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Some old work with a new twist
A Tutte polynomial for edge- and vertex- weighted 

graphs, list coloring, and the zero-temperature 
Potts model, and now symmetric functions



The history…

 The zero-field Potts model partition function is an 
evaluation of the Tutte polynomial--1972.

 This means that results for the Tutte polynomial carry over 
to the Potts model and vice versa. 

 This includes particularly computational complexity 
results, and

 locations for the zeros of the chromatic polynomial, which 
inform the zero-temperature, anti-ferromagnetic Potts 
model.
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Extended connections…
 List coloring, heavily studied (hundreds of papers since introduced by 

Vizing in 1976)

is the same as….

 Zero-temperature anti-ferromagnetic Potts model with an external field.

(Connection is via a List Chromatic Polynomial that is a specialization of the 
V-polynomial.)

 And the chromatic symmetric function, which turns out also to be related to 
the V-polynomial

Again a very rich opportunity for cross-fertilization from 40 years of 
independently developed theory on the same object.

3



4

A Graph state and its Hamiltonian
The Hamiltonian still measures 

the overall energy of the a 
state of  a system.
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The Hamiltonian of a state of a 4 x 4 
lattice with 3 choices of spins (colors) 
for each element.
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Note:  constant interaction energy 
of J and no external magnetic 
field (no additional terms in 
the Hamiltonian.
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Probability of a state
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The probability of a particular state  S occurring depends on the 
temperature, T 

(or other measure of activity level in the application)

--Boltzmann probability distribution--
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 where 1.38 10  joules/Kelvin and  is the temperature of the system.k T

kT
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The denominator,                

is the  Potts Model Partition Function  
-- the interesting (hard) piece--
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Thermodynamic Functions
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Potts model partition function →Important thermodynamic 
functions:  internal energy, specific heat, entropy, and free energy

U=Internal Energy (sum of the potential and kinetic energy): 

C=Specific heat (energy to raise a unit amount of material one degree): 

S=Entropy  (a measure of the randomness and disorder in a system):

F=Total free energy:
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The classical Tutte/Potts connection
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all states 
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The Potts model partition function is a polynomial in q
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Computational complexity results for the Tutte polynomial and Potts model partition 
function have built in alternation over the years:

 Ising model tractable for plane graphs (Fischer ‘66, Kastelyn ’67) → Tutte tractable 
along ( x-1)( y-1)=2 for plane graph.

 Ising model not tractable off the plane (Jerrum, ‘87) → Tutte is not tractible along ( 
x-1)( y-1)=2.

 Tutte polynomial is #P-complete in general, except along ( x-1)( y-1)=1 and 9 trivial 
points (Jaeger, Vertigan & Welsh, ‘90) → Potts model is generally intractable. 

 More that we’ve seen in this seminar
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The antiferromagnetic model at zero 
temperature
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The Potts model partition function of a 
square lattice with two possible spins
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Minimum energy states if 
J < 0 (anti-ferromagnetic)

J is negative in the 
antiferromagnetic model, so 
minimal energy states have a 
maximum number of zeros in the 
Hamiltonian, i.e. every edge has 
endpoints with different spins.

Such a state corresponds to a 
proper coloring of the graph.  



The connection

Consider the summands of 

as 0T  , and hence                          , remembering J < 0 

a summand is 0 except precisely when  , 0i j   
in which case it is 1.  Thus

simply counts the number of proper colorings of G
with q colors.
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Zeros of the chromatic polynomial
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Thus, phase transitions correspond to the 
accumulation points of roots of the chromatic 

polynomial in the infinite volume limit.

In the infinite volume limit, the ground state (T=0) 
entropy per vertex of the Potts antiferromagnetic model 
then becomes:

S=Entropy  (a measure of the randomness 
and disorder in a system):
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However…
Most applications include additional terms in 

the Hamiltonian, and the classical theory of the 
Tutte-Potts connection does not encompass this.
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Limitation of the classical connection

• Liquid-gas transitions
• Foam behaviors
• Magnetism
• Biological membranes
• Ghetto formation (Schnelling

2005)

• Separation in binary alloys
• Cell migration
• Spin glasses
• Neural networks
• Flocking birds

Many applications of the general Potts model



A simple external field
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,( ) a b
edges

H w J  , 1,( ) a b a
edges vertices

H w J M     

The first spin is favored, and M is the strength of the favoritism

 In the first sum, a and b are the spins on endpoints of the edge 

 In the second sum, a is the spin on the vertex.  

http://pages.physics.cornell.edu/sss/ising/ising.html



More encompassing model
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 Allow edge-dependent interaction energies--- (γ).

