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Stratifications of Sg Geometry of S3 Mass formulae for S3

Moduli space Ag

Let k be an algebraically closed field of characteristic p.

Definition

Let Ag be the moduli space over k of principally polarised
g -dimensional abelian varieties.

Ag is irreducible of dimension g(g+1)
2 .

Often write X = (X , λ).

For X ∈ Ag (k), consider its p-divisble group X [p∞].
The isogeny class of X [p∞] uniquely determines a Newton polygon.
⇒ Newton stratification of Ag .

The isogeny class of X [p∞] also determines the p-rank f of X :
|X [p](k)| = pf , so 0 ≤ f ≤ g .
⇒ p-rank stratification of Ag .
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Moduli space Sg

Definition

1 X ∈ Ag (k) is supersingular if X ∼ E g with E [p](k) = 0.

2 Let Sg be the moduli space over k of principally polarised
g -dimensional supersingular abelian varieties.

All supersingular abelian varieties have the same Newton
polygon, i.e., Sg is a Newton stratum of Ag .

A supersingular abelian variety has p-rank zero.

Every component of Sg has dimension bg
2

4 c.
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The a-number stratification

Definition

Let X ∈ Ag (k). Its a-number is a(X ) := dimkHom(αp,X ).
It depends on the isomorphism class of X [p].

For X ∈ Ag (k) with p-rank f , we have 0 ≤ a(X ) ≤ g − f .
For X ∈ Sg (k), we have 1 ≤ a(X ) ≤ g .
⇒ a-number stratification of Sg =

∐g
a=1 Sg (a).

Every component of Sg (a) has dimension bg
2−a2+1

4 c.
a(X ) = g ⇔ X is superspecial, i.e., X ' E g .
The superspecial stratum Sg (g) is zero-dimensional.
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The Ekedahl-Oort stratification

For X ∈ Ag (k), consider its p-torsion X [p].
Its isomorphism class is classified by an element of the Weyl group
Wg of Sp2g , or equivalently by an elementary sequence ϕ.
⇒ Ekedahl-Oort stratification of Ag =

∐
ϕ Sϕ.

Ekedahl-Oort stratification refines the p-rank stratification.

Also consider Ekedahl-Oort stratification
∐
ϕ (Sϕ ∩ Sg ) of Sg .

Combinatorial criterion determines when Sϕ ⊆ Sg .
These strata are reducible; all other strata are irreducible.

The a-number is constant on Ekedahl-Oort strata.
⇒ Sg (a) =

∐
ϕ (Sϕ ∩ Sg ).
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A foliation of Sg

Want to consider p-divisible groups up to isomorphism

:

Definition

For x = (X0, λ0) ∈ Sg (k), define the central leaf

Λx = {(X , λ) ∈ Sg (k) : (X , λ)[p∞] ' (X0, λ0)[p∞]}.

Each Λx is finite, but determining its size is very hard.

Let Gx/Z be the automorphism group scheme, such that

Gx(R) = {h ∈ (End(X0)⊗Z R)× : h′h = 1}

for any commutative ring R. Then there is a bijection

Λx ' Gx(Q)\Gx(Af )/Gx(Ẑ).
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A finer stratification?

Λx = {(X , λ) ∈ Sg (k) : (X , λ)[p∞] ' (X0, λ0)[p∞]}.

Goal

For any x ∈ Sg , compute the mass

Mass(Λx) =
∑
x ′∈Λx

|Aut(x ′)|−1.

N.B. Mass(Λx) = vol(Gx(Q)\Gx(Af )) = Mass(Gx ,Gx(Ẑ)).

⇒ “Mass stratification” of Sg .
Expected to refine the a-number and Ekedahl-Oort stratifications.

From now on, we work with g = 3!
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How do we describe S3?

Let E/Fp2 be a supersingular elliptic curve with πE = −p.
Let µ be any principal polarisation of E 3.

