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Belyi maps

Let X be a compact connected Riemann surface, or equivalently
(GAGA), an algebraic curve over C.

Definition (Belyi map)

A Belyi map is a finite cover f : X → P1
C, which is branched

exactly over {0, 1,∞}.

Belyi’s theorem says X is defined over Q if and only if there
exists a Belyi map as above.

Example. Let X = P1
C and f (x) = −2x3 + 3x2.
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Dessins d’enfant

A Dessin d’enfant for a Belyi map is a finite bipartite graph
where white (resp. black) vertices are the inverse images of 0
(resp. 1) and edges are inverse images of (0, 1).
There are deg(f ) edges.

A dessin d’enfant is a combinatorial representation of a Belyi map.

Example. For f (x) = −2x3 + 3x2, the dessin is
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Generating systems and combinatorial types

A generating system of degree d > 1 is a triple
g = (g1, g2, g3) ∈ S3

d such that g1g2g3 = 1 and such that
〈g1, g2, g3〉 acts transitively on {1, 2, . . . , d}.
For a degree-d Belyi map f the gi encode the ramification data
(monodromy) above {0, 1,∞}.

Riemann’s existence theorem gives a bijection

{Generating systems}/ ∼ ←→ {Belyi maps}/ ' .

Let C (gi ) be the conjugacy class of gi in Sd .
The (combinatorial) type of g is (d ;C (g1),C (g2),C (g3)).
When C (gi ) is a single cycle of length ei , write C (gi ) = ei .

Example. For f (x) = −2x3 + 3x2, the type is (3; 2, 2, 3).
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Dynamical Belyi maps

A Belyi map is a finite cover f : X → P1
C branched over {0, 1,∞}.

Definition (Dynamical Belyi map)

A dynamical Belyi map is a Belyi map such that:

X = P1 so f : P1 → P1 (“genus zero”);

C (gi ) is a single cycle of length ei (“single cycle”);

f (0) = 0, f (1) = 1, f (∞) =∞ (“normalised”).

The Riemann-Hurwitz formula gives 2d + 1 = e1 + e2 + e3.
Fact: A dynamical Belyi map can be defined over Q.

Why “dynamical”?

A dynamical Belyi map can be iterated and therefore exhibits
dynamical behaviour. (More about that soon!)
Write f n = f ◦ . . . ◦ f for the nth iterate of f , where f 1 = f .
Then f n is again a dynamical Belyi map.
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Examples of dynamical Belyi maps

Example. The map f (x) = −2x3 + 3x2 fits into a family of
dynamical Belyi maps of type (d ; d − k, k + 1, d) given by

f (x) = cxd−k(a0x
k + . . .+ ak−1(x) + ak),

with ai = (−1)k−i

d−i

(k
i

)
and c = 1

k!

∏k
j=0(d − j).

(Dessins were worked out by Manes, Melamed, Tobin.)
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Galois groups

Let f be a dynamical Belyi map.
It is defined over Q (Belyi) and even Q (dynamical).

The cover f n : P1
Q → P1

Q corresponds to a function field extension
Fn over F0 = Q(t). Define

Gn,Q := Gal(F̃n/Q(t)).

Similarly, we define

Gn,Q := Gal(( ˜Fn ⊗Q Q)/Q(t)).

Finally, choose a ∈ Q s.t. (the numerator of) f n − a is irreducible
for all n. Let Kn,a be the extension of K0,a := Q obtained by
adjoining a root of (the numerator of) f n − a, and define

Gn,a := Gal(K̃n,a/Q).
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Galois groups

For a dynamical Belyi map f , we want to determine the groups

Gn,Q, Gn,Q, Gn,a.

First observations:

1 We have
Gn,Q ⊆ Gn,Q.

When equality holds, we say the groups descend;
we will give sufficient conditions for descent.

2 Since a ∈ P1(Q) \ {0, 1,∞} is such that (the numerator of)
f n − a is irreducible, then Kn,a ⊗Q Q(t) ' Fn, inducing

Gn,a ⊆ Gn,Q.



Belyi maps Galois groups Dynamics

Arboreal representations

Idea

Embed all Galois groups into automorphism groups of trees.

For d ≥ 2 and n ≥ 1, let Tn be the d-ary rooted tree of level n:

◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦◦ ◦ ◦◦◦

The outer nodes of Tn are the leaves. There are dn leaves, so
Aut(Tn) ↪→ Sdn .
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Arboreal representations

In fact Aut(Tn) ' Aut(Tn−1) oAut(T1) ' Aut(Tn−1) o Sd .
Write (σ, τ) = ((σ1, . . . , σd), τ) ∈ Aut(Tn).

