Mass formulae for supersingular abelian varieties

Valentijn Karemaker **Utrecht University**

VaNTAGe seminar January 18, 2022

Introduction: why abelian varieties over finite fields?

Elliptic curves

Abelian varieties

 A_{g}

Jacobians

Over finite fields:

- Explicit description of ISOGENY CLASSES.
- Amenable to computations.
- ullet Useful stratifications of \mathcal{A}_g .

Definition

Let \mathbb{F}_q be the **finite field** of cardinality $q = p^r$, where p is a prime.

Facts about finite fields:

- For every prime p and integer $r \ge 1$, there is a unique finite field \mathbb{F}_{p^r} . Also, the cardinality of any finite field is p^r for some prime p and integer $r \ge 1$.
- We have field extensions $\mathbb{F}_q \subseteq \mathbb{F}_{q^m}$ for any $m \ge 1$.
- All elements $x \in \mathbb{F}_q$ satisfy $x^q = x$.

Definition (elliptic curve)

An elliptic curve is a genus 1 projective curve

$$E: y^2z + axyz + byz^2 = x^3 + cx^2z + dxz^2 + ez^3$$

(where in our case, $a, b, c, d, e \in \mathbb{F}_q$), with a marked point \mathcal{O} ("at infinity"), whose points form a group.

Figure: Adding points on an elliptic curve over \mathbb{R} .

Elliptic curves: points over finite fields

Definition $(E(\mathbb{F}_q))$

Let
$$E(\mathbb{F}_{a^m}) = \{ \text{ points } (x : y : z) \text{ on } E/\mathbb{F}_a \text{ defined over } \mathbb{F}_{a^m} \}.$$

Use the Frobenius morphism ϕ of E/\mathbb{F}_{q^m} :

$$\phi((x:y:z)) = (x^{q^m}:y^{q^m}:z^{q^m}).$$

Then
$$E(\mathbb{F}_{q^m}) = \{ \text{fixed points of } \phi / \mathbb{F}_{q^m} \}.$$

Elliptic curves: zeta function

Definition (Weil polynomial)

The Weil polynomial $P_{\phi}(E/\mathbb{F}_q, T) \in \mathbb{Z}[T] = (T - \alpha)(T - \overline{\alpha})$ is the characteristic polynomial of ϕ/\mathbb{F}_q .

- **1** (Riemann hypothesis) $|\alpha| = \sqrt{q}$.
- (Weil conjectures) $|E(\mathbb{F}_{q^m})| = (1 \alpha^m)(1 \overline{\alpha}^m)$ for all $m \ge 1$
- **1** (Honda-Tate theory) α determines E up to isogeny.

Definition (Zeta function)

The **zeta function** of an elliptic curve E/\mathbb{F}_q is

$$Z(E/\mathbb{F}_q,T)=\exp\left(\sum_{m\geq 1}|E(\mathbb{F}_{q^m})|\frac{T^m}{m}\right)=\frac{(1-\alpha T)(1-\overline{\alpha} T)}{(1-T)(1-qT)}.$$

Elliptic curves: *p*-torsion

Definition (p-torsion, ordinary, supersingular)

We have

$$E[p](\overline{\mathbb{F}}_q) \simeq egin{cases} \mathbb{Z}/p\mathbb{Z} & \text{if E is ordinary,} \\ 0 & \text{if E is supersingular.} \end{cases}$$

Abelian varieties: definition and zeta function

Definition (abelian variety)

An **abelian variety** is a non-singular projective group variety.

The zeta function of an abelian variety X/\mathbb{F}_q of dimension g

$$Z(X/\mathbb{F}_q,T) = \exp\left(\sum_{m\geq 1} |X(\mathbb{F}_{q^m})| \frac{T^m}{m}\right) = \frac{P_1(T)\dots P_{2g-1}(T)}{P_2(T)\dots P_{2g}(T)}$$

is determined by the Weil polynomial

$$P_{\phi}(X/\mathbb{F}_q,T) = T^{2g}P_1(T^{-1}) = \prod_{i=1}^{2g} (T - \alpha_i).$$

- **1** (Riemann hypothesis) $|\alpha_i| = \sqrt{q}$.
- (Weil conjectures) $|X(\mathbb{F}_{q^m})| = \prod_{i=1}^{2g} (1 \alpha_i^m)$ for all $m \ge 1$.
- **1** (Honda-Tate theory) The α_i determine X up to isogeny.

