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Let k be an algebraically closed field of characteristic p.

Let Az be the moduli space over k of principally polarised
g-dimensional abelian varieties.

Ay is irreducible of dimension @.
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Moduli space A,
Let k be an algebraically closed field of characteristic p.
Definition

Let Az be the moduli space over k of principally polarised
g-dimensional abelian varieties.

Ay is irreducible of dimension @. Often write X = (X, \).

For X € Ag(k), consider its p-divisble group X[p>].
The isogeny class of X[p®°] uniquely determines a Newton polygon.
= Newton stratification of A,.
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Moduli space A,
Let k be an algebraically closed field of characteristic p.
Definition

Let Az be the moduli space over k of principally polarised
g-dimensional abelian varieties.

Ay is irreducible of dimension @. Often write X = (X, \).

For X € Ag(k), consider its p-divisble group X[p>].
The isogeny class of X[p®°] uniquely determines a Newton polygon.
= Newton stratification of A,.

The isogeny class of X[p™] also determines the p-RANK f of X:
(X[p)(K)| = p' 500 < f<g.
= p-rank stratification of A,.



Q@ X € Ag(k) is SUPERSINGULAR if X ~ E€ with E[p](k) = 0.

@ Let S, be the moduli space over k of principally polarised
g-dimensional supersingular abelian varieties.
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Moduli space S,

Definition
@ X € A, (k) is SUPERSINGULAR if X ~ E& with E[p](k) = 0.

@ Let S; be the moduli space over k of principally polarised
g-dimensional supersingular abelian varieties.

@ All supersingular abelian varieties have the same Newton
polygon, i.e., S; is a Newton stratum of Aj.
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Moduli space S,

Definition
@ X € A, (k) is SUPERSINGULAR if X ~ E& with E[p](k) = 0.

@ Let S; be the moduli space over k of principally polarised
g-dimensional supersingular abelian varieties.

@ All supersingular abelian varieties have the same Newton
polygon, i.e., S; is a Newton stratum of Aj.

@ A supersingular abelian variety has p-rank zero.
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Moduli space S,

Definition
@ X € A, (k) is SUPERSINGULAR if X ~ E& with E[p](k) = 0.

@ Let S; be the moduli space over k of principally polarised
g-dimensional supersingular abelian varieties.

@ All supersingular abelian varieties have the same Newton
polygon, i.e., S; is a Newton stratum of Aj.

@ A supersingular abelian variety has p-rank zero.

@ Every component of S, has dimension Lgfzj.



Let X € Ag(k). Its a-NUMBER is a(X) := dim,Hom(a, X).
It depends on the isomorphism class of X|[p].
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The a-number stratification

Definition
Let X € Ag(k). Its a-NUMBER is a(X) := dim,Hom(a,, X).
It depends on the isomorphism class of X[p].

For X € Ag(k) with p-rank f, we have 0 < a(X) < g —f.
For X € Sg(k), we have 1 < a(X) < g.
= a-number stratification of S, = [[5_; S(a).
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The a-number stratification

Definition
Let X € Ag(k). Its a-NUMBER is a(X) := dim,Hom(a,, X).
It depends on the isomorphism class of X[p].

For X € Ag(k) with p-rank f, we have 0 < a(X) < g —f.
For X € Sg(k), we have 1 < a(X) < g.
= a-number stratification of S, = [[5_; S(a).

@ Every component of S;(a) has dimension L%]

@ a(X) =g < X is SUPERSPECIAL, i.e., X ~ ES.
The superspecial stratum Sg(g) is zero-dimensional.
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The Ekedahl-Oort stratification

For X € Ag(k), consider its p-torsion X|p].

Its isomorphism class is classified by an element of the Weyl group
Wy of Sp,,, or equivalently by an ELEMENTARY SEQUENCE .
= Ekedahl-Oort stratification of A, = ][, S,
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The Ekedahl-Oort stratification

For X € Ag(k), consider its p-torsion X|p].

Its isomorphism class is classified by an element of the Weyl group
Wy of Sp,,, or equivalently by an ELEMENTARY SEQUENCE .
= Ekedahl-Oort stratification of A, = ][, S,

@ Ekedahl-Oort stratification refines the p-rank stratification.

o Also consider Ekedahl-Oort stratification [ ], (Sy, N Sg) of Sg.
Combinatorial criterion determines when S, C S;.
These strata are reducible; all other strata are irreducible.
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The Ekedahl-Oort stratification

For X € Ag(k), consider its p-torsion X|p].