Definition

A polarised flag type quotient (PFTQ) with respect
to µ is a chain

(E 3, pµ) =: (Y2, λ2)
ρ2−→ (Y1, λ1)

ρ1−→ (Y0, λ0)

such that ker(ρ1) ' αp, ker(ρ2) ' α2
p , and ker(λi ) ⊆ ker(V j ◦ F i−j) for

0 ≤ i ≤ 2 and 0 ≤ j ≤ bi/2c.

Let Pµ be the moduli space of PFTQ’s.
It is a two-dimensional geometrically irreducible scheme over Fp2 .
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How do we describe S3?

An PFTQ w.r.t. µ is (E 3, pµ) =: (Y2, λ2)
ρ2−→ (Y1, λ1)

ρ1−→ (Y0, λ0).

It follows that (Y0, λ0) ∈ S3, so there is a projection map

pr0 : Pµ → S3

(Y2 → Y1 → Y0) 7→ (Y0, λ0)

such that
∏
µ Pµ → S3 is surjective and generically finite.

Slogan

Each Pµ approximates a geom. irreducible component of S3.
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How do we describe Pµ?

Let C : tp+1
1 + tp+1

2 + tp+1
3 = 0 be a Fermat curve in P2.

It has genus p(p − 1)/2 and admits a left action by U3(Fp).

Then π : Pµ ' PC (O(−1)⊕O(1))→ C is a P1-bundle.
There is a section s : C → T ⊆ Pµ.

Upshot

For each (X , λ) there exist a µ and a y ∈ Pµ such that
pr0(y) = [(X , λ)].
This y is uniquely characterised by a pair (t, u) with
t = (t1 : t2 : t3) ∈ C (k) and u = (u1 : u2) ∈ π−1(t) ' P1

t (k).
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The structure of Pµ

π : Pµ ' PC (O(−1)⊕O(1))→ C has section s : C → T ⊆ Pµ

Definition

Recall that X/k has a-number a(X ) = dimkHom(αp,X ).
For a PFTQ y = (Y2 → Y1 → Y0), we say a(y) = a(Y0).

For a supersingular threefold X we have a(X ) ∈ {1, 2, 3},
and a(X ) = 3⇔ X is superspecial.

If y ∈ T , then a(y) = 3.

For t ∈ C (k), we have t ∈ C (Fp2)⇔ a(y) ≥ 2 for any
y ∈ π−1(t).

For y ∈ Pµ, we have a(y) = 1⇔ y 6∈ T and π(y) 6∈ C (Fp2).
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The structure of Pµ: a picture

Figure: The bundle Pµ → C .
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Using PFTQ’s to construct minimal isogenies

Any supersingular abelian variety X admits a minimal isogeny

ϕ : Y → X

from a superspecial abelian variety Y .

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

Y2
ρ2−→ Y1

ρ1−→ Y0 = X .

(If Y2 → Y1 → Y0 is a PFTQ, then Y2 is superspecial!)

If a(X ) = 3 then X is superspecial and ϕ = id.

If a(X ) = 2, then a(Y1) = 3 and ϕ = ρ1 of degree p.

If a(X ) = 1, then ϕ = ρ1 ◦ ρ2 of degree p3.
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What is a mass formula?

Goal

Compute Mass(Λx) =
∑

x ′∈Λx
|Aut(x ′)|−1 for any x ∈ S3.

A mass formula computes an expression for the mass.

Eichler-Deuring mass formula

Let S = { supersingular elliptic curves over Fp}/ '. Then

Mass(S) =
∑
s∈S

1

|Aut(s)|
=

p − 1

24
.
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From minimal isogenies to masses

Let x = (X , λ) be supersingular and ϕ : Y → X a minimal isogeny.
Write x̃ = (Y , ϕ∗λ). Recall automorphism group scheme Gx .

Through ϕ, we may view both Gx̃(Ẑ) and ϕ∗Gx(Ẑ) as open
compact subgroups of Gx̃(Af ), which differ only at p.

