Arithmetic invariants of supersingular abelian varieties

Valentijn Karemaker University of Amsterdam

Taipei conference on arithmetic geometry

December 15, 2025

Set-up

- Let p be a prime and $k = \overline{\mathbb{F}}_p \supseteq \mathbb{F}_q \supseteq \mathbb{F}_p$.
- An elliptic curve E/\mathbb{F}_q is SUPERSINGULAR if $E[p](k) = \{0\}$ (and ORDINARY otherwise).
- We can classify g-dimensional abelian varieties up to isomorphism (\simeq) or up to isogeny (\sim).
- A g-dimensional abelian variety X is SUPERSINGULAR if $X \sim_k E^g$ with E a supersingular elliptic curve, and SUPERSPECIAL if $X \simeq_k E^g$.
- A POLARISATION $\lambda: X \to X^{\vee}$ is an isogeny induced from an ample line bundle on X_k .
- A polarisation is PRINCIPAL if it is an isomorphism. Then (X, λ) is a PPAV = principally polarised abelian variety.

Moduli space

Let \mathcal{A}_g be the moduli space (in characteristic p) of g-dimensional ppAVs. \mathcal{A}_g is irreducible of dimension $\frac{g(g+1)}{2}$.

Let S_g be the supersingular locus, so

$$S_g(k) = \{(X, \lambda) \in A_g(k) : X \text{ is supersingular}\}.$$

 \mathcal{S}_g has dimension $\lfloor \frac{g^2}{4} \rfloor$. The number of ireducible components is $H_g(p,1)$ if g is odd, and $H_g(1,p)$ is g is even.

Theorem 1 (Ibukiyama-K.-Yu)

 \mathcal{S}_{g} is geometrically irreducible if and only if one of the following holds:

- $g = 1, p \in \{2, 3, 5, 7, 13\};$
- g = 2, $p \in \{2, 3, 5, 7, 11\}$;
- (g,p) = (3,2) or (4,2).

Geometric structures on \mathcal{A}_g and \mathcal{S}_g

For any (X, λ) , consider its p-torsion group scheme $(X, \lambda)[p]$ and its p-divisible group $(X, \lambda)[p^{\infty}] = \varinjlim_{n} (X, \lambda)_{p^{n}}$, up to isomorphism (\simeq) and up to isogeny (\sim) .

- **1** The geometric isogeny class of $(X,\lambda)[p^{\infty}]$ uniquely determines a Newton polygon. ⇒ NEWTON STRATIFICATION of \mathcal{A}_g . Fact: Supersingular ppAVs have a unique p-divisible group up to k-isogeny \Leftrightarrow unique Newton polygon $(\frac{1}{2},\ldots,\frac{1}{2})$. So \mathcal{S}_g is a Newton stratum.
- The a-NUMBER of $(X,\lambda) \in \mathcal{A}_g(k)$ is $a(X) = \dim_k \operatorname{Hom}(\alpha_p,X)$. It depends on $X[p]/\simeq$. If $(X,\lambda) \in \mathcal{S}_g(k)$ then $1 \leq a(X) \leq g$. Also X is superspecial $\Leftrightarrow a(X) = g$.
 - \Rightarrow a-number stratification of \mathcal{A}_g and \mathcal{S}_g .

Geometric structures on \mathcal{A}_g and \mathcal{S}_g

3 Canonical filtration of X[p] indexed by elementary sequence φ \Rightarrow EKEDAHL-OORT STRATIFICATION of \mathcal{A}_g and \mathcal{S}_g , i.e.

$$\mathcal{S}_{\mathsf{g}} = \sqcup_{\varphi} (\mathcal{S}_{\varphi} \cap \mathcal{S}_{\mathsf{g}}).$$

Combinatorial criterion (Chai-Oort) says when $S_{\varphi} \subseteq S_g$; SUPERSINGULAR EKEDAHL-OORT STRATA $\varphi \in \Phi^{ss}$.

Now from $X[p^\infty]/\sim$ and $X[p]/\simeq$ to $X[p^\infty]/\simeq$. The CENTRAL LEAF through $x=(X,\lambda)\in\mathcal{A}_g(k)$ is

$$\mathcal{C}(x) = \{ (X', \lambda') \in \mathcal{A}_{g}(k) : (X', \lambda')[p^{\infty}] \simeq (X, \lambda)[p^{\infty}] \}.$$

Oort showed foliation structure on \mathcal{S}_g : every irreducible component of \mathcal{S}_g is isomorphic, up to a finite morphism, to (central leaf) \times (isogeny leaf).

Chai showed C(x) is finite $\Leftrightarrow x = (X, \lambda)$ is supersingular.