Picking t (or a) as our root and its preimages as the other nodes,
we get the arboreal Galois representation

Gn,Q ↪→ Aut(Tn).
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The groups Gn,Q

Idea

The groups Gn,Q ⊆ Aut(Tn) are completely (and combinatorially)
determined by the generating system of f n.

Recall: f has generating system g = (g1, g2, g3), where gi are
ei -cycles in Sd s.t. g1g2g3 = 1. May take:

g1 = (d , d − 1, . . . , e3, 1, 2, . . . , d − e2);

g2 = (d − e2 + 1, d − e2 + 2, . . . , d);

g3 = (e3, e3 − 1, . . . , 2, 1).

Then

G1,Q = 〈g1, g2, g3〉 '

{
Sd if one of the ei is even;

Ad otherwise.
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The groups Gn,Q

For n ≥ 2, define generating system (g1,n, g2,n, g3,n) of f n

inductively:

g1,n = ((g1,n−1, id, . . . , id), g1);

g2,n = ((id, . . . , id, g2,n−1, id, . . . , id), g2);

g3,n = ((id, . . . , id, g3,n−1, id, . . . , id), g3).

Then Gn,Q = 〈g1,n, g2,n, g3,n〉, and

Theorem 1 (Bouw-Ejder-K.)

1 If G1,Q ' Sd , then inductively

Gn,Q ' (Gn−1 o G1) ∩ ker(sgn2) ⊆ Aut(Tn),

where sgn2 : Aut(Tn)
π2−→ Aut(T2)→ {±1},

((σ1, . . . , σd), τ) 7→ sgn(τ)
∏

sgn(σi ).

2 If G1,Q ' Ad , then Gn,Q ' o
nAd ⊆ Aut(Tn) for all n ≥ 2.
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Descent: when is Gn,Q = Gn,Q?

Theorem 2 (Bouw-Ejder-K.)

If G1,Q = G1,Q ' Ad , or if G1,Q ' Sd and
f has odd degree and is either a polynomial or of type
(d ; d − k , 2k + 1, d − k), then Gn,Q = Gn,Q for all n ≥ 1.

Proof

By Theorem 1: if G2,Q = G2,Q, then Gn,Q ' Gn,Q, ∀n ≥ 2.

Write f (x) = g(x)/h(x) and g(x)− th(x) = `
∏

i (x − ti ).
We have G2,Q ⊆ ker(sgn2) if and only if

∆(g(x)− th(x))
∏
i

∆(f (x)− ti ) = u(1− t)2(e2−1)t2(e1−1)

(with u constant) is a square in Q(t).
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Specialisation: when is Gn,Q ⊆ Gn,a?

(We have Gn,Q ⊆ Gn,Q and suppose that Gn,a ⊆ Gn,Q.)

Theorem 3 (Bouw-Ejder-K.)

Choose a ∈ P1(Q) \ {0, 1,∞} and distinct primes p, q1, q2, q3 s.t.:

(†)


f (x) ≡ xd (mod p);

f has good separable reduction modulo q1, q2, q3;

vp(a) = 1 and vq1(a) > 0, vq2(1− a) > 0, vq3(a) < 0.

Then Gn,Q ⊆ Gn,a for all n ≥ 2.

Proof

Conditions at p: Gn,a is a transitive subgroup of Sdn .

Conditions at q1, q2, q3: prescribe the ramification in Kn,a/Kn−1,a &
construct elements of Gn,a conjugate to the gi,n ∈ Gn,Q.
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Summary of Galois groups

Gn,Q

(1)
||

(3)

""

Gn,Q

<<

(2)
// Gn,a

oo

bb

Theorem 1: We understand Gn,Q = 〈g1,n, g2,n, g3,n〉.

(1): We have Gn,Q ⊆ Gn,Q.
Theorem 2: This is an equality if G1,Q = G1,Q and G2,Q = G2,Q.

(2): Theorem 3: We have Gn,Q ⊆ Gn,a when conditions (†) hold.

(3): We have Gn,a ⊆ Gn,Q if “f n − a” is irreducible.

Conclusion: If all these conditions hold, all groups are equal!
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Dynamical system

A dynamical Belyi map f : P1 → P1 yields a dynamical system

(f ,P1).

