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Introduction: why abelian varieties over finite fields?

Elliptic curves

Abelian varieties Ag

Jacobians

Over finite fields:

Explicit description of isogeny classes.

Amenable to computations.

Useful stratifications of Ag .
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Finite fields

Definition

Let Fq be the finite field of cardinality q = pr , where p is a prime.

Facts about finite fields:

For every prime p and integer r ≥ 1, there is a unique finite
field Fpr . Also, the cardinality of any finite field is pr for some
prime p and integer r ≥ 1.

We have field extensions Fq ⊆ Fqm for any m ≥ 1.

All elements x ∈ Fq satisfy xq = x .
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Elliptic curves: definition

Definition (elliptic curve)

An elliptic curve is a genus 1 projective curve

E : y2z + axyz + byz2 = x3 + cx2z + dxz2 + ez3

(where in our case, a, b, c , d , e ∈ Fq),
with a marked point O (“at infinity”), whose points form a group.

Figure: Adding points on an elliptic curve over R.
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Elliptic curves: points over finite fields

Definition (E (Fq))

Let E (Fqm) = { points (x : y : z) on E/Fq defined over Fqm}.

Use the Frobenius morphism φ of E/Fqm :

φ((x : y : z)) = (xq
m

: yq
m

: zq
m

).

Then E (Fqm) = {fixed points of φ/Fqm}.
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Elliptic curves: zeta function

Definition (Weil polynomial)

The Weil polynomial Pφ(E/Fq,T ) ∈ Z[T ] = (T − α)(T − α)
is the characteristic polynomial of φ/Fq.

1 (Riemann hypothesis) |α| =
√
q.

2 (Weil conjectures) |E (Fqm)| = (1−αm)(1−αm) for all m ≥ 1

3 (Honda-Tate theory) α determines E up to isogeny.

Definition (Zeta function)

The zeta function of an elliptic curve E/Fq is

Z (E/Fq,T ) = exp

∑
m≥1

|E (Fqm)|T
m

m

 =
(1− αT )(1− αT )

(1− T )(1− qT )
.
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Elliptic curves: p-torsion

Definition (p-torsion, ordinary, supersingular)

We have

E [p](Fq) '

{
Z/pZ if E is ordinary,

0 if E is supersingular.
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Abelian varieties: definition and zeta function

Definition (abelian variety)

An abelian variety is a non-singular projective group variety.

The zeta function of an abelian variety X/Fq of dimension g

Z (X/Fq,T ) = exp

∑
m≥1

|X (Fqm)|T
m

m

 =
P1(T ) . . .P2g−1(T )

P2(T ) . . .P2g (T )

is determined by the Weil polynomial

Pφ(X/Fq,T ) = T 2gP1(T−1) =

2g∏
i=1

(T − αi ).

1 (Riemann hypothesis) |αi | =
√
q.

2 (Weil conjectures) |X (Fqm)| =
∏2g

i=1(1− αm
i ) for all m ≥ 1.

3 (Honda-Tate theory) The αi determine X up to isogeny.
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Abelian varieties: p-torsion

Definition (abelian variety)

An abelian variety is a non-singular projective group variety.

The zeta function of an abelian variety X/Fq of dimension g

Z (X/Fq,T ) = exp

∑
m≥1

|X (Fqm)|T
m

m

 =
P1(T ) . . .P2g−1(T )

P2(T ) . . .P2g (T )

is determined by the Weil polynomial

Pφ(X/Fq,T ) = T 2gP1(T−1) =

2g∏
i=1

(T − αi ).

Definition (ordinary, supersingular)

We say X is

{
ordinary

supersingular
if

{
|X [p](Fq)| = pg

X ∼ E g with E supersingular

E [p](Fq) '

{
Z/pZ if E is ordinary

0 if E is supersingular.
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Special case: Jacobian varieties

Let C be a smooth projective connected curve over Fq of genus g .
We can construct a g -dimensional abelian variety Jac(C ), called
the Jacobian of C . The zeta function of C

Z (C/Fq,T ) = exp

∑
m≥1

|C (Fqm)|T
m

m

 =
P(T )

(1− T )(1− qT )

is determined by the Weil polynomial of Jac(C ) through

Pφ(Jac(C )/Fq,T ) = T 2gP(T−1) =

2g∏
i=1

(T − αi ).
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Moduli space Ag

Let k be an algebraically closed field of characteristic p.

Definition

Let Ag be the moduli space over k of principally polarised
g -dimensional abelian varieties.

Ag is irreducible of dimension g(g+1)
2 . Often write X = (X , λ).

For X ∈ Ag (k), consider its p-divisble group X [p∞].
The isogeny class of X [p∞] uniquely determines a Newton polygon.
⇒ Newton stratification of Ag .