Abelian varieties: p-torsion

Definition (abelian variety)

An abelian variety is a non-singular projective group variety.

The zeta function of an abelian variety X/\mathbb{F}_q of dimension g

$$Z(X/\mathbb{F}_q,T) = \exp\left(\sum_{m\geq 1} |X(\mathbb{F}_{q^m})| \frac{T^m}{m}\right) = \frac{P_1(T)\dots P_{2g-1}(T)}{P_2(T)\dots P_{2g}(T)}$$

is determined by the Weil polynomial

$$P_{\phi}(X/\mathbb{F}_q, T) = T^{2g}P_1(T^{-1}) = \prod_{i=1}^{2g} (T - \alpha_i).$$

Definition (ordinary, supersingular)

We say X is $\begin{cases} \text{ordinary} & \text{if } \begin{cases} |X[p](\overline{\mathbb{F}}_q)| = p^g \\ X \sim E^g \text{ with } E \text{ supersingular} \end{cases}$

Special case: Jacobian varieties

Let C be a smooth projective connected curve over \mathbb{F}_q of genus g. We can construct a g-dimensional abelian variety Jac(C), called the Jacobian of C. The zeta function of C

$$Z(C/\mathbb{F}_q, T) = \exp\left(\sum_{m \geq 1} |C(\mathbb{F}_{q^m})| \frac{T^m}{m}\right) = \frac{P(T)}{(1-T)(1-qT)}$$

is determined by the Weil polynomial of Jac(C) through

$$P_{\phi}(\operatorname{Jac}(C)/\mathbb{F}_q,T)=T^{2g}P(T^{-1})=\prod_{i=1}^{2g}(T-\alpha_i).$$

Mass formulae for S_3

Moduli space A_g

Let k be an algebraically closed field of characteristic p.

Definition

Let A_g be the moduli space over k of principally polarised g-dimensional abelian varieties.

 \mathcal{A}_g is irreducible of dimension $\frac{g(g+1)}{2}$. Often write $X=(X,\lambda)$.

For $X \in \mathcal{A}_g(k)$, consider its p-divisble group $X[p^{\infty}]$.

The isogeny class of $X[p^{\infty}]$ uniquely determines a Newton polygon.

 \Rightarrow Newton stratification of A_g .

The isogeny class of $X[p^{\infty}]$ also determines the p-RANK f of X: $|X[p](k)| = p^f$, so $0 \le f \le g$.

 \Rightarrow *p*-rank stratification of A_g .

Moduli space \mathcal{S}_g

Recall: $X \in \mathcal{A}_g(k)$ is supersingular if $X \sim E^g$ with E[p](k) = 0.

Definition

Let S_g be the moduli space over k of principally polarised g-dimensional supersingular abelian varieties.

- All supersingular abelian varieties have the same Newton polygon, i.e., S_g is a Newton stratum of A_g .
- A supersingular abelian variety has p-rank zero.
- Every component of S_g has dimension $\left|\frac{g^2}{4}\right|$.

The a-number stratification

Definition

Let $X \in \mathcal{A}_{\sigma}(k)$. Its a-number is $a(X) := \dim_k \operatorname{Hom}(\alpha_p, X)$. It depends on the isomorphism class of X[p].

For $X \in \mathcal{A}_g(k)$ with p-rank f, we have $0 \le a(X) \le g - f$. For $X \in \mathcal{S}_{g}(k)$, we have $1 \leq a(X) \leq g$. \Rightarrow a-number stratification of $\mathcal{S}_{g} = \prod_{g=1}^{g} \mathcal{S}_{g}(a)$.

- Every component of $S_g(a)$ has dimension $|\frac{g^2-a^2+1}{4}|$.
- $a(X) = g \Leftrightarrow X$ is SUPERSPECIAL, i.e., $X \simeq E^g$. The superspecial stratum $S_{g}(g)$ is zero-dimensional.

For $X \in \mathcal{A}_g(k)$, consider its *p*-torsion X[p].

Its isomorphism class is classified by an element of the Weyl group W_g of Sp_{2g} , or equivalently by an ELEMENTARY SEQUENCE φ .

