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Introduction

This document originally served as a set of lecture notes, supporting the course with the
same name that I taught at the Arizona Winter School 2024 on “Abelian Varieties”.

Abelian varieties are important objects in arithmetic geometry. When studying their rational
points, we can make use of the fact that they are group varieties. That is, the rational points
over a fixed field form a group, which provides us with useful extra structure. In this course,
we will consider abelian varieties over fields of positieve characteristic p, in particular super-
singular abelian varieties, and study geometric and arithmetic properties of their moduli spaces.

In the outline below, every section roughly corresponded to one lecture.

• Section 1 provides an introduction to abelian varieties over finite fields of characteristic p.
• Section 2 discusses the moduli space Ag of g-dimensional principally polarised abelian
varieties. For its characteristic p fibre, we will study its geometric structure by means
of several stratifications by invariants.
• From Section 3 onwards, we specialise to the supersingular locus Sg ⊆ Ag. In this
section we will study its geometry, explicitly in low dimensions, and generally using flag
type quotients and the foliation by central leaves.
• Section 4 treats the arithmetic of Sg, focussing on the endomorphism rings/algebras and
automorphism groups of the abelian varieties, using masses and linking these to class
number computations for quaternion algebras.

Acknowledgements.
First of all, I am very grateful to the organisers of the AWS 2024 for offering me this opportunity.
It has been a pleasure to discuss the course material with Steven Groen, Rachel Pries, Soumya
Sankar, and Chia-Fu Yu, and I am indebted to them for many useful comments on earlier drafts
of these notes. I am grateful to the anonymous referees for their feedback and suggestions.
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1. Abelian varieties over finite fields

1.1. Introduction.
To get started, in this first section we will collect some useful information about abelian varieties,
in particular when they are defined over finite fields. This is a vast topic and many good
references on it already exist: see e.g. [40, 48, 64, 75, 77] and the 2024 PAWS notes of Lassina
Dembélé. Here, we have therefore been quite selective and only included notions we will need
later in the course. For a more extensive overview, you are encouraged to consult the above-
mentioned references.

Subsection 1.2 deals with abelian varieties over fields of any characteristic (zero or positive)
and heavily builds on the definitions contained in the prelude to this volume. In Subsection 1.3
we will specialise to the situation of characteristic p > 0, since this will be the main focus in this
course. In characteristic p, interesting behaviour appears that does not occur in characteristic
zero; we will exploit this in the next sections.

1.2. Abelian varieties (in any characteristic).
Throughout this subsection, we let K be any field of any characteristic. We let K denote its
algebraic closure.

The formal definitions of the following are given in the common prelude to this volume and
have therefore been omitted from this chapter:

• An abelian variety over K – here denoted by X;
• Its dual abelian variety X∨ = Pic0X/K ;

• Homomorphisms and isogenies f : X → Y between abelian varieties;
• (Principal) polarisations λ : X → X∨ of X;
• Simple abelian varieties;
• Endomorphisms, the endomorphism ring End(X) and endomorphism algebra End0(X) =
End(X)⊗Z Q of X;

In this chapter, we will use the following notation:

• We will write X ∼ Y if the abelian varieties X and Y are isogenous, and we may call it
a K-isogeny if we want to emphasise when an isogeny is defined over K.
• If we want to emphasise that the endomorphisms are K-endomorphisms, we may write
EndK(X). When we consider the geometric endomorphisms, we will always write
EndK(X).
• Any abelian variety X admits a polarisation of some degree. If it admits a principal
polarisation λ, we say that (X,λ), or simply X, is a principally polarised abelian variety.

Theorem 1.1 (Poincaré reducibility). Any abelian variety X (̸= 0) over K is K-isogenous to
a product

(1) X ∼ Y k1
1 × . . .× Y

kr
r ,

where the Yi are pairwise non-isogenous simple abelian varieties. Moreover, the abelian varieties
Yi and multiplicities ki are uniquely determined (up to K-isogeny).

When X is simple, its endomorphism algebra is a division algebra, since any non-zero ele-
ment f ∈ End0(X) (of degree n) is invertible (namely, by 1

ng).

WhenX is not simple, and admits an isogeny decomposition as in (1), we get that End0(X) =
Matk1(End

0(Y1))× . . .×Matkr(End
0(Yr)), since Hom(Yi, Yi) = 0 whenever i ̸= j.

For simple abelian varieties (and hence for general ones) we can say more. Recall that any
abelian variety X admits a polarisation λ of some degree. This implies that its endomorphism
algebra End0(X) has a positive involution α 7→ λ−1 ◦α∨ ◦ λ, called the Rosati involution. Such
division algebras with positive involutions have been classified as follows.

Theorem 1.2 (Albert’s Classification). The endomorphism algebra E = End0(X) of a simple
g-dimensional abelian variety X over K is isomorphic to one of the following:
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(I) A totally real field of degree dividing g;
(II) A totally indefinite quaternion division algebra over a totally real field (i.e. split at each

infinite place);
(III) A totally definite quaternion division algebra over a totally real field (i.e. non-split at

each infinite place);
(IV) A central division algebra whose centre is a CM-field, i.e. a totally imaginary quadratic

extension of a totally real field.

Example 1.3. For an elliptic curve (i.e. a one-dimensional abelian variety) E over K we
either have EndK(E) = Z or EndK(E) is an order in either a quadratic imaginary field or in
a quaternion division algebra over Q. In the first case we have End0(E) = Q, in the latter
cases the endomorphism algebra is either a quadratic imaginary extension of Q or a quaternion
algebra over Q. If char(K) = 0 then the endomorphism algebra is necessarily commutative, so
the quaternion case happens only when char(K) = p > 0; the quaternion algebra is then the
definite quaternion algebra Qp,∞ ramified at p and infinity.

Now let X be a g-dimensional abelian variety and assume that ℓ is a prime number that
is coprime to the characteristic of K. Multiplication by ℓn is an endomorphism of X for any
n ≥ 1, denoted by [ℓn], whose kernel is a finite group scheme of rank (ℓn)2g. This group scheme
is étale by our assumption (ℓ, char(K)) = 1; in particular, it is determined by its K-points and
the action of GK = Gal(K/K) on it.

Definition 1.4. Let X[ℓn] denote the kernel of [ℓn]. The ℓ-adic Tate module of X is the inverse
limit Tℓ(X) = lim←−n

X[ℓn](K) where the transition maps are given by multiplication by ℓ:

X[ℓn](K)
·ℓ←− X[ℓn+1](K).

It is a free Zℓ-module of rank 2g, which inherits a (Zℓ-linear) GK-structure. Further, let Vℓ(X) =
Tℓ(X)⊗Zℓ

Qℓ; this is a 2g-dimensional Qℓ-vector space.

Any isogeny f : X → Y between abelian varieties, which is surjective with finite kernel by
definition, induces an injective map Tℓf : TℓX → TℓY with finite cokernel, and an isomorphism
Vℓf : Vℓ(X)→ Vℓ(Y ). Importantly, this association is injective, as proved by Weil:

Theorem 1.5. Mapping f 7→ Tℓf gives an injection

Hom(X,Y )⊗Z Zℓ ↪→ HomZℓ[GK ](Tℓ(X), Tℓ(Y )).

In the next subsection, we will see how to modify these constructions when the chosen prime ℓ
equals the characteristic p of the field. Moreover, in the setting of finite fields of characteris-
tic p ̸= ℓ, Theorem 1.5 is also surjective, cf. [68].

1.3. Abelian varieties in characteristic p.
From now on, we will assume our abelian varieties to be defined over a field of characteristic p
for some prime p > 0. In particular, we fix the following notation: we let Fq be a finite field

extension of the prime field Fp, and we let k = Fp be their algebraic closure.

1.3.1. Frobenius and Verschiebung.
Whenever you are in characteristic p, you can be sure to find Frobeniuses lurking around. There
are in fact a couple of different ones to distinguish.

Definition 1.6. For any scheme S in characteristic p (so pOS = 0), the absolute Frobenius
FS : S → S is the identity on the topological space |S| and acts as the p-power map on the
structure sheaf, i.e. f 7→ fp for all f ∈ OS .

The relative Frobenius is defined in the relative setting, i.e. for schemes g : X → S where S
is a scheme of characteristic p. Let X(p) = X ×S,FS

S be the scheme fitting in the Cartesian
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diagram

X(p) X

S S

g

FS

Since g ◦ FX = FS ◦ g, this diagram induces a morphism FX/S : X → X(p); this is the relative
Frobenius. It is an S-morphism, while the absolute Frobenius FX generally is not.

X

X(p) X

S S

FX

g

FX/S

g

FS

We could do the same for any power pn, obtaining the n-th iterate Fn
X acting by f 7→ fp

n
on

functions, and Fn
X/S : X → X(pn).

We may apply the above either to an abelian scheme X → S, i.e. a smooth proper S-group
scheme whose fibres are all abelian varieties, or to an abelian variety X when S is the spectrum
of a field of characteristic p. If S = Spec(Fq) with q = pn, then Fn

X = Fn
X/S : X → X; this map

is also denoted by πX and called the geometric Frobenius or Frobenius endomorphism of X.
By extension of scalars, we obtain geometric Frobeniuses over any field extension of Fq as well.
Later on, we will mostly take S = Spec(k).

Finally, there is also an arithmetic Frobenius σpn for any n ≥ 1; this is the topological
generator of the absolute Galois group GFpn

= Gal(k/Fpn) of Fpn .
Dually, since an abelian scheme over a scheme S of characteristic p is commutative and flat,

then there exists a Verschiebung morphism VX/S : X(p) → X such that VX/S ◦ FX/S = [p]X
and FX/S ◦ VX/S = [p]X(p) . For an abelian variety X over a field K of characteristic p, both

FX/K and VX/K are isogenies of degree pdim(X). We can similarly iterate the Verschiebung to
obtain V n

X/S ; then V
n
X/S ◦ F

n
X/S = [pn]X .

1.3.2. Characteristic polynomial of Frobenius.
We will now study the Frobenius endomorphism πX of X in more detail. For ease of notation,
we will write π instead of πX when the abelian variety X is clear from context.

Recall that π, being an isogeny from X to itself, induces maps Tℓπ : Tℓ(X) ↪→ Tℓ(X) and
Vℓπ : Vℓ(X) → Vℓ(X) for any ℓ ̸= p; both maps are also denoted by πℓ. The latter has
a characteristic polynomial hπ(x) = det(x · id − Vℓπ). It turns out that this characteristic
polynomial has coefficients in Z and is independent of the prime ℓ.

Definition 1.7. We say hπ(x) ∈ Z[x] is the characteristic polynomial of Frobenius π on X. It
is also called the Weil polynomial of X.

The above construction yields characteristic polynomials for any endomorphism of X. That
for π however has special properties and significance. First we list some properties.

Theorem 1.8. Let X be a g-dimensional abelian variety over K = Fq with Frobenius π = πX .

(1) The characteristic polynomial hπ(x) has degree 2g.
(2) All complex roots of hπ(x) have absolute value

√
q. They are called (q-) Weil numbers.

(3) The roots come in pairs: if α is a root then so is α = q/α. Any real root appears with
even multiplicity.

The significance of hπ is twofold. First of all, there is a direct relation to point counting
on X. The main realisation for this is that Fqm-rational points on X are fixed by πmX .

For any variety over Fq, not necessarily an abelian variety, its point counts over field extensions
are encoded in its zeta function.
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Definition 1.9. The zeta function of a variety V over Fq is

Z(V, x) = exp

∑
m≥1

Nm
xm

m

 ∈ Q[[x]], where Nm = |V (Fqm)| for any m ≥ 1.

Theorem 1.10. We use the same notation as in Thereom 1.8 and choose a factorisation
hπ(x) =

∏2g
i=1(x− αi) over Z. For any m ≥ 1, we have

Nm = |X(Fqm)| =
2g∏
i=1

(1− αm
i ).

Furthermore,

Z(X,x) =
P1(x) · · ·P2g−1(x)

P0(x)P2(x) · · ·P2g−2(x)P2g(x)
,

where for any 0 ≤ r ≤ 2g, we take

Pr(x) =
∏

1≤j1<...<jr≤2g

(1− (αj1 · · ·αjr)x) ∈ Z[x].

Secondly, we may equivalently use the Frobenius endomorphism, Weil polynomials and Weil
numbers to determine abelian varieties up to isogeny.

We say that two q-Weil numbers π, π′ are conjugate, denoted π ∼ π′, if they have the same
minimal polynomial over Q.

Theorem 1.11. Let X,Y be two abelian varieties over Fq. As mentioned below Theorem 1.5,
we have an isomorphism

(2) Hom(X,Y )⊗Z Zℓ
∼−→ HomZℓ[GFq ]

(Tℓ(X), Tℓ(Y )).

From this, it can be shown that two simple abelian varieties X,Y with respective Frobenius
endomorphisms πX , πY are isogenous if and only if hπX = hπY , if and only if Z(X,x) = Z(Y, x).
Moreover, for every q-Weil number there exists a simple abelian variety over Fq with this Weil
number. That is, mapping an abelian variety X to its Frobenius endomorphism πX yields a
bijection

(3) { simple abelian varieties over Fq }/ ∼ ⇔ { q-Weil numbers }/ ∼ .
Theorem 1.11 is often called the Honda-Tate theorem; injectivity in Equation (3) was proven

by Tate [70] and surjectivity by Honda [23].

1.3.3. p-torsion in characteristic p.
In Definition 1.4 we considered the ℓn-torsion group schemes X[ℓn] when ℓ is coprime to the

characteristic of the field, which is étale and of rank (ℓn)2 dim(X). By contrast, the pn-torsion
group scheme X[pn] in characteristic p is not étale. As a consequence, the rank of its étale part

is smaller, and at most pn dim(X).

Definition 1.12. Let X be an abelian variety over a field of characteristic p with algebraic
closure k. The p-rank of X, denoted f(X), is the integer f such that

|X[p](k)| = pf .

When dim(X) = g, we have 0 ≤ f ≤ g.
Definition 1.13. Assume we are in the same setting as Definition 1.12. When f(X) = g, the
abelian variety is called ordinary.

Ordinary varieties are called this way because generically the p-rank is as large as it can be.

Example 1.14. Suppose that g = dim(X) = 1, so X is an elliptic curve. Then 0 ≤ f(X) ≤ 1,
so the p-rank of X is either 0 or 1. If f(X) = 1 = g, the elliptic curve is ordinary. If f(X) = 0,
then X[p](k) = {0}, i.e. the elliptic curve has no p-torsion points. In this case it is called a
supersingular elliptic curve.
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Example 1.14 allows us to give the following definition.

Definition 1.15. Again let X be a g-dimensional abelian variety over a field of characteristic p
with algebraic closure k. Then X is supersingular if, over k, it is isogenous to a product of g
supersingular elliptic curves:

X ∼k E1 × . . .× Eg,

with Ei[p](k) = {0} for all 1 ≤ i ≤ g, and superspecial if, over k, it is moreover isomorphic to
such a product:

X ≃k E1 × . . .× Eg.

Supersingular abelian varieties will be the main players in the second half of this course.
They are called supersingular not because they are singular, but because they are much rarer
than ordinary varieties.

The following result shows that all superspecial abelian varieties of the same dimension ≥ 2
are k-isomorphic, and hence that all supersingular abelian varieties of the same dimension ≥ 2
are k-isogenous.

Proposition 1.16. (Deligne, [52, Theorem 6.2], [67, Theorem 3.5]) Let n ≥ 2 and let E1, . . . , E2n

be supersingular elliptic curves over k = Fp. Then E1 × . . .× En ≃ En+1 × . . .× E2n.

Remark 1.17. There is a number of equivalent definitions of supersingularity. One such is
the following: an abelian variety X over Fq is supersingular if all of its Weil numbers α satisfy
that α/

√
q is a complex root of unity. In Subsection 2.3 we will see that two other definitions

are that its p-divisible group is k-isogenous to G
⊕ dim(X)
1,1 , or that its Newton polygon is a line

segment of unique slope 1/2.
From the above, it may seem that we could have equivalently defined a supersingular abelian

variety to have p-rank zero. While supersingular abelian varieties will always have p-rank zero,
the other implication holds only in dimensions 1 and 2.

We also saw in Definition 1.4 how to construct ℓ-adic Tate modules of X over K for any
prime ℓ coprime to char(K). This construction thus also works well when working over fields
of characteristic p, as long as ℓ ̸= p. The analogous p-adic Tate module of a g-dimensional
abelian variety X would have rank f ≤ g (instead of 2g), so we lose some information with this
construction. Instead, we therefore work with the p-divisible group.

Definition 1.18. (cf. [69, Definition 2.1]) Let X be an abelian variety over a field of charac-
teristic p. Its p-divisible group is the direct limit

X[p∞] = lim−→
n

X[pn]

of the inductive system (X[pn])n≥1 of group schemes with respect to the natural inclusions

in : X[pn] ↪→ X[pn+1] for which the sequences 0 → X[pn]
in−→ X[pn+1]

[pn]−−→ X[pn+1] are exact.
The rank of each X[pn] as a group scheme is (pn)2 dimX , hence the height of X[p∞] is 2 dim(X).

A notion closely related to the p-divisible group of an abelian variety is its Dieudonné module.
We first define Dieudonné modules in general, cf. [40, §5.2].

Definition 1.19. Let K be a perfect field of characteristic p (e.g. K = Fq or K = k = Fp).
Let W = W (K) be the ring of infinite Witt vectors over K with an automorphism σ induced
from the automorphism x 7→ xp on K. A Dieudonné module over K is a finite W -module
equipped with a σ-linear map F (Frobenius) and a σ−1-linear map V (Verschiebung) satisfying
FV = V F = p.
Define A = lim←−n

W [F, V ]/pnW [F, V ] (i.e. we view F, V as indeterminates) with the relations

FV = V F = p and commutation rules wV = V σ(w) and Fw = σ(w)F for all w ∈ W . Then a
Dieudonné module is a left A-module which is finitely generated as a W -module.
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There is an anti-equivalence G 7→M(G) between finite commutative group schemes G over K
of p-power rank (pn) and left A-modules M(G) of finite W -length (n). We now use this to
determine the Dieudonné module of an abelian variety through its p-divisible group.

Definition 1.20. Let X be an abelian variety over a field K of characteristic p. Its (contravari-
ant) Dieudonné module is

M(X) =M(X[p∞]) = lim←−
n

M(X[pn]),

where for each n,
M(X[pn]) := lim−→

m

HomK(X[pn],Wm),

where Wm is the m-th Witt group scheme (a ring scheme defined by equipping An
K with Witt

vector addition and multiplication), so that the formal scheme lim−→m
Wm = W gives a ring

isomorphism W(K) ≃ W (K), cf. [40, §5.1]. Then M(X[pn]) is a free W/pnW -module of rank
2 dim(X) for every n, and the Dieudonné module of X is free of rank 2 dim(X) over W .

The Frobenius and Verschiebung maps on abelian varieties translate into semi-linear operators
on their Dieudonné modules. While their definition might seem a bit cumbersome, the structure
of these modules is well understood and explicit, making Dieudonné modules great tools with
which to study abelian varieties.