Considering f : P1
C → P1

C, we can study this dynamical system by
computing its Julia set, i.e., the set

{z ∈ C : f n(z) 6→ ∞ as n→∞}.
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Belyi map of combinatorial type (3; 2, 2, 3)
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Belyi map of combinatorial type (3; 2, 2, 3)
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Belyi map of combinatorial type (3; 2, 2, 3)
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Belyi map of combinatorial type (3; 2, 2, 3)
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Belyi map of combinatorial type (3; 2, 2, 3)
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Belyi map of combinatorial type (5; 3, 3, 5)
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Belyi map of combinatorial type (6; 2, 5, 6)
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Belyi map of combinatorial type (3; 2, 3, 2)
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Belyi map of combinatorial type (9; 6, 7, 6)



Belyi maps Galois groups Dynamics

Orbits

For x ∈ P1, we may form the dynamical sequence (an)n≥1

where a1 = x and an+1 = f (an) for n ≥ 2.
This is also called the orbit of x .

Classification of orbits:

If f n(x) = x for some n ≥ 1, then x is periodic;

If f m(x) is periodic for some m ≥ 1, then x is preperiodic;

Otherwise, x is a wandering point.

Figure: A preperiodic point.

Want to describe the (pre)periodic points of dynamical Belyi maps.
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Preperiodic points

Theorem (Silverman)

Let f : P1 → P1 be a rational map of degree d over a local field K .
Assume f has good reduction at p and let P be a periodic point of f of
period n. Then P is a periodic point of f of period m say.
Let r = |(f n)′(P)|. Then

n = m; or n = mr ; or n = mrpe , e ∈ Z>0.

Theorem 4 (Anderson-Bouw-Ejder-Girgin-K.-Manes)

Let f be a dynamical Belyi map over Q of type (d = p`d ′, e1, e2, e3).
Then f ≡ xd (mod p) if and only if e2 ≤ p`.

Theorem 5 (Anderson-Bouw-Ejder-Girgin-K.-Manes)

Let f be a dynamical Belyi map over Q of type (d , e1, e2, e3) such that
e2 ≤ p` and either 2`|d or 3`|d or d = p`. Then the rational preperiodic
points of f are all rational fixed points of f and their preimages.
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Preperiodic points

Theorem 5 (Anderson-Bouw-Ejder-Girgin-K.-Manes)

Let f be a dynamical Belyi map over Q of type (d , e1, e2, e3) such
that e2 ≤ p` and either 2`|d or 3`|d or d = p`. Then the rational
preperiodic points of f are all rational fixed points of f and their
preimages.

Example. For f (x) = −2x3 + 3x2 of type (3; 2, 2, 3) we find

Rational periodic points Per(f ) = {0, 1

2
, 1,∞};

Rational preperiodic points PrePer(f ) = {−1

2
, 0,

1

2
, 1,

3

2
,∞}.



Belyi maps Galois groups Dynamics

Dynamical sequences

Let (an)n≥1 be a dynamical sequence for a map f .
We want to know the density δ of each of the sets

Q := {p prime : ai ≡ a (mod p) for some i ≥ 0};
P := {p prime : p divides at least one non-zero term of (an)n≥1}.

We see that δ(Q) ≤

δ({p : ai 6≡ a (mod p) for i ≤ n−1 and f n−a has a root mod p}).

Chebotarev density theorem:

=
1

|Gn,a|
|{ elements of Gn,a ⊆ Aut(Tn) fixing a leaf }|.
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Dynamical sequences

Q := {p prime : ai ≡ a (mod p) for some i ≥ 0};
P := {p prime : p divides at least one non-zero term of (an)n≥1}.

Theorem 6 (Bouw-Ejder-K.)

Let f be a dynamical Belyi map with splitting field K and let
a ∈ P1(Q) \ {0, 1,∞} such that Gn,a ' Gn,Q ' Gn,Q for all n ≥ 1.
Consider (an)n≥1 with a1 = a.

1 We have δ(Q) = 0.

2 If Gn,bj ,K ' Gn,K ' Gn,Q for any non-zero preimage bj of zero
under f , then also δ(P) = 0.

Proof

1 { elements of Gn,Q fixing a leaf }|/|Gn,Q| → 0 as n→∞.

2 δ(P) = δ({p : ∃p | p s.t. ai ≡ bj (mod p) for some i , j}).
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