Automorphisms of $(X, \lambda) \in \mathcal{S}_g(k)$

Chai and Oort showed that for generic point $\eta = (X_{\eta}, \lambda_{\eta})$ of \mathcal{A}_{g} we have $\operatorname{End}(X_{\eta}) = \mathbb{Z}$ and $\operatorname{Aut}(X_{\eta}, \lambda_{\eta}) = \{\pm 1\}$.

What about S_g ?

Oort's conjecture: Let $g \ge 2$, p prime. Every generic g-dimensional supersingular ppAV $(X, \lambda) \in \mathcal{S}_g(k)$ has

$$\operatorname{Aut}(X,\lambda)=\{\pm 1\}.$$

There are counterexamples for (g, p) = (2, 2) (Ibukiyama) and (g, p) = (3, 2) (Oort).

g = 2: OC holds for all $p \neq 2$.

K-Pries showed that for $p \geq 3$, the proportion of $\mathcal{S}_2(\mathbb{F}_{p^r})$ with $\operatorname{Aut} \neq \{\pm 1\}$ tends to zero as $r \to \infty$; it suffices to consider *superspecial curves*.

Ibukiyama determined the mass (= weighted count) of principal polarisations of supersingular surfaces to get the same result.

g = 3: OC holds for all $p \neq 2$ (K-Yobuko-Yu).

Idea: From minimal isogeny $\psi: (\widetilde{X}, \widetilde{\lambda}) \to (X, \lambda)$ compare Dieudonné modules (M, \langle, \rangle) of (X, λ) and $(\widetilde{M}, \langle, \rangle)$ of $(\widetilde{X}, \widetilde{\lambda})$. Then $\operatorname{End}(X) \otimes \mathbb{Z}_p \simeq \operatorname{End}(M)$ and

$$\operatorname{Aut}(X,\lambda) = \operatorname{Aut}(\widetilde{X},\widetilde{\lambda}) \cap \operatorname{Aut}(M,\langle,\rangle).$$

Furthermore,

$$\operatorname{Aut}(M,\langle,\rangle)\subseteq\operatorname{Aut}(\widetilde{M},\langle,\rangle)\simeq\{A\in\operatorname{GL}_3(\mathcal{O}_p):A^*A=\mathbb{I}_3\},$$

for \mathcal{O}_p the maximal order in division quaternion algebra D_p/\mathbb{Q}_p with uniformiser Π . Have $\operatorname{Aut}(X,\lambda) \xrightarrow{\operatorname{mod} p} \ldots \xrightarrow{\operatorname{mod} \Pi} \{\pm 1\}$. This is injective when $p \geq 5$, since

$$\ker \subseteq (1 + \Pi \operatorname{Mat}_3(\mathcal{O}_p))_{\operatorname{tors}} = \{1\}.$$

g = 4: OC holds for $p \neq 2$ (Dragutinovic), all p (K-Yu).

Dragutinovic showed for p>2 that every irreducible component of $M_4^{\rm ss}$ has trivial generic automorphism group.

K-Yu showed the result for all p via explicit computations, refining ideas from g=3 by using further reductions (mod $V^3=pV$) of $\operatorname{Aut}(M,\langle,\rangle)$.

 $g \ge 5$: OC holds for even g and $p \ge 5$ (K-Yu).

Recall supersingular EO strata $\Phi^{ss} = \{ \varphi : \mathcal{S}_{\varphi} \subseteq \mathcal{S}_{g} \}$. Consider $\mathcal{S}_{g}^{eo} = \bigcup_{\varphi \in \Phi^{ss}} \mathcal{S}_{\varphi}$.

Then
$$\mathcal{S}_{g}^{eo} = \overline{\mathcal{S}_{\varphi_{\max}}}^{\operatorname{Zar}}$$
 for $\varphi_{\max} = (0, \dots, 0, 1, 2, \dots, \lfloor \frac{g}{2} \rfloor)$.

Also $(X,\lambda) \in \mathcal{S}_g^{eo} \Leftrightarrow \exists \ 0 \leq c \leq \lfloor \frac{g}{2} \rfloor$, and polarisation μ on E^g such that $\ker \mu \simeq \alpha_p^{2c}$, and isogeny $\rho : (E^g, \mu) \to (X, \lambda)$. There is a finite surjection

$$\mathrm{pr}: \bigsqcup_{\mu: \ker \mu \simeq \alpha_{\mathfrak{p}}^{\lfloor \frac{g}{2} \rfloor}} \mathcal{X}_{\mu} \to \mathcal{S}_{\mathfrak{g}}^{eo},$$

where $\mathcal{X}_{\mu} = \left\{ \rho : (E^{g}, \mu) \to (X, \lambda) \text{ of degree } p^{\lfloor \frac{g}{2} \rfloor} \right\}$ is a Lagrangian variety, parametrising maximal isotropic subspaces of $(\overline{M}^{\diamond}, \psi_{\overline{M}^{\diamond}})$ over $\mathbb{F}_{p^{2}}$, obtained from Dieudonné module of (E^{g}, μ) .

g > 5 continued:

Using the \mathcal{X}_{μ} , we can stratify \mathcal{S}_{g}^{eo} by endomorphism ring.