In fact, many important results about abelian varieties (about their moduli spaces, deforma-
tions, etc.), some of which are contained in the later sections of these notes, were proved by first
proving the corresponding result for Dieudonné modules. To make these notes as self-contained
and computation-light as possible, I have omitted these proofs, referring to the reference instead.

For now, the main thing to take away is that Dieudonné modules are really the “right” objects
to study, since the analogue of Tate’s theorem (Theorem 1.5, Equation (2)) now holds:

Theorem 1.21. If X,Y are two abelian varieties over a finite field K = Fq, then there is an
isomorphism

(4) Hom(X,Y )⊗Z Zp
∼−→ HomA(M(Y ),M(X)).

Note that the order on the right-hand side of Equation (4) is the opposite of that in (2), by
contravariance of the Dieudonné module.

Remark 1.22. The p-torsion and p-divisible group of an abelian variety gives rise to other
invariants of the abelian variety, such as the Newton polygon and the Ekedahl-Oort type. We
will define and study these in detail in the next section.

1.3.4. The a-number.
To conclude this section we introduce the a-number, another important invariant of abelian
varieties which we will use many times in the next sections. We first define the group scheme αp

appearing in its definition.

Definition 1.23. Let αp denote the finite group scheme representing R 7→ Spec(R[x]/(xp)) for
any ring R of characteristic p. In other words, it is the kernel of the Frobenius morphism on
the additive group Ga.

It can be shown that αp is one of the three non-isomorphic group schemes over k of rank p,
the others being µp and Z/pZ; the latter are each other’s Cartier dual, while αp is self-dual.

Definition 1.24. Again let X be an abelian variety over a field K of characteristic p. Its
a-number is

a(X) := dimK Hom(αp, X).

The a-number does not depend on the ground field, so we could replace K with any extension
here, and we will later often use k = Fp instead.

The a-number of a Dieudonné moduleM is dimK M/(F, V )M , where F, V respectively denote
the semi-linear Frobenius and Verschiebung operators. Then a(X) = a(M(X)).
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Remark 1.25. When g = dim(X), we have 0 ≤ a(X) ≤ g, and even 0 ≤ a(X) + f(X) ≤ g.
Generically, the a-number of a non-ordinary abelian variety (with f(X) < g) is 1.

Superspecial abelian varieties have maximal a-number g = dim(X) by definition (Defini-
tion 1.15). In fact the converse holds too, cf. [55, Theorem 2].

2. The moduli space Ag of principally polarised abelian varieties

2.1. Introduction.
In the previous section, we collected some useful facts to study abelian varieties over finite fields
and their arithmetic properties. Now, rather than considering individual abelian varieties, we
will develop the tools that are needed to consider families of abelian varieties. This will enable
us to study the variation in arithmetic properties of the abelian varieties.

To this end, we will use the concept of a moduli space, discussed in Subsection 2.2. Very
roughly speaking, the points of a moduli space correspond to isomorphism classes of varieties.
The main advantage of working with moduli spaces is that these are (at least in favourable
cases like Ag) themselves schemes, whose geometry we can study.

We will define the moduli space Ag = Ag,1 of principally polarised g-dimensional abelian
varieties, which was first constructed by Mumford in [46]. This moduli space is defined over Z,
but we will mostly be interested in the characteristic p fibre Ag⊗Fp, which for ease of notation
will again be denoted Ag (Notation 2.10).

Example 2.1. You might already be familiar with the moduli space A1 ⊗ C of elliptic curves
over the complex numbers. By complex uniformisation, for any elliptic curve E/C we have a
description E(C) ≃ C/Λ as a complex torus with some lattice Λ. Two such complex tori are
isomorphic if and only if the corresponding lattices are homothetic, i.e. they differ by a complex
scalar. Every homothety class of lattices has a representative Z⊕Zτ for some τ in the complex
upper-half plane H = {z ∈ C : im(z) > 0}. Now H carries an action of SL2(Z) through linear
fractional transformations - or rather of Γ = SL2(Z)/{±Id}, since ±Id both act trivially. The
upshot is that points of the quotient space Γ \H correspond to isomorphism classes of complex
elliptic curves, so we can think of this space as “the moduli space of complex elliptic curves”.

In Subsections 2.3 and 2.4 we will introduce four different stratifications on Ag, which are
defined using different (isogeny or isomorphism) invariants of the abelian varieties corresponding
to the moduli points. Again roughly speaking, a stratification is a certain way in which to break
up a space into disjoint locally closed subsets. Often, it is easier to study individual strata than
to study them all at the same time.

First, in Subsection 2.3, we will treat the p-rank and Newton (polygon) stratifications, which
are determined by isogeny invariants of respectively the p-rank and the p-divisible group of the
abelian varieties. The Newton stratification is a refinement of the p-rank stratification, i.e. the
p-rank is constant on each Newton stratum.

Second, in Subsection 2.4 we construct the a-number and Ekedahl-Oort stratifications, which
are defined in terms of isomorphism invariants, namely the a-number and the canonical filtration
of the p-torsion subscheme of the abelian varieties, respectively. The Ekedahl-Oort stratification
is a refinement of the a-number stratification, as well as of the p-rank stratification (since if
p-torsion subschemes are isomorphic, their sets of k-rational points have the same cardinality).

2.2. The moduli space Ag.
A moduli space (or moduli scheme) gives a way of classifying, or parametrising, a set of objects.
In algebraic geometry, these objects are typically algebraic varieties; for us, the objects will be
abelian varieties. There are two flavours of moduli spaces, which we define as follows.

Definition 2.2. Let F : {Scheme} → {Set} be a contravariant functor that sends any scheme S
to the set of isomorphism classes of objects over S.

(1) A coarse moduli space is a scheme F with a natural transformation F → Hom(−,F),
such that over an algebraically closed field k, the k-rational points F(k) are in bijection

8



with the set F (k). Moreover, we require that for any other scheme F ′ with this property,
the natural transformation F → Hom(−,F ′) factors uniquely through F → Hom(−,F).

(2) A fine moduli space is a scheme F representing F , i.e. for each scheme S we have an iso-
morphism F (S) = Hom(S,F). There is a universal family (namely, the unique element
of F (F) = Hom(F,F) corresponding to the identity map), which has the property that
any family of objects over S is uniquely a pullback of it.

In other words, while the fine moduli space actually represents the functor F if it exists,
the coarse moduli space does not have a universal family, but comes as close as possible to
representing F . The existence of a universal family (and hence of a fine moduli space) can be
obstructed by the existence of non-trivial automorphisms of the objects. An alternative solution
to this, taken in the prelude to this volume, is to work with (moduli) stacks; however, we will
not use this terminology in this course.

The following functor was first introduced in this way by Mumford [49] in the 1960’s. For
several notions mentioned below (abelian schemes, polarisations, and level-n structures) you
may want to consult the prelude to this volume.

Definition 2.3. For integers g, d, n ≥ 1, consider the functor

Ag,d,n : S 7→ {(X,λ, σ)}
where for any locally noetherian base scheme S on which n is invertible, the image is the set of
isomorphism classes of triples with X/S a g-dimensional abelian scheme, λ a polarisation on X

of degree d2, and σ : (Z/nZ)2g ∼−→ X[n] a level-n structure on X/S.

We will mostly be interested in the case where S = Spec(K) for a field K. Note that in
Definition 2.3 we allow n = 1; we write Ag,d = Ag,d,1. Further setting d = 1 means that we are
restricting ourselves to principally polarised abelian varieties; we write Ag = Ag,1.

Theorem 2.4. (cf. [49, Theorems 7.9 and 7.10])

(1) For n ≥ 3, the functor Ag,d,n is represented by a fine moduli scheme, denoted Ag,d,n,
which is defined over Spec(Z[1/n]) and quasi-projective.

(2) For any g, d, n ≥ 1, this functor has a coarse moduli space, often again denoted Ag,d,n,
which is defined over Spec(Z[1/n]) and quasi-projective.

Corollary 2.5. The coarse moduli space Ag of principally polarised abelian varieties (with
level-1 structure) exists over Spec(Z) and is quasi-projective.

Theorem 2.6. (cf. [24, pp. 106-107] and [53, Theorem 2.4.1]) For any d and n (including
d = n = 1), the moduli space Ag,d,n → Spec(Z[1/n]) has relative dimension g(g + 1)/2, and is
smooth over Spec(Z[1/dn]) if n ≥ 3.

Example 2.7. We saw in Example 2.1 how to construct a coarse moduli space Γ \ H, with
Γ = SL2(Z)/{±Id} and H = {z ∈ C : im(z) > 0}, of elliptic curves over C by viewing
E(C) ≃ C/Λ as a complex torus. For higher-dimensional principally polarised abelian varieties
X over C, say of dimension g, we can similarly identify X(C) ≃ Cg/Λ for some lattice Λ ⊆ Cg.
Again similarly, we find a coarse moduli space Ag ⊗ C ≃ Γg \ Hg, where Γg = Sp2g(Z) (and

where again {±Id} act trivially) and where Hg = {M ∈ Matg(C) : im(M) > 0,M =M t} is the
Siegel upper-half plane. Considering abelian varieties with level-n structure (with respect to a
choice of primitive n-th root of unity) comes down to considering the quotient Γg(n)\Hg where
Γg(n) = {A ∈ Sp2g(Z) : A ≡ Id2g mod n}.
Example 2.8. While Example 2.1 treated elliptic curves over C, we can consider elliptic curves
and their moduli space over any field K. If K = K is algebraically closed, the j-invariant of
an elliptic curve effectively encodes its isomorphism class over K. Thus a coarse moduli space
for elliptic curves is obtained by mapping a curve E to its j-invariant j(E) on the affine line A1

(“the j-line”). A fine moduli space generally does not exist because elliptic curves may have
non-trivial automorphisms.
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Remark 2.9. The moduli space Ag, and more generally Ag,n,d, have been studied in detail by
many mathematicians after Mumford. A detailed discussion is beyond the scope of these notes;
here we only mention some facts (cf. also [11, §3, pp. 4-9]).

• Chai and Faltings proved that Ag ⊗K is irreducible for any field K, cf. [12].
• A result attributed to Freitag, Tai and Mumford states that Ag ⊗ C is of general type
for g ≥ 7, cf. [47].
• The space Ag is not compact; over the years several different compactifications of Ag

have been constructed by Satake [66], Baily-Borel [2], Chai and Faltings [12], and Alex-
eev [1].

Notation 2.10. In this course, we will only work in characteristic p (with p > 0). Thus, we will
only consider the fibre Ag⊗Fp. To ease notation, we will denote this again by Ag. Moreover, we

will sometimes further ease the notation by identifying Ag with Ag(k), where k = Fp, e.g. when
writing “(X,λ) ∈ Ag” to mean the principally polarised abelian variety (X,λ) over k.

Later in this section, we will be concerned with various stratifications of Ag:

Definition 2.11. A stratification of a scheme X is a partition of X into a disjoint union of
finitely many closed or locally closed subsets. A good stratification satisfies the extra property
that the Zariski closure of each stratum is a union of the stratum itself and lower-dimensional
strata.

2.3. The p-rank and Newton stratifications.
We introduce two stratifications on Ag, which are respectively determined by the p-rank of the
abelian variety and the isogeny type of the p-divisible group of the abelian variety; the latter is
combinatorially encoded in the Newton polygon of the abelian variety.

Both stratifications are therefore isogeny invariants, meaning that in each, two isogenous
abelian varieties will lie in the same stratum. Furthermore, the stratification by Newton polygon
is a refinement of the stratification by p-rank, since truncations of isogenous p-divisible groups
will yield isogenous p-torsion schemes.

Below, we will state the main facts about p-rank strata, and spend most of our time on the
Newton stratification.

2.3.1. The p-rank stratification.
Recall from Definition 1.12 that the p-rank f(X) ofX/k is the integer f such that |X[p](k) | = pf .
The p-rank is an isogeny invariant, and 0 ≤ f(X) ≤ g = dim(X). Below, we first give an alter-
native definition. Then we define the p-rank strata Vf and study some of their properties.

Definition 2.12. Let X be an abelian variety over a field of characteristic p with algebraic
closure k.

We may equivalently define the p-rank of X as the stable rank of its Hasse-Witt matrix. This
matrix is a representation of the action of the induced Frobenius map F ∗ on the Čech coho-
mology, i.e. F ∗ : H1(X,OX) → H1(X,OX). Its stable, or semi-simple, rank is the dimension
of the semisimple part of H1(X,OX) under this action, i.e.

f = dimH1(X,OX)ss = dim(∩∞n=1im((F ∗)n)).

Definition 2.13. For any 0 ≤ f ≤ g, consider the subset

Vf = {x = (X,λ) ∈ Ag(k) : f(X) ≤ f}.

We call such an Vf a (closed) p-rank stratum. We see that Vf ⊆ Vf+1 for any f ≤ g − 1.
The Vf form closed subschemes of Ag by [54, Corollary 1.5], since the p-rank decreases under
specialisation, i.e. for any abelian scheme, the p-rank of any geometric fibre is at most equal to
the p-rank of the generic fibre.

One of the first results on the Vf was the following, originally stated by Oort for not necessarily
algebraically closed fields k.
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Lemma 2.14. (cf. [54, Lemmas 1.4 and 1.6]) Let S be an irreducible k-scheme and X → S an
abelian scheme. Let f be the p-rank of the generic fibre and let W ⊆ S be the closed subset over
which the fibre has p-rank at most f − 1. Then either W = ∅ or every component of W has
codimension 1 in S.

Denoting an irreducible component of Vf by Wf , this lemma says that if Wf−1 ⊆ Wf and
Wf−1 ̸= Wf , then dim(Wf ) − dim(Wf−1) = 1. For any f < g, it follows inductively that the
codimension of any Wf in Ag is at most g − f .

To prove the following result, Koblitz [35] establishes the reverse inequality, by computing
the codimension of the Zariski tangent space to any Vf via local deformations of the abelian
varieties.

Theorem 2.15. (cf. [35, Theorem 7.(1)]) For any 0 ≤ f ≤ g, we have

codim(Wf ) = g − f.

In the same theorem, Koblitz establishes that Vf is smooth at those abelian varieties whose
Hasse-Witt matrix has (full) rank g − 1.

Remark 2.16. It follows from Theorem 2.15 that each irreducible component Wf contains an
open dense set of points with p-rank f ; otherwise Wf would be an irreducible component of
Vf−1 and then codim(Wf ) ≤ g − f + 1, contradiction. Hence, the p-rank strata form a good
stratification of Ag in the sense of Definition 2.11.

Example 2.17. (cf. [35, § 11, p. 193]) Let g = 2, so dim(A2) = 3 and 0 ≤ f ≤ 2, so V2 = A2.
In [35, § 8], Koblitz shows how to conveniently normalise Hasse-Witt matrices by making suitable
choices of basis for H1(X,OX). For g = 2 this yields four “isomorphism” types of normalised
Hasse-Witt matrices, with the following representatives:(

1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 0

)
.

• The abelian varieties X with p-rank f(X) = 2 have Hasse-Witt matrix ( 1 0
0 1 ).

• The abelian varieties with p-rank f(X) = 1 have Hasse-Witt matrix ( 1 0
0 0 ). Theorem 2.15

yields that codim(V1) = 2− 1 = 1, so dim(V1) = 2.
• The abelian varieties with p-rank zero have Hasse-Witt matrix either ( 0 1

0 0 ) or (
0 0
0 0 ); these

correspond to (non-superspecial) supersingular and superspecial surfaces, respectively.
Theorem 2.15 yields that dim(V0) = 1. (In fact V0 = S2 is precisely the supersingular
locus, which indeed has dimension ⌊22/4⌋ = 1.)
• V1 and V0 are both singular precisely at the abelian varieties with Hasse-Witt matrix
( 0 0
0 0 ); in both cases these are isolated points, conic (A1) singularities in V1 and ordinary

(p+1)-points in V0. These points correspond precisely to superspecial abelian varieties.

Five years after Koblitz’ results, Norman and Oort [50] generalise Theorem 2.15 to abelian
varieties that are polarised but not principally polarised, i.e. to the moduli space Ag,d. Rather
than directly studying deformations of abelian varieties, Norman-Oort prove facts about defor-
mation spaces of the corresponding Dieudonné modules. Their result can be stated as follows.

Theorem 2.18. (cf. [50, Theorems 3.1 and 4.1])

(1) Let Vf be the closed subscheme of ∪∞d=1Ag,d of abelian varieties with p-rank at most f .
Any irreducible component Wf of Vf has codimension g − f . Its generic point has
a-number 1.

(2) The generic point of any component of Ag,d is an ordinary abelian variety (with maximal

p-rank f(X) = g) and the dimension of each component is g(g+1)
2 .

2.3.2. The Newton polygon stratification.
To any abelian variety X we can associate a Newton polygon, which is an isogeny invariant that
depends on the canonical decomposition of its p-divisible group. We therefore first provide a
general decomposition result for p-divisible groups up to k-isogeny due to Manin (Theorem 2.19),
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then give its form for p-divisible groups of abelian varieties (Theorem 2.21), and describe how to
attach a Newton polygon to this data (Definition 2.23). Then we define the Newton (polygon)
strata and study some of their properties.

Recall the definition of the p-divisible group X[p∞] of an abelian variety X over k from
Definition 1.18. The following result gives a decomposition result for any p-divisible group (not
necessarily coming from an abelian variety) up to k-isogeny.

Theorem 2.19. (cf. [41, §II.4], see also [6, §IV.4]) Any p-divisible group Y is k-isogenous to a
finite direct product

Y ∼k

∏
i

Gmi,ni ,

where for any pair of coprime integers (m,n), Gm,n is the unique (up to isogeny) isosimple p-
divisible group whose dimension is m, whose height is m+ n, and whose dual has dimension n.

Remark 2.20. When (m,n) = (1, 0), Gm,n is the formal group of Gm; when (m,n) = (0, 1) it
is Qp/Zp, and otherwise it is a local-local group scheme. We see that an ordinary elliptic curve
has p-divisible group G1,0 ⊕G0,1 while a supersingular elliptic curve has p-divisible group G1,1.

Since any abelian variety admits a polarisation (of some degree), its Dieudonné module admits
a quasi-polarisation; this is equivalent to a symmetry condition on its p-divisible group which
implies that whenever a Gm,n occurs in the isogeny decomposition, so does its dual Gn,m (with
the same multiplicity). Thus, for p-divisible groups of abelian varieties, Theorem 2.19 specialises
to the following statement.

Theorem 2.21. (cf. [41, §IV.3, Theorem 4.1], see also [40, §1.4]) Any p-divisible group X[p∞]
of an abelian variety X is k-isogenous to a direct product

(5) X[p∞] ∼k

∏
i

(Gmi,ni ⊕Gni,mi)
⊕

G⊕s
1,1

⊕
(G1,0 ⊕G0,1)

⊕f ,

for mi, ni ∈ Z>0 coprime, and 0 ≤ s, f such that s + f ≤ g. This decomposition is also called
the formal isogeny type of X.

Remark 2.22. We see from Theorem 2.21 that X is supersingular if X[p∞] ∼k G
⊕ dim(X)
1,1 ; this

is in fact an equivalent definition of supersingularity. We also see that f is the p-rank of X and
in particular that X is ordinary if X[p∞] ∼k (G1,0 ⊕G0,1)

⊕ dim(X).