- \Rightarrow Ekedahl-Oort stratification of $\mathcal{A}_g = \coprod_{\varphi} \mathcal{S}_{\varphi}$.
 - Ekedahl-Oort stratification refines the *p*-rank stratification.
 - Also consider Ekedahl-Oort stratification $\coprod_{\varphi} (\mathcal{S}_{\varphi} \cap \mathcal{S}_{g})$ of \mathcal{S}_{g} . Combinatorial criterion determines when $\mathcal{S}_{\varphi} \subseteq \mathcal{S}_{g}$. These strata are reducible; all other strata are irreducible.
 - The a-number is constant on Ekedahl-Oort strata.

$$\Rightarrow \mathcal{S}_g(a) = \coprod_{\varphi} (\mathcal{S}_{\varphi} \cap \mathcal{S}_g).$$

A foliation of \mathcal{S}_g

Want to consider *p-divisible groups* up to *isomorphism*

Definition

For $x = (X_0, \lambda_0) \in \mathcal{S}_g(k)$, define the **central leaf**

$$\Lambda_{\mathsf{x}} = \{ (\mathsf{X}, \lambda) \in \mathcal{S}_{\mathsf{g}}(\mathsf{k}) : (\mathsf{X}, \lambda)[\mathsf{p}^{\infty}] \simeq (\mathsf{X}_{\mathsf{0}}, \lambda_{\mathsf{0}})[\mathsf{p}^{\infty}] \}.$$

- Each Λ_x is finite, but determining its size is very hard.
- Let G_x/\mathbb{Z} be the automorphism group scheme, such that

$$G_{\mathsf{x}}(R) = \{ h \in (\mathrm{End}(X_0) \otimes_{\mathbb{Z}} R)^{\times} : h'h = 1 \}$$

for any commutative ring R. Then there is a bijection

$$\Lambda_{x} \simeq G_{x}(\mathbb{Q}) \backslash G_{x}(\mathbb{A}_{f}) / G_{x}(\widehat{\mathbb{Z}}).$$

A finer stratification?

$$\Lambda_{\mathsf{x}} = \{(\mathsf{X}, \lambda) \in \mathcal{S}_{\mathsf{g}}(\mathsf{k}) : (\mathsf{X}, \lambda)[p^{\infty}] \simeq (\mathsf{X}_{\mathsf{0}}, \lambda_{\mathsf{0}})[p^{\infty}]\}.$$

Goal

For any $x \in \mathcal{S}_{g}$, compute the **mass**

$$\operatorname{Mass}(\Lambda_x) = \sum_{x' \in \Lambda_x} |\operatorname{Aut}(x')|^{-1}.$$

N.B.
$$\operatorname{Mass}(\Lambda_x) = \operatorname{vol}(G_x(\mathbb{Q}) \backslash G_x(\mathbb{A}_f)) = \operatorname{Mass}(G_x, G_x(\widehat{\mathbb{Z}})).$$

 \Rightarrow "Mass stratification" of \mathcal{S}_{g} .

Expected to refine the a-number and Ekedahl-Oort stratifications.

How do we describe S_3 ?

We now focus on the case where g = 3.

Let E/\mathbb{F}_{p^2} be a supersingular elliptic curve with $\pi_E = -p$. Let μ be any principal polarisation of E^3 .

Definition

A polarised flag type quotient (PFTQ) with respect to μ is a chain

$$(E^3, \rho\mu) =: (Y_2, \lambda_2) \xrightarrow{\rho_2} (Y_1, \lambda_1) \xrightarrow{\rho_1} (Y_0, \lambda_0)$$

such that $\ker(\rho_1) \simeq \alpha_p$, $\ker(\rho_2) \simeq \alpha_p^2$, and $\ker(\lambda_i) \subseteq \ker(V^j \circ F^{i-j})$ for $0 \le i \le 2$ and $0 \le j \le \lfloor i/2 \rfloor$.

Let \mathcal{P}_{μ} be the moduli space of PFTQ's.

It is a two-dimensional geometrically irreducible scheme over \mathbb{F}_{p^2} .

How do we describe S_3 ?

An PFTQ w.r.t. μ is $(E^3, p\mu) =: (Y_2, \lambda_2) \xrightarrow{\rho_2} (Y_1, \lambda_1) \xrightarrow{\rho_1} (Y_0, \lambda_0)$. It follows that $(Y_0, \lambda_0) \in \mathcal{S}_3$, so there is a projection map

$$\operatorname{pr}_0: \mathcal{P}_{\mu} o \mathcal{S}_3 \ (Y_2 o Y_1 o Y_0) \mapsto (Y_0, \lambda_0)$$

such that $\prod_{\mu} \mathcal{P}_{\mu} \to \mathcal{S}_3$ is surjective and generically finite.

