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Introduction: why abelian varieties over finite fields?

Elliptic curves

Abelian varieties Ag

Jacobians

Over finite fields:
@ Explicit description of ISOGENY CLASSES.
@ Amenable to computations.

@ Useful stratifications of Ag.
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Finite fields

Definition
Let Fq be the finite field of cardinality g = p", where p is a prime.

Facts about finite fields:

@ For every prime p and integer r > 1, there is a unique finite
field IFpr. Also, the cardinality of any finite field is p" for some
prime p and integer r > 1.

@ We have field extensions [F, C Fgm for any m > 1.

o All elements x € [y satisfy x9 = x.
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Elliptic curves: definition

Definition (elliptic curve)

An elliptic curve is a genus 1 projective curve
E : y?z+ axyz + byz? = x> 4+ ox?z + dxz® + ez®

(where in our case, a,b,c,d, e € Fy),
with a marked point O (“at infinity" ), whose points form a group.

A
N

Figure: Adding points on an elliptic curve over R.




Let E(Fgm) = { points (x : y : z) on E/F, defined over Fgm}.

Use the Frobenius morphism ¢ of E /Fgm:

$((x:y:2))=(xT":yT 27
Then

:z9).
E(Fgm) = {fixed points of ¢/Fgm}.

«O» «Fr «=»

« =

DA



Abelian varieties over finite fields Moduli spaces and stratifications Mass formulae for S3 Gauss problem for Sy
000®0000 000000 00000000000 0000

Elliptic curves: zeta function

Definition (Weil polynomial)

The Weil polynomial Py(E/F,, T) € Z[T| = (T —a)(T — @)
is the characteristic polynomial of ¢/F,.

@ (Riemann hypothesis) |a| = /q.
@ (Weil conjectures) |E(Fgm)| = (1 —a™)(1—a™) forall m>1
© (Honda-Tate theory) o determines E up to isogeny.

Definition (Zeta function)

The zeta function of an elliptic curve E/F is

2(E/Fq, T) = exp | 3 )| | = NS00,

m>1




0

E[p](F,) ~ {Z/ =

if E is ordinary,

if E is supersingular.
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Abelian varieties: definition and zeta function

Definition (abelian variety)

An abelian variety is a non-singular projective group variety.

The zeta function of an abelian variety X/F, of dimension g

T PalT) . Paga(T)

Z(X/qu T):eXp Z‘X(qu) P2(T)P2g(T)

m>1
is determined by the Weil polynomial

Ps(X/Fq, T) = TP (T }) = ﬁ(T — o).
i=1

@ (Riemann hypothesis) |a;| = /.
@ (Weil conjectures) |X(Fgm)| = [122,(1 — o) for all m > 1.
© (Honda-Tate theory) The «; determine X up to isogeny.
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Abelian varieties: p-torsion

Definition (abelian variety)

An abelian variety is a non-singular projective group variety.

The zeta function of an abelian variety X /IFq of dimension g

Z(X/Fq, T) =exp Z IX(Fgm)

m>1

,L"’ _ Pi(T)...Pog1(T)
m o P2(T)...P2g(T)

is determined by the Weil polynomial

2
Po(X[Fq, T) = T*#P(T ) = l_g[(T - ).
i=1

Definition (ordinary, supersingular)

ordinary " {\X[p](w = pt

We say X is : .
X ~ E& with E supersingular

supersingular
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Special case: Jacobian varieties

Let C be a smooth projective connected curve over I, of genus g.
We can construct a g-dimensional abelian variety Jac(C), called
the JACOBIAN of C. The zeta function of C

2(¢/70 D) =ew | L 1CE ) = ot o

m>1

is determined by the Weil polynomial of Jac(C) through

2g

Ps(Jac(C)/Fq, T) = T2P(T ) = [(T — ai).
i=1

; C// Jac(Q) : -
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Moduli space A,
Let k be an algebraically closed field of characteristic p.
Definition

Let Az be the moduli space over k of principally polarised
g-dimensional abelian varieties.

Ay is irreducible of dimension @. Often write X = (X, \).