Using the formal isogeny type of an abelian variety X, we now construct its Newton polygon.
This procedure generalises to any p-divisible group.

Definition 2.23. (cf. [57, §1.6]) Let X be a g-dimensional abelian variety over k with formal
isogeny type given by (5). To every Gm,n we associate a slope λ = m

m+n and a multiplicity

m+n. Arrange the slopes in non-decreasing order. This determines a (“g-dimensional”) Newton
polygon starting at (0, 0) and ending at (2g, g), by joining line segments of the prescribed slopes
λ with length equal to their respective multiplicities. We denote it by N (X).

The Newton polygon is lower convex and has its breakpoints at integral coordinates, since
every slope appears with a multiplicity that is a multiple of its denominator. By symmetry
of (5), the Newton polygon is also symmetric, in the sense that any slope λ appears with the
same multiplicity as the slope 1− λ.

Notation 2.24. The ordinary Newton polygon is often denoted ρ and the supersingular one σ.

Example 2.25. The slopes of a g-dimensional ordinary abelian variety are 0 and 1, each with
multiplicity g (since G1,0 has slope 1/(1 + 0) = 1 and G0,1 has slope 0/(0 + 1) = 0); those of a
supersingular abelian variety are 1/2 everywhere (since G1,1 has slope 1/(1 + 1) = 1/2).

Below we have drawn the Newton polygon of an ordinary threefold and that of a supersingular
threefold (so g = 3).
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ρ σ

Manin conjectured in [41, §IV.5, Conjecture 2, p. 76] that the converse of his Theorem 2.21
also holds. That is, he conjectured that every formal isogeny type of the form (5) (or equiva-
lently, every symmetric Newton polygon as in Definition 2.23) occurs as N (X) for some abelian
variety X in any positive characteristic. This was first proved independently by Honda and
Serre, cf. [70, p. 98]. It was later reproved by Oort using deformation theory, cf. [57, §5]. The
latter methods were also used to prove strong results on Newton polygon strata (see Theo-
rem 2.34), as we will explain below.

Definition 2.26. Consider the set of g-dimensional symmetric Newton polygons. We put a
partial ordering on this set, by defining that α ≺ β for two polygons α and β if no point of α
lies strictly below β. We say “α lies above β”.

Example 2.27. We see from Example 2.25 that σ ≺ ρ. In fact σ ≺ ξ ≺ ρ for any other
symmetric Newton polygon ξ, so ξ will lie strictly between ρ and σ.

ρ dashed, σ solid

Definition 2.28. For any g-dimensional symmetric Newton polygon ξ, we define the subsets

Wξ := {(X,λ) ∈ Ag : N (X) ≺ ξ};
W 0

ξ := {(X,λ) ∈ Ag : N (X) = ξ}.
It was proved by Katz (cf. [34, Theorem 2.3.1, Corollary 2.3.2]) that the Wξ are closed, hence
the W 0

ξ are locally closed. Both are called Newton polygon strata; often the Wξ are closed

strata while the W 0
ξ are open strata. The stratification by {W 0

ξ }ξ is a good stratification of Ag.

Remark 2.29. In Definition 1.12 we gave two equivalent definitions of the p-rank of an abelian
variety X over k. A third equivalent definition is that the p-rank of X equals the number of
zero slopes in the Newton polygon of X. The lowest Newton polygon with prescribed p-rank
f is α = f(1, 0) + (g − f − 1, 1) + (1, g − f − 1) + f(0, 1), according to [56, Remark 3.3]. That
means that Wα = Vf , i.e. the p-rank f stratum coincides with the Newton stratum of α.

Definition 2.30. (cf. [58, §1.9]) For any g-dimensional symmetric Newton polygon ξ, define

△(ξ) :={(x, y) ∈ Z× Z : y < x ≤ g, (x, y) ≺ ξ};
sdim(ξ) :=|△(ξ)|.
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That is, △(ξ) contains all the integral lattice points strictly within the g × g region lying
above ξ, and sdim(ξ) gives the number of such lattice points.

Remark 2.31. For general g, you may convince yourself that sdim(ρ) = g(g+1)
2 and sdim(σ) =

⌊g
2

4 ⌋. These numbers have an important geometric meaning: we have already seen that

dim(Ag) =
g(g+1)

2 and we will see in Theorem 3.15 that the dimension of the supersingular locus

Sg equals ⌊g
2

4 ⌋. This is no coincidence: we will see in Theorem 2.34.(3) that sdim(ξ) = dim(Wξ)
for any symmetric Newton polygon ξ. By definition Wσ = Sg, explaining the second result; for
the first, we note that the ordinary locus in Ag is open and dense.

Example 2.32. For ρ and σ as given in Example 2.25, we determine △(ξ) in the images below.
The elements of △ are marked by circles; the dashed line is the line y = x.

△(ρ) △(σ)

We see that sdim(ρ) = 6 and sdim(σ) = 2 when g = 3. We also see that the longest chain of
Newton polygons σ ≺ . . . ≺ ρ has length sdim(ρ)− sdim(σ) = 4.

Now consider an abelian scheme X → S over a base scheme S in characteristic p. Grothendieck
proved, cf. [6, §IV.7], that if X0 is a specialisation of Xη, then N (X0) ≺ N (Xη), i.e. the Newton
polygon goes up under specialisation. He conjectured the converse, which was proved by Oort
(announced in [56], proved in [57] and [58, Corollary 3.2]): if α = N (X0) is the (necessarily
symmetric) Newton polygon of a principally polarised abelian variety X0, and α ≺ β for some
other symmetric Newton polygon β, then there exists an irreducible scheme S and a principally
polarised abelian scheme X → S such that its special fibre is X0 and its generic fibre Xη has
Newton polygon N (Xη) = β.

Remark 2.33. The principally polarised condition onX0 is important: for any g ≥ 3 there exist
counterexamples to Grothendieck’s conjecture with non-principally polarised abelian varieties,
cf. [57, Remark 6.4] and [33, Remark 6.10].

As alluded to above, Grothendieck’s conjecture was proved by studying deformations of p-
divisible groups: one needs both deformations within a Newton polygon stratum to obtain a
scheme X with a(Xη) = 1, and deformations of (p-divisible groups of) such abelian varieties of
a-number 1 to other Newton polygon strata. To deform within a Newton polygon stratum, a
purity result due to de Jong and Oort [29, Theorem 4.1] is used, which says that if the Newton
polygon jumps in a family of p-divisible groups (over an irreducible noetherian scheme) then it
already jumps in codimension 1.

More importantly for us, these techniques imply the following results for Newton strata Wξ:

Theorem 2.34. (cf. [56, Theorem 2.6], [57, Theorem 3.4], [58, Theorem 4.1]) Let ξ be a sym-
metric Newton polygon and let W ⊆Wξ be an irreducible component of the Newton stratum Wξ.

(1) Generically on W , the Newton polygon is ξ.
(2) Generically on W , the a-number is 1, unless ξ = ρ (for which the a-number is 0).
(3) The dimension of W is sdim(ξ).
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It was already noted in [56, Theorem 2.6.(c)] that Wξ is connected whenever g > 1 (since
every irreducible component W ⊆ Wξ contains an irreducible component of the supersingular
locus Wσ) and conjectured in [58, §5.1] that Wξ is geometrically irreducible for any ξ ̸= σ. The
latter was proven ten years later by Chai and Oort using monodromy arguments:

Theorem 2.35. (cf. [5, Theorem 3.1]) For any g-dimensional symmetric Newton polygon ξ
such that ξ ̸= σ, the Newton stratum Wξ ⊆ Ag (and hence also W 0

ξ ) is geometrically irreducible.

2.4. The a-number and Ekedahl-Oort stratifications.
We now introduce two other stratifications on Ag. They are respectively determined by the
a-number of the abelian variety, cf. Definition 1.24, and by combinatorial data attached to the
p-torsion scheme of an abelian variety, introduced by Ekedahl and Oort.

It is worth noting that both stratifications are determined by isomorphism invariants, while
the p-rank and Newton stratifications introduced in Subsection 2.3 were defined by isogeny
invariants (of the p-torsion and p-divisble group).

The a-number stratification is easier to define, but harder to analyse than the Ekedahl-Oort
stratification. Moreover, the latter refines the former: that is, each a-number stratum is a
disjoint union of Ekedahl-Oort strata. Therefore, we will say relatively little about a-number
strata, focussing on setting up the theory needed for the Ekedahl-Oort stratification.

2.4.1. The a-number stratification.
Recall the definition of the a-number a(X) := dimk Hom(αp, X) of an abelian variety X over k
(Definition 1.24).

The a-number is an isomorphism invariant, and we may use it to define a stratification with
strata consisting of abelian varieties with the same a-number; cf. [10, 71].

Definition 2.36. For any 0 ≤ n ≤ g, consider the subsets

Tn = Ag(a ≥ n) := {x = (X,λ) ∈ Ag : a(X) ≥ n}; and let

Ag(n) := {x = (X,λ) ∈ Ag : a(X) = n}.

The Tn are closed, while theAg(n) are locally closed. We see that Tn ⊇ Tn+1 for any n ≤ g−1,
and hence the Tn form a good stratification of Ag.

The locus Tg = Ag(g) consists of all superspecial abelian varieties by [55], and hence has
dimension zero. It is reducible, since it consists of a number of superspecial points. For any
n ≤ g − 1 however, Tn is irreducible, by [71, Theorem 2.11], see also [59, Corollary 1.5] for the
the case of T1.

In [10, Theorem 12.5], Ekedahl and van der Geer compute the cycle classes of the Tn in the

Chow ring CH∗
Q(Ãg). In the same paper, they also compute the cycle classes of the p-rank

strata, and of the Ekedahl-Oort strata which we will soon define.
In Subsection 3.5.1 we will give more precise results on the a-number stratification on the

supersingular locus Sg, as defined in [40, § 9.9-9.11], which are due to Harashita. On Ag,
we generally obtain more interesting results than for a-number strata by considering their
refinement by Ekedahl-Oort strata, which we introduce next.

2.4.2. The Ekedahl-Oort stratification.
As mentioned above, the definition of the Ekedahl-Oort stratification is more involved, since
we will first need to define and characterise several types of filtrations on group schemes in
characteristic p. We then apply this to the p-torsion group scheme X[p] of a (principally
polarised) abelian variety to obtain the stratification Ag = ⊔φSφ; some of its properties are
listed in Theorem 2.51.

The main reference for the Ekedahl-Oort stratification is [59]. The description of the strata
in terms of Weyl group elements can be found in [10].
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Notation 2.37. Recall the relative Frobenius and Verschiebung morphisms from Definition 1.6.
Here we will consider them for group schemes G over S = Spec(k) and should therefore denote
them by FG/k and VG/k, respectively. For ease of notation however, we will write F and V
throughout this section.

Definition 2.38. A finite flat commutative group scheme G over k – or more generally over any
base scheme in characteristic p – is a BT1 (“Barsotti-Tate truncated level one group scheme”)
if it satisfies:

im(V : G(p) → G) = ker(F : G→ G(p)), im(F : G→ G(p)) = ker(V : G(p) → G).

Since V ◦ F = F ◦ V = [p], this implies that [p]G = 0, i.e. G is annihilated by p.

A BT1 is symmetric if it admits an isomorphism to its Cartier dual: ι : G
≃−→ GD.

For an abelian variety X over k, or over any field K of characteristic p, we see that the
p-torsion subscheme X[p] is a BT1. If X admits a polarisation of degree coprime to p, e.g. a
principal polarisation, then X[p] is symmetric.

On any BT1, we can act by Frobenius and Verschiebung, their powers and their inverses. On
a symmetric BT1, we can moreover act on any finite subscheme H ⊆ G via

−(H) := ker(G
ι−→ GD → HD).

We now use these actions to introduce filtrations on BT1 group schemes over k.

Definition 2.39. Let G be a BT1 over a field K of characteristic p.

(1) The canonical filtration of G

0 = G0 ⊆ . . . ⊆ Gs = V (G) ⊆ . . . ⊆ Gt = G

is obtained inductively as the finite set

{w(G) : w is a finite word in V and F−1};
if G is symmetric, its canonical filtration is equivalently obtained as the finite set

{w′(G) : w′ is a finite word in V and −}.
One can think of first applying V i to G for all i > 0, then applying F−j to these images
for all j > 0, et cetera; if the rank of G is pr, this process stabilises after 2(r− 1) steps,
in the sense that we stop producing new group schemes.

(2) For G that is also symmetric, a good filtration of G is a filtration

0 = G0 ⊆ . . . ⊆ Gs = V (G) ⊆ . . . ⊆ G2s = G

into subgroup schemes Gi such that Gi ̸= Gi+1 for all 0 ≤ i ≤ 2s−1, and −(Gj) = G2s−j

for all 0 ≤ j ≤ 2s. Moreover, every Gi for i ≤ s is the image of Verschiebung acting

on G
(p)
j for some j and every such image occurs this way.

Every canonical filtration is a good filtration, by [59, Proposition 5.4], of minimal length.
(3) A final filtration of G of rank pr is a good filtration of maximal (even) length r where

each Gi has respective rank pi.

Example 2.40. Let g = 3. Consider a supersingular abelian threefold X over k with a-
number 2. Then it follows from [17, Theorem 5.1.(2)], building on results in [16] on supersingular
Dieudonné modules, that the canonical filtration of G = X[p] is of the form

0 = G0 ⊆ G1 ⊆ G2 ⊆ G3 ⊆ G4 ⊆ G5 ⊆ G6 = G,

where as finite words in V and F−1, we have

G0 = 0, G1 = V 2(G), G2 = V F−1V (G),

G3 = V (G), G4 = F−1V 2(G), G5 = F−1V (G), G6 = G = X[p].

This is shown by choosing explicit bases and representing V and − as matrices (note that in [17]
words in F,⊥ are considered, which is equivalent).
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To these filtrations, we now attach a type, which we will see in Theorem 2.43 determines G
up to isomorphism over k = Fp.

Definition 2.41. (1) The canonical type attached to the canonical filtration of G is the
triple of functions

τ = {v : {0, . . . , t} → {0, . . . , s}, f : {0, . . . , t} → {s, . . . , t}, ρ : {0, . . . , t} → Z≥0}

such that:
• Via V (Gi) = Gv(i) we keep track of the action of Verschiebung;

• Via F−1(Gi) = Gf(i) we keep track of the action of F−1;

• Via rank(Gi) = pρ(i) we encode the ranks.
The functions v and f are non-decreasing and surjective and by [59, Lemma 2.4] satisfy

v(i+ 1) > v(i)⇔ f(i+ 1) = f(i);

v(i+ 1) = v(i)⇔ f(i+ 1) > f(i);

f(i) + v(i) = t+ i.

The function ρ is strictly increasing and satisfies ρ(0) = 0. More generally, any triple
τ = (v, f, ρ) satisfying these conditions is called a canonical type.

(2) If G is symmetric, so t = 2s for some s, then its canonical type further satisfies

f(j) = 2s− v(2s− j) = s+ j − v(j);
ρ(j + 1)− ρ(j) = ρ(2s− j)− ρ(2s− j − 1).

Any triple τ = (v, f, ρ) satisfying all conditions above forms a symmetric canonical type.
(3) On any good filtration, by [59, Proposition 5.5] the analogously defined functions v, f

on {0, . . . , 2s} further satisfy

v(j) = v(j + 1)⇔ v(2r − j) = v(2r − j − 1) + 1;

v(j) < v(j + 1)⇒ v(j + 1) = v(j) + 1.

Example 2.42. In the setting of Example 2.40, where s = g = 3, the canonical type is given
by:

v : {0, 1, 2, 3, 4, 5, 6} → {0, 1, 2, 3}
v(0) = v(1) = v(2) = 0, v(3) = v(4) = 1, v(5) = 2, v(6) = 3;

f : {0, 1, 2, 3, 4, 5, 6} → {3, 4, 5, 6}
f(0) = 3, f(1) = 4, f(2) = f(3) = 5, f(4) = f(5) = f(6) = 6;

ρ : {0, 1, 2, 3, 4, 5, 6} → Z≥0

ρ(i) = i for all 0 ≤ i ≤ 6.

Theorem 2.43. (cf. [65, Proposition 3.5], [42, Theorem 4.7], [59, Theorem 9.4]) If the BT1

group schemes G and G′ have the same canonical type, then they are k-isomorphic: G ≃k G
′.

Remark 2.44. We see that every canonical filtration gives rise to a canonical type. Conversely,
it is claimed in [59, Remark 2.8] that every canonical type arises from a canonical filtration of
some BT1; in [65, Remark 3.7] it is pointed out that every canonical type occurs through some
filtration of a BT1, but that might be a strict refinement of the canonical filtration.

Remark 2.45. As is explained in [71, § 2], for an abelian variety X we may equivalently
define the canonical filtration of the p-torsion group scheme X[p] and its canonical type by
considering its de Rham cohomology H1

dR(X); on this space we also have actions of Frobenius
and Verschiebung, that are moreover adjoints under the symplectic form.
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Definition 2.46. (1) A final sequence is a function ψ : {0, 1, . . . , 2s} → Z≥0 satisfying

ψ(0) = 0;

ψ(2s) = s;

ψ(i) ≤ ψ(i+ 1) ≤ ψ(i) + 1 for all 0 ≤ i < 2s;

ψ(i) + 1 = ψ(i+ 1)⇔ ψ(2s− 1) = ψ(2s− i− 1).

(2) An elementary sequence is a function φ : {0, 1, . . . , s} → Z≥0 satisfying

φ(0) = 0;

φ(i) ≤ φ(i+ 1) ≤ φ(i) + 1 for all 0 ≤ i < s.

Because of the conditions ψ(0) = 0 = φ(0), we may view both types of sequences as functions
on {1, . . . , 2s} and {1, . . . , s}, respectively.

We define a partial ordering ≺ on the set of 2s elementary sequences by

(6) φ′ ≺ φ⇔ φ′(i) ≤ φ(i) for all 0 ≤ i ≤ s.
The smallest stratum with this ordering is therefore φ = (0, 0, . . . , 0); this corresponds to the
superspecial locus.

We can turn a final sequence ψ into an elementary sequence by truncating it, i.e. by restrict-
ing ψ to {0, 1, . . . , s}. Conversely, we can “stretch” an elementary sequence to a final sequence
by defining φ(2s− i) = φ(i) + s− i for all 0 ≤ i ≤ s. Thus, the data of an elementary sequence
is equivalent to that of a final sequence, and we will use them interchangeably in the sequel.

Further, we can inductively define an elementary sequence φ corresponding to a symmetric
canonical type τ = (v, f, ρ) as follows: having defined {φ(0), φ(1), . . . , φ(ρ(i))} with ρ(i) <
ρ(i+1) ≤ s, we determine the next ρ(i+1)−ρ(i) entries, yielding {φ(0), φ(1), . . . , φ(ρ(i+1))},
by taking {

φ(ρ(i+ 1)) = . . . = φ(ρ(i) + 1) = φ(ρ(i)) if v(i) = v(i+ 1);

φ(ρ(i+ 1)) > . . . > φ(ρ(i) + 1) > φ(ρ(i)) if v(i) < v(i+ 1).