Its isomorphism class is classified by an element of the Weyl group
Wy of Sp,,, or equivalently by an ELEMENTARY SEQUENCE .
= Ekedahl-Oort stratification of A, = ][, S,

@ Ekedahl-Oort stratification refines the p-rank stratification.

o Also consider Ekedahl-Oort stratification [ ], (Sy, N Sg) of Sg.
Combinatorial criterion determines when S, C S;.
These strata are reducible; all other strata are irreducible.

@ The a-number is constant on Ekedahl-Oort strata.
= Sg(a) =1, (Sp N Sg).



Want to consider p-divisible groups up to isomorphism



Want to consider p-divisible groups up to isomorphism:

For x = (Xo, Ao) € Sg(k), define the CENTRAL LEAF

A = {(X; A) € Sg(k) - (X, \)[p™] = (Xo, Ao)[p™]}-




Want to consider p-divisible groups up to isomorphism:

For x = (Xo, Ao) € Sg(k), define the CENTRAL LEAF

A = {(X; A) € Sg(k) - (X, \)[p™] = (Xo, Ao)[p™]}-

@ Each Ay is finite, but determining its size is very hard.
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A foliation of S,

Want to consider p-divisible groups up to isomorphism:
Definition

For x = (Xp, Ao) € Sg(k), define the CENTRAL LEAF

A = {(X, A) € Sg(k) - (X, A)[p™] = (Xo, Ao)[p™]}-

@ Each A, is finite, but determining its size is very hard.

@ Let Gx/7Z be the automorphism group scheme, such that
Gx(R) ={h € (End(Xo) ®z R)* : Hh =1}
for any commutative ring R. Then there is a bijection

Ax ~ G(Q)\ Ge(Af)/Gu(Z).
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A finer stratification?

A = {(X;A) € Sg(k) + (X, N)[p™] == (X0, do) [p™]}-

For any x € §;, compute the MASS

Mass(A Z |[Aut(x")] 72

x'ENy

N.B. Mass(Ay) = vol(Gy(Q)\Gx(Af)) = Mass(Gy, Gx(Z)).
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A finer stratification?

A = {(X,A) € Sg(k) : (X, N)[p™=] = (Xo, Mo)[p™]}-

For any x € §;, compute the MASS

Mass(A Z |[Aut(x")] 72

x'ENy

N.B. Mass(Ay) = vol(Gy(Q)\Gx(Af)) = Mass(Gy, Gx(Z)).

= “Mass stratification” of S,.
Expected to refine the a-number and Ekedahl-Oort stratifications.
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A finer stratification?

A = {(X,A) € Sg(K) : (X, N)[p™] = (Xo, Ao)[p™]}-

For any x € §;, compute the MASS

Mass(Ay) = Z |Aut(x")| 72

x'ENy

N.B. Mass(Ay) = vol(Gy(Q)\Gx(Af)) = Mass(Gy, Gx(Z)).

= “Mass stratification” of S,.
Expected to refine the a-number and Ekedahl-Oort stratifications.

From now on, we work with g = 3!
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Let £/ be a supersingular elliptic curve with 7 = —p.
Let 4 be any principal polarisation of E3.

Definition

A POLARISED FLAG TYPE QUOTIENT (PFTQ) WITH RESPECT

TO w4 is a chain

(E3, pu) =

such that ker(p1) >~ a,, ker(p>
0<i<2and0<j<|i/2].

(Y2, h0) B

% (Y1, A1) 25 (Y0, M)

)~ a2, and ker()\;) C ker(VJ o F=) for

p




Stratifications of Sg Geometry of S3 Mass formulae for S3
000000 ©00000 000000000

How do we describe S37

Let £/ be a supersingular elliptic curve with 7 = —p.
Let 4 be any principal polarisation of E3.

Definition
A POLARISED FLAG TYPE QUOTIENT (PFTQ) WITH RESPECT
TO w4 is a chain

(B3, pu) = (Y2, 22) 2 (Y1, A1) 2 (Yo, Xo)

such that ker(p1) ~ a,, ker(p2) ~ a2, and ker()\;) C ker(V/ o F'=J) for

0<i<2and0<j<|i/2].

p

Let P, be the moduli space of PFTQ's.
It is a two-dimensional geometrically irreducible scheme over IF



An PFTQ w.r.t. s (E3, pp) =: (Ya, A2) 22 (Y1, M) 25 (Yo, Ao).
It follows that (Yo, A\g) € S3, so there is a projection map

pro: Py, — S3
(Yg — Y1 — Yo) —> (Yo,)\o)

such that H# P, — Sz is surjective and generically finite.
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How do we describe S37

An PFTQ w.r.t. pis (E3, pu) =: (Y2, A2) 2 (Y1, A1) 25 (Yo, Do)
It follows that (Yo, A\g) € S3, so there is a projection map

pro : Py — S3
(Yz — Y1 — Yo) —> (Yo,)\o)

such that Hu P, — Sz is surjective and generically finite.