For X € Ag(k), consider its p-divisble group X[p>].
The isogeny class of X[p™°] uniquely determines a Newton polygon.
= Newton stratification of A,.

The isogeny class of X[p™] also determines the p-RANK f of X:
(X[p)(K)| = p' 500 < f<g.
= p-rank stratification of A,.
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Moduli space S,

Recall: X € A, (k) is supersingular if X ~ E€ with E[p](k) = 0.

Definition
Let S be the moduli space over k of principally polarised
g-dimensional supersingular abelian varieties.

@ All supersingular abelian varieties have the same Newton
polygon, i.e., S; is a Newton stratum of Aj.

@ A supersingular abelian variety has p-rank zero.

@ Every component of S, has dimension Lgfzj.
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The a-number stratification

Definition
Let X € Ag(k). Its a-number is a(X) := dim,Hom(ap, X).
It depends on the isomorphism class of X[p].

For X € Ag(k) with p-rank f, we have 0 < a(X) < g —f.
For X € Sg(k), we have 1 < a(X) < g.
= a-number stratification of Sg = [[5_; Sg(a).

@ Every component of S;(a) has dimension L%]

@ a(X) =g < X is SUPERSPECIAL, i.e., X ~ ES.
The superspecial stratum Sg(g) is zero-dimensional.
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The Ekedahl-Oort stratification

For X € Ag(k), consider its p-torsion X|p].

Its isomorphism class is classified by an element of the Weyl group
Wy of Sp,,, or equivalently by an ELEMENTARY SEQUENCE .
= Ekedahl-Oort stratification of A, = ][, S,

@ Ekedahl-Oort stratification refines the p-rank stratification.

o Also consider Ekedahl-Oort stratification [ ], (Sy, N Sg) of Sg.
Combinatorial criterion determines when S, C S;.
These strata are reducible; all other strata are irreducible.

@ The a-number is constant on Ekedahl-Oort strata.
= Sg(a) =1, (Sp N Sg).
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A foliation of S,

Want to consider p-divisible groups up to isomorphism

Definition
For x = (Xp, Ao) € Sg(k), define the central leaf

A = {(X, A) € Sg(k) - (X, A)[p™] = (Xo, Ao)[p™]}-

@ Each A, is finite, but determining its size is very hard.

@ Let Gx/7Z be the automorphism group scheme, such that
Gx(R) = {h € (End(Xo) ®z R)* : Hh =1}
for any commutative ring R. Then there is a bijection

Ax ~ G(Q)\ G (Ar)/Gu(Z).
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Mass formulae for Sz
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Gauss problem for Sy
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A

x = {(X,A) € Sg(k) : (X, A)[p>] = (X0, 2o)[P]}

, P ;.
For any x € S;, compute the mass

Mass(Ay) =

S Aue(x) L

x' €Ny

N.B. Mass(Ax) = vol(Gx(Q)\ Gx(Af)) = Mass( Gy, Gx(Z))
= “Mass stratification” of S

Expected to refine the a-number and Ekedahl-Oort stratifications



Abelian varieties over finite fields Moduli spaces and stratifications Mass formulae for S3 Gauss problem for S,
00000000 000000 ®0000000000 0000

How do we describe S37

We now focus on the case where g = 3.
Let E£/IF> be a supersingular elliptic curve with 7g = —p.
Let 4 be any principal polarisation of E3.

Definition

A polarised flag type quotient (PFTQ) with respect to p is a
chain

(E37p:u’) =: (Y27)‘2) p_2> (Y17)‘1) ﬂ> (YO’)‘O)

such that ker(p1) >~ a,, ker(p2) ~ «
0<i<2and0<,<|[i/2].

2, and ker(\;) C ker(V/ o F'=J) for

Let P, be the moduli space of PFTQ's.
It is a two-dimensional geometrically irreducible scheme over F ..
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How do we describe S37

An PFTQ w.rt. s (E3, pu) =: (Y2, A2) 2 (Y1, A1) 25 (Yo, ho).
It follows that (Yo, \o) € S3, so there is a projection map

pry : Py — S3
(Y2 — Yl — Yo) —> (Yo,)\o)

such that H# P, — Sz is surjective and generically finite.
Let C: tPth 4 271 4+ 241 = 0 be a Fermat curve in P2.