 Also allow q-dimensional external field contributions via 
a vector (Mi,1 … Mi,q ) associated to each vertex vi --(M)

Variable (edge-dependent) energies and a 
variable (vertex-dependent) external field.

Appropriate choices of M and γ yield familiar models:  
Preferred Spin, Spin Glass, Random Field Ising Model, etc.



Catching up the Math
How do we extend the classical Tutte-Potts relation to these 
more typical (and applicable) versions of the Potts model?

 Edge-dependent interaction energies?
 In the past 20-30 years, multivariable generalizations of the 

Tutte polynomial have been developed that capture this. (Traldi 
‘89, Zaslavsky ‘92, Bollobas&Riordan ‘99, Sokal connections 
2005, etc.)

 External fields?
 This is the tricky bit….

14



Multivariate Tutte Polynomial
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The U- and W-polynomials
Noble and Welsh (1999)

in the context of knot 
theory and combinatorics

of Vassiliev invariants.
Loebl 2007, coloring
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• Take vertex weights in Z+

• Take indeterminates 1 2,x x K

U is  the same, but all weights initialized to 1, to give an invariant of 
graphs rather than of vertex-weighted graphs.

where deletion is as usual and contraction adds vertex weights;
= +

6

52

3 6

52

3 6 +3 =9

52

6 3
x6 +  x3



 Edge weights/indeterminates indexed by the edges--- (γ).

 Vertex weights in a semigroup S--- (ω)

 Indeterminates indexed by S--- (x)
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The V-polynomial
E-M, Moffatt 2011
cf Forge, Zaslavsky 2013 
for gain graphs



Computing the V polynomial

 E.g.
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Semigroup 
operation

a b
xa +  xb

State Model: where ci sums weights 
on the ith component.

Also a Spanning Tree Expansion, —McDonald & Moffatt 2012



External field Potts is 
an evaluation of V
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Basically take the semigroup to be q-dimensional complex vectors,
initialize vertex weights with the given magnetic field vectors, 
and take the edge weights to be exp(βJi,j-1).



Polynomial expressions

Get a cluster model expansion and deletion/contraction.

The partition function, even with an external field, is a 
polynomial in q.  

.
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A Hierarchy of Relations

21

Z is the Potts model partition function 
in varying degrees of generality.



List coloring
 Given a graph G with a list of colors for each vertex, a list 

coloring of G is a proper coloring with the color at each vertex 
chosen from its list.  

 Given k, generally want to know if a graph is k-choosable, i.e.
may be list colored given any set of lists of size k at each 
vertex.
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Can be colored from this set of lists

But is NOT 2-choosable.  In general the 
choosability number is at least as big as 
the chromatic number.



The List Chromatic Polynomial

 Let G be a graph with lists li from some set L at the 
vertices.

 Let S be the semigroup 2L under intersection.

 Assign edge weights of -1 to each edge

The List Chromatic Polynomial is defined by
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( ,{ }) : ( ,{ }; , )i iC G l G l V x -1

Basic idea is to put lists on the vertices and take the 
intersection when you contract.

= -
3,6

5,61,2

1,3 3,6

5,61,2

1,3 3

5,61,2



Counts List Colorings
 The List Chromatic Polynomial counts list colorings of G 

with the given lists:
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( ,{ })
s

i x s
C G l



is the number of ways to properly color G from the given 
lists of colors at the vertices.

Straightforward to prove by induction.



Properties as a specialization 
of the V polynomial
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Recursive:

State Model:

where cj is the intersection of the lists on 
the vertices in the jth component of A.

1. If e is not a loop,

2. If e is a loop,  

3. If G is edgeless, 
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Zero-temp antiferromagnetic Potts 
model with an external field

 Antiferromagnetic, so Je < 0  for all e.

 We also assume that all the entries of the magnetic field 
vectors are less than or equal to zero.
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(contributes Mi,α when vi has color α in the state.)

Note:  This Hamiltonian  is always greater than or equal to zero



Zero temperature limit

all states 

exp( ( ))Z h


  
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As             , then                          , so                              ,

unless                , in which case                              .

Thus, Z counts states where .

0T  1/ T   exp( ( )) 0h  

( ) 0h   exp( ( )) 1h  

( ) 0h  



The correspondence

Since            , and             , both terms must be zero in   
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0eJ  , 0iM  

 The first term is zero iff the state is a proper coloring

 The second term is zero iff the colors are chosen from the 
following lists at the vertices:  

Thus,               iff the state is a list coloring of G using the 
lists l(vi), and hence as

counts list colorings.  