Each P, approximates a geom. irreducible component of S3. I
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How do we describe P, ?

Let C: tP™ 4 271 4 t271 = 0 be a Fermat curve in P2,
It has genus p(p — 1)/2 and admits a left action by Us(IF,).

Then 7 : P, ~ Pc(O(—1) & O(1)) — C is a PX-bundle.
There is a section s: C — T C P,,.
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How do we describe P,?

Let C: tP™ 4 271 4 t27F = 0 be a Fermat curve in P2.
It has genus p(p — 1)/2 and admits a left action by Usz(F)).

Then 7 : P, ~ Pc(O(—1) & O(1)) — C is a PX-bundle.
There is a section s: C — T C P,,.

For each (X, \) there exist a ¢ and a y € P, such that
pro(y) = [(X, \)]

This y is uniquely characterised by a pair (t, u) with
t=(t1:tr:t3) € C(k) and u = (u1 : wp) € m1(t) ~ PL(k).




7P, ~=Pc(O(-1)® O(1)) = C has sections: C = T C P,

Recall that X /k has a-number a(X) = dim,Hom(cp, X).
Fora PFTQ y = (Y2 — Y1 — Yb), we say a(y) = a(Yo).




7P, ~=Pc(O(-1)® O(1)) = C has sections: C = T C P,

Recall that X /k has a-number a(X) = dim,Hom(cp, X).
Fora PFTQ y = (Y2 — Y1 — Yb), we say a(y) = a(Yo).

e For a supersingular threefold X we have a(X) € {1,2,3},
and a(X) = 3 < X is superspecial.



7P, ~=Pc(O(-1)® O(1)) = C has sections: C = T C P,

Recall that X /k has a-number a(X) = dim,Hom(cp, X).
Fora PFTQ y = (Y2 — Y1 — Yb), we say a(y) = a(Yo).

e For a supersingular threefold X we have a(X) € {1,2,3},
and a(X) = 3 < X is superspecial.

o If y e T, then a(y) =3.
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The structure of P,

m: P, =Pc(O(-1)® O(1)) = C has sections: C - T C P,

Definition
Recall that X /k has a-number a(X) = dim,Hom(c,, X).
Fora PFTQ y = (Y2 — Y1 — Y0), we say a(y) = a(Yo).

@ For a supersingular threefold X we have a(X) € {1, 2,3},
and a(X) = 3 < X is superspecial.

o If y e T, then a(y) =3.

@ For t € C(k), we have t € C(F,2) © a(y) > 2 for any
y € m(¢).
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The structure of P,

m: P, =Pc(O(-1)® O(1)) = C has sections: C - T C P,

Definition
Recall that X /k has a-number a(X) = dim,Hom(c,, X).
Fora PFTQ y = (Y2 — Y1 — Y0), we say a(y) = a(Yo).

e For a supersingular threefold X we have a(X) € {1, 2,3},
and a(X) = 3 < X is superspecial.

o If y e T, then a(y) =3.

@ For t € C(k), we have t € C(F,2) © a(y) > 2 for any
y € m(¢).

@ Fory € P, wehave a(y) =1y ¢ T and (y) & C(F,2).
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The structure of P,: a picture

Mass formulae for S3
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Any supersingular abelian variety X admits a MINIMAL ISOGENY

p:Y =X

from a superspecial abelian variety Y.
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Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a MINIMAL ISOGENY
p:Y =X

from a superspecial abelian variety Y.

Construct the minimal isogeny for X from its corresponding PFTQ

Yo 2 vi 2 vy = X.

(If Y2—= Y1 — Ypis a PFTQ, then Y3 is superspecial!)
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Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a MINIMAL ISOGENY
p:Y =X

from a superspecial abelian variety Y.

Construct the minimal isogeny for X from its corresponding PFTQ

Yo 2 vi 2 vy = X.

(If Y2—= Y1 — Ypis a PFTQ, then Y3 is superspecial!)

e If a(X) = 3 then X is superspecial and ¢ = id.
e If a(X) =2, then a(Y1) = 3 and ¢ = p1 of degree p.
o If a(X) =1, then o = p1 o py of degree p>.