Alternatively, we may refine the canonical filtration giving rise to τ into a final filtration of
length 2s and set φ(i) = dim(FGi) for all 0 ≤ i ≤ s. This final filtration may not be unique,
but its type will be and hence also the final sequence. Conversely, Oort gives a “canonical
construction” to obtain a canonical type from a final sequence, cf. [59, p. 18]. We will not need
it in this course.

Example 2.47. Taking the canonical type of Example 2.42, we see that ρ(i+1)− ρ(i) = 1 for
all i, and so we inductively define the following elementary sequence one step at a time:

φ = (φ(0), φ(1), φ(2), φ(3)) = (0, 0, 0, 1).

That is, the value of φ jumps exactly when that of v does.

Definition 2.48. For any g ≥ 1, the Weyl group Wg ≃ (Z/2Z)g ⋊ Sg of the symplectic
group Sp2g is the permutation group

Wg = {w ∈ S2g : w(i) + w(2g + 1− i) = 2g + 1 for all 1 ≤ i ≤ g}
= ⟨σi = (i, i+ 1)(2g − i, 2g + 1− i) for all 1 ≤ i < g, and σg = (g, g + 1)⟩

generated by the reflections σ1, . . . , σg.

The Bruhat-Chevalley order on Wg, denoted ≺BC , for any two elements w : (1, . . . , 2g) 7→
(w(1), . . . , w(2g)) and w′ : (1, . . . , 2g) 7→ (w′(1), . . . , w′(2g)) is defined by

w ≺BC w′ ⇔ for all 1 ≤ d ≤ g, the dth-largest element of (w(1), . . . , w(d))

≤ the dth-largest element of (w′(1), . . . , w′(d)).
(7)
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To a symmetric canonical type τ = (v, f, ρ) we can associate a Weyl group element of Ws as
follows: write all 1 ≤ i ≤ s for which v(i) = v(i−1) in increasing order as S = {i1, i2, . . .}. Also
write the complement of S in {1, . . . , s} in increasing order, as Sc = {j1, j2, . . .}. Now define
the permutation w : (1, 2, . . . , 2s) 7→ (w(1), . . . , w(2s)) in S2s via

w(ℓ) =


k if ℓ = ik for some k;

s+ k if ℓ = jk for some k;

2s+ 1− w(i) if ℓ = 2s+ 1− i for some 0 ≤ i ≤ s;
Then w ∈Ws by construction and by the symmetry properties of v. In particular, the sequence
(w(1), . . . , w(2s)) is uniquely determined by the subsequence (w(1), . . . w(s)).

Example 2.49. Following up with Examples 2.40, 2.42, and 2.47, we see that v(i) = v(i − 1)
holds for i ∈ S = {1, 2}. Its complement in {1, 2, 3} is therefore Sc = {3}. This yields the
permutation

w : (1, 2, 3, 4, 5, 6) 7→ (1, 2, 4, 3, 5, 6),

which equals the transposition (3, 4) = σ3.

We now apply the theory above to G = X[p], the symmetric p-torsion scheme of rank p2g

of a principally polarised abelian variety X over k (where the symmetry is induced from the
principal polarisation). So from now on, we work with r = 2s = 2g.

We have already seen how the canonical filtration on X[p] is determined up to k-isomorphism
by its (symmetric) canonical type τ = (v, f, ρ), and that we can equivalently express this
information in terms of a final sequence ψ or an elementary sequence φ. Finally, the Weyl
group construction allows us to attach a Weyl group element w to φ.

Definition 2.50. For each elementary sequence φ, we let

Sφ := {(X,λ) ∈ Ag(k) : the elementary sequence corresponding to X[p] is φ}.
Then Sφ is called the Ekedahl-Oort stratum in Ag corresponding to φ.

The result below collects the most important statements about the Ekedahl-Oort strata inAg,
proven in several (cited) references.

Theorem 2.51. Let g ≥ 1 and consider Ag in characteristic p.

(1) Every Ekedahl-Oort stratum Sφ is non-empty and quasi-affine. All irreducible compo-
nents of Sφ have dimension

∑g
i=1 φ(i) (cf. [59, Theorem 1.2]).

(2) If φ ̸= (0, . . . , 0), i.e. outside of the superspecial locus, the Zariski closure Sφ of Sφ is
connected (cf. [59, Theorem 1.3]).

(3) In fact, if Sφ ̸⊆ Sg, where Sg is the supersingular locus, then Sφ is irreducible (cf. [10,
Theorem 11.5]). Otherwise it is reducible for sufficiently large g and p (cf. [16, Corol-
lary 3.5.5]).

(4) Any stratum is locally closed, and its Zariski closure is a union of the stratum itself and
lower-dimensional strata (cf. [59, Theorem 1.3 and Proposition 3.2]).

(5) The a-number of a stratum Sφ is g − φ(g) (cf. [59, p.56]).
(6) The p-rank of a stratum Sφ is max{i : φ(i) = i} (cf. [59, p.56]).

Proof. We sketch the proof of the fact that dim(Sφ) =
∑g

i=1 φ(i). Fix an abelian variety
(X0, λ0) in Sφ. By choosing an explicit (“standard”) basis for the Dieudonné module of X0[p]
and constructing deformations of (X0, λ0) that still lie inside Sφ explicitly in terms of this basis,
it is shown that dim(Sφ) ≥

∑g
i=1 φ(i), cf. [59, Proposition 10.1].

On the other hand, [59, Proposition 11.1] shows that if φ′ ≺ φ with
∑g

i=1(φ(i)− φ′(i)) = 1,

then Sφ′ ⊆ Sφ (note the typo in the statement in [59]). This follows again by using explicit
computations with bases for Dieudonné modules to obtain a deformation of (Y0, µ0) in Sφ whose
generic fibre corresponds to φ′. By forming chains of elementary sequences that differ at one
place, and repeatedly applying the proposition, this shows that dim(Sφ) ≤

∑g
i=1 φ(i), so we

have equality. □
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Corollary 2.52. The Ekedahl-Oort strata form a good stratification (cf. Definition 2.11) of Ag,
in which the boundary of any stratum is the union of all lower-dimensional strata meeting
it. Moreover, we see from Theorem 2.51.(5) that it refines both the a-number and the p-rank
stratifications.

Remark 2.53. Theorem 2.51 mentions the Zariski closure of the Ekedahl-Oort strata. These
closures turn out to be rather complicated to describe in detail.

In particular, it follows from [59, Proposition 11.1] that if φ′ ≺ φ (as in (6)), then Sφ′ ⊆ Sφ
is contained in the Zariski closure of Sφ, but in [59, Example 14.3], we see that the converse

does not hold: Sφ′ ⊆ Sφ ̸⇒ φ′ ≺ φ.
On the other hand, in [10] Ekedahl and van der Geer construct a flag space over Ag that

admits a stratification by elements of the Weyl group Wg, where the inclusion relation between
strata is given precisely by the order ≺BC (see (7)). While projecting these strata from the flag
space to Ag yields the Ekedahl-Oort strata on Ag, in [10, Example 9.5] they give examples that

show that Sφ′ ⊆ Sφ ̸⇒ w′ ≺BC w, where w,w′ are the Weyl group elements associated to φ,φ′,
respectively.

Finally, it was shown by Wedhorn (cf. [76, Theorem 5.4] and [62, Theorem 6.2]) that the
closure relation for Ekedahl-Oort strata can be fully understood through so-called shuffles: i.e.
Sφ′ ⊆ Sφ ⇔ there exists u ∈ WI such that uw′(w0,Iuw0,I) ≺BC w, where as above w,w′

are the respective Weyl group elements associated to φ,φ′, and where WI = { w ∈ Wg :
w({1, 2, . . . , g}) = {1, 2, . . . , g} } and w0,I ∈ WI is defined so that w0,I(i) = g + 1 − i for all
1 ≤ i ≤ g.

Example 2.54. In Examples 2.40, 2.42 and 2.47 we have seen one example of a stratum in
g = 3, namely S(0,0,1) (omitting φ(0) = 0 from the notation), which determines the Weyl group
element w = σ3. It has a-number 2 = 3 − φ(3) and p-rank 0 by Theorem 2.51.(5). All strata
with a-number a = g − 1 are classified in [59, Theorem 8.3].

The other elementary sequences for g = 3 and the corresponding Weyl group elements are as
follows, cf. [71, p. 15]:

φ w a-number p-rank
(0, 0, 0) id 3 0
(0, 0, 1) σ3 2 0
(0, 1, 1) σ2σ3 2 0
(0, 1, 2) σ3σ2σ3 1 0
(1, 1, 1) σ1σ2σ3 2 1
(1, 1, 2) σ3σ1σ2σ3 1 1
(1, 2, 2) σ2σ3σ1σ2σ3 1 2
(1, 2, 3) σ3σ2σ3σ1σ2σ3 0 3

Remark 2.55. We close this subsection with a historical remark. In 1975, Kraft classified BT1

group schemes over an algebraically closed field k, cf. [37], building on work of Gelfand and
Ponomarev in [13]. This classification was reobtained by Oort and is heavily used in [59] and
subsequent papers about the Ekedahl-Oort stratification.

Moonen generalises the stratification in [42] to Shimura varieties of PEL-type, also using
Weyl groups. Later, in [43] Moonen and Wedhorn generalise even further, replacing canon-
ical filtrations by other combinatorial constructions, called F -zips, which can be defined for
any smooth proper morphism of schemes X → S in characteristic p. Zips were also used by
Viehmann-Wedhorn [72] to study Ekedahl-Oort (and Newton polygon) stratifications for good
reductions of Shimura varieties of PEL-type, and by Zhang [83] for Shimura varieties of Hodge
type. A more detailed treatment of the theory of Shimura varieties lies outside the scope of this
course.
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3. The geometry of Sg
3.1. Introduction and S1.
So far, we have considered the moduli space of g-dimensional principally polarised abelian
varieties, and we have studied stratifications on Ag in characteristic p. We have seen in Subsec-
tion 1.3.3 that supersingularity is a phenomenon that only occurs in characteristic p. We define
the supersingular locus

Sg = {x = (X,λ) ∈ Ag : X is supersingular}.
This is a Zariski closed algebraic subset of Ag which can be given an induced reduced scheme

structure. Moreover, it can be viewed as the (coarse) moduli space of supersingular abelian
varieties, cf. [40, § 13.12-13.14]. Finally, we see from Remark 2.22, and from the fact that any
two g-dimensional supersingular abelian varieties are k-isogenous (cf. Proposition 1.16), that
every g-dimensional supersingular abelian variety over k has the same Newton polygon, namely
the line segment with unique slope 1/2, and therefore that Sg =Wσ is a Newton stratum in Ag.

Example 3.1. When g = 1, the supersingular locus S1 consists of all supersingular elliptic
curves. (Recall that elliptic curves are canonically pricipally polarised.) It is a zero-dimensional
space, i.e. a finite set, whose cardinality is known by the work of Deuring [7], Eichler [8] and
Igusa [28] to be

(8) |S1| =
⌊
p− 1

12

⌋
+


0 if p ≡ 1 (mod 12);

1 if p ≡ 2, 3, 5, 7 (mod 12);

2 if p ≡ 11 (mod 12).

We will revisit the idea of counting supersingular elliptic curves and higher-dimensional abelian
varieties, also up to automorphisms, in Section 4. With | · | we will always mean honest cardi-
nality.

In this section, we still study the geometry of Sg. First, in Subsection 3.2, we will look
closely at the case g = 2, before treating general g in Subsection 3.3. Next, in Subsection 3.4
we will put a foliation structure on Sg and in Subsection 3.5 we will see how the a-number and
Ekedahl-Oort stratifications introduced in Subsection 2.4 restrict to Sg.

3.2. Supersingular abelian surfaces: S2.
As a warm-up, in this subsection we treat the case g = 2. That is, we give an explicit construc-
tion of principally polarised supersingular abelian surfaces over an algebraically closed field k
of characteristic p > 0, due to Moret-Bailly [45]. This description will have direct consequences
for the geometry of S2, as shown by Katsura and Oort [32].

Recall from Definition 1.15 that a superspecial abelian variety X0 of dimension g over k is
isomorphic to a product of g supersingular elliptic curves. Equivalently, by [55, Theorem 2],
it satisfies a(X0) = dimk Hom(αp, X0) = g. Furthermore, recall from Proposition 1.16 that all
g-dimensional superspecial abelian varieties are k-isomorphic; we use the latter fact as follows.

Notation 3.2. Fix a supersingular elliptic curve E0 over k that is defined over Fp2 , with
Frobenius endomorphism πE0 = −p.

Using Notation 3.2, any superspecial abelian surface over k satisfies

X0 ≃ E0 × E0.

A non-superspecial supersingular abelian surface X will have a(X) = 1. By [55, Corollary 7],

(9) X ≃ (E0 × E0)/ι(αp)

for some immersion ι : αp ↪→ αp × αp ↪→ E0 × E0. Since Endk(αp) ≃ k, we can write ι = (a, b)
for some a, b ∈ k; since the embedding only depends on the ratio a/b, we will view (a, b) as a
point on P1

k.
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Note that the above describes unpolarised abelian varieties; we will now consider polarised
abelian varieties. In general, a superspecial abelian variety can be equipped with many differ-
ent polarisations. The construction in Example 3.3 shows how polarisations descend from a
superspecial surface E1 × E2 to a supersingular surface obtained as its quotient.

Example 3.3. (Moret-Bailly, [45, II, Appendice]) Let E1, E2 be supersingular elliptic curves
with respective points at infinity O1, O2. The superspecial abelian surface X0 = E1 × E2

admits a polarisation induced by the ample line bundle L0 = OX0(E1 ×O2 +O1 ×E2)
⊗p. The

kernel K(L0) of the polarisation is X0[p] and hence of order p4, and it comes equipped with an
alternating form eL0 : K(L0)×K(L0)→ Gm.

Via an explicit calculation on the Dieudonné module of K(L0) one can find a subgroup H
satisfying H ≃ αp and H⊥/H ≃ αp × αp, where H

⊥ is orthogonal to H with respect to eL0 .
Consider then the quotient surface A = X0/H. By [45, Théorème 4.1 and Proposition 4.2],
the line bundle L0 descends to a line bundle L on A which induces a polarisation with kernel
K(L) ≃ αp × αp. In particular, it follows that a(A) = 2, so A is also superspecial. Moreover,
we may assume that L is symmetric, i.e. [−1]∗A(L) ≃ L.

We will now see how the polarised superspecial surface A constructed above is used to produce
families of polarised supersingular abelian surfaces over P1

k. This may be viewed as a polarised
analogue of Equation (9). The following holds in characteristic p > 2; for similar results when
p = 2, see [44].

For ease of notation, let S = P1
k with homogeneous coordinate (X,Y ). Also let

K = αp × αp = Speck[α]/(αp)× Speck[β]/(βp);

KS = K × S = SpecOS [α, β]/(α
p, βp).

Consider the subgroup scheme N of KS defined by Y α − Xβ = 0 (denoted by H in [45]);
since N has rank p, it is locally isomorphic to αp × S. Next, form the quotient X = AS/N of
AS = A× S. These objects fit into the following diagram, where the top row is exact and the
triangle and square commute.

1 N AS X 1

A S

Spec(k)

pr1

π

pr2
q

The Moret-Bailly construction.

There is a unique line bundleM on X such that π∗M≃ LS (or equivalently, π∗M≃ pr∗1(L)),
which by construction induces a principal polarisation on X . The cokernel of q∗q∗(M)→M is
an effective relative (“theta”) divisor D → S.

The fibration, also denoted by q : D → S, is nontrivial and defines a surface that is shown to
be non-singular and of general type. For s ∈ S(k), the fibre Ds is either a smooth genus 2 curve
on the surface Xs or two elliptic curves meeting transversally; by [45, Proposition 2.5.(i)], the
number of singular fibres is 5p−5. In both cases the fibre induces a principal polarisation on Xs.
Finally, note that the commuting triangle in the diagram shows that each Xs is supersingular.

In conclusion, q : (X , D) → S is a (“Moret-Bailly”) family of principally polarised supersin-
gular abelian surfaces over k. Such a family exists for any ample line bundle L (or polarisation)
on A with kernel isomorphic to αp × αp.
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Remark 3.4. In [61], Pieper shows that the whole family is determined by two of its singular
fibres. He moreover describes the family explicitly by finding the defining equations for the
hyperelliptic curves Cs such that the irreducible fibres are Xs ≃ Jac(Cs) as principally polarised
abelian varieties.

The above has far-reaching implications for the geometry of S2. Previously, it was known
that every irreducible component of S2 is a rational curve, cf. [54, proof of Corollary 4.7].
Katsura-Oort [32] build on Moret-Bailly’s results and prove that moreover any irreducible com-
ponent of S2 is the image of a Moret-Bailly family. From this, it follows that the number of
irreducible components of S2 is equal to the number of isomorphism classes of Moret-Bailly
families (X , D) → S, cf. [32, Theorem 2.7]. This number is determined in [32, Theorem 5.7],
invoking [27, Theorem 2.15], to be the class number h2(1, p); we will introduce these in Sub-
section 4.2.2 and define them formally in Definition 4.12. Knowing the exact values of some of
these class numbers, this implies the following result:

Theorem 3.5. (cf. [32, Theorem 5.8]) S2 is irreducible if and only if p ≤ 11.

Remark 3.6. In the same article, the authors also describe the automorphisms of a Moret-
Bailly family preserving the relative polarisation D, which turn out to be determined by their
actions on the 5p − 5 singular fibres of the family, cf. [32, Theorem 4.1]. In addition, the
normalisation of each irreducible component of S2 is shown to be isomorphic to P1

k/G for some
group G ⊆ Aut(P1

k) which is itself the quotient of the group of automorphisms acting on the
singular fibres of the corresponding family by the −1-map; the final chapters of the article are
devoted to studying the groups G that occur (depending on p) and their ramification groups.

3.3. Polarised flag type quotients: Sg for general g.
In this subsection, we will give a geometric description of g-dimensional supersingular abelian
varieties for general g ≥ 1 in terms of polarised flag type quotients (PFTQs), a construction
due to Li-Oort [40]. We will see how this reduces to Moret-Bailly families when g = 2 and give
an equally explicit description of the case g = 3. Furthermore, by studying the moduli space Pg
of g-dimensional PFTQs we will determine the dimension and the number of components of Sg
in Theorems 3.15 and 3.16, respectively.

The general idea behind (polarised) flag type quotients is that any supersingular abelian va-
riety X can be connected to a superspecial abelian variety through a purely inseparable isogeny.
The kernel of this isogeny is formed out of successive extensions of αp group schemes; we can
use this information to break up the isogeny into a chain of isogenies with prescribed kernel
ranks. If X is principally polarised, we may also equip the superspecial abelian variety and
all quotient abelian varieties appearing in this chain with suitable – generally not principal! –
polarisations that are compatible with the isogenies.

Before giving the formal definition of flag type quotients, we recall some notions and introduce
some notation. As in Notation 3.2, let E0/Fp2 be the supersingular elliptic curve with Frobenius
endomorphism πE0 = −p. And as in Definition 1.6, let S be a scheme of characteristic p, let
X → S be an abelian scheme, and let

FX/S : X → X(p) resp. VX/S : X(p) → X

be the relative Frobenius resp. Verschiebung morphism on X, where we write X(p) := X×S,FS
S.

