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Preamble

spherical quadrangulation:
a graph embedding in the sphere
in which every face has boundary length 4.

What we accomplished
Construction of every spherical quadrangulation

having order n rotational symmetry, n ≥ 3,
subject to a constraint on degrees of vertices.
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Graph Embeddings
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graph embeddings and dual embeddings
Embeddings must be cellular : the complement of the graph is a
disjoint union of contractible regions (“faces”)

A graph embedding is a triple of sets: (V ,E ,F )
Write G = (V ,E ) and G ∗ = (F ,E )
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Curvature Without Angle Measure
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Euler’s formula

For any cellular graph embedding (V ,E ,F )
in a topological surface of genus g ,

|V | − |E |+ |F | = 2− 2g

Proof.

I Reduce to |V | = 1 by contracting edges

I Reduce to |F | = 1 by deleting edges

I Observe that theorem holds for embeddings with
|V | = |F | = 1

�
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flat configurations
Suppose G and G ∗ are simple. Given

Vi := {vertices of degree i}
Fi := {faces of boundary length (“codegree”) i}

we have

2|E | =
∑
i≥3

i |Vi | and 2|E | =
∑
i≥3

i |Fi |

Thus

|V | − |E |+ |F | =
∑
i≥3

|Vi | −

1

4

∑
i≥3

i |Vi |+
1

4

∑
i≥3

i |Fi |

+
∑
i≥3

|Fi |

Note: vertices of degree 4 and faces of codegree 4
make no contribution, i.e. have no impact on genus.
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flat configurations

the {4, 4} grid
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curvature vertices and balancing

curvature vertex: a vertex with degree other than 4

|V | − |E |+ |F | =
∑
i≥3

|Vi | −

1

4

∑
i≥3

i |Vi |+
1

4

∑
i≥3

i |Fi |

+
∑
i≥3

|Fi |

example:
contribution from degree 6 vertices and codegree 3 faces:

|V6| −
6

4
|V6| −

3

4
|F3|+ |F3| = −1

2
|V6|+

1

4
|F3|

So, if |F3| = 2|V6|, then have neutral contribution to genus

now all faces are square and graph is bipartite.
all curvature is concentrated at ◦ and • vertices,

all � vertices are degree four
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curvature vertices and balancing

the {6, 3} grid

3|F3| = 2|E | = 6|V6|

now all faces are square and graph is bipartite.
all curvature is concentrated at ◦ and • vertices,

all � vertices are degree four
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curvature vertices and balancing

example:
suppose genus is 0, all vertices have degree 3 or 4,
and all faces have codegree 4, 5 or 6

2 = |V | − |E |+ |F |

= 1
4 |V3| − 1

4 |F5| −
1
2 |F6|

i.e. |F5|+ 2|F6| = |V3| − 8

Need 8 vertices of degree 3 (“positive curvature”) to get cube,
then additional vertices of degree 3
to balance the faces of codegree 5 or 6 (“negative curvature”)

now all faces are square and graph is bipartite.
all curvature is concentrated at ◦ and • vertices,

all � vertices are degree four
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curvature vertices and balancing
“overlay graph” combines primal and dual graphs

now all faces are square and graph is bipartite.
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Nets
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cutting polyhedra open

“a net of a polyhedron is an arrangement
of non-overlapping edge-joined polygons in the plane
which can be folded (along edges)
to become the faces of the polyhedron.” (from Wikipedia)

10 / 25



cutting polyhedra open

“a net of a polyhedron is an arrangement
of non-overlapping edge-joined polygons in the plane
which can be folded (along edges)
to become the faces of the polyhedron.” (from Wikipedia)

10 / 25



cutting polyhedra open

“a net of a polyhedron is an arrangement
of non-overlapping edge-joined polygons in the plane
which can be folded (along edges)
to become the faces of the polyhedron.” (from Wikipedia)

G. C. Shephard (1975): Does every convex polyhedron have a net?
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why nets?

I Nets prove existence.

I Well-chosen nets can display important structure,
such as symmetries.

I Nets provide a model for physical construction.

I Every example constructed in this work has a net.
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The Main Result
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some background

Servatius and Servatius, 1995:
use overlay graph to classify self-dual spherical embeddings,
along with corresponding part-preserving cellular automor-
phisms of the overlay graphs

Graver and Hartung, 2014:
use overlay graph and nets to give more concrete classification
of self-dual spherical embeddings; require graphs have four
degree-3 vertices and remaining vertices all of degree 4

This Work:
use overlay graph and nets; concrete; not necessarily self-dual;
more allowed degree sequences; require rotational symmetry
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some specifics

What we accomplished
Construction of every spherical quadrangulation

having order n rotational symmetry, n ≥ 3,
and, subject to that condition,

having as few curvature vertices as possible.

I Without loss of generality (overlay graph!) assume
the embedded graph is bipartite, and
all curvature vertices are in the same part of the bipartition.