What is a mass formula?

Compute Mass(Ay) = > cn, |Aut(x)| 7! for any x € Ss.

A mass formula computes an expression for the mass.
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What is a mass formula?

Compute Mass(Ay) = Y. en, |[Aut(x)[ 7! for any x € S.

A mass formula computes an expression for the mass.

Let S = { supersingular elliptic curves over F,}/ ~. Then

p—1
Mass(S) = Z |A (s TR
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From minimal isogenies to masses
Let x = (X, A) be supersingular and ¢ : Y — X a minimal isogeny.
Write X = (Y, ¢*)A). Recall automorphism group scheme G.

Through ¢, we may view both Gg(Z) and ¢* Gy(Z) as open
compact subgroups of Gz(Af), which differ only at p.
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From minimal isogenies to masses
Let x = (X, A) be supersingular and ¢ : Y — X a minimal isogeny.
Write X = (Y, ¢*\). Recall automorphism group scheme Gy.

Through ¢, we may view both Gg(Z) and ¢* Gy(Z) as open
compact subgroups of Gz(Ar), which differ only at p. Hence:

[6x(Z) : Gx(Z) N " G(2)]

Mass(Ay) = = = ~— - Mass(Az)
[90* GX(Z) : G)?(Z) N 90* GX(Z)]

= [Aut((Y, o"N\)[p™]) : Aut((X, A)[p™])] - Mass(Az).
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From minimal isogenies to masses
Let x = (X, A) be supersingular and ¢ : Y — X a minimal isogeny.
Write X = (Y, ¢*\). Recall automorphism group scheme Gy.

Through ¢, we may view both Gg(Z) and ¢* Gy(Z) as open
compact subgroups of Gz(Ar), which differ only at p. Hence:

[6x(Z) : Gx(Z) N " G(2)]

Mass(Ay) = = = ~— - Mass(Az)
[90* GX(Z) : G)?(Z) N 90* GX(Z)]

= [Aut((Y, o"N\)[p™]) : Aut((X, A)[p™])] - Mass(Az).

So we can compare any supersingular mass to a superspecial mass.
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From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!

Let X = (Y, \) be a superspecial abelian threefold.

e If X is a principal polarisation, then

Mass(Ay) = E-UEALE-D).

o If ker(\) =~ ap X ap, then

Mass(Ag) = (p— 1)(P ;12(;3 1)
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From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!

Let X = (Y, \) be a superspecial abelian threefold.

e If X is a principal polarisation, then

Mass(Az) = (o= 1)2(1,[3) ;15)(;3 O3

o If ker(\) =~ ap X ap, then

3
Mass(Az) = (p— 1)2(1”0;152(5 -1)

It remains to compute [Aut((Y, ¢*\)[p>]) : Aut((X, \)[p>])].



Let x = (X, A) € S3 such that a(X) = 2.

Its PFTQ (Y2, A2) = (Y1, A1) — (X, A) is characterised by a pair
t € C(F,2) and u € P}(k) \ PL(F ).

We need to compute [Aut(( Y1, A1)[p™]) : Aut((X, A)[p>])].
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The case a(X) =

Let x = (X, A) € S3 such that a(X) = 2.

Its PFTQ (Y2, A2) — (Y1, A1) — (X, A) is characterised by a pair
t € C(F,2) and u € P}(k) \ PL(F ).

We need to compute [Aut(( Y1, A1)[p™]) : Aut((X, A)[p>])].

There are reduction maps

Aut((Y1, \1)[p]) = SLa(F,2)
Aut((X, \)[p™]) = SLa(F,2) N End(u)*,

where

Foe if u€ PHF ) \ PH(F2);
Py(F

End(u) = {g € Ma(F2) : g-u € k-u} =~ {F if ue Pl(kg\
p2 It u ;

p
pt)-



Let x = (X, A) € S3 such that a(X) = 2.
Its PFTQ (Y2, A2) — (Y1, A1) — (X, A) is characterised by a pair
t € C(F,2) and u € P}(k) \ P{(F ).
So [Aut((Y1, A1)[p™]) - Aut((X, \)[p™])] =
[SLQ(Isz) . SLQ(sz) N End(u)x] =
PP 1) if uc PH(E) \ B(F,)
[PSLo(F )| if u € PE(k) \ PH(Fp).
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The case a(X) =2

Let x = (X, \) € S3 such that a(X) = 2.
Its PFTQ (Y2, A2) — (Y1, A1) — (X, A) is characterised by a pair
t € C(F,2) and u € P}(k) \ P;(F ).
So [Aut((Y1, A1)[p™]) - Aut((X, A)[p™])] =
[SLz(Isz) : SLQ(sz) N End(u)x] =
Pz(p2 —1) if ue P%(Fp ) \Pl(Isz)
[PSLo(F2)|  if u € Pr(k) \ PH(F ).