If there is no risk of confusion, we will drop the subscripts on the relative Frobenius and
Verschiebung morphisms. The kernel ker(f) of a morphism f : X → Y of abelian varieties is
also denoted X[f ].

Definition 3.7. (cf. [40, § 2.4]) An α-group G of α-rank r is a finite flat commutative group
scheme over an Fp-scheme S on which the relative Frobenius and Verschiebung satisfy FG/S = 0
and VG/S = 0; it is locally isomorphic to αr

p × S.
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Definition 3.8. (cf. [40, § 3.2, 3.6]) Let the notation be as above and let g ≥ 1.

(1) A g-dimensional flag type quotient (FTQ) is a chain of abelian schemes, each over an
Fp2-scheme S,

(Y•, ρ•) : Yg−1
ρg−1−−−→ Yg−2 · · ·

ρ2−→ Y1
ρ1−→ Y0,

such that:
(i) Yg−1 = Eg

0 ×Spec(Fp2 )
S, with E0 chosen as in Notation 3.2;

(ii) ker(ρi) is an α-group of α-rank i for all 1 ≤ i ≤ g − 1.
In particular, each Yi is supersingular.

(2) Let µ be a polarisation on Eg
0 such that ker(µ) = Eg

0 [F ] if g is even and ker(µ) = 0 if

g is odd, i.e. such that ker(p⌊(g−1)/2⌋µ) = Eg
0 [F

g−1]. For any such µ, a g-dimensional
polarised flag type quotient (PFTQ) with respect to µ is a chain of polarised abelian
schemes over an Fp2-scheme S

(Y•, λ•, ρ•) : (Yg−1, λg−1)
ρg−1−−−→ (Yg−2, λg−2) · · ·

ρ2−→ (Y1, λ1)
ρ1−→ (Y0, λ0),

such that:
(i’) (Yg−1, λg−1) = (Eg

0 , p
⌊(g−1)/2⌋µ)×Spec(Fp2 )

S;

(ii) ker(ρi) is an α-group of α-rank i for all 1 ≤ i ≤ g − 1;
(iii) ker(λi) ⊆ Yi[V j ◦F i−j ] for all 0 ≤ i ≤ g− 1 and 0 ≤ j ≤ ⌊ i2⌋, where F = FYi/S and

V = VYi/S .
In particular, λ0 is a principal polarisation on Y0.

(3) An isomorphism of g-dimensional PFTQs is a chain of isomorphisms (βi)0≤i≤g−1 of
polarised abelian varieties, compatible with the isogenies ρi, such that βg−1 = idYg−1 .
Isomorphism is denoted by ≃.

(4) A g-dimensional (polarised) flag type quotient (Y•, ρ•) is said to be rigid if

ker(Yg−1 → Yi) = ker(Yg−1 → Y0) ∩ Yg−1[F
g−1−i], for 1 ≤ i ≤ g − 1.

We will say more about the rigidity condition in Remark 3.14.

Remark 3.9. Note that to introduce polarisations on flag type quotients in the definition above,
we worked with an Fp2-scheme S instead of an Fp-scheme. This is because all endomorphisms
of E0 are defined over Fp2 , i.e., EndFp2

(E0) ≃ Endk(E0 ×Spec(Fp2 )
Spec(k)), with E0 as in

Notation 3.2; so in particular every polarisation µ on Eg
0 is defined over Fp2 , and to be able to

choose µ such that ker(µ) = Eg
0 [F ] when g is even, we must work over Fp2 . When dealing with

moduli spaces, we will often choose S = k = Fp.

Example 3.10. We return to the case g = 2. That is, we consider E2
0 and a polarisation µ

such that ker(µ) = E2
0 [F ] = αp × αp. Then a polarised flag type quotient looks like

(10) (E2
0 , µ)→ (Y0, λ0) = (E2

0/αp, λ0)

where λ0 is a principal polarisation. When Y0 is not superspecial, there exists a unique µ
on E2

0 and a unique isogeny to Y0 compatible with the polarisations. Note that rigidity (4) is
automatically satisfied, since αp ≃ ker(E2

0 → Y0) and E
2
0 [F ] = αp × αp.

We see that the PFTQ in this case is determined by an embedding αp ↪→ E2
0 ; recall from

Subsection 3.2 that such an embedding is determined by a point on P1
k. This point is also called

a Moret-Bailly parameter. Indeed, comparing Equations (10) and (9) and recalling how Moret-
Bailly families provide polarised analogues of (9), we conclude that a Moret-Bailly family and
a 2-dimensional PFTQ carry the same information.

Definition 3.11. Let Pg,µ (resp. P ′
g,µ) denote the moduli space over Fp2 of g-dimensional

(resp. rigid) polarised flag type quotients with respect to the polarisation µ. That is, Pg,µ
(resp. P ′

g,µ) is the projective (resp. quasi-projective) scheme over Fp2 representing the functor

Fp2−schemes −→ Set

S′ 7→ { (resp. rigid) g-dim. PFTQs over S′ w.r.t. µ}/ ≃ .
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Indeed, P ′
g,µ is an open subscheme of Pg,µ. It is geometrically irreducible (in fact, non-singular

and geometrically integral) of dimension ⌊g
2

4 ⌋.

Example 3.12. For g = 2 it follows from Example 3.10 that P2,µ ≃ P1
Fp2

.

Example 3.13. (cf. [26, § 3.3.2]) Suppose now that g = 3. Then P3,µ is a two-dimensional
geometrically irreducible scheme over Fp2 by [40, § 9.4]. Its structure is independent of the
choice of µ by [40, § 3.10]. The map

π : ((Y2, λ2)→ (Y1, λ1)→ (Y0, λ0)) 7→ ((Y2, λ2)→ (Y1, λ1))

induces a morphism π : P3,µ → P2 whose image is isomorphic to the Fermat curve

C : Xp+1
1 +Xp+1

2 +Xp+1
3 = 0.

As a fibre space over C, P3,µ is isomorphic to PC(O(−1)⊕O(1)); see [40, § 9.3-9.4] and [31,
Proposition 3.5].

According to [40, § 9.4] (cf. [31, Definition 3.14]), there is a section s : C ↠ T ⊆ P3,µ of π,
and P ′

3,µ = P3,µ − T .

We can derive several key facts about the geometry Sg from that of P ′
g,µ, cf. [40, § 4]. The

connection between these moduli spaces is the following: projection to the last member of a
PFTQ gives an Fp-morphism

pr0 : P ′
g,µ → Sg,

(Y•, λ•, ρ•) 7→ (Y0, λ0).

Moreover, for every supersingular principally polarised (Y0, λ0) there exists at least one, and at
most finitely many PFTQs, each with respect to a suitable polarisation µ, whose last member
is geometrically isomorphic to (Y0, λ0). That is, the Fp-morphism

(11) pr0 :
∐
µ

P ′
g,µ → Sg,

where the disjoint union runs over all suitable polarisations µ of Eg
0 , is surjective and generically

finite. The generic fibre over any irreducible component of Sg has a-number 1 and is contained
in the image of P ′

µ for a unique µ.

Remark 3.14. The projection pr0 exists also for Pg,µ, but in this case it could blow down
a component of Pg,µ to a proper closed subset of Sg. Only after restriction to P ′

g,µ we are
guaranteed to obtain a surjective and generically finite morphism. This explains why we had
to introduce the notion of rigidity. This condition is generally harmless, in the sense that for
a general supersingular principally polarised abelian variety, a PFTQ of which it is the last
member is unique and automatically rigid.

It follows that the dimension and the number of irreducible components of Sg are determined
by those of P ′

g,µ. For the dimension, we see that the closure of each pr0(P ′
g,µ) yields an irreducible

component of Sg, which therefore has dimension ⌊g
2

4 ⌋. Thus:

Theorem 3.15. (cf. [40, Theorem 4.9.(i)]) For any g ≥ 1, we have dim(Sg) = ⌊g
2

4 ⌋.

For the number of irreducible components, one shows that a generic supersingular abelian
variety has a-number 1, and that in this case there is a unique polarisation µ and a PFTQ with
respect to µ of which it is the last member [51, Theorem 2.2]. Hence, the number of irreducible

components of Sg equals the number of polarisations µ on Eg
0 satisfying ker(p⌊(g−1)/2⌋µ) =

Eg
0 [F

g−1]. We can deduce (from Proposition 4.21 for instance) that this number is again a class
number (as in Definition 4.12). That is:
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Theorem 3.16. (cf. [40, Theorem 4.9.(ii)]) The number of irreducible components of Sg is{
hg(p, 1) if g is odd;

hg(1, p) if g is even.

One may ask when the number of components is 1, i.e. when Sg is geometrically irreducible.
The following result gives a complete answer.

Theorem 3.17. The superingular locus Sg is geometrically irreducible if and only if one of the
following three cases holds:

(i) g = 1 and p ∈ {2, 3, 5, 7, 13};
(ii) g = 2 and p ∈ {2, 3, 5, 7, 11};
(iii) (g, p) = (3, 2) or (g, p) = (4, 2).

Proof. This is [26, Theorem 5.20.(i)], which itself follows from the class number one result [26,
Theorem 2.10]. The first case is classical, and can be found e.g. in the list in [73, p. 155], though
loc. cit. also provides an alternative proof. □

Example 3.18. Suppose again that g = 3 and use the notation of Example 3.13. We saw that
dim(P ′

3,µ) = 2 in Example 3.13 and Theorem 3.15 confirms that dim(Sg) = 2; the projection

map pr0 contracts the section T to a point. The number of components of S3 is h3(p, 1) by
Theorem 3.16 - this was proven separately in [33, Theorem 6.7]. This number is 1 for p = 2 and
> 1 for all p ≥ 3.

We may define the a-number of a point of P3,µ by putting a(y) := a(pr0(y)) for y ∈ P3,µ(k).
Using this, we can refine our structural results on P3,µ as follows. Writing a point y ∈ P3,µ(k)
as (t, u), where t = π(y) and u ∈ π−1(t) =: P1

t (k), by [40, § 9.3-9.4] we see:

(i) If y ∈ T then a(y) = 3.
(ii) If t ∈ C(Fp2), then a(y) ≥ 2. Moreover, a(y) = 3 if and only if u ∈ P1

t (Fp2).
(iii) We have a(y) = 1 if and only if y /∈ T and t ̸∈ C(Fp2).

A schematic picture of P3,µ as a P1-bundle over the Fermat curve C.

Remark 3.19. Flag type quotients first appeared in 1978 in [51]. More precisely, [51, Theo-
rem 2.2.(1)] describes any supersingular abelian variety as the quotient of a superspecial abelian
variety by a “flag type subgroup scheme” K = K0 ⊇ K1 ⊇ . . . ⊇ Kg−1 = 0 whose quotients
Ki−1/Ki are α-groups of α-rank i for all 1 ≤ i ≤ g − 1. Further, [51, Theorem 3.3] classifies
polarised flag type quotients for abelian varieties with a-number 1 (above which the flag type
quotient is unique and of maximal length) by quasi-polarised flag varieties of supersingular
Dieudonné modules.
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A little over a decade later, a slightly different definition of (polarised) flag type quotients
was given in [33, Definitions 4.1-4.2], with any a-number. They are used to construct families of
principally polarised supersingular abelian threefolds, and eventually to prove that the number
of irreducible components of S3 is h3(p, 1), cf. [33, Theorem 6.7].

At around the same time, [39] also considers flag type quotients (here called “flag type level
structures”); these are equipped with an index, which is an increasing sequence of g integers
between 0 and g prescribing the α-ranks of the kernels of the isogenies ρi as α-groups. This
extra structure yields a fine moduli space, and we will see it is used in the proof of Theorem 3.29.
This article is where the notion of rigidity is first mentioned (as corresponding to the smallest
possible index).

3.4. Foliation of Sg by central leaves and isogeny leaves.
In this subsection, we will put a geometric, so-called foliation structure on Sg using the notions
of central leaves and isogeny leaves. These are introduced in [60] and defined more generally as
closed subsets of Newton strata W 0

ξ , so considering them for Sg = W 0
σ amounts to considering

a special case of the general theory. We will study some geometric properties of the leaves and
the “almost-product” structure they form.

We first give the definition of a central leaf, which you should view as a geometric isomorphism
class of p-divisible groups.

Definition 3.20. Let g ≥ 1. For a point x = (X0, λ0) ∈ Ag(k), define the central leaf passing
through x to be

C(x) := {(X,λ) ∈ Ag(k) : (X,λ)[p
∞] ≃ (X0, λ0)[p

∞]}.

Suppose that (X0, λ0) has Newton polygon ξ. We collect some first facts about the dimensions
of central leaves.

Proposition 3.21. (cf. [60, Theorem 3.3, Theorem 3.13])

(1) With notation as in Definition 3.20, the central leaf passing through x is a closed subset

C(x) ⊆W 0
ξ .

It is also a locally closed smooth subscheme of Ag which is pure of dimension cξ depending
only on the Newton polygon ξ; that is, all irreducible components of C(x) have the same
dimension.

(2) An isogeny between principally polarized abelian varieties x = (X0, λ0) → y = (Y0, µ0)
induces a finite-to-finite isogeny correspondence between the central leaves through x
and y, i.e. a k-scheme T and finite surjections T ↠ C(x), T ↠ C(y), so that dim(C(x)) =
dim(C(y)).

In other words, since the Newton polygon ξ is an isogeny invariant, we see that all
central leaves in the same Newton polygon stratum have the same dimension cξ.

Thus, the dimension of a central leaf passing through x = (X0, λ0) depends only on the
Newton polygon ξ of (X0, λ0) – and conversely, every Newton polygon stratum W 0

ξ is a disjoint

union of central leaves. We have the following dichotomy, cf. [3, Proposition 1], see also [26,
Proposition 5.1]:

Proposition 3.22. With notation as above, we have dim(C(x)) = 0 if and only if (X0, λ0)
is supersingular, i.e. if and only if ξ = σ. In other words, the central leaf passing through a
non-supersingular principally polarised abelian variety is positive-dimensional.

When considering the zero-dimensional central leaves through supersingular points, one may
ask when they have the smallest possible cardinality 1; then the supersingular abelian variety is
uniquely determined by its p-divisible group. We answered this in the following result, where p
denotes the characteristic of k = Fp.
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Theorem 3.23. (cf. [26, Theorem 5.20.(ii)]) Let C(x) be the central leaf in Ag passing through
a point x = (X0, λ0) ∈ Sg(k). Then C(x) consists of one element if and only if one of the
following three cases holds:

(i) g = 1 and p ∈ {2, 3, 5, 7, 13};
(ii) g = 2 and p = 2, 3;
(iii) g = 3, p = 2 and a(x) ≥ 2.

Theorem 3.23 immediately implies that a central leaf passing through a supersingular point
x ∈ Sg(k) is irreducible if and only if one of the conditions (i)–(iii) is satisfied. By contrast,
Chai-Oort prove the following:

Proposition 3.24. (cf. [5, Theorem 4.1]) The central leaf C(x) passing through any non-super-
singular point x ∈ Ag(k) is irreducible.

Recall the moduli space Ag,1,n of principally polarised abelian varieties with level n structure,
defined before Theorem 2.4. Below, we will consider its characteristic p fibre Ag,1,n⊗Fp, which
we will again denote by Ag,1,n for ease of notation, as for Ag, cf. Notation 2.10. Furthermore,
assume that n ≥ 3 is coprime to p. The reason that Ag,1,n appears is that it is a fine moduli
space, while Ag is a coarse one; so in particular Ag,1,n carries a universal family, say (X , λX ).

Definition 3.25. (cf. [60, §4.1-4.3]) Let g ≥ 1. An isogeny leaf of Ag is a maximal closed
integral subscheme I of Ag such that there exist: a principally polarised abelian variety (M,µ)
over k, a scheme T of finite type over k, a surjective morphism T → In, where In := I×AgAg,1,n

is the base change of I to Ag,1,n, and an isogeny φ : (M,µ)→ (X , λX )⊗Ag,1,n T , such that every
geometric fibre of φ is formed out of successive extensions of αp group schemes.

For each x ∈ Ag(k), there is a closed reduced subscheme I(x) of Ag whose irreducible
components are the isogeny leaves containing x. In other other words, there are only finitely
many isogeny leaves containing x and I(x) is their union, with the induced reduced scheme
structure.

The scheme I(x) is a proper k-scheme [60, Proposition 4.11] and for x and y in the same
central leaf, the formal completions of I(x) and I(y) are isomorphic [60, Proposition 4.12].

You should think of an isogeny leaf through x = (X0, λ0) as consisting of all abelian varieties
(Y0, µ0) ∈ Ag(k) that are isogenous to (X0, λ0) via an iterated αp-isogeny (i.e. whose kernel is
a repeated αp-extension). In particular, such isogenies have p-power degree and can change the
p-divisible group. By contrast, prime-to-p isogenies leave the p-divisible group unchanged. So
while the former move you along an isogeny leaf, the latter move you within a central leaf.

Applying degree-ℓ isogenies can be viewed as an action on Ag(k), the so-called Hecke-ℓ-
action, which restricts to an action on individual central leaves by the previous observation.
(Similarly, we can define Hecke-αp-actions on isogeny leaves using iterated αp-isogenies.) In
fact, Ekedahl-Oort strata are also preserved under Hecke-ℓ-actions.

The orbits in Ag of this action are called Hecke-(ℓ-)orbits. The Hecke Orbit Conjecture
(cf. [60, Conjectures 6.1-6.2]) asserts that the Hecke-ℓ-orbit in Ag through a moduli point x
is Zariski dense in its central leaf C(x). It was proven by Chai in [3, Theorem 2] for ordinary
abelian varieties – showing in fact that the orbit is dense in Ag – and in [4] for any principally
polarised abelian variety.

The following result explains the geometric interplay between central and isogeny leaves.

Proposition 3.26. (cf. [60, Theorem 5.3, Corollary 5.7]) Let V ⊆W 0
ξ ⊆ Ag be any irreducible

component of a Newton stratum. Then there exists a finite surjective k-morphism

Φ : D × J → V,

where D,J are integral k-schemes of finite type, such that
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(1) For any d ∈ D(k), the image Φ({d} × J) is an isogeny leaf in V and any isogeny leaf
in V can be found this way;

(2) For any j ∈ J(k), the image Φ(D×{j}) is a central leaf in V and any central leaf in V
can be found this way.

Hence, every central leaf in V intersects every isogeny leaf in V non-trivially, creating an
“almost-product structure”.

We derive the following result on the dimensions of the isogeny leaves.

Proposition 3.27. All isogeny leaves in W 0
ξ have the same dimension iξ, which only depends

on the Newton polygon ξ.

Proof. For a fixed Newton polygon ξ, the dimension of each irreducible component W of W 0
ξ is

the same, write dξ = sdim(ξ), cf. Definition 2.30. In Proposition 3.21.(2) we also saw that each
central leaf in W 0

ξ (k) has the same dimension cξ. The almost-product structure then implies
that the dimension of any isogeny leaf in V must be iξ = dξ − cξ and hence only depends
on ξ. □

Remark 3.28. In the notation of the previous proposition, it follows from Proposition 3.22,
together with Theorem 3.15 and the paragraph preceding it, that in the supersingular case

iσ = dσ =

⌊
g2

4

⌋
.