Theorem 2 (K.-Yu)

The stratum with minimal endomorphism ring is open and dense. When g is even and $p \ge 5$, any (X, λ) in it has $\operatorname{Aut}(X, \lambda) = \{\pm 1\}$.

 \Rightarrow Generic point of $\mathcal{S}_{arphi_{\max}}$ has automorphism group $\{\pm 1\}$.

Theorem 3 (K.-Yu)

For $\ell \neq p$, the ℓ -adic Hecke correspondences induce transitive action on irreducible components of \mathcal{S}_{g} .

- \Rightarrow Every irreducible component of $\mathcal{S}_{\mathbf{g}}$ contains an irreducible component of $\mathcal{S}_{\varphi_{\max}}$.
- \Rightarrow Generic point of every irreducible component of S_g has automorphism group $\{\pm 1\}$, i.e. OC.

Gauss problem for central leaves

Theorem 4 (Ibukiyama-K.-Yu)

Let $x = (X, \lambda) \in \mathcal{S}_g(k)$. Then $\#\mathcal{C}(x) = 1$ if and only if one of the following holds:

- $g = 1, p \in \{2, 3, 5, 7, 13\};$
- $g = 2, p \in \{2,3\};$
- g = 3, p = 2 and $a(X) \ge 2$.

Fact 1: Every central leaf is contained in a unique EO-stratum (hence *a*-number stratum).

Fact 2: Every $x = (X, \lambda) \in \mathcal{S}_g(k)$ has a unique MINIMAL ISOGENY $\psi : \widetilde{X} \to X$ with $\widetilde{X} \simeq E^g$ superspecial but not necessarily principally polarised, so that $\mathcal{C}(x) \twoheadrightarrow \mathcal{C}(\widetilde{x})$, for $\widetilde{x} = (\widetilde{X}, \widetilde{\lambda} = \psi^* \lambda)$.

Fact 3: For any superspecial $\widetilde{x} = (X, \lambda)$ we know

$$\operatorname{Mass}(\mathcal{C}(\widetilde{x})) = \sum_{x' \in \mathcal{C}(\widetilde{x})} \frac{1}{|\operatorname{Aut}(x')|}.$$

Proof sketch of Theorem 4

 ${m g}=1$: Number of irreducible components of ${\mathcal S}_1=$ number of supersingular elliptic curves up to isomorphism; determined by Deuring and Eichler. Also there is a unique central leaf, so $\#{\mathcal C}(x)=1 \Leftrightarrow \#$ irr. components of ${\mathcal S}_1=1$.

 $\mathbf{g}=2,3$: Minimal isogeny $\psi:\widetilde{X}\to X$ of X only depends on a(X). For each $a(X)\in\{1,2,\ldots,g\}$ we compute $\mathrm{Mass}(\mathcal{C}(x))$ from suitable $\mathrm{Mass}(\mathcal{C}(\widetilde{x}))$ via ψ . We even find $\#\mathcal{C}(x)$ explicitly.

 $\mathbf{g} = 5$: Follows from $\mathcal{C}(x) \twoheadrightarrow \mathcal{C}(\widetilde{x})$ since all $\#\mathcal{C}(\widetilde{x}) > 1$.

Proof sketch of Theorem 4

g = 4: Need finer EO data.

Proposition (Ibukiyama-K.-Yu)

$$\mathcal{S}_{4} = (\mathcal{S}_{(0,1,2,3)} \cap \mathcal{S}_{4}) \sqcup (\mathcal{S}_{(0,1,1,2)} \cap \mathcal{S}_{4})$$
$$\sqcup \mathcal{S}_{(0,0,0,0)} \sqcup \mathcal{S}_{(0,0,0,1)} \sqcup \mathcal{S}_{(0,0,1,1)} \sqcup \mathcal{S}_{(0,0,1,2)}$$

For each of these six EO strata, we determine suitable

$$\mathcal{C}(x) \twoheadrightarrow \mathcal{C}(\widetilde{x})$$

and say enough about $C(\widetilde{x})$ to conclude #C(x) > 1.

What is next?

Many questions remain open:

- Interaction of (esp. Newton and EO) stratifications in dimension $g \ge 5$?
- Intersection of strata with Torelli locus?
- Oort's conjecture for odd $g \ge 5$ and for p = 2, 3?
- Mass formulae for other abelian varieties (dimension $g \ge 4$, non-supersingular)?
- Cardinalities of central leaves?
- Endomorphisms: which endomorphism rings occur? (K-Tamagawa-Yu, in progress)
- . . .

Thank you for your attention!