There are two mass strata in S3(2):
1
Mass(/\x) = m
{(p—l)( +1)(p° — 1)(p* — p°) D u € Py(Fp) \ PH(Fpe);
270N (p— 1)(p* + 1)(p* — 1)P*(p* — 1) : u € PL(Kk) \ Py(Fpe). |




Let x = (X, A) € S3 such that a(X) = 1.

Its PFTQ (Y2, A2) = (Y1, A1) — (X, A) is characterised by a pair
t € CO(k) := C(k)\ C(F,2) and u € Py(k).

We need to compute [Aut(( Y2, A2)[p™]) : Aut((X, A)[p>])]-
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The case a(X) =1

Let x = (X, A) € S3 such that a(X) = 1.

Its PFTQ (Y2, A2) = (Y1, A1) — (X, A) is characterised by a pair
t € CO(k) := C(k)\ C(F,2) and u € P}(k).

We need to compute [Aut(( Y2, A2)[p™]) : Aut((X, A)[p>])]-

Let D, = Q2[MM] be the division quaternion algebra over Q,, and
let Op, its maximal order. (We have 1? = —p.)

o G = Aut((Yz,)\z)[poo]) o~ {A S GL3(ODP) CAYA = ]13}.
o G = Aut(X. N[pX])] = g € G : g(X[p]) = X[7]}.
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The case a(X) =1

Let x = (X, A) € S3 such that a(X) = 1.

Its PFTQ (Y2, A2) = (Y1, A1) — (X, A) is characterised by a pair
t € CO(k) := C(k)\ C(F,2) and u € P}(k).

We need to compute [Aut(( Y2, A2)[p™]) : Aut((X, A)[p>])]-

Let D, = Q2[MM] be the division quaternion algebra over Q,, and
let Op, its maximal order. (We have 1? = —p.)

o G := Aut((Y2,\2)[p™]) ~ {A € GL3(Op,) : A*A =13}.
o G :=Aut((X,N)[p=])] = {g € G2 : g(X[p™]) = X[p™]}.
Reducing modulo p we obtain G, and G, where:
e Go={A+BMNc GL3(F2[M]) : A*A =13, BTA* = A*TB},
so [Ga| = |Us(Fp)| - [S3(Fp2)l = p™(p + 1)(p* — 1)(p* + 1);
° G ={g¢€ G2:g(X[p>]) C X[p>]}.
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The case a(X) =1

Let x = (X, A) € S3 such that a(X) = 1.

Its PFTQ (Y2, A2) = (Y1, A1) — (X, A) is characterised by a pair
t € CO(k) := C(k)\ C(F,2) and u € P}(k).

We need to compute [Aut(( Y2, A2)[p™]) : Aut((X, A)[p>])]-

Let D, = Q2[MM] be the division quaternion algebra over Q,, and
let Op, its maximal order. (We have 1? = —p.)

o G = Aut((Yz,)\z)[poo]) o~ {A S GL3(ODP) CAYA = ]13}.
o G = Aut((X, )[p>])] = {g € G : g(X[p]) = X[p™]}.
Reducing modulo p we obtain G, and G, where:
e Go={A+BMNc GL3(F2[M]) : A*A =13, BTA* = A*TB},
s0 |G| = |Us(Fp)| - [S3(F )| = p*(p + 1)(p* — 1)(p* + 1);
o G={g € Gz:g(X[p>]) C X[p>]}.
Moreover,
o [Aut((Y2, A2)[p™]) : Aut((X, \)[p])] =[Gz : G] = [G2: G].




Let x = (X, A) € S3 such that a(X) = 1.

Its PFTQ (Y2, A2) — (Y1, A1) — (X, A) is characterised by a pair

t € CO(k) := C(k)\ C(Fy2) and u € Py(k).

We need [Aut(( Y2, \2)[p™]) : Aut((X,\)[p>])] = [G2: G] = [G2: G].