3.5. Stratifications restricted to Sg.
In Section 2 we introduced the p-rank, Newton polygon, a-number, and Ekedahl-Oort strat-
ifications on Ag. Recall that the supersingular locus Sg is itself a Newton stratum, which is
contained in the p-rank zero stratum. In this subsection, we will restrict the a-number and
Ekedahl-Oort stratifications to Sg and study their properties.

3.5.1. The a-number stratification on Sg.
The a-number strata on Sg were first defined in [40, § 9.9–9.11] and are comprehensively dealt
with by Harashita in [14]. We define

Sg(a ≥ n) := {x = (X,λ) ∈ Sg : a(X) ≥ n};
Sg(n) := {x = (X,λ) ∈ Sg : a(X) = n}.

The former is a closed subscheme of Sg, the latter is locally closed.
The projection morphism of Equation (11) induces a surjective and generically finite k-

morphism

(12) pr0 :
∐
µ

P ′
g,µ(a)→ Sg(a),

where the disjoint union again runs over all suitable polarisations µ of Eg
0 and where P ′

g,µ(a) is
the moduli space of rigid PFTQs whose last member (Y0, λ0) has a-number a.

Thus, the results in [14] are obtained by studying P ′
g,µ(a). As in [40] for the results in

Subsection 3.3, (moduli spaces of) PFTQs of abelian varieties in turn are studied by considering
the corresponding (moduli spaces of) chains – also called PFTQs – of Dieudonné modules.

Theorem 3.29. (cf. [14, Theorem 3.15, Theorem 4.17])

(1) The Zariski closure Scg(a) of Sg(a) is connected unless a = g and satisfies

Sc
g(a) = ∪a′≥aSg(a′).

(2) Every irreducible component of Sg(a) has the same dimension⌊
g2 − a2 + 1

4

⌋
.
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(3) The number of irreducible components of Sg(a) is

( (g−2)/2
(g−a−1)/2

)
hg(1, p) if g is even, a is odd;((g−1)/2

(g−a)/2

)
hg(p, 1) if g is odd, a is odd;( g/2−1

(g−a)/2

)
hg(p, 1) +

( g/2−1
(g−a)/2−1

)
hg(1, p) if g is even, a is even;((g−1)/2−1

(g−a−1)/2

)
hg(1, p) +

( (g−1)/2−1
(g−a−1)/2−1

)
hg(p, 1) if g is odd, a is even.

Sketch of the proof. By introducing new (“good”) bases Θ for the Dieudonné module of the first
and last members of a PFTQ (respectively (Yg−1, λg−1) and (Y0, λ0)), we get an open covering∐

Θ U
Θ of the moduli space Ng of rigid PFTQs of Dieudonné modules, by for each Θ grouping

together in UΘ those PFTQs whose last member is written in basis Θ. The moduli space Ng is
isomorphic to P ′

g,µ up to inseparable isomorphism. Let UΘ(a) denote the subscheme of Ng of
PFTQs of Dieudonné modules with a-number a.

For any choice Θ, the action of Frobenius and Verschiebung on the Dieudonné module of
(Y0, λ0) can be nicely expressed in terms of the chosen basis, and the a-number of Y0 can be
read off from the rank of the matrix of the coefficients. All such matrices with the same rank
therefore form a period domain ∇g,a, such that there is an étale surjective map UΘ(a)→ ∇g,a.

The irreducible components of the ∇g,a are determined by completely explicit computations,
that immediately also determine the connected Zariski closure ∇c

g,a = ∪a′≥a∇g,a′ , dimension⌊
g2−a2+1

4

⌋
, and number of irreducible components of each ∇g,a. This shows parts (1) and (2)

of the theorem, using the connectedness result [59, Theorem 1.1].
For part (3), the number of irreducible components of Sg(a) is shown to be

∑
x∈Ig,a |Λx|,

where Ig,a denotes the set of irreducible components of the moduli space Dg(a) of supersingular
Dieudonné modules with a-number a, and where |Λx| denotes the number of suitable polarisa-
tions on Eg

0 with kernel prescribed by x. In other words, for each component of Dg(a) there
are |Λx| components of Sg(a). Finally, |Ig,a| is explicitly and combinatorially determined using
results from [39] and shown to be equal to the number of components of ∇g,a, while |Λx| is
proved to be a class number hg(p, 1) or hg(1, p) (cf. Definition 4.12); multiplying yields (3). □

3.5.2. The Ekedahl-Oort stratification on Sg.
In general, the intersections of Ekedahl-Oort strata and Newton strata in Ag is not well under-
stood. Restricting to Sg however, we can say a few things.

First of all, there is a combinatorial criterion for when an Ekedahl-Oort stratum is supersin-
gular, i.e. is fully contained in Sg:

Proposition 3.30. (cf. [5, Theorem 4.8, Step 2]), [59, Theorem 8.3.(II)] Let Sφ be the Ekedahl-
Oort stratum in Ag associated with an elementary sequence φ. Then Sφ ⊆ Sg if and only if

φ(r) = 0 for r = ⌊g+1
2 ⌋.

Sketch of the proof. Suppose first that φ(r) = 0 and let N1 ⊆ N2 ⊆ . . . ⊆ N2g = X[p] be a
corresponding final filtration. The condition φ(r) = 0 means that F and V are both zero on
Ng+r/Nr, which in turn means that X/Nr is superspecial. Since X/Nr ∼ X, we conclude that
X is supersingular, hence Sφ ⊆ Sg.

The other implication is shown by constructing a counterexample, namely by exhibiting
a Newton polygon and corresponding “minimal” p-divisible group such that the associated
elementary sequence φ′ satisfies 0 = φ′(1) = φ′(2) = . . . = φ′(r − 1) but φ′(r) = 1, and
Sφ′ ̸⊆ Sg. □

Recall from the discussion following Definition 2.48 that Ekedahl-Oort strata are also classified
by elements of the Weyl group Wg of Sp2g; in fact, the set of elementary sequences of length g
is in bijection with the subset

IWg = {w ∈Wg : w−1(1) < . . . < w−1(g)} ⊆Wg.
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Next, for any 0 ≤ c ≤ g, define
IW [c]

g = {w ∈Wg : w(i) = i for all i ≤ g − c}

and
IW (c)

g = IW [c]
g − IW [c−1]

g for 0 < c ≤ g , IW (0)
g = id.

With this notation, we can equivalently reformulate Proposition 3.30 as follows:

Proposition 3.31. (cf. [16, Lemma 2.5.4, Remark 2.5.7, Proposition 3.1.5]) Let w be the Weyl

group element associated with an elementary sequence φ. Then Sφ ⊆ Sg if and only if w ∈ IW
(c)
g

for c ≤ ⌊g2⌋.

Remark 3.32. Also in [16], Harashita gives descriptions of certain unions of supersingular
Ekedahl-Oort strata in terms of Deligne-Lusztig varieties. This description is then used to
confirm that supersingular Ekedahl-Oort strata are reducible (whereas the non-supersingular
strata are irreducible, by [10, Theorem 11.5]). It was refined by Hoeve [22], who described single
supersingular Ekedahl-Oort strata in terms of so-called fine Deligne-Lusztig varieties.

We have seen two equivalent ways of determining which Ekedahl-Oort strata are fully con-
tained in Sg; recall also that Sg is a Newton stratum.

In [15], Harashita extends the above to other Newton strata, by giving a necessary and
sufficient condition for an Ekedahl-Oort stratum Sφ to be fully contained in the Newton locus
Zλ consisting of moduli points in Ag for which the first slope (when the slopes are written
in increasing order) of their associated Newton polygon is greater than or equal to a rational
number λ. In Harashita’s notation, we have Sg = Z 1

2
. The condition is derived from the main

result [15, Theorem 4.1], which combinatorially determines the first Newton slope λφ associated
with any generic moduli point in Sφ, and is as follows:

Proposition 3.33. (cf. [15, Corollary 4.2]) With notation as above, we have Sφ ⊆ Zλ if and
only if λφ ≥ λ.

In addition to supersingular Ekedahl-Oort strata, there might also be strata that intersect
Sg non-trivially, without being fully contained in it. Below, we give a few low-dimensional
examples.

Example 3.34. Let g = 2. The Ekedahl-Oort strata of p-rank zero are those corresponding
to the elementary sequences (0, 0) and (0, 1) by Theorem 2.51.(6). Since ⌊g+1

2 ⌋ = ⌊
3
2⌋ = 1 and

both these sequences φ satisfy φ(1) = 0, we see that both Ekedahl-Oort strata of p-rank zero are
supersingular, as expected: for g = 2, the notions of p-rank zero and supersingularity coincide.

Example 3.35. Let g = 3. The Ekedahl-Oort strata of p-rank zero are precisely the Sφ for
φ ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 2)}, by Theorem 2.51.(6). These strata have respective a-
numbers 3, 2, 2 and 1, also by Theorem 2.51.(5). In particular, we conclude that S(0,1,2) ∩S3 is
the a-number 1 locus of S3, so it is Zariski dense in S3 by [40, Theorem 4.9(iii)].

Next, we have ⌊g+1
2 ⌋ = ⌊42⌋ = 2 so Proposition 3.30 implies that Sφ is supersingular for

φ = (0, 0, 0), (0, 0, 1).
It remains to consider the stratum S(0,1,1). However, for φ = (0, 1, 1) we compute that λφ = 1

3 ,
cf. [15, Definition 3.1], and using Proposition 3.33 we see that this stratum is fully contained
in another Newton polygon stratum, corresponding to the slope sequence

(
1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3

)
, and

therefore does not intersect S3.
We conclude that

S3 = S(0,0,0) ⊔ S(0,0,1) ⊔
(
S(0,1,2) ∩ S3

)
describes the Ekedahl-Oort stratification of S3. In particular, we see that the other a-number
strata are given by S3(2) = S(0,0,1) and S3(3) = S(0,0,0). See [17, Theorem 5.1] for the same
result with a different proof, using Weyl group elements.
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Example 3.36. (cf. [26, Proposition 5.13]) Let g = 4.
The Ekedahl-Oort strata of p-rank zero are precisely the Sφ for those φ appearing in Fig-

ure 3, according to Theorem 2.51.(6). Their a-numbers are as indicated by their colours, by
Theorem 2.51.(5).

(0, 1, 2, 3)a=1

(0, 1, 2, 2)a=2

(0, 1, 1, 2)a=2

(0, 1, 1, 1)a=3 (0, 0, 1, 2)a=2

(0, 0, 1, 1)a=3

(0, 0, 0, 1)a=3

(0, 0, 0, 0)a=4

Ekedahl-Oort strata of p-rank zero in dimension g = 4. The a-numbers of the
strata are included as indices. Strata are connected by a line if the lower one is
contained in the Zariski closure of the upper one.

By Proposition 3.30, the strata fully contained in S4 are precisely the Sφ for φ = (0, 0, 0, 0),
(0, 0, 0, 1), (0, 0, 1, 1), and (0, 0, 1, 2).

The other Newton strata of p-rank zero correspond to the slope sequences
(
1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3

)
and

(
1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
, and are denoted respectively by W 1

3
and W 1

4
.

We read off from Figure 3 that S(0,1,2,3) ∩ S4 is the a-number 1 locus of S4, so it is Zariski
dense by [40, Theorem 4.9(iii)].

By [15, Corollary 4.2 and Lemma 5.12] we see that S(0,1,2,2) ⊆ W 1
4
by minimality of the

associated p-divisible group. Similarly, from [15, Corollary 4.2 and Proposition 7.1], we obtain
that S(0,1,1,1) ⊆W 1

3
, again by minimality.

Finally, we read off from Figure 3 that

S(0,1,1,2) =
(
S(0,1,1,2) ∩W 1

3

)
⊔
(
S(0,1,1,2) ∩ S4

)
.

Now Theorem 3.29.(3) implies that S4(2) has h4(1, p) + h4(p, 1) many irreducible components
of two types, of which those of the type corresponding to S(0,0,1,2) yield h4(1, p) many; see
also [40, § 9.9]. Hence, the intersection S(0,1,1,2) ∩ S4 must yield the other h4(p, 1) components
and thus be non-empty.

We conclude that

S4 =
(
S(0,1,2,3) ∩ S4

)
⊔ S(0,0,0,0) ⊔ S(0,0,0,1)

⊔ S(0,0,1,1) ⊔ S(0,0,1,2) ⊔
(
S(0,1,1,2) ∩ S4

)
,
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where each intersection is non-empty and S(0,1,2,3) ∩ S4 is dense. In particular, we read off the
a-number strata as

S4(4) = S(0,0,0,0);
S4(3) = S(0,0,0,1) ⊔ S(0,0,1,1);
S4(2) = S(0,0,1,2) ⊔

(
S(0,1,1,2) ∩ S4

)
.

4. The arithmetic of Sg
4.1. Introduction.
In the previous section, we saw different geometric aspects of Sg as the moduli space of super-
singular abelian varieties. In this section, we will use these notions to prove arithmetic results
about supersingular abelian varieties. In particular, we will be looking at the key question: How
many supersingular abelian varieties are there?

This question is not very precisely stated. First of all, we will always fix a dimension g and
a characteristic p (> 0) of the field k = Fp. Recall also that the abelian varieties in Sg are
principally polarised by definition.

It turns out to be useful to first ask how many superspecial abelian varieties there are. This
is because there is a direct connection between superspecial abelian varieties and equivalence
classes of lattices in quaternion Hermitian spaces; hence, the final number is a class number.
(This connection is maybe not completely surprising, if you remember from Example 1.3 that
the endomorphism algebra of a supersingular elliptic curve over k is a quaternion algebra!)

In Subsection 4.2 we will therefore first spend some time on quaternion algebras and quater-
nion Hermitian spaces and state what is known about their class numbers. It turns out that
these are very hard to compute in general. A more accessible quantity is the mass, which you
should view as a weighted count, namely, weighted by automorphisms: the mass of a finite
set S, whose elements have a notion of automorphisms, is

Mass(S) :=
∑
s∈S

1

|Aut(s)|
.

Masses of genera of lattices in quaternion Hermitian spaces have been determined in full gen-
erality; see Proposition 4.17.

In Subsection 4.3 we explain the connection between these lattices and superspecial abelian
varieties; the latter may also be non-principally polarised. We let Λg,pc denote the set of
isomorphism classes of superspecial g-dimensional abelian varieties with degree-p2c polarisations
(so 0 ≤ c ≤ ⌊g/2⌋). Using the connection with lattices, we determine mass of any Λg,pc in
Theorem 4.23.

Finally, in Subsection 4.4 we explain how to use superspecial masses to compute the mass
of supersingular central leaves, through so-called minimal isogenies. Once you know the mass
of a central leaf, knowing the cardinality of the central leaf is equivalent to understanding the
automorphism groups of the abelian varieties; and these groups are key arithmetic invariants
in many applications.

4.2. Class numbers for quaternion algebras.
We now take a break from abelian varieties for a while to consider quaternion algebras and
quaternion Hermitian spaces. We introduce the class number in this setting, as a count of
equivalence classes, and the mass, which is a weighted count of the classes. Then we will briefly
discuss what is known about these quantities, starting with the work of Eichler from 1938. A
comprehensive reference for quaternion algebras is [74].

4.2.1. Quaternion algebras.
Let B be a quaternion algebra over Q. Denote the natural involution on B by x 7→ x̄; it is the
unique standard (i.e. xx̄ ∈ Q for all x in B) involution of the first kind, cf. [74, § 3.2].

An order in B is a Z-lattice (of maximal rank) that is also a subring. Let O be a maximal
order of B, i.e. maximal with respect to containment. For example, the matrix ring M2(Z)
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is a maximal order in M2(Q); it is in fact the unique maximal order up to conjugacy, cf. [74,
Corollary 10.5.5].

For any prime p we may consider the completion Bp = B⊗QQp of B at p. This is either split,
i.e. isomorphic to the matrix algebra M2(Qp), or ramified, i.e. isomorphic the unique division
algebra over Qp. We also consider the place ∞ at infinity, i.e. B∞ = B ⊗Q R: then B ramifies
at ∞ if B∞ is isomorphic to the Hamilton quaternions and split if it is isomorphic to M2(R).

A quaternion algebra B over Q ramifies only at finitely many places, and the number of
ramified places is even by class field theory. Moreover, a quaternion algebra over Q, or indeed
over any global field, is determined up to isomorphism by its finite set of ramified places. The
finite square-free product of finite ramified places is called the discriminant of B. Further, B
is called indefinite if it is split at ∞, and definite if it is ramified at ∞.

Notation 4.1. For any prime number p, let Qp,∞ be the quaternion algebra over Q that is
ramified exactly at p and ∞. It has discriminant p.

Example 4.2. Explicit representations of Qp,∞ for any p are given for example in [74, Exam-
ple 14.2.13]. When p = 2 for instance, we can take

B = (−1,−1)Q = ⟨1, i, j, ij : i2 = −1, j2 = −1, ji = −ij⟩.

To any lattice L in B we can associate its left order

OL
B(L) = {b ∈ B : bL ⊆ L}

and its right order

OR
B(L) = {b ∈ B : Lb ⊆ L}.

It is invertible if there exists another lattice L′ such that

LL′ = OL
B(L) = OR

B(L
′) and L′L = OL

B(L
′) = OR

B(L).

For any order A in B, a (right) A-ideal I of B is a lattice I in B such that A ⊆ OR
B(I). The

(right) class of I is

[I]R := {J = aI : a ∈ B×}

and the right class set of A is

ClR(A) := {[I]R : I is an invertible right A-ideal}.

We could have equivalently defined left ideals, left classes and the left class set; the latter is in
bijection with the right class set through the involution on B. Both are finite, cf. [74, Theorem
17.1.1], and their cardinality is called the class number of A, denoted h(A). An ideal that is
both a left and a right ideal is called a two-sided ideal.

Eichler computed the class number for the maximal orders of definite quaternion algebras
over Q. A literal translation yields:

Theorem 4.3. (cf. [8, Satz 2]) Let B be a definite quaternion algebra over Q with maximal
order O and discriminant d. The class number of O is 1 if d = 2 or 3, and for d ≥ 5 it equals

h(O) = 1

12

∏
p|d

(p− 1) +
h2
2

+
2h3
3
, where

h2 =

{
2u−1 if d is divisible by u odd primes, all congruent to 3 mod 4;

0 otherwise;

h3 =

{
2v−1 if d is divisible by v primes unequal to 3, all congruent to 2 mod 3;

0 otherwise.

(13)
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Corollary 4.4. When B = Qp,∞ for p ≥ 5, with discriminant d = p, Theorem 4.3 gives,
cf. [7, p. 266]:

(14) h(O) =


p−1
12 if p ≡ 1 (mod 12);
p−5
12 + 1 if p ≡ 5 (mod 12);
p−7
12 + 1 if p ≡ 7 (mod 12);
p−11
12 + 2 if p ≡ 11 (mod 12).