It has genus p(p — 1)/2 and admits a left action by Usz(F,).
Then 7 : P, ~ Pc(O(-1) & O(1)) — C is a PL-bundle.
There is a section s: C — T C P,,.

For each (X, \) there exist a ¢ and a y € P, such that
pro(y) = [(X; A)]-

This y is uniquely characterised by a pair (t, u) with
t=(t1:tr:t3) € C(k) and u = (uy : up) € m1(t) ~ PL(k).
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The structure of P,

m: P, =Pc(O(-1)® O(1)) = C has sections: C - T C P,

Definition
Recall that X /k has a-number a(X) = dim,Hom(c,, X).
Fora PFTQ y = (Y2 — Y1 — Y0), we say a(y) = a(Yo).

e For a supersingular threefold X we have a(X) € {1, 2,3},
and a(X) = 3 < X is superspecial.

o If y e T, then a(y) = 3.

@ For t € C(k), we have t € C(F,2) © a(y) > 2 for any
y € m(¢).

@ Fory € P, wehave a(y) =1y ¢ T and 7(y) & C(Fp2).
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The structure of P,: a picture

K
>
=k
-
b
3

Gauss problem for Sg
0000




Abelian varieties over finite fields Moduli spaces and stratifications
00000000 000000

0000@000000

Gauss problem for Sg
0000

Mass formulae for S3
Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a MINIMAL ISOGENY

p:Y =X
from a superspecial abelian variety Y ~ E&.

Construct the minimal isogeny for X from its corresponding PFTQ

Yo 2 vi 2 vy = X.

(If Y2—= Y1 — Ypis a PFTQ, then Y; is superspecial!)

e If a(X) = 3 then X is superspecial and ¢ = id.

e If a(X) =2, then a(Y1) = 3 and ¢ = p1 of degree p.
o If a(X) =1, then o = p1 o py of degree p>.

[m]

=
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From minimal isogenies to masses
Let x = (X, A) be supersingular and ¢ : Y — X a minimal isogeny.
Write X = (Y, ¢*\). Recall automorphism group scheme Gy.

Through ¢, we may view both Gg(Z) and ¢* Gx(Z) as open
compact subgroups of Giz(Ar), which differ only at p. Hence:

[6x(Z) : Gx(Z) N " G(2)]

Mass(Ay) = - Mass(Az)

[p*Gu(Z) : Gx(Z) N ¢*G(2)]
= [Aut((Y, o*N)[p™]) : Aut((X, A)[p™])] - Mass(Az).

So we can compare any supersingular mass to a superspecial mass.

u}
8]
I
i
it
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From minimal isogenies to masses

Moreover, the superspecial masses are known in any dimension!

Let X = (Y, \) be a superspecial abelian threefold.
e If X is a principal polarisation, then
3
Mass(Ay) = L=UELUE-1)
o If ker(\) =~ ap X ap, then

3
Mass(Az) = (p— 1)2(1”0;152(5 -1)

It remains to compute [Aut((Y, ¢*\)[p™]) : Aut((X, \)[p>])].
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The case a(X) =2

Let x = (X, A) € S3 such that a(X) = 2.

Its PFTQ (Y2, A2) — (Y1, A1) — (X, A) is characterised by a pair
t € C(F,2) and u € P}(k) \ PL(F ).

We need to compute [Aut(( Y1, A1)[p™]) : Aut((X, A)[p>])].

There are reduction maps

Aut((Y1, \1)[p]) = SLa(F,2)
Aut((X, \)[p™]) = SLa(F,2) N End(u)*,

where

Foe if u€ PHF ) \ PH(F2);
PH(F

Pl Tl SR e k= {F if ue Pl(kg\ ;
p2 it u P P



Abelian varieties over finite fields Moduli spaces and stratifications Mass formulae for S3 Gauss problem for Sy
00000000 000000 00000000 e00 0000

The case a(X) =2

Let x = (X, A\) € S3 such that a(X) = 2.
Its PFTQ (Y2, A2) — (Y1, A1) — (X, A) is characterised by a pair
t € C(F,2) and u € Pi(k) \ P}(F ).
So [Aut((Y1, A1)[p™]) - Aut((X, A)[p™])] =
[SLz(Isz) : SLQ(sz) N End(u)x] =
Pz(p2 —1) if ue P%(Fp ) \Pl(Isz)
[PSLo(F2)|  if u € Pr(k) \ Pr(F ).