° E:{(SA;‘A?,,)) cAe Us(Fp),A-t=a-t,
S € S3(F,2), ve(S) = wpur*(1 — P~ 1)},
where ¢ : S3(F2) — k is a homomorphism depending on t.
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The case a(X) =1

Let x = (X, A\) € S3 such that a(X) = 1.

Its PFTQ (Y2, X2) — (Y1, A1) — (X, ) is characterised by a pair

t € COk) := C(k)\ C(F,2) and u € Py(k).

We need [Aut(( Yz, \2)[p™]) : Aut((X,\)[p>])] = [G: : G] = [G2 : G].

o G { (L ) AcUs(Fp) A t=a-t,
S € S3(Fp2), () = touy (1 — 0”1},
where 1); : S3(IF,2) — k is a homomorphism depending on t.

The images of v, for varying t define a divisor D C C°® x P
For t € CO(k), let d(t) = dimg , (Im(4)¢)) and D; = 7~ 1(t) N D.
Then u=(u1: w) € Dy & uzul_1 € Im(e)¢).
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The case a(X) =1

Let x = (X, A\) € S3 such that a(X) = 1.

Its PFTQ (Y2, X2) — (Y1, A1) — (X, ) is characterised by a pair

t € COk) := C(k)\ C(F,2) and u € Py(k).

We need [Aut(( Y2, A2)[p™]) : Aut((X, \)[p™])] =[G : G] = [Eg : 6]

o G { (L ) AcUs(Fp) A t=a-t,
S € S3(F ), Ue(S) = touy (1 — 0”1},
where 1); : S3(IF,2) — k is a homomorphism depending on t.

The images of v, for varying t define a divisor D C C°® x P
For t € CO(k), let d(t) = dimg , (Im(4)¢)) and D; = 7~ 1(t) N D.
Then u=(u1: w) € Dy & uzul_1 € Im(e)¢).
2¢(p) p2(6—d(1)) if ud Dy;
o [G] =4 (p+1)p*6~d®) if ye Dy and t & C(Fpe);
(p® + 1)p° if ue Dy and t € C(Fpe).
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The case a(X) =1

Let x = (X, A\) € S3 such that a(X) = 1.
Its PFTQ (Y2, A2) — (Y1, A1) — (X, A) is characterised by a pair
t € Cok) := C(k)\ C(F,) and u € P}(k).

There are three mass strata in S3(1):

M b
ass(Ax) = 21038 .5.7
272 (p? —1)(p* —1)(p° ~1) :u ¢ Dy
p>@®(p — 1)(p* —1)(p® — 1) U € Dyt & C(Fps);

po(p? — 1)(p3 — 1)(p* — 1) cu€ Dy te C(]Fpa);
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The case a(X) =1

Let x = (X, A\) € S3 such that a(X) = 1.
Its PFTQ (Y2, A2) — (Y1, A1) — (X, A) is characterised by a pair
t € Cok) := C(k)\ C(F,) and u € P}(k).

There are three mass strata in S3(1):
3
p
Mass() = 503557
2-eP)p2d(D(p? — 1)(p* —1)(p° —1) :u ¢ Dy;
p?d(p —1)(p* — 1)(p® — 1) cu€ Dyt € C(Fpe);
pe(p® — 1)(p® — 1)(p* - 1) tu € Dyt € C(Fps).

What else can we use all these computations for? I
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Application: Oort’s conjecture

Every generic g-dimensional principally polarised supersingular
abelian variety (X, \) over k of characteristic p has automorphism
group G ~ {£1}.
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Application: Oort’s conjecture

Every generic g-dimensional principally polarised supersingular
abelian variety (X, \) over k of characteristic p has automorphism

group G ~ {£1}.

This fails in general: counterexamples for (g, p) = (2,2) and (3, 2).
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Application: Oort’s conjecture

Every generic g-dimensional principally polarised supersingular
abelian variety (X, \) over k of characteristic p has automorphism

group G ~ {£1}.

This fails in general: counterexamples for (g, p) = (2,2) and (3, 2).

When g = 3, Oort's conjecture holds precisely when p # 2. I
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Application: Oort’s conjecture

Every generic g-dimensional principally polarised supersingular
abelian variety (X, \) over k of characteristic p has automorphism

group G ~ {£1}.

This fails in general: counterexamples for (g, p) = (2,2) and (3, 2).

When g = 3, Oort's conjecture holds precisely when p # 2. I

e A generic threefold X has a(X) = 1.
lts PFTQ is characterised by t € C°(k) and u & D;.

@ Our computations show for such (X, ) that

C23 for p = 2;

Aut((X, \)) ~ {c2 o o 22
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