A Theoretical Approach to the Stochastic Cellular Automata Annealer and the Digital Annealer's Algorithm

Bruno Hideki Fukushima Kimura

Hokkaido University, Japan

Discrete Mathematics Seminars University of Amsterdam

February 23, 2023

Motivation

Weighted Max-Cut problem

Given a graph G = (V, E), find a partition of the vertex set into two sets S and $V \setminus S$ such that the total weight of edges connecting the set S and its complementary $V \setminus S$ is as large as possible.

Motivation

Traveling salesman problem

Given N cities and the distances $(d_{i,j})_{i,j=1}^{N}$ between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?"

Ising model:

Given a finite simple graph G = (V, E) and spin-spin coupling constants $(J_{i,j})_{i,j \in V}$ and external fields $(h_i)_{i \in V}$, where $J_{i,j} = J_{j,i}$, let us define the Hamiltonian H by

$$H(\boldsymbol{\sigma}) = -\sum_{\{i,j\}\in E} J_{i,j}\sigma_i\sigma_j - \sum_{i\in V} h_i\sigma_i$$
(1)

for each $\boldsymbol{\sigma} \in \Omega = \{-1, +1\}^V$.

Ising model:

Given a finite simple graph G = (V, E) and spin-spin coupling constants $(J_{i,j})_{i,j \in V}$ and external fields $(h_i)_{i \in V}$, where $J_{i,j} = J_{j,i}$, let us define the Hamiltonian H by

$$H(\boldsymbol{\sigma}) = -\sum_{\{i,j\}\in E} J_{i,j}\sigma_i\sigma_j - \sum_{i\in V} h_i\sigma_i$$
(1)

for each $\boldsymbol{\sigma} \in \Omega = \{-1, +1\}^V$.

Let us consider the set of ground states of *H*:

$$GS = \{ \boldsymbol{\sigma} : H(\boldsymbol{\sigma}) = \min_{\boldsymbol{\eta}} H(\boldsymbol{\eta}) \}.$$
⁽²⁾

Weighted Max-Cut problem

Weighted Max-Cut problem

Given a graph G = (V, E) and a family of weights $(w_{i,j})_{i,j \in V}$ such that $w_{i,j} = w_{j,i}$ and $w_{i,j} = 0$ if $\{i, j\} \notin E$. Then, let us consider the Hamiltonian

$$H(\boldsymbol{\sigma}) = \sum_{\{i,j\}\in E} w_{i,j} (1 - \sigma_i \sigma_j)/2$$
(3)

for $\sigma \in \{-1, 1\}^V$.

Weighted Max-Cut problem

Given a graph G = (V, E) and a family of weights $(w_{i,j})_{i,j \in V}$ such that $w_{i,j} = w_{j,i}$ and $w_{i,j} = 0$ if $\{i, j\} \notin E$. Then, let us consider the Hamiltonian

$$H(\boldsymbol{\sigma}) = \sum_{\{i,j\}\in E} w_{i,j}(1-\sigma_i\sigma_j)/2$$

for $\boldsymbol{\sigma} \in \{-1,1\}^V$.

(3)

Weighted Max-Cut problem

Given a graph G = (V, E) and a family of weights $(w_{i,j})_{i,j \in V}$ such that $w_{i,j} = w_{j,i}$ and $w_{i,j} = 0$ if $\{i, j\} \notin E$. Then, let us consider the Hamiltonian

$$H(\boldsymbol{\sigma}) = \sum_{\{i,j\}\in E} w_{i,j}(1-\sigma_i\sigma_j)/2$$

3

(3)

for $\boldsymbol{\sigma} \in \{-1,1\}^V$.

The weighted Max-Cut problem is equivalent to the minimization of H.