The isogeny class of X [p∞] also determines the p-rank f of X :
|X [p](k)| = pf , so 0 ≤ f ≤ g .
⇒ p-rank stratification of Ag .
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Moduli space Sg

Recall: X ∈ Ag (k) is supersingular if X ∼ E g with E [p](k) = 0.

Definition

Let Sg be the moduli space over k of principally polarised
g -dimensional supersingular abelian varieties.

All supersingular abelian varieties have the same Newton
polygon, i.e., Sg is a Newton stratum of Ag .

A supersingular abelian variety has p-rank zero.

Every component of Sg has dimension bg
2

4 c.
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The a-number stratification

Definition

Let X ∈ Ag (k). Its a-number is a(X ) := dimkHom(αp,X ).
It depends on the isomorphism class of X [p].

For X ∈ Ag (k) with p-rank f , we have 0 ≤ a(X ) ≤ g − f .
For X ∈ Sg (k), we have 1 ≤ a(X ) ≤ g .
⇒ a-number stratification of Sg =

∐g
a=1 Sg (a).

Every component of Sg (a) has dimension bg
2−a2+1

4 c.
a(X ) = g ⇔ X is superspecial, i.e., X ' E g .
The superspecial stratum Sg (g) is zero-dimensional.
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The Ekedahl-Oort stratification

For X ∈ Ag (k), consider its p-torsion X [p].
Its isomorphism class is classified by an element of the Weyl group
Wg of Sp2g , or equivalently by an elementary sequence ϕ.
⇒ Ekedahl-Oort stratification of Ag =

∐
ϕ Sϕ.

Ekedahl-Oort stratification refines the p-rank stratification.

Also consider Ekedahl-Oort stratification
∐
ϕ (Sϕ ∩ Sg ) of Sg .

Combinatorial criterion determines when Sϕ ⊆ Sg .
These strata are reducible; all other strata are irreducible.

The a-number is constant on Ekedahl-Oort strata.
⇒ Sg (a) =

∐
ϕ (Sϕ ∩ Sg ).
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A foliation of Sg

Want to consider p-divisible groups up to isomorphism

Definition

For x = (X0, λ0) ∈ Sg (k), define the central leaf

Λx = {(X , λ) ∈ Sg (k) : (X , λ)[p∞] ' (X0, λ0)[p∞]}.

Each Λx is finite, but determining its size is very hard.

Let Gx/Z be the automorphism group scheme, such that

Gx(R) = {h ∈ (End(X0)⊗Z R)× : h′h = 1}

for any commutative ring R. Then there is a bijection

Λx ' Gx(Q)\Gx(Af )/Gx(Ẑ).
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A finer stratification?

Λx = {(X , λ) ∈ Sg (k) : (X , λ)[p∞] ' (X0, λ0)[p∞]}.

Goal

For any x ∈ Sg , compute the mass

Mass(Λx) =
∑
x ′∈Λx

|Aut(x ′)|−1.

N.B. Mass(Λx) = vol(Gx(Q)\Gx(Af )) = Mass(Gx ,Gx(Ẑ)).

⇒ “Mass stratification” of Sg .
Expected to refine the a-number and Ekedahl-Oort stratifications.
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How do we describe S3?

We now focus on the case where g = 3.
Let E/Fp2 be a supersingular elliptic curve with πE = −p.
Let µ be any principal polarisation of E 3.

Definition

A polarised flag type quotient (PFTQ) with respect to µ is a
chain

(E 3, pµ) =: (Y2, λ2)
ρ2−→ (Y1, λ1)

ρ1−→ (Y0, λ0)

such that ker(ρ1) ' αp, ker(ρ2) ' α2
p , and ker(λi ) ⊆ ker(V j ◦ F i−j) for

0 ≤ i ≤ 2 and 0 ≤ j ≤ bi/2c.

Let Pµ be the moduli space of PFTQ’s.
It is a two-dimensional geometrically irreducible scheme over Fp2 .
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How do we describe S3?

An PFTQ w.r.t. µ is (E 3, pµ) =: (Y2, λ2)
ρ2−→ (Y1, λ1)

ρ1−→ (Y0, λ0).

It follows that (Y0, λ0) ∈ S3, so there is a projection map

pr0 : Pµ → S3

(Y2 → Y1 → Y0) 7→ (Y0, λ0)

such that
∏
µ Pµ → S3 is surjective and generically finite.

Let C : tp+1
1 + tp+1

2 + tp+1
3 = 0 be a Fermat curve in P2.