Let $C: t_1^{p+1} + t_2^{p+1} + t_3^{p+1} = 0$ be a Fermat curve in \mathbb{P}^2 .

It has genus p(p-1)/2 and admits a left action by $U_3(\mathbb{F}_p)$.

Then $\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \to \mathcal{C}$ is a \mathbb{P}^1 -bundle.

There is a section $s: C \to T \subseteq \mathcal{P}_{\mu}$.

Upshot

For each (X, λ) there exist a μ and a $y \in \mathcal{P}_{\mu}$ such that $\mathrm{pr}_0(y) = [(X, \lambda)].$

This y is uniquely characterised by a pair (t, u) with

$$t = (t_1 : t_2 : t_3) \in C(k) \text{ and } u = (u_1 : u_2) \in \pi^{-1}(t) \simeq \mathbb{P}^1_t(k).$$

$$\pi: \mathcal{P}_{\mu} \simeq \mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \to \mathcal{C}$$
 has section $s: \mathcal{C} \to \mathcal{T} \subseteq \mathcal{P}_{\mu}$

Definition

Abelian varieties over finite fields

Recall that X/k has a-number $a(X) = \dim_k \operatorname{Hom}(\alpha_p, X)$. For a PFTQ $y = (Y_2 \rightarrow Y_1 \rightarrow Y_0)$, we say $a(y) = a(Y_0)$.

- For a supersingular threefold X we have $a(X) \in \{1, 2, 3\}$, and $a(X) = 3 \Leftrightarrow X$ is superspecial.
- If $y \in T$, then a(y) = 3.
- For $t \in C(k)$, we have $t \in C(\mathbb{F}_{p^2}) \Leftrightarrow a(y) \geq 2$ for any $y \in \pi^{-1}(t)$.
- For $y \in \mathcal{P}_{\mu}$, we have $a(y) = 1 \Leftrightarrow y \notin T$ and $\pi(y) \notin C(\mathbb{F}_{p^2})$.

The structure of \mathcal{P}_{μ} : a picture

Any supersingular abelian variety X admits a MINIMAL ISOGENY

$$\varphi: Y \to X$$

from a *superspecial* abelian variety $Y \simeq E^g$.

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

$$Y_2 \xrightarrow{\rho_2} Y_1 \xrightarrow{\rho_1} Y_0 = X.$$

(If $Y_2 \rightarrow Y_1 \rightarrow Y_0$ is a PFTQ, then Y_2 is superspecial!)

- If a(X) = 3 then X is superspecial and $\varphi = id$.
- If a(X) = 2, then $a(Y_1) = 3$ and $\varphi = \rho_1$ of degree p.
- If a(X) = 1, then $\varphi = \rho_1 \circ \rho_2$ of degree p^3 .

Let $x = (X, \lambda)$ be supersingular and $\varphi : Y \to X$ a minimal isogeny. Write $\tilde{x} = (Y, \varphi^* \lambda)$. Recall automorphism group scheme G_x .

Through φ , we may view both $G_{\tilde{\mathbf{x}}}(\widehat{\mathbb{Z}})$ and $\varphi^*G_{\mathbf{x}}(\widehat{\mathbb{Z}})$ as open compact subgroups of $G_{\tilde{x}}(\mathbb{A}_f)$, which differ only at p. Hence:

Lemma

Abelian varieties over finite fields

$$\begin{split} \operatorname{Mass}(\Lambda_{x}) &= \frac{[G_{\tilde{x}}(\widehat{\mathbb{Z}}) : G_{\tilde{x}}(\widehat{\mathbb{Z}}) \cap \varphi^{*}G_{x}(\widehat{\mathbb{Z}})]}{[\varphi^{*}G_{x}(\widehat{\mathbb{Z}}) : G_{\tilde{x}}(\widehat{\mathbb{Z}}) \cap \varphi^{*}G_{x}(\widehat{\mathbb{Z}})]} \cdot \operatorname{Mass}(\Lambda_{\tilde{x}}) \\ &= [\operatorname{Aut}((Y, \phi^{*}\lambda)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] \cdot \operatorname{Mass}(\Lambda_{\tilde{x}}). \end{split}$$

So we can compare any supersingular mass to a superspecial mass.

From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!

Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]

Let $\tilde{x} = (Y, \lambda)$ be a superspecial abelian threefold.

ullet If λ is a principal polarisation, then

$$\operatorname{Mass}(\Lambda_{\tilde{x}}) = \frac{(p-1)(p^2+1)(p^3-1)}{2^{10} \cdot 3^4 \cdot 5 \cdot 7}.$$

• If $\ker(\lambda) \simeq \alpha_p \times \alpha_p$, then

$$\operatorname{Mass}(\Lambda_{\tilde{x}}) = \frac{(p-1)(p^3+1)(p^3-1)}{2^{10} \cdot 3^4 \cdot 5 \cdot 7}.$$

It remains to compute $[\operatorname{Aut}((Y, \phi^*\lambda)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])].$

The case a(X) = 2

Let $x = (X, \lambda) \in \mathcal{S}_3$ such that a(X) = 2. Its PFTQ $(Y_2, \lambda_2) \to (Y_1, \lambda_1) \to (X, \lambda)$ is characterised by a pair $t \in C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^2})$. We need to compute $[\operatorname{Aut}((Y_1, \lambda_1)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])]$.

There are reduction maps

$$\operatorname{Aut}((Y_1, \lambda_1)[p^{\infty}]) \twoheadrightarrow \operatorname{SL}_2(\mathbb{F}_{p^2})$$

$$\operatorname{Aut}((X, \lambda)[p^{\infty}]) \twoheadrightarrow \operatorname{SL}_2(\mathbb{F}_{p^2}) \cap \operatorname{End}(u)^{\times},$$

where

$$\operatorname{End}(u) = \{g \in M_2(\mathbb{F}_{p^2}) : g \cdot u \subseteq k \cdot u\} \simeq \begin{cases} \mathbb{F}_{p^4} \text{ if } u \in \mathbb{P}^1_t(\mathbb{F}_{p^4}) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^2}); \\ \mathbb{F}_{p^2} \text{ if } u \in \mathbb{P}^1_t(k) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^4}). \end{cases}$$

The case a(X) = 2

Let $x = (X, \lambda) \in S_3$ such that a(X) = 2.

Its PFTQ $(Y_2, \lambda_2) \to (Y_1, \lambda_1) \to (X, \lambda)$ is characterised by a pair $t \in C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_+(k) \setminus \mathbb{P}^1_+(\mathbb{F}_{p^2})$.

So
$$[\operatorname{Aut}((Y_1, \lambda_1)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] =$$

$$[\operatorname{SL}_2(\mathbb{F}_{p^2}) : \operatorname{SL}_2(\mathbb{F}_{p^2}) \cap \operatorname{End}(u)^{\times}] =$$

$$\begin{cases} p^2(p^2 - 1) & \text{if } u \in \mathbb{P}^1_t(\mathbb{F}_{p^4}) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^2}); \\ |\operatorname{PSL}_2(\mathbb{F}_{p^2})| & \text{if } u \in \mathbb{P}^1_t(k) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^4}). \end{cases}$$

Theorem (K.-Yobuko-Yu)

There are two mass strata in $S_3(2)$:

$$ext{Mass}(\mathsf{\Lambda}_{\mathsf{x}}) = rac{1}{2^{10} \cdot 3^4 \cdot 5 \cdot 7} \cdot \ egin{array}{l} \{(p-1)(p^3+1)(p^3-1)(p^4-p^2) &: u \in \mathbb{P}^1_t(\mathbb{F}_{p^4}) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^2}); \ 2^{-e(p)}(p-1)(p^3+1)(p^3-1)p^2(p^4-1) &: u \in \mathbb{P}^1_t(k) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^4}). \end{array}$$

The case a(X) = 1

Let $x=(X,\lambda)\in\mathcal{S}_3$ such that a(X)=1. Its PFTQ $(Y_2,\lambda_2)\to (Y_1,\lambda_1)\to (X,\lambda)$ is characterised by a pair $t\in C^0(k):=C(k)\setminus C(\mathbb{F}_{p^2})$ and $u\in \mathbb{P}^1_t(k)$. We need to compute $[\operatorname{Aut}((Y_2,\lambda_2)[p^\infty]):\operatorname{Aut}((X,\lambda)[p^\infty])]$.