Comparing Equation (14) with (8) shows that h(O) = |S1|. As we will see in the next sub-
section, this is not a coincidence.

In the same article, Eichler also proves a formula for a “weighted” class number, which for
definite quaternion algebras over Q simplifies to the following, cf. [74, Theorem 25.1.1]:

Theorem 4.5. (cf. [8, Satz 1]) Let B be a definite quaternion algebra over Q with maximal
order O and discriminant d. Then

(15)
∑

[I]L∈ClL(O)

1

|OL
B(I)

×/{±1}|
=

1

12

∏
p|d

(p− 1).

The significance of Theorem 4.5 is the following: The elements of the unit group OL
B(I)

×

are the automorphisms of the O-ideal I, whereas the units of the lattice Z in Q are ±1. The
finite quotient OL

B(I)
×/{±1} is also called the reduced automorphism group of I. In other

words, the left hand side of (15) counts the classes in ClL(O), but by dividing by the (reduced)
automorphisms, we are counting them up to symmetry. Note that the right hand side of (15)
is a lot cleaner than that of (13).

4.2.2. Quaternion Hermitian spaces.
The definite quaternion algebra B over Q with involution x 7→ x, discriminant d and maximal
order O as above can be viewed as a one-dimensional quaternion Hermitian space. We now
generalise to higher-dimensional quaternion Hermitian spaces, following [19, § 1], cf. [26, § 2.2].

Definition 4.6. A positive-definite quaternion Hermitian space over B of rank n is a pair (V, f)
where V is a Q-vector space and an n-dimensional left B-module, and f : V × V → B is a
Q-bilinear form satisfying:

(i) f(ax, y) = af(x, y) and f(x, ay) = f(x, y)ā;

(ii) f(y, x) = f(x, y);
(iii) f(x, x) ≥ 0 and f(x, x) = 0 only when x = 0,

for all a ∈ B and x, y ∈ V .

For each rank n there is a unique isomorphism class (V, f); we could take V = B⊕n and the
Hermitian form f((xi)i, (yi)i) =

∑
i xiyi.

Notation 4.7. For each prime p, we define Op := O⊗ZZp, Bp := B⊗QQp and Vp := V ⊗QQp.
We further let G = G(V, f) be the group of similitudes of (V, f):

(16) G = { α ∈ GLB(V ) : f(xα, yα) = n(α)f(x, y) ∀x, y ∈ V },

where n(α) ∈ Q× is a scalar depending only on α, and similarly let Gp = G(Vp, fp) be the group
of similitudes of (Vp, fp). Taking V = B⊕n and f((xi)i, (yi)i) =

∑
i xiyi as above, we see that

(17) G = {α ∈ GLn(B) : ααt = n(α)In, n(α) ∈ Q×}.

A lattice L ⊆ V is called a left O-lattice if OL ⊆ L. An O-submodule M of an O-lattice L
is called an O-sublattice of L; then M is an O-lattice in the B-module BM , possibly of smaller
rank.
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Definition 4.8. Two O-lattices L1 and L2 are equivalent, denoted L1 ∼ L2, if there exists an
α ∈ G such that L2 = L1α; equivalence of two Op-lattices is defined analogously. Two O-lattices
L1 and L2 are in the same genus if (L1)p ∼ (L2)p for all primes p, i.e. if they are everywhere
locally equivalent.

Definition 4.9. The norm N(L) of an O-lattice L is the two-sided O-ideal generated by all
elements f(x, y) with x, y ∈ L. If L is maximal among the O-lattices having the same norm
N(L), then it is called a maximal O-lattice. Maximal Op-lattices in Vp are defined analogously.
An O-lattice L is maximal if and only if the Op-lattice Lp := L⊗ZZp is maximal for all primes p.

If a prime p does not divide the discriminant d of B, then there is a unique equivalence class
of maximal Op-lattices in Vp, represented by the standard unimodular lattice (On

p , f = In).
If p|d and n > 1, then there are two equivalence classes of maximal Op-lattices in Vp,

represented respectively by the principal lattice (On
p , f = In) and the non-principal lattice

((ΠpOp)
⊕(n−c) ⊕ O⊕c

p , Jn), where c = ⌊n/2⌋, where Πp is a uniformising element in Op with

ΠpΠp = p, and where Jn = anti-diag(1, . . . , 1) is the anti-diagonal identity matrix of size n.
(This is equivalent to the lattice Np in [40, (4.6.3)] and [27, p. 140].)

Since a genus is determined by choosing an equivalence class at every prime, we see that
there are 2t genera of maximal O-lattices in V when n ≥ 2, where t is the number of primes
dividing the discriminant d of B.

Definition 4.10. For any positive integer n and any pair (d1, d2) of positive integers such that
d = d1d2, let Ln(d1, d2) be the genus consisting of maximal O-lattices in (V, f) of rank n such
that for all primes p|d1 (resp. p|d2) the local Op-lattice (Lp, f) belongs to the principal class
(resp. the non-principal class).

There are two extreme cases: the genus Ln(d, 1) is the principal genus, and Ln(1, d) is the
non-principal genus.

Let [Ln(d1, d2)] be the set of (global) equivalence classes of lattices in Ln(d1, d2).

By considering all completions of our lattices, i.e. by viewing them adelically, the following
lemma follows from the definitions.

Lemma 4.11. Let Af denote the finite adeles of Q and let Ẑ be the profinite completion of Z.
Fix a lattice L0 ∈ Ln(d1, d2). There is a natural map

(18) [Ln(d1, d2)] ≃ U\G(Af )/G(Q),

where U is the stabiliser of L0 ⊗ Ẑ in G(Af ), which is an isomorphism of pointed sets, sending
L0 to the trivial element.

Definition 4.12. The cardinality of [Ln(d1, d2)],
hn(d1, d2) := |[Ln(d1, d2)]|

is called the class number of the genus Ln(d1, d2).

Thus, we see that Theorem 4.3 computed the class number h(O) = h1(p, 1). Analogous to
Theorem 4.5, we also introduce a version of the class number that is weighted by automorphisms.

Definition 4.13. The mass Mn(d1, d2) of [Ln(d1, d2)] is

(19) Mn(d1, d2) = Mass([Ln(d1, d2)]) :=
∑

L∈[Ln(d1,d2)]

1

|Aut(L)|
,

where Aut(L) := {α ∈ G : Lα = L}.

Remark 4.14. We see that if α ∈ Aut(L) then n(α) = 1 in (16), since n(α) > 0 and also
n(α) ∈ Z× = {±1}. We could set G1 := {α ∈ G : n(α) = 1} and define the genus, [Ln(d1, d2)],
the class number and the mass with respect to G1 instead. It turns out that the latter three
are not affected by this change, cf. [26, Lemma 2.5].
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We finish this subsection by giving a brief account of known results for the class numbers
and masses just defined.

After the one-dimensional results of Eichler (n = 1), the class numbers in the two-dimensional
case (n = 2) were determined by Hashimoto-Ibukiyama in a series of papers from the 1980s,
using an arithmetic trace formula. In [19] they compute the class number of the principal genus.
In [20] and [21], they consider every other genus for n = 2; the former contains the statements,
while the latter contains the proofs. For any genus, they first compute the mass and then the
class number; generally, the mass is a more accessible quantity than the class number.

Proposition 4.15. (cf. [19, Proposition 9], attributed to Ihara) For any n ≥ 2, we have

(20) Mn(d, 1) =
ζ(2) · ζ(4) · . . . · ζ(2n) · 1! · 3! · . . . · (2n− 1)!

(2π)n(n+1)

∏
p|d

n∏
i=1

(
pi + (−1)i

)
,

where ζ(s) denotes the Riemann zeta function.

Proposition 4.16. (cf. [21, Proposition 2.3]) For any d1, d2, we have

(21) M2(d1, d2) =
1

27 · 32 · 5
∏
p|d1

(p− 1)(p2 + 1)
∏
p|d2

(p2 − 1).

In [27, § 2], Ibukiyama-Katsura-Oort determine explicit representations of lattices: The class
number results of Eichler [8] imply that these are all of the form L = Onx for some x ∈ GLn(B),
and Lemmas 2.3 and 2.6 of loc. cit. give explicit forms of x for Ln(d, 1) for any n ≥ 2 and
for L2(1, d), respectively.

In [18], Hashimoto computed the class number of the principal genus when n = 3 for prime
discriminants d = p.

The class number of any genus, for any n, d1, d2 is currently still out of reach. However, we
did find the mass in this generality, by comparing it to the massMn(d, 1) in (20) of the principal
genus and computing arithmetic volumes of the automorphism groups.

Proposition 4.17. (cf. [26, Proposition 2.6]) We have

(22) Mn(d1, d2) = vn ·
∏
p|d1

Ln(p, 1) ·
∏
p|d2

Ln(1, p),

where

(23) vn :=
n∏

i=1

|ζ(1− 2i)|
2

,

for each n ≥ 1, where

(24) Ln(p, 1) :=

n∏
i=1

(pi + (−1)i)

for each prime p and n ≥ 1, and where

(25) Ln(1, p) :=

{∏c
i=1(p

4i−2 − 1) if n = 2c is even;
(p−1)(p4c+2−1)

p2−1
·
∏c

i=1(p
4i−2 − 1) if n = 2c+ 1 is odd.

4.3. Mass formulae for superspecial abelian varieties.
In the previous subsection, we saw how we may count certain equivalence classes of lattices,
either directly to obtain the class number, or weighted by automorphisms to obtain the mass.
Now, we would like to do something similar for abelian varieties over k. This will turn out
to be a very closely related problem, as we have already seen several times in Section 3 (in
Theorems 3.5, 3.16, 3.17 and 3.29).

In this setting, a genus corresponds to a set of isomorphism classes of abelian varieties in
an isogeny class that are “everywhere locally isomorphic”, i.e. that have isomorphic ℓ-adic
Tate modules for all primes ℓ ̸= p and isomorphic p-divisible groups (or equivalently, Dieudonné
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modules). Since k is algebraically closed, in fact any two abelian varieties of the same dimension
are locally isomorphic at all ℓ ̸= p.

Now we focus again on supersingular abelian varieties over k, which are all inseparably
isogenous. A genus of supersingular abelian varieties is nothing other than a central leaf,
consisting of all abelian varieties with isomorphic p-divisible group, and Sg is a disjoint union
of a finite number of genera.

The mass of the central leaf C(x) through a point x = (X,λ) ∈ Sg(k) is defined to be

(26) Mass(C(x)) :=
∑

(X′,λ′)∈C(x)

1

|Aut(X ′, λ′)|
.

Computing these in low dimension will be the topic of Subsection 4.4.
For superspecial abelian varieties, we can say even more: the p-divisible group of a super-

special abelian variety of a given dimension is unique up to isomorphism. For the analogous
statement for polarised abelian varieties, we proceed as follows. For each integer 0 ≤ c ≤ ⌊g/2⌋,
let Λg,pc denote the set of isomorphism classes of g-dimensional polarised superspecial abelian
varieties (X ′

0, λ
′
0) whose polarisation λ′0 satisfies ker(λ′0) ≃ α2c

p . (Recall from Definition ?? that
the degree of any polarisation is a square.) Then the polarised p-divisible group associated to
any member in Λg,pc is unique up to isomorphism, cf. [40, Proposition 6.1]. In particular, if
x = (X0, λ0) is superspecial and principally polarised, then C(x) = Λg,1.

In this subsection, we will determine the mass

Mass(Λg,pc) =
∑

(X′
0,λ

′
0)∈Λg,pc

1

|Aut(X ′
0, λ

′
0)|

of Λg,pc for any g ≥ 1 and any 0 ≤ c ≤ ⌊g/2⌋. First, we will explain the general idea of the
connection between polarisations and quaternion Hermitian spaces, cf. [40, § 8.7] and [27, § 2.2].

4.3.1. Deuring’s correspondence.
Let us first consider the case g = 1 again. Elliptic curves are superspecial if and only if they
are supersingular, and they are canonically and uniquely principally polarised, so the set Λ1,1

consists of all isomorphism classes of supersingular elliptic curves over k.
The endomorphism algebra of any supersingular elliptic curve E over k (with principal po-

larisation λ) is isomorphic to the definite quaternion algebra B = Qp,∞ ramified at p and ∞,
cf. Example 1.3, and its endomorphism ring is a maximal order in Qp,∞. Under the isomorphism
we identify the involution x 7→ x̄ on Qp,∞ with the involution

f 7→ f = λ−1 ◦ f∨ ◦ λ
on End0(E), where f∨ : E∨ → E∨ is the dual of f (cf. Definition ??); this is called the Rosati
involution relative to λ.

In 1941, Deuring (cf. [7, §10.2]) described a bijective correspondence between the ideal classes
in Qp,∞ and isomorphism classes of supersingular elliptic curves over k, using mostly algebraic
language. Using Eichler’s results, he concludes the following.

Corollary 4.18. (cf. [7, § 10.3]) The number |Λ1,1| of isomorphism classes of supersingular
elliptic curves over k equals the class number h(O), given in Corollary 4.4.

Remark 4.19. Deuring remarked (cf. [7, p. 266]) that deriving the number of isomorphism
classes of supersingular elliptic curves directly seemed to be “nicht leicht” (not easy). In 1958,
Igusa proved in [28] that it was possible, by computing the number of supersingular j-invariants
by algebraic methods.

Here, we will use more modern terminology to (roughly) describe Deuring’s correspondence,
see also e.g. [59, 7.12-7.13], [30], [38, Appendice], [26, §4].

Choose the supersingular elliptic curve E0 defined over Fp2 as in Notation 3.2, and fix iso-
morphisms

End0k(E0) ≃ Qp,∞, Endk(E0) ≃ O.
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For any supersingular elliptic curve E over k (including E = E0), we consider the map

(27) E 7→ Homk(E0, E).

The right-hand side of (27) is a (left) Endk(E0)-ideal via pre-composition, and the (right) order
of the ideal is identified with Endk(E). Since Endk(E0) ≃ O is maximal, the right order of a
left O-ideal is automatically also maximal. Moreover, taking the right orders of representatives
of all left O-ideals yields all isomorphism classes of maximal orders in Bp,∞. Conversely, there
is a map

(28) I 7→ I ⊗O E0

from O-ideals to supersingular elliptic curves. Both (27) and (28) define functors. Together
they show one can go back and forth between supersingular elliptic curves and O-ideals, in a
way which implies that the number of isomorphism classes of supersingular elliptic curves equals
the class number h(O).

Remark 4.20. Waterhouse (cf. [75, Theorem 4.5]) establishes an analogous correspondence to
Deuring’s for finite fields, using that every ideal in a maximal order is a so-called kernel ideal.
See also [36, §5.3] where the correspondence is turned into a categorical equivalence.

4.3.2. From polarisations to quaternion Hermitian spaces.
Deuring’s correspondence has analogues in higher dimensions and for non-principal polarisa-
tions. Superspecial abelian varieties of dimension g are unique up to isomorphism, so without
loss of generality they are isomorphic to Eg

0 with E0 as in Notation 3.2. Counting their isomor-
phism classes thus corresponds to counting the number of polarisations on Eg

0 . In particular,
for any g > 1 and 0 ≤ c ≤ ⌊g/2⌋ there is a one-to-one correspondence

(29) Λg,pc ←→ { polarisations µ on Eg
0 such that ker(µ) ≃ α2c

p }.

The polarisations on Eg
0 are translated into quaternionic language by the following propo-

sition. Note that one polarisation on Eg
0 is λ = λ⊕g

0 , where λ0 is the canonical polarisation
on E0.

Proposition 4.21. For g ≥ 2, we have one-to-one correspondences

{ polarisations µ on Eg
0 }/ ≃ ←→ { f ∈Mg(O) : f = f

∨
is positive-definite }/ ≈

←→ { left O- lattices in B⊕g }/ ∼ .
(30)

Here, the first map is induced from mapping a polarisation µ on Eg
0 to λ−1 ◦µ ∈ End(Eg

0). This
map restricts to equivalence classes: on the left hand side of (30), polarisations are equivalent
if they differ up to an automorphism of Eg

0 and on the right hand side, f ≈ f ′ are equivalent

if there exists k ∈ GLg(O) such that k
∨ ◦ f ◦ k = f ′. The second map is given by f 7→ Off∨;

here, equivalence ∼ of O-lattices is as in Definition 4.8.

Equation (29) implies that to conclude anything about Λg,pc , we need to show how the
correspondences in Proposition 4.21 keep track of the kernels of the polarisations. This is done
in [40, Theorem 8.7], which says that a polarisation uniquely determines a genus of O-lattices,
and conversely, that a genus uniquely determines the polarisation through its kernel (equipped
with a quasi-polarisation, i.e. a map between the kernel and its Cartier dual).

In particular, we obtain that the genus corresponding to principal polarisations is the principal
genus Lg(p, 1) (cf. [27, Theorem 2.10]) and that the genus corresponding to polarisations with

maximal kernel ≃ α
2⌊g/2⌋
p is the non-principal genus Lg(1, p) (cf. [40, § 4.6–4.8], see also [27,

Theorem 2.15] for the case g = 2). We will confirm this below in Remark 4.24.
More generally, for any genus we have a double coset description, analogous to that for

quaternion Hermitian lattices in Lemma 4.11. To state it, recall the definition of the group of
similitudes

G = {α ∈ GLn(Qp,∞) : ααt = n(α)In, n(α) ∈ Q×}.
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from (17), and that of G1 = {α ∈ G : n(α) = 1} from Remark 4.14. For any x0 = (X0, λ0) in
Λg,pc , we now define the group scheme Gx0 over Z so that its group of R-valued points for any
commutative ring R is

(31) Gx0(R) = {α ∈ (End(X0)⊗Z R)
× : αtλ0α = λ0}.

Then Gx0 ⊗ Q does not depend on our choice of abelian variety (X0, λ0), since any two are

isogenous, so we may choose (X0, λ0) = (Eg
0 , λ

⊕g
E0

) where λE0 is the canonical polarisation on

E0, and deduce that moreover Gx0 ⊗Q ≃ G1. We slightly abusively view Ug,pc := Gx0(Ẑ) as an
open compact subgroup of both Gx0(Af ) and of the isomorphic group G1(Af ).

Lemma 4.22. (cf. [78, Theorem 2.1]) Fix any x0 = (X0, λ0) in Λg,pc and define Gx0 as in (31)
and Ug,pc as above. Then there is a natural bijection of pointed sets, mapping (X0, λ0) to the
trivial element:

(32) Λg,pc ≃ Gx0(Q)\Gx0(Af )/Gx0(Z) ≃ G1(Q)\G1(Af )/Ug,pc .

4.3.3. Mass computations.
The correspondences in (29) and Proposition 4.21 enable the computation of the mass, if not
the class number, of Λg,pc in general, by using the results for masses and class numbers of
quaternion Hermitian spaces. Let us summarise the main results in the literature.

In dimension g = 2, similar to Igusa’s result [28], Katsura-Oort counted the isomorphism
classes of superspecial principally polarised abelian surfaces over k in [33] using geometric
methods (exploiting that these surfaces are all Jacobians) to confirm the results of Hashimoto-
Ibukiyama in [19].