Traveling salesman problem

Traveling salesman problem

Given N cities and their distances $(d_{i,j})_{i,j=1}^N$, where $d_{i,j} = d_{j,i}$. For a spin configuration $\tau = (\tau_{t,i})_{t,i=1}^N \in \{0,1\}^{N \times N}$, we have

$$\begin{cases} \tau_{t,i} = 1 & \text{if the city i is occupied at time t,} \\ \tau_{t,i} = 0 & \text{if the city i is NOT occupied at time t.} \end{cases}$$
(4)

Traveling salesman problem

Given N cities and their distances $(d_{i,j})_{i,j=1}^N$, where $d_{i,j} = d_{j,i}$. For a spin configuration $\boldsymbol{\tau} = (\tau_{t,i})_{t,i=1}^{N} \in \{0,1\}^{N \times N}$, we have

 $\begin{cases} \tau_{t,i} = 1 & \text{if the city i is occupied at time t,} \\ \tau_{t,i} = 0 & \text{if the city i is NOT occupied at time t.} \end{cases}$

In that way, τ represents a legitimate trajectory iff $\begin{cases} \sum_{i} \tau_{t,i} = 1 \text{ for each } t, \text{ and} \\ \sum_{t} \tau_{t,i} = 1 \text{ for each } i. \end{cases}$

(4)

Traveling salesman problem

Given N cities and their distances $(d_{i,j})_{i,j=1}^N$, where $d_{i,j} = d_{j,i}$. For a spin configuration $\tau = (\tau_{t,i})_{t,i=1}^N \in \{0,1\}^{N \times N}$, we have

 $\begin{cases} \tau_{t,i} = 1 & \text{if the city i is occupied at time t,} \\ \tau_{t,i} = 0 & \text{if the city i is NOT occupied at time t.} \end{cases}$ (5)

In that way, τ represents a legitimate trajectory iff $\begin{cases} \sum_i \tau_{t,i} = 1 & \text{for each } t, \text{ and} \\ \sum_t \tau_{t,i} = 1 & \text{for each } i. \end{cases}$

Let us consider the Hamiltonian

$$H(\tau) = A \sum_{t=1}^{N} \left(1 - \sum_{i=1}^{N} \tau_{t,i} \right)^2 + A \sum_{i=1}^{N} \left(1 - \sum_{t=1}^{N} \tau_{t,i} \right)^2 + B \sum_{t=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i,j} \tau_{t,i} \tau_{t+1,j}$$

(6)

where $\boldsymbol{\tau} \in \{0,1\}^{N \times N}$ is defined by $\tau_{t,i} = (1 + \sigma_{t,i})/2$.

If $0 < B \max\{d_{i,j}\} < A$, then the TSP is equivalent to the minimization of H.

NP-complete and NP-hard problems

- Černý V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. *J Optim Theory Appl* . 45 (1985) 41–51.
- Lucas A. Ising formulations of many NP problems. Front Phys. (2014) 12:5.

NP-complete and NP-hard problems

- Černý V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. *J Optim Theory Appl* . 45 (1985) 41–51.
- Lucas A. Ising formulations of many NP problems. Front Phys. (2014) 12:5.

Finance

 Rosenberg G, Haghnegahdar P, Goddard P, Carr P, Wu K, de Prado ML. Solving the optimal trading trajectory problem using a quantum annealer. *IEEE J Select Top Signal Process.* (2016) 10:1053.

NP-complete and NP-hard problems

- Černý V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. *J Optim Theory Appl* . 45 (1985) 41–51.
- Lucas A. Ising formulations of many NP problems. Front Phys. (2014) 12:5.

Finance

 Rosenberg G, Haghnegahdar P, Goddard P, Carr P, Wu K, de Prado ML. Solving the optimal trading trajectory problem using a quantum annealer. *IEEE J Select Top Signal Process.* (2016) 10:1053.

Chemistry

- Hernandez M, Zaribafiyan A, Aramon M, Naghibi M. A novel graph-based approach for determining molecular similarity. *arXiv:1601.06693.* (2016).
- Hernandez M, Aramon M. Enhancing quantum annealing performance for the molecular similarity problem. *Quantum Inform Process.* (2017) 16:133.