Hence:

Lemma

Mass(Λx) =
[Gx̃(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]

[ϕ∗Gx(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]
·Mass(Λx̃)

= [Aut((Y , φ∗λ)[p∞]) : Aut((X , λ)[p∞])] ·Mass(Λx̃).

So we can compare any supersingular mass to a superspecial mass.



Stratifications of Sg Geometry of S3 Mass formulae for S3

From minimal isogenies to masses

Let x = (X , λ) be supersingular and ϕ : Y → X a minimal isogeny.
Write x̃ = (Y , ϕ∗λ). Recall automorphism group scheme Gx .

Through ϕ, we may view both Gx̃(Ẑ) and ϕ∗Gx(Ẑ) as open
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Through ϕ, we may view both Gx̃(Ẑ) and ϕ∗Gx(Ẑ) as open
compact subgroups of Gx̃(Af ), which differ only at p. Hence:

Lemma

Mass(Λx) =
[Gx̃(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]

[ϕ∗Gx(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]
·Mass(Λx̃)

= [Aut((Y , φ∗λ)[p∞]) : Aut((X , λ)[p∞])] ·Mass(Λx̃).

So we can compare any supersingular mass to a superspecial mass.
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From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!

Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]

Let x̃ = (Y , λ) be a superspecial abelian threefold.

If λ is a principal polarisation, then

Mass(Λx̃) = (p−1)(p2+1)(p3−1)
210·34·5·7 .

If ker(λ) ' αp × αp, then

Mass(Λx̃) = (p−1)(p3+1)(p3−1)
210·34·5·7 .

It remains to compute [Aut((Y , φ∗λ)[p∞]) : Aut((X , λ)[p∞])].
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The case a(X ) = 2

Let x = (X , λ) ∈ S3 such that a(X ) = 2.
Its PFTQ (Y2, λ2)→ (Y1, λ1)→ (X , λ) is characterised by a pair
t ∈ C (Fp2 ) and u ∈ P1

t (k) \ P1
t (Fp2 ).

We need to compute [Aut((Y1, λ1)[p∞]) : Aut((X , λ)[p∞])].

There are reduction maps

Aut((Y1, λ1)[p∞]) � SL2(Fp2)

Aut((X , λ)[p∞]) � SL2(Fp2) ∩ End(u)×,

where

End(u) = {g ∈ M2(Fp2) : g ·u ⊆ k ·u} '

{
Fp4 if u ∈ P1

t (Fp4) \ P1
t (Fp2);

Fp2 if u ∈ P1
t (k) \ P1

t (Fp4).
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The case a(X ) = 2

Let x = (X , λ) ∈ S3 such that a(X ) = 2.

Its PFTQ (Y2, λ2)→ (Y1, λ1)→ (X , λ) is characterised by a pair

t ∈ C (Fp2 ) and u ∈ P1
t (k) \ P1

t (Fp2 ).

So [Aut((Y1, λ1)[p∞]) : Aut((X , λ)[p∞])] =

[SL2(Fp2) : SL2(Fp2) ∩ End(u)×] ={
p2(p2 − 1) if u ∈ P1

t (Fp4) \ P1
t (Fp2);

|PSL2(Fp2)| if u ∈ P1
t (k) \ P1

t (Fp4).

Theorem (K.-Yobuko-Yu)

There are two mass strata in S3(2):

Mass(Λx) =
1

210 · 34 · 5 · 7
·{

(p − 1)(p3 + 1)(p3 − 1)(p4 − p2) : u ∈ P1
t (Fp4 ) \ P1

t (Fp2 );

2−e(p)(p − 1)(p3 + 1)(p3 − 1)p2(p4 − 1) : u ∈ P1
t (k) \ P1

t (Fp4 ).
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Stratifications of Sg Geometry of S3 Mass formulae for S3

The case a(X ) = 1

Let x = (X , λ) ∈ S3 such that a(X ) = 1.
Its PFTQ (Y2, λ2)→ (Y1, λ1)→ (X , λ) is characterised by a pair
t ∈ C 0(k) := C (k) \ C (Fp2 ) and u ∈ P1

t (k).