,( ) 0i il v M    

( ) 0h  
0T 

all states 

exp( ( ))Z h


  



Most especially….
 We now have an external field analog for the classical 

relation between the chromatic polynomial and the zero-
temperature antiferromagnetic Potts model.

 List coloring is a heavily studied variation of graph 
coloring, where a graph is properly colored using only 
colors from lists specified for each vertex.

 The V-polynomial specializes to the List Chromatic 
polynomial, like the Tutte polynomial specializes to the 
Chromatic polynomial.

 The List Coloring polynomial gives a graph polynomial 
expression for the zero-temperature antiferromagnetic 
Potts model with  external field and boundary conditions.
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Some consequences
Ground states and ground state entropy-- At zero temperature, the system settles 
into minimum energy states. 

 In the zero field model this is easy: get zero energy states iff at least as many 
spins as the chromatic number.

 With an external field, this depends entirely on the nature of the external field 
contributions.  If the lists are larger than the choosability number, get zero 
energy states.  This will always happen for plane graphs if at least 5 zeros in 
the external field contributions (Carsten Thomassen, 1994)

 Otherwise, anything goes (contrast single spins, and cubic lattice) 
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Contrasting settings
 For example, let q=3, square lattice with diagonals, and assign 

the following external field contributions according to the 
coordinates of (-1,0,0) if x+y =0 mod 3, (0,-1,0) if x+y =1 mod 
3, (0,0,-1) if x+y =2 mod 3, 

This does not have a zero energy state since the lattice cannot be 
colored from the resulting lists.

 On the other hand, Thomassen showed that planar graphs are 5-
choosable. Thus,  in a planar system as long as there are at least 
5 zero entries in the external field contribution at each vertex 
then the system will have zero energy states.
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More consequences

 Independence of preference strength--in zero temp 
analyses the values of the entries in the external field 
contributions do not matter, just their positions.

 Boundary conditions--many models assume boundary 
conditions.  The field vectors let you fix spins on 
boundary vertices, thus yielding polynomial and cluster 
expansions for these models.  E.g. polynomial of J. L. 
Jacobsen and H. Saleur, (2008) can be recovered.

 Computational complexity--list coloring can be done in 
O(nt+2)-time where t is tree width, so ditto the number of 
zero energy states.
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Other possible directions for list 
coloring

Example:  

 Classes of graphs—
 Previous research has been on e.g. outer planar or 1-planar.

 Physics application refocuses this on families of lattices.

 Partial list coloring--
 Partial list coloring bounds previously focused on lower bounds 

for the number of vertices colored when the graph can’t be list 
colored.

 Application suggests that a productive direction would be 
estimating the minimum number of monochromatic edges when 
the graph can’t be list colored, as this will give the energy of a 
minimum energy state.
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What’s happening now

 Chromatic symmetric function
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{1, 2, 3, …}

https://math.mit.edu/~rstan/transparencies/3plus1.pdf



Fundamental theorem
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https://math.mit.edu/~rstan/transparencies/3plus1.pdf



Acyclic orientations
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(Stanley, ’73)

https://math.mit.edu/~rstan/transparencies/3plus1.pdf

Writing XG as a linear 
combination of the 



Easier proof?

37https://math.mit.edu/~rstan/transparencies/3plus1.pdf



Yes…
ACYCLIC ORIENTATION POLYNOMIALS AND THE SINK THEOREM

FOR CHROMATIC SYMMETRIC FUNCTIONS

Byung-Hak Hwang, Woo-Seok Jung, Kang-Ju Lee, Jaeseong Oh, Sang-Hoon Yu

J. Combin. Theory Ser. B 149 (2021)

 Acyclic orientation polynomial
 Generating function for the sinks of acyclic orientations.

 The result gives the desired new proof
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Acyclic orientation polynomial

 Label the vertices with independent variables, get a 
polynomial in the ring of those variables.

 Evaluate all variables to t , and coefficent of tk is ak(G), 
the number of acyclic orientations with k sinks.
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V-poly connection

40



Short proof
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More chrom sym funct activity as V-
poly evaluations
 Aliste-Prieto, José (RCH-UNAB-M); Crew, Logan (1-

PA); Spirkl, Sophie (1-PRIN); Zamora, José (RCH-UNAB-M)
A vertex-weighted Tutte symmetric function, and
constructing graphs with equal chromatic symmetric 
function. (English summary)
Electron. J. Combin. 28 (2021), no. 2, Paper No. 2.1, 33 pp.

 Crew, Logan (1-PA); Spirkl, Sophie (1-PRIN)
A deletion-contraction relation for the chromatic 
symmetric function. (English summary)
European J. Combin. 89 (2020), 103143, 20 pp.
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