NP-complete and NP-hard problems

- Černý V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. *J Optim Theory Appl* . 45 (1985) 41–51.
- Lucas A. Ising formulations of many NP problems. Front Phys. (2014) 12:5.

Finance

 Rosenberg G, Haghnegahdar P, Goddard P, Carr P, Wu K, de Prado ML. Solving the optimal trading trajectory problem using a quantum annealer. *IEEE J Select Top Signal Process.* (2016) 10:1053.

Chemistry

- Hernandez M, Zaribafiyan A, Aramon M, Naghibi M. A novel graph-based approach for determining molecular similarity. *arXiv:1601.06693*. (2016).
- Hernandez M, Aramon M. Enhancing quantum annealing performance for the molecular similarity problem. *Quantum Inform Process.* (2017) 16:133.

Biology

- Perdomo-Ortiz A, Dickson N, Drew-Brook M, Rose G, Aspuru-Guzik A. Finding low-energy conformations of lattice protein models by quantum annealing. *Sci Rep.* (2012) 2:571.
- Li RY, Di Felice R, Rohs R, Lidar DA. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Inf. (2018) 4:14.

9 / 44

Logistics and scheduling

- Venturelli D, Marchand DJJ, Rojo G. Quantum annealing implementation of job-shop scheduling. arXiv:1506.08479v2. (2015).
- Neukart F, Von Dollen D, Compostella G, Seidel C, Yarkoni S, Parney B. Traffic flow optimization using a quantum annealer. *Front ICT*. (2017) 4:29.

Logistics and scheduling

- Venturelli D, Marchand DJJ, Rojo G. Quantum annealing implementation of job-shop scheduling. arXiv:1506.08479v2. (2015).
- Neukart F, Von Dollen D, Compostella G, Seidel C, Yarkoni S, Parney B. Traffic flow optimization using a quantum annealer. Front ICT. (2017) 4:29.

Machine learning

- Crawford D, Levit A, Ghadermarzy N, Oberoi JS, Ronagh P. Reinforcement learning using quantum Boltzmann machines. arXiv:1612.05695v2. (2016).
- Khoshaman A, Vinci W, Denis B, Andriyash E, Amin MH. Quantum variational autoencoder. *Quantum Sci Technol.* (2019) 4:014001.
- Henderson M, Novak J, Cook T. Leveraging adiabatic quantum computation for election forecasting. *arXiv:1802.00069.* (2018).
- Levit A, Crawford D, Ghadermarzy N, Oberoi JS, Zahedinejad E, Ronagh P. Free energy-based reinforcement learning using a quantum processor. *arXiv:1706.00074*. (2017).

Logistics and scheduling

- Venturelli D, Marchand DJJ, Rojo G. Quantum annealing implementation of job-shop scheduling. arXiv:1506.08479v2. (2015).
- Neukart F, Von Dollen D, Compostella G, Seidel C, Yarkoni S, Parney B. Traffic flow optimization using a quantum annealer. *Front ICT*. (2017) 4:29.

Machine learning

- Crawford D, Levit A, Ghadermarzy N, Oberoi JS, Ronagh P. Reinforcement learning using quantum Boltzmann machines. arXiv:1612.05695v2. (2016).
- Khoshaman A, Vinci W, Denis B, Andriyash E, Amin MH. Quantum variational autoencoder. *Quantum Sci Technol.* (2019) 4:014001.
- Henderson M, Novak J, Cook T. Leveraging adiabatic quantum computation for election forecasting. *arXiv:1802.00069.* (2018).
- Levit A, Crawford D, Ghadermarzy N, Oberoi JS, Zahedinejad E, Ronagh P. Free energy-based reinforcement learning using a quantum processor. *arXiv:1706.00074*. (2017).

VLSI design

- S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220 (1983) 671–680.
- D.F. Wong, H.W. Leong, and H.W. Liu. Simulated Annealing for VLSI Design. The Springer International Series in Engineering and Computer Science. Springer US, 1988.

Combinatorial Optimization (CO) is Vital to Our Society

But an Exhaustive Search is Impractical for Large CO

Annealing Computation