Theorem (K.-Yobuko-Yu)

There are three mass strata in $S_3(1)$, determined by the fibres D_t of a divisor $D \subseteq C^0 \times \mathbb{P}^1$:

$$\begin{aligned} \operatorname{Mass}(\Lambda_x) &= \frac{p^3}{2^{10} \cdot 3^4 \cdot 5 \cdot 7} \cdot \\ & \begin{cases} 2^{-e(p)} p^{2d(t)} (p^2 - 1) (p^4 - 1) (p^6 - 1) &: u \not\in D_t; \\ p^{2d(t)} (p - 1) (p^4 - 1) (p^6 - 1) &: u \in D_t, t \not\in C(\mathbb{F}_{p^6}); \\ p^6 (p^2 - 1) (p^3 - 1) (p^4 - 1) &: u \in D_t, t \in C(\mathbb{F}_{p^6}). \end{cases} \end{aligned}$$

What else can we use all these computations for?

Application: Oort's conjecture

Oort's conjecture

Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_2 \simeq \{\pm 1\}$.

This fails in general: counterexamples for (g, p) = (2, 2) and (3, 2).

Theorem (K.-Yobuko-Yu)

When g = 3, Oort's conjecture holds precisely when $p \neq 2$.

- A generic threefold X has a(X) = 1. Its PFTQ is characterised by $t \in C^0(k)$ and $u \notin D_t$.
- ullet Our computations show for such (X, λ) that

$$\operatorname{Aut}((X,\lambda)) \simeq \begin{cases} C_2^3 & \text{for } p=2; \\ C_2 & \text{for } p \neq 2. \end{cases}$$

Gauss problem

Recall the central leaf for $x=(X_0,\lambda_0)\in\mathcal{S}_g(k)$ is defined as

$$\Lambda_{x} = \{(X,\lambda) \in \mathcal{S}_{g}(k) : (X,\lambda)[p^{\infty}] \simeq (X_{0},\lambda_{0})[p^{\infty}]\}.$$

Gauss problem

Determine precisely for which $x \in S_g(k)$ we have that

$$|\Lambda_x|=1.$$

We can define Λ_x for any $x \in \mathcal{A}_g(k)$.

Chai proved $|\Lambda_x|$ is finite if and only if $x \in \mathcal{S}_g(k)$ is supersingular.

Main result

Theorem (in progress, Ibukiyama-K.-Yu)

Let $x \in \mathcal{S}_g$. Then $|\Lambda_x| = 1$ if and only if one of the following three cases holds:

- (i) g = 1 and $p \in \{2, 3, 5, 7, 13\}$.
- (ii) g = 2 and p = 2, 3.
- (iii) g = 3, p = 2 and $a(x) \ge 2$.

The result for g=1 was known before and follows from work of Vignéras on class numbers of quaternion algebras. In this case, Λ_x is the whole supersingular locus.

The result for g=2 was recently proven by Ibukiyama by studying quaternion hermitian groups.

The proof for $g \ge 5$

Let Λ_{g,p^c} denote the set of isomorphism classes of g-dimensional polarised superspecial abelian varieties (X,λ) whose polarisation λ satisfies $\ker(\lambda) \simeq \alpha_p^{2c}$.

- ② For every $x \in \mathcal{S}_g(k)$ there exists a surjection $\pi : \Lambda_x \twoheadrightarrow \Lambda_{g,p^c}$ for some $0 \le c \le \lfloor g/2 \rfloor$.
- \bullet We know $\operatorname{Mass}(\Lambda_{g,p^c})$ for all $g\geq 1$ and $0\leq c\leq \lfloor\frac{g}{2}\rfloor$.

For $g\geq 5$, this yields enough information: using (3), we prove that $|\Lambda_{g,p^c}|>1$ for all p and all $0\leq c\leq \lfloor\frac{g}{2}\rfloor$, which by (2) implies that $|\Lambda_x|>1$ always.

Ideas for the proof for g = 3, 4

When g=3, we use our mass formula! Together with computations of automorphism groups, this gives the result, since

$$\operatorname{Mass}(\Lambda_x) := \sum_{x' \in \Lambda_x} |\operatorname{Aut}(x')|^{-1}.$$

When g=4, and $x\in \mathcal{S}_4(k)$, the surjection $\pi:\Lambda_x \twoheadrightarrow \Lambda_{g,p^c}$ is induced from the minimal isogeny of x.

This allows us to compare $\operatorname{Mass}(\Lambda_x)$ with the appropriate superspecial mass $\operatorname{Mass}(\Lambda_{4,p^c})$, and $|\Lambda_x|$ with $|\Lambda_{4,p^c}|$. We prove the theorem for one Ekedahl-Oort stratum at a time.

Thank you for your attention!