I Must have two vertices of degree n
that will serve as the poles of the rotational symmetry

I Must have 2n degree-3 vertices to balance those:

2 = (|V3|+ |Vn|)−
1

4

(
3|V3|+ n|Vn|

)
=

1

4
|V3|+ 2− 1

2
n
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two kinds of panel, two kinds of net

(0, 0)

(0, a)

(a, 0)

(s+ l, a+ s− l)

a ∈ 2Z>0, s ∈ Z≥0, l ∈ {0, 1, . . . , a− 1}
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two kinds of panel, two kinds of net
p

p

p

q

q

q
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two kinds of panel, two kinds of net

(0, 0)

(a, b)

(−b, a)

(a− w, b+ h)

a, b ∈ Z>0, a ≡2 b, h,w ∈ Z≥0, h ≡2 w , h + w 6= 0

− h
w ≤

b−a
b+a , −

a
b (a− w) ≤ b + h
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two kinds of panel, two kinds of net

q

q

q

p

p

p
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the main result

Theorem (A. and Slilaty, ∼Covid)

Every spherical quadrangulation
with order n rotational symmetry, n ≥ 3, and

with as few curvature vertices as possible
can be constructed

using one of the two constructions shown above

Corollary

Every example mentioned in the theorem
has a hemisphere-flip or glide-reflection symmetry
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Examples!!
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Growing Polar Caps
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standard k-balls

the standard 3-wedge and the standard 4-wedge
( cut from the {4, 4} grid )

p p

G : a spherical quadrangulation having
order-n rotational symmetry around poles p, q

Bk(p): the face-connected subsurface of G
(theorem: it really is one)
whose set of faces consists of all faces having at least
one of its vertices at distance at most k − 1 from p

p p

3 4

5

2

2

2

3

3

3

4

4

3

3

3

3

4

4

4

4

4

5

5

Proposition. if all vertices other than p in the interior of Bk(p)
have degree 4 in G ,
then Bk(p) is a standard k-ball of order degree(p)
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standard k-balls

the standard 3-ball of order 5 and the standard 4-ball of order 5
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standard k-balls

Proposition. if all vertices other than p in the interior of Bk(p)
have degree 4 in G ,
then Bk(p) is a standard k-ball of order degree(p)

basic first step for understanding the structure of G :

grow Bk(p) outwards from p
until ∂Bk(p) hits an orbit of curvature vertices.
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Curvature Vertices at Even k
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curvature vertices at even k

odd k even k

p p

for k even, curvature vertices on ∂Bk(p) lie on the “central ray”
and can have only one orbit of curvature vertices on ∂Bk(p)

picture it this way

p p
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curvature vertices at even k
as t increases, Bk+t(p) grows by adding flat layers
until ∂Bk+t(p) hits the second orbit of degree-3 vertices

gaps within orbit are determined,
but overall offset from first orbit is not

p
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curvature vertices at even k
because ∂Bk(p) is flat
and all degree-3 vertices have been encountered,
the only way to continue closes up the sphere with Bk(q) ∼= Bk(p)

p

q
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curvature vertices at even k

remember this panel?

(0, 0)

(0, a)

(a, 0)

(s+ l, a+ s− l)
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curvature vertices at even k

p

q

p

q
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Curvature Vertices at Odd k
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curvature vertices at odd k

odd k even k

p p

for k odd

I curvature vertices on ∂Bk(p) lie off the “central ray”

I can have two orbits of curvature vertices on ∂Bk(p))

I can have curvature vertices in the interior of Bk(p)
even when there are none in Bk−1(p))
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curvature vertices at odd k

with k odd, have “curvature rays” in addition to “central rays”
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curvature vertices at odd k

as t increases, Bk+t(p) grows by adding “zig-zag” layers
until Bk+t(p) contains second orbit of degree-3 vertices (O2)

Note:
There are three options for the appearance of O2 in Bk+t(p):

I If k + t ≡2 0 then the vertices of O2

are the ends of the central rays from p.

I If k + t ≡2 1 then either

I the vertices of O2 are the ends of the curvature rays
from the first orbit of degree-3 vertices (O1)
and are in the interior of Bk+t(p), or

I the vertices of O2 are on ∂Bk+t(p)
and are not the ends of the central rays from p
nor the ends of the curvature rays from O1.
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curvature vertices at odd k
If k + t ≡2 0 then the vertices of O2

are the ends of the central rays from p.

q

p
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curvature vertices at odd k

If k + t ≡2 1 then it can be that
the vertices of O2 are the ends of the curvature rays
from the first orbit of degree-3 vertices (O1)
and are in the interior of Bk+t(p).

p p

12 1 2
1
2

p

q
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curvature vertices at odd k
If k + t ≡2 1 then it can be that
the vertices of O2 are on ∂Bk+t(p)
and are not the ends of the central rays from p
nor the ends of the curvature rays from O1.

the central rays and the curvature rays “wander around,”
potentially crossing each other and themselves.

p

p

q

q

q

1

12

2

3

3

xx

p
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curvature vertices at odd k

remember this panel?

(0, 0)

(a, b)

(−b, a)

(a− w, b+ h)

it is sufficiently generic to cover all cases when k is odd
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curvature vertices at odd k
If k + t ≡2 0 then the vertices of O2

are the ends of the central rays from p. (cut the curvature rays
so can embed
in the {4, 4} grid)

o1

o2

o1'

po2'
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curvature vertices at odd k

If k + t ≡2 1 and the vertices of O2

are the ends of the curvature rays from O1

b(2,2)
b(2,1)

b(1,1)

b(1,2)

o1

o2 o1''

o2

o2'

o2
b(1,1)

b(1,2)

b(2,2)

b(2,1)

p
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curvature vertices at odd k
If k + t ≡2 1 and the vertices of O2 are on ∂Bk+t(p) and
are not the ends of the central rays from p
nor the ends of the curvature rays from O1.

o2

o2 '
o1 '

o1

p
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