There are two mass strata in S3(2):
1
Mass(/\x) = m
{(P =1+ 1)(p° - 1)(p* - p?) LU € PH(Fp) \ Pi(F2);
270N (p— 1)(p* + 1)(p* — 1)P*(p* — 1) : u € PL(Kk) \ Py(Fpe). |
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Let x = (X, A) € S3 such that a(X) = 1.

Its PFTQ (Y2, A2) = (Y1, A1) — (X, A) is characterised by a pair
t € CO°(k) := C(k)\ C(F,2) and u € P}(k).

We need to compute [Aut(( Y2, A2)[p™]) : Aut((X, A)[p>])]-

There are three mass strata in S3(1), determined by the fibres D; of a
divisor D C CO x P!:
3
Mass(Ax) = Mﬁ-
2-e(P)p2d(®)(p2 — 1)(p* —1)(p° — 1) :u ¢ Dy;
PO —1)(p* — 1)(p° - 1) cu € Dyt & C(Fps);
po(p? —1)(p3 — 1)(p* — 1) cu€ Dyt € C(Fps).

What else can we use all these computations for?
[m] = = =
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Application: Oort’s conjecture

Every generic g-dimensional principally polarised supersingular
abelian variety (X, \) over k of characteristic p has automorphism
group G ~ {£1}.

This fails in general: counterexamples for (g, p) = (2,2) and (3, 2).

When g = 3, Oort's conjecture holds precisely when p # 2. I

e A generic threefold X has a(X) = 1.
lts PFTQ is characterised by t € C°(k) and u & D;.

@ Our computations show for such (X, ) that

C23 for p = 2;
G, for p# 2.

[m] = = =

Aut((X, ) ~ {

it

S
pe)
i)
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Recall the central leaf for x = (Xp, Ao) € Sg(k) is defined as

A = {(X;A) € Sg(k) - (X, N)[p™] = (Xo, M) [P™]}

Determine precisely for which x € Sg(k) we have that

A = 1.

We can define A, for any x € Ag (k).

[m]

Chai proved |A| is finite if and only if x € Sg(k) is supersingular.

=
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Main result

Let x € S;. Then |A,] =1 if and only if one of the following three
cases holds:

(i) g=1and p € {2,3,5,7,13}.
(i) g=2and p=2,3.
(i) g =3, p=2and a(x) > 2.

The result for g = 1 was known before and follows from work of
Vignéras on class numbers of quaternion algebras.
In this case, A« is the whole supersingular locus.

The result for g = 2 was recently proven by |Ibukiyama by studying
quaternion hermitian groups.

u}
8]
I
i
it
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The proof for g > 5

Let Ag pc denote the set of isomorphism classes of g-dimensional
polarised superspecial abelian varieties (X, ) whose polarisation A
satisfies ker(\) ~ a3°.

@ If x € Agpe, then Ay = Ag pe.

@ For every x € Sg(k) there exists a surjection 7 : Ay — Ag pe
for some 0 < ¢ < |g/2].

© We know Mass(Ag,pc) forall g >1and 0 < c < |5].

For g > 5, this yields enough information: using (3), we prove that
|Ag,pc| > 1 forall p and all 0 < ¢ < [4], which by (2) implies that
|Ax|] > 1 always.
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|deas for the proof for g = 3,4

When g = 3, we use our mass formula! Together with
computations of automorphism groups, this gives the result, since

Mass(A Z | Aut(x

x"eNg

When g =4, and x € S4(k), the surjection 7 : Ay — Ag pe is
induced from the minimal isogeny of x.

This allows us to compare Mass(/Ax) with the appropriate
superspecial mass Mass(A4 pe), and |Ax| with |[Ag pel.

We prove the theorem for one Ekedahl-Oort stratum at a time.

Thank you for your attention!
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