries and Douglas Ulmer, On BT1 group schemes and Fermat curves, New York J. Math. 27 (2021),
pp- 705-739.

Ichiro Satake, On the compactification of the Siegel space, J. Indian Math. Soc. (N.S.) 20 (1956), pp. 259-281.
Tetsuji Shioda, Supersingular K3 surfaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen,
Copenhagen, 1978), Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 564-591.

John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), pp. 134-144.

, p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin-New York, 1967,
pp. 158-183.

, Classes d’isogénie des variétés abéliennes sur un corps fini (d’aprés T. Honda), Séminaire Bourbaki.
Vol. 1968/69: Exposés 347-363, Lecture Notes in Math., vol. 175, Exp. 352, Springer, Berlin, 1971, pp. 95—
110.

Gerard van der Geer, Cycles on the moduli space of abelian varieties, Moduli of curves and abelian varieties,
Aspects Math., vol. E33, Friedr. Vieweg, Braunschweig, 1999, pp. 65-89.

Eva Viehmann and Torsten Wedhorn, Ekedahl-Oort and Newton strata for Shimura varieties of PEL type,
Math. Ann. 356 (2013), no. 4, pp. 1493-1550.

Marie-France Vignéras, Arithmétique des algébres de quaternions, Lecture Notes in Mathematics, vol. 800,
Springer, Berlin, 1980.

John Voight, Quaternion algebras, Graduate Texts in Mathematics, vol. 288, Springer, Cham, 2021.
William Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. (4) 2 (1969), pp. 521-560.
Torsten Wedhorn, Specialization of f-zips, arXiv e-prints 0507175 (2005).

André Weil, Variétés abéliennes, Algebre et Théorie des Nombres, Colloq. Internat. CNRS, vol. no. 24, CNRS,
Paris, 1950, pp. 125-127.

Chia-Fu Yu, On the mass formula of supersingular abelian varieties with real multiplications, J. Aust. Math.
Soc. 78 (2005), no. 3, pp. 373-392.

, The supersingular loci and mass formulas on Siegel modular varieties, Doc. Math. 11 (2006), pp. 449—
468.

, On finiteness of endomorphism rings of abelian varieties, Math. Res. Lett. 17 (2010), no. 2, pp. 357—
370.

, Simple mass formulas on Shimura varieties of PEL-type, Forum Math. 22 (2010), no. 3, pp. 565-582.
Chia-Fu Yu and Jeng-Daw Yu, Mass formula for supersingular abelian surfaces, J. Algebra 322 (2009), no. 10,

pp. 3733-3743.
Chao Zhang, Ekedahl-Oort strata for good reductions of Shimura varieties of Hodge type, Canad. J. Math.
70 (2018), no. 2, pp. 451-480.

48