For principally polarised superspecial abelian varieties of any dimension g, Ekedahl deter-
mined Mass(Λg,1) as a direct result of the computation of Mn(d, 1) in Proposition 4.15, and
separately computed a mass formula for the set of superspecial abelian varieties with indecom-
posable principal polarisation in [9, Theorem 7.2].

For non-principally polarised superspecial abelian varieties, Yu gave a mass formula for the
case c = ⌊g/2⌋, cf. [79, Theorem 6.6]. Finally, Harashita provided the formula for general
0 ≤ c ≤ ⌊g/2⌋ by applying to G a mass formula for certain algebraic groups due to Prasad [63];
using the functional equation for ζ(s), we can write it as follows, cf. [26, Theorem 3.1].

Theorem 4.23. (cf. [16, Proposition 3.5.4]) For any g ≥ 1 and 0 ≤ c ≤ ⌊g/2⌋, we have

Mass(Λg,pc) = vg · Lg,pc ,

where vg is as defined in Equation (23), and where

(33) Lg,pc =

g−2c∏
i=1

(pi + (−1)i) ·
c∏

i=1

(p4i−2 − 1) ·
∏g

i=1(p
2i − 1)∏2c

i=1(p
2i − 1)

∏g−2c
i=1 (p2i − 1)

.

Remark 4.24. Comparing Equation (33) with Equations (24) and (25), we see that Lg,p0 =
Lg(p, 1) and that for c = ⌊g/2⌋,

(34) Lg,pc =

{∏c
i=1(p

4i−2 − 1) if g = 2c is even;
(p−1)(p4c+2−1)

p2−1
·
∏c

1=1(p
4i−2 − 1) if g = 2c+ 1 is odd,

so that Lg,pc = Lg(1, p). That is, the extremal values 0 and ⌊g/2⌋ of c correspond to the mass of
the principal and non-principal mass, respectively. On the other hand, the values 0 < c < ⌊g/2⌋
have no direct interpretation in terms of quaternion Hermitian spaces; in the next subsection
we will see how they are still related through minimal isogenies.

Remark 4.25. With the notation as above, the functor Hom(E0,−) induces an equivalence
between the category of fractionally polarised superspecial abelian varieties over k and the
category of positive-definite Hermitian right O-lattices (cf. [26, Corollary 4.9], see also [59, 7.12–
7.14] for an integral statement). So, also in this sense, “superspecial abelian varieties are directly
determined by Hermitian lattices”.
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4.4. Minimal isogenies and mass formulae for supersingular abelian varieties.
The previous subsection showed how to compute masses, and in some cases class numbers, of
superspecial abelian varieties, by linking them to lattices in quaternion Hermitian spaces. In
this subsection, we will discuss how to compute masses, and in some cases class numbers, for
supersingular abelian varieties. That is, we aim to compute the mass Mass(C(x)) (cf. (26))
of the central leaf passing through any supersingular abelian variety x = (X,λ) ∈ Sg(k), and
ultimately the cardinality |C(x)|.

These computations are sometimes enabled by the existence of minimal isogenies. That
is, we exploit the fact that any supersingular abelian variety is (“minimally”) isogenous to a
unique, possibly non-principally polarised, superspecial abelian variety. The minimal isogeny
then allows us to compare the mass of the supersingular abelian variety x with that of a
superspecial one, by comparing Mass(C(x)) with a suitable Mass(Λg,pc).

Until now, masses of supersingular abelian varieties have only been explicitly computed for
surfaces [25,82] and threefolds [31]; in these cases, the comparison factors between supersingular
and superspecial masses have been worked out explicitly using Dieudonné module computations.
We will present these results in Subsections 4.4.2 and 4.4.3, after explaining the general theo-
retical idea in Subsection 4.4.1.

4.4.1. Minimal isogenies.
The following lemma defines minimal isogenies of supersingular abelian varieties through their
universal (minimality) property.

Lemma 4.26. Let X be a supersingular abelian variety over k. Then there exists a pair (X̃, φ),

where X̃ is a superspecial abelian variety and φ : X̃ → X is an isogeny such that for any pair

(X̃ ′, φ′) as above there exists a unique isogeny ρ : X̃ ′ → X̃ such that φ′ = φ ◦ ρ.

Proof. See [40, Lemma 1.8], though its proof contains a gap, as pointed out in [31, Remark 3.17].
See also [80, Corollary 4.3] for an independent proof. □

Definition 4.27. Let X be a supersingular abelian variety over k. We call the isogeny φ :

X̃ → X of Lemma 4.26 the minimal isogeny of X.

Remark 4.28. There is the following dual notion, sometimes also called the minimal isogeny:
for any X as above, there exists a pair (Z, γ), where Z is a superspecial abelian variety and
γ : X → Z is an isogeny such that for any other pair (Z ′, γ′) there exists a unique isogeny
ρ : Z → Z ′ such that γ′ = ρ ◦ γ. We will not use this in this course.

When x = (X,λ) is a (principally) polarised supersingular abelian variety with minimal

isogeny φ : X̃ → X, we may consider the (not necessarily principally) polarised superspecial

abelian variety x̃ = (X̃, λ̃) where λ̃ = φ∗λ is the pullback of the polarisation on X.

Recall from Lemma 4.22 that for any 0 ≤ c ≤ ⌊g/2⌋ we have a double coset description

(35) Λg,pc ≃ Gx̃(Q)\Gx̃(Af )/Gx̃(Ẑ) ≃ G1(Q)\G1(Af )/Ug,pc ,

where the group scheme Gx̃/Z satisfies

Gx̃(R) = {α ∈ (End(X̃)⊗Z R)
× : αtλ̃α = λ̃}

for any commutative ring R, and where we fix an isomorphism Gx̃ ⊗ Q ≃ G1. Analogously
defining the group scheme Gx for x = (X,λ), fixing an isomorphism Gx ⊗Q ≃ G1, and consid-

ering the open compact subgroup Ux = Gx(Ẑ) also as an open compact subgroup of G1(Af ),
a similar double coset description also holds for the central leaf C(x) of the abelian variety x,
cf. [81, Theorems 2.2 and 4.6]:

(36) C(x) ≃ G1(Q)\G1(Af )/Ux.
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Lemma 4.29. (cf. [26, Lemma 5.2]) For every point x ∈ Sg(k), there exists a (non-canonical)
surjective morphism

π : C(x) ↠ Λg,pc

for some integer 0 ≤ c ≤ ⌊g/2⌋. Moreover, we can choose a base point xc in Λg,pc so that
Gx(Zp) is contained in Gxc(Zp) and π is induced from the identity map

(37) G1(Q)\G1(Af )/Ux −→ G1(Q)\G1(Af )/Uxc ,

where Uxc ≃ Gxc(Ẑ).

Remark 4.30. Since any two supersingular abelian varieties x = (X,λ) and x′ = (X ′, λ′) have
isomorphic ℓ-adic Tate modules at all primes ℓ ̸= p, the corresponding groups Gx(

∏
ℓ̸=p Zℓ) and

Gx′(
∏

ℓ̸=p Zℓ) are conjugate inside G1(Ap
f ), where Ap

f denotes the prime-to-p adeles. That is,

“the corresponding groups Gx(Ẑ) and Gx′(Ẑ) only differ at p”.
This observation also explains why in the statement of Lemma 4.29 we are comparing the

groups Gx(Zp) and Gxc(Zp) at p, while in Equation (37) we see the adelic groups Ux ≃ Gx(Ẑ)
and Uxc ≃ Gxc(Ẑ).

Moreover, by Tate’s theorem at p, cf. Theorem 1.21, at p we have thatGx(Zp) ≃ Aut((X,λ)[p∞])
is isomorphic to the automorphism group of the p-divisible group.

The existence of the surjection π : C(x) ↠ Λg,pc in Lemma 4.29 follows from abstract results
about the algebraic group G1; however, its relation with the minimal isogeny can be seen as

follows. Let φ : x̃ = (X̃, λ̃)→ x = (X,λ) the be minimal isogeny for x and pick 0 ≤ c ≤ ⌊g/2⌋
such that that x̃ ∈ Λg,pc . Then Ux ⊆ Ux̃ := Gx̃(Ẑ). Further, viewing all groups inside G1(Af ),
we see from (35) and (36) that the natural map

(38) G1(Q)\G1(Af )/Ux −→ G1(Q)\G1(Af )/Ux̃

induces a surjection C(x) ↠ Λg,pc .
If the open compact subgroup Ux̃ is maximal, then Ux̃ is conjugate to Ug,pc for some 0 ≤

c ≤ ⌊g/2⌋ and the map π : Λx ↠ Λg,pc in Lemma 4.29 is realised by the minimal isogeny φ.
Maximality holds for g ≤ 4, so in small dimensions, we may use Lemma 4.29 to compare
supersingular masses to superspecial masses. In general, this comparison is achieved using
minimal isogenies via the following proposition.

Proposition 4.31. (cf. [31, Proposition 2.12]) The minimal isogeny φ : x̃ = (X̃, λ̃) → x =

(X,λ) induces an injective map φ∗ : End(X[p∞]) ↪→ End(X̃[p∞]), and if Ux̃ is conjugate
to Ug,pc for some 0 ≤ c ≤ ⌊g/2⌋, then we have

(39) Mass(C(x)) = [Aut((X̃, λ̃)[p∞]) : Aut((X,λ)[p∞])] ·Mass(Λg,pc).

Proof. The injectivity of φ∗ follows since every endomorphism of X[p∞] lifts uniquely to an

endomorphism of X̃[p∞] by [80, Proposition 4.8]. The comparison factor can be seen to equal

[Ux̃ : Ux̃ ∩ Ux]

[Ux : Ux̃ ∩ Ux]
,

cf. Remark 4.30. □

In conclusion, to compute the mass of (the central leaf of) a supersingular principally polarised
abelian variety x = (X,λ), we first need to find a suitable surjection C(x) ↠ Λg,pc for some
0 ≤ c ≤ ⌊g/2⌋, which exists by Lemma 4.29, and is in some cases induced from the minimal
isogeny of (X,λ). If so, then we determine Mass(Λg,pc) using Theorem 4.23, and the comparison

factor [Aut((X̃, λ̃)[p∞]) : Aut((X,λ)[p∞])] from Proposition 4.31, to compute Mass(C(x)).
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4.4.2. Supersingular abelian surfaces.
Let x = (X,λ) be a principally polarised supersingular abelian surface over k. If X is superspe-
cial, then C(x) = Λ2,p0 so we know its mass by Theorem 4.23 with c = 0 and its class number
|Λ2,p0 | by Proposition 4.15 with n = 2, d = p (or equivalently, by Proposition 4.16, with d1 = p,
d2 = 1).

Assume then that X is not superspecial, so it has a(X) = 1. The latter implies that that
there exists a unique PFTQ lying above (X,λ); cf. Example 3.10. That is, there is a unique
(up to isomorphism) polarised superspecial abelian surface (Y1, λ1) such that ker(λ1) ≃ α2

p and
an isogeny ϕ : (Y1, λ1)→ (X,λ) of degree p that is compatible with polarisations. There is also
a unique polarisation µ1 on E2

0 such that ker(µ1) ≃ α2
p and for which (Y1, λ1) ≃ (E2

0 , µ1)⊗Fp2
k.

Let t in P1(k) = P1
µ1
(k) := {ϕ1 : (E2, µ1) ⊗ k → (X,λ) an isogeny of degree p} be the Moret-

Bailly parameter for (X,λ).
The condition a(X) = 1 moreover implies that t ∈ P1(k) \ P1(Fp2) = k \ Fp2 . We distinguish

two different cases: in the first case (I) we have t ∈ k \ Fp4 , and in the second case (II) we have
t ∈ Fp4 \Fp2 . Roughly speaking, these cases correspond to the structure of End(X) in the sense
that a larger field of definition of t yields a smaller endomorphism ring.

The following results respectively give the class number |C(x)| and mass Mass(C(x)) in each
case.

Theorem 4.32. (cf. [25, Theorems 1.1 and 3.6]) Let x = (X,λ) be a principally polarised
supersingular abelian surface over k with a(X) = 1 and Moret-Bailly parameter t, and let
h = |C(x)| be the corresponding class number.

(1) In Case (I), i.e. when t ∈ k \ Fp4, we have

h =

{
1 if p = 2;
p2(p4−1)(p2−1)

5760 if p ≥ 3.

(2) In Case (II), i.e. when t ∈ Fp4 \ Fp2, we have

h =


1 if p = 2;
p2(p2−1)2

2880 if p ≡ ±1 mod 5 or p = 5;

1 + (p−3)(p+3)(p2−3p+8)(p2+3p+8)
2880 if p ≡ ±2 mod 5.

(3) For each case, we have h = 1 if and only if p = 2, 3.

Theorem 4.33. (cf. [82, Theorem 1.1]), [25, Proposition 3.3]) Let x = (X,λ) and t ∈ P1(k) be
as in Theorem 4.32. Then

(40) Mass(C(x)) = Lp

5760
,

where

Lp =

{
2−e(p)(p4 − 1)(p4 − p2) if t ∈ k \ Fp4 (Case (I));

(p2 − 1)(p4 − p2), if t ∈ Fp4 \ Fp2 (Case (II)),

with e(p) = 0 if p = 2 and e(p) = 1 if p > 2.

By combining Theorems 4.32 and 4.33, we can derive quite precise information about the
automorphism groups of the supersingular surfaces, as the next result demonstrates.

Corollary 4.34. Let p = 2, and let x′ = (X ′, λ′) be a principally polarised supersingular abelian
surface over k with a(X ′) = 1. Let ϕ1 : (E

2
0 ⊗ k, µ1)→ (X ′, λ′) be the isogeny yielding a Moret-

Bailly parameter t ∈ k \ Fp2, where µ1 is a polarisation on E2 such that ker(µ1) ≃ α2
p. Then

(41) |Aut(X ′, λ′)| =

{
32 if t ∈ k \ Fp4 (Case (I));

160, if t ∈ Fp4 \ Fp2 (Case (II)).
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Proof. By Theorem 4.32, we have |C(x′)| = 1 in both cases. Then Theorem 4.33 for p = 2 yields

Mass(C(x′)) =

{
1/32 if t ∈ k \ Fp4 (Case (I));

1/160, if t ∈ Fp4 \ Fp2 (Case (II)).

□

4.4.3. Supersingular abelian threefolds.
Recall the description of P3,µ from Example 3.13 via the truncation map π as a P1-bundle over

the Fermat curve C : Xp+1
1 +Xp+1

2 +Xp+1
3 = 0, independent of the choice of µ.

Recall also that we defined the a-number on points y ∈ P3,µ via a(y) := a(pr0(y)) and
described the a-number loci in Example 3.18. As in that example, we will write a point y ∈
P3,µ(k) as a pair (t, u), where t = π(y) is a point on C and where u ∈ π−1(t) =: P1

t (k) is a point
on the projective line above it.

The mass calculation will depend on the a-number, since the a-number of a supersingular
principally polarised abelian threefold (X,λ) tells us how to derive its minimal isogeny from
the PFTQ lying over it, [31, Proposition 3.16]. If a(X) = 3, then X is superspecial already,
so the minimal isogeny is the identiy. On the other extreme, if a(X) = 1, then the PFTQ
(Y2, λ2)→ (Y1, λ1)→ (Y0, λ0) = (X,λ) itself is the minimal isogeny. And if a(X) = 2, then the
minimal isogeny is (Y1, λ1)→ (X,λ). In particular, then the minimal isogeny is of degree p and
ker(λ1) ≃ α2

p, so that this case can be compared to the surface case from Subsection 4.4.2.
We define the mass of a point y = (t, u) in P3,µ(k) by setting Mass(y) = Mass(C(x)) for

x = pr0(y). In [31] we determined the mass for any y ∈ P3,µ(k); the following theorems
summarise the main results.

Theorem 4.35. (cf. [31, Theorem A]) Let y = (t, u) ∈ P3,µ(k) be a point such that t ∈ C(Fp2);
then a(y) ≥ 2 by Example 3.18. Then we have

Mass(y) =
Lp

210 · 34 · 5 · 7
,

where

Lp =


(p− 1)(p2 + 1)(p3 − 1) if u ∈ P1

t (Fp2);

(p− 1)(p3 + 1)(p3 − 1)(p4 − p2) if u ∈ P1
t (Fp4) \ P1

t (Fp2);

2−e(p)(p− 1)(p3 + 1)(p3 − 1)p2(p4 − 1) if u ̸∈ P1
t (Fp4),

where e(p) = 0 if p = 2 and e(p) = 1 if p > 2.

Theorem 4.35 gives the mass formula for points with a-number greater than or equal to 2. To
describe the mass of points with a-number 1, we need to construct an auxiliary divisor D ⊆ P ′

3,µ,

cf. [31, Definition 5.16], and a function d : C(k) \ C(Fp2)→ {3, 4, 5, 6}, cf. [31, Definition 5.12].
In [31, Proposition 5.13] it is shown how the value of this function is related to the field of
definition of the parameter t; roughly speaking, the larger the field of definition, the higher the
value of d. Further, the function d is surjective when p ̸= 2, and it only takes value 3 when
p = 2. On the other hand, the divisor D encodes information about both parameters t and u.

Using this terminology, we have the following result.

Theorem 4.36. (cf. [31, Theorem B]) Let y = (t, u) ∈ P ′
3,µ(k) be a point such that t ̸∈ C(Fp2);

then a(y) = 1 by Example 3.18. Then we have

Mass(y) =
p3Lp

210 · 34 · 5 · 7
,

where

Lp =


2−e(p)p2d(t)(p2 − 1)(p4 − 1)(p6 − 1) if y /∈ D;
p2d(t)(p− 1)(p4 − 1)(p6 − 1) if t /∈ C(Fp6) and y ∈ D;
p6(p2 − 1)(p3 − 1)(p4 − 1) if t ∈ C(Fp6) and y ∈ D,

where again e(p) = 0 if p = 2 and e(p) = 1 if p > 2.
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As in the two-dimensional setting, in some cases we obtain precise information about the
automorphism groups of the threefolds, this time by considering reductions of endomorphism
rings (modulo a uniformiser of the maximal order of the quaternion division Qp-algebra). So
rather than finding the automorphism groups from the combination of masses and class numbers,
we now combine our knowledge of the mass and the automorphism groups in these cases to
obtain the class number. The results for the generic case are given below.

Theorem 4.37. (cf. [31, Theorem 6.4]) Let x = (X,λ) be a supersingular principally polarised
abelian threefold with a(X) = 1, whose associated PFTQ is described by parameters (t, u) ̸∈ D.

(1) If p = 2, then Aut(X,λ) ≃ C3
2 .

(2) If p ≥ 5, or p = 3 and d(t) = 6, then Aut(X,λ) ≃ C2.

Corollary 4.38. (cf. [31, Corollary 6.5]) Under the same notation as above and assumptions
as in Theorem 4.37, we have:

(1) If p = 2, then |C(x)| = 4.
(2) If p = 3 and d(t) = 6, then |C(x)| = 311 · 13.
(3) If p ≥ 5, then

|C(x)| = p3+2d(t)(p2 − 1)(p4 − 1)(p6 − 1)

210 · 34 · 5 · 7
.
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76. Torsten Wedhorn, Specialization of f-zips, arXiv e-prints 0507175 (2005).
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