We need to compute [Aut((Y2, λ2)[p∞]) : Aut((X , λ)[p∞])].

Let Dp = Qp2 [Π] be the division quaternion algebra over Qp, and
let ODp its maximal order. (We have Π2 = −p.)

G2 := Aut((Y2, λ2)[p∞]) ' {A ∈ GL3(ODp) : A∗A = I3}.
G := Aut((X , λ)[p∞])] = {g ∈ G2 : g(X [p∞]) = X [p∞]}.

Reducing modulo p we obtain G 2 and G , where:

G 2 = {A + BΠ ∈ GL3(Fp2 [Π]) : A∗A = I3,B
TA∗ = A∗TB},

so |G 2| = |U3(Fp)| · |S3(Fp2)| = p15(p + 1)(p2 − 1)(p3 + 1);

G = {g ∈ G 2 : g(X [p∞]) ⊆ X [p∞]}.
Moreover,

[Aut((Y2, λ2)[p∞]) : Aut((X , λ)[p∞])] = [G2 : G ] = [G 2 : G ].
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The case a(X ) = 1

Let x = (X , λ) ∈ S3 such that a(X ) = 1.
Its PFTQ (Y2, λ2)→ (Y1, λ1)→ (X , λ) is characterised by a pair
t ∈ C 0(k) := C (k) \ C (Fp2 ) and u ∈ P1

t (k).

We need [Aut((Y2, λ2)[p∞]) : Aut((X , λ)[p∞])] = [G2 : G ] = [G 2 : G ].

G '
{ (

A 0
SA A(p)

)
: A ∈ U3(Fp),A · t = α · t,
S ∈ S3(Fp2), ψt(S) = u2u

−1
1 (1− αp3−1)

}
,

where ψt : S3(Fp2)→ k is a homomorphism depending on t.

The images of ψt for varying t define a divisor D ⊆ C 0 × P1.
For t ∈ C 0(k), let d(t) = dimFp2 (Im(ψt)) and Dt = π−1(t) ∩ D.

Then u = (u1 : u2) ∈ Dt ⇔ u2u
−1
1 ∈ Im(ψt).

|G | =


2e(p)p2(6−d(t)) if u 6∈ Dt ;

(p + 1)p2(6−d(t)) if u ∈ Dt and t 6∈ C (Fp6);

(p3 + 1)p6 if u ∈ Dt and t ∈ C (Fp6).
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The case a(X ) = 1

Let x = (X , λ) ∈ S3 such that a(X ) = 1.

Its PFTQ (Y2, λ2)→ (Y1, λ1)→ (X , λ) is characterised by a pair

t ∈ C 0(k) := C (k) \ C (Fp2 ) and u ∈ P1
t (k).

Theorem (K.-Yobuko-Yu)

There are three mass strata in S3(1):

Mass(Λx) =
p3

210 · 34 · 5 · 7
·

2−e(p)p2d(t)(p2 − 1)(p4 − 1)(p6 − 1) : u 6∈ Dt ;

p2d(t)(p − 1)(p4 − 1)(p6 − 1) : u ∈ Dt , t 6∈ C (Fp6);

p6(p2 − 1)(p3 − 1)(p4 − 1) : u ∈ Dt , t ∈ C (Fp6).

Question

What else can we use all these computations for?
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Application: Oort’s conjecture

Oort’s conjecture

Every generic g -dimensional principally polarised supersingular
abelian variety (X , λ) over k of characteristic p has automorphism
group C2 ' {±1}.

This fails in general: counterexamples for (g , p) = (2, 2) and (3, 2).

Theorem (K.-Yobuko-Yu)

When g = 3, Oort’s conjecture holds precisely when p 6= 2.

A generic threefold X has a(X ) = 1.
Its PFTQ is characterised by t ∈ C 0(k) and u 6∈ Dt .

Our computations show for such (X , λ) that

Aut((X , λ)) '

{
C 3

2 for p = 2;

C2 for p 6= 2.
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