It has genus p(p − 1)/2 and admits a left action by U3(Fp).
Then π : Pµ ' PC (O(−1)⊕O(1))→ C is a P1-bundle.
There is a section s : C → T ⊆ Pµ.

Upshot

For each (X , λ) there exist a µ and a y ∈ Pµ such that
pr0(y) = [(X , λ)].
This y is uniquely characterised by a pair (t, u) with
t = (t1 : t2 : t3) ∈ C (k) and u = (u1 : u2) ∈ π−1(t) ' P1

t (k).
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The structure of Pµ

π : Pµ ' PC (O(−1)⊕O(1))→ C has section s : C → T ⊆ Pµ

Definition

Recall that X/k has a-number a(X ) = dimkHom(αp,X ).
For a PFTQ y = (Y2 → Y1 → Y0), we say a(y) = a(Y0).

For a supersingular threefold X we have a(X ) ∈ {1, 2, 3},
and a(X ) = 3⇔ X is superspecial.

If y ∈ T , then a(y) = 3.

For t ∈ C (k), we have t ∈ C (Fp2)⇔ a(y) ≥ 2 for any
y ∈ π−1(t).

For y ∈ Pµ, we have a(y) = 1⇔ y 6∈ T and π(y) 6∈ C (Fp2).
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The structure of Pµ: a picture

Figure: The bundle Pµ → C .
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Using PFTQ’s to construct minimal isogenies

Any supersingular abelian variety X admits a minimal isogeny

ϕ : Y → X

from a superspecial abelian variety Y ' E g .

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

Y2
ρ2−→ Y1

ρ1−→ Y0 = X .

(If Y2 → Y1 → Y0 is a PFTQ, then Y2 is superspecial!)

If a(X ) = 3 then X is superspecial and ϕ = id.

If a(X ) = 2, then a(Y1) = 3 and ϕ = ρ1 of degree p.

If a(X ) = 1, then ϕ = ρ1 ◦ ρ2 of degree p3.
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From minimal isogenies to masses

Let x = (X , λ) be supersingular and ϕ : Y → X a minimal isogeny.
Write x̃ = (Y , ϕ∗λ). Recall automorphism group scheme Gx .

Through ϕ, we may view both Gx̃(Ẑ) and ϕ∗Gx(Ẑ) as open
compact subgroups of Gx̃(Af ), which differ only at p. Hence:

Lemma

Mass(Λx) =
[Gx̃(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]

[ϕ∗Gx(Ẑ) : Gx̃(Ẑ) ∩ ϕ∗Gx(Ẑ)]
·Mass(Λx̃)

= [Aut((Y , φ∗λ)[p∞]) : Aut((X , λ)[p∞])] ·Mass(Λx̃).

So we can compare any supersingular mass to a superspecial mass.
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From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!

Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]

Let x̃ = (Y , λ) be a superspecial abelian threefold.

If λ is a principal polarisation, then

Mass(Λx̃) = (p−1)(p2+1)(p3−1)
210·34·5·7 .

If ker(λ) ' αp × αp, then

Mass(Λx̃) = (p−1)(p3+1)(p3−1)
210·34·5·7 .

It remains to compute [Aut((Y , φ∗λ)[p∞]) : Aut((X , λ)[p∞])].
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The case a(X ) = 2

Let x = (X , λ) ∈ S3 such that a(X ) = 2.
Its PFTQ (Y2, λ2)→ (Y1, λ1)→ (X , λ) is characterised by a pair
t ∈ C (Fp2 ) and u ∈ P1

t (k) \ P1
t (Fp2 ).

We need to compute [Aut((Y1, λ1)[p∞]) : Aut((X , λ)[p∞])].

There are reduction maps

Aut((Y1, λ1)[p∞]) � SL2(Fp2)

Aut((X , λ)[p∞]) � SL2(Fp2) ∩ End(u)×,

where

End(u) = {g ∈ M2(Fp2) : g ·u ⊆ k ·u} '

{
Fp4 if u ∈ P1

t (Fp4) \ P1
t (Fp2);

Fp2 if u ∈ P1
t (k) \ P1

t (Fp4).
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The case a(X ) = 2

Let x = (X , λ) ∈ S3 such that a(X ) = 2.

Its PFTQ (Y2, λ2)→ (Y1, λ1)→ (X , λ) is characterised by a pair

t ∈ C (Fp2 ) and u ∈ P1
t (k) \ P1

t (Fp2 ).

So [Aut((Y1, λ1)[p∞]) : Aut((X , λ)[p∞])] =

[SL2(Fp2) : SL2(Fp2) ∩ End(u)×] ={
p2(p2 − 1) if u ∈ P1

t (Fp4) \ P1
t (Fp2);

|PSL2(Fp2)| if u ∈ P1
t (k) \ P1

t (Fp4).

Theorem (K.-Yobuko-Yu)

There are two mass strata in S3(2):

Mass(Λx) =
1

210 · 34 · 5 · 7
·{

(p − 1)(p3 + 1)(p3 − 1)(p4 − p2) : u ∈ P1
t (Fp4 ) \ P1

t (Fp2 );

2−e(p)(p − 1)(p3 + 1)(p3 − 1)p2(p4 − 1) : u ∈ P1
t (k) \ P1

t (Fp4 ).
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The case a(X ) = 1

Let x = (X , λ) ∈ S3 such that a(X ) = 1.
Its PFTQ (Y2, λ2)→ (Y1, λ1)→ (X , λ) is characterised by a pair
t ∈ C 0(k) := C (k) \ C (Fp2 ) and u ∈ P1

t (k).

We need to compute [Aut((Y2, λ2)[p∞]) : Aut((X , λ)[p∞])].

Theorem (K.-Yobuko-Yu)

There are three mass strata in S3(1), determined by the fibres Dt of a
divisor D ⊆ C 0 × P1:

Mass(Λx) =
p3

210 · 34 · 5 · 7
·

2−e(p)p2d(t)(p2 − 1)(p4 − 1)(p6 − 1) : u 6∈ Dt ;

p2d(t)(p − 1)(p4 − 1)(p6 − 1) : u ∈ Dt , t 6∈ C (Fp6);

p6(p2 − 1)(p3 − 1)(p4 − 1) : u ∈ Dt , t ∈ C (Fp6).

What else can we use all these computations for?
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Application: Oort’s conjecture

Oort’s conjecture

Every generic g -dimensional principally polarised supersingular
abelian variety (X , λ) over k of characteristic p has automorphism
group C2 ' {±1}.

This fails in general: counterexamples for (g , p) = (2, 2) and (3, 2).

Theorem (K.-Yobuko-Yu)

When g = 3, Oort’s conjecture holds precisely when p 6= 2.

A generic threefold X has a(X ) = 1.
Its PFTQ is characterised by t ∈ C 0(k) and u 6∈ Dt .

Our computations show for such (X , λ) that

Aut((X , λ)) '

{
C 3

2 for p = 2;

C2 for p 6= 2.
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Gauss problem

Recall the central leaf for x = (X0, λ0) ∈ Sg (k) is defined as

Λx = {(X , λ) ∈ Sg (k) : (X , λ)[p∞] ' (X0, λ0)[p∞]}.

Gauss problem

Determine precisely for which x ∈ Sg (k) we have that

|Λx | = 1.

We can define Λx for any x ∈ Ag (k).
Chai proved |Λx | is finite if and only if x ∈ Sg (k) is supersingular.
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Main result

Theorem (in progress, Ibukiyama-K.-Yu)

Let x ∈ Sg . Then |Λx | = 1 if and only if one of the following three
cases holds:

(i) g = 1 and p ∈ {2, 3, 5, 7, 13}.
(ii) g = 2 and p = 2, 3.

(iii) g = 3, p = 2 and a(x) ≥ 2.

The result for g = 1 was known before and follows from work of
Vignéras on class numbers of quaternion algebras.
In this case, Λx is the whole supersingular locus.

The result for g = 2 was recently proven by Ibukiyama by studying
quaternion hermitian groups.
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The proof for g ≥ 5

Let Λg ,pc denote the set of isomorphism classes of g -dimensional
polarised superspecial abelian varieties (X , λ) whose polarisation λ
satisfies ker(λ) ' α2c

p .

1 If x ∈ Λg ,pc , then Λx = Λg ,pc .

2 For every x ∈ Sg (k) there exists a surjection π : Λx � Λg ,pc

for some 0 ≤ c ≤ bg/2c.
3 We know Mass(Λg ,pc ) for all g ≥ 1 and 0 ≤ c ≤ bg2 c.

For g ≥ 5, this yields enough information: using (3), we prove that
|Λg ,pc | > 1 for all p and all 0 ≤ c ≤ bg2 c, which by (2) implies that
|Λx | > 1 always.
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Ideas for the proof for g = 3, 4

When g = 3, we use our mass formula! Together with
computations of automorphism groups, this gives the result, since

Mass(Λx) :=
∑
x ′∈Λx

|Aut(x ′)|−1.

When g = 4, and x ∈ S4(k), the surjection π : Λx � Λg ,pc is
induced from the minimal isogeny of x .
This allows us to compare Mass(Λx) with the appropriate
superspecial mass Mass(Λ4,pc ), and |Λx | with |Λ4,pc |.
We prove the theorem for one Ekedahl-Oort stratum at a time.

Thank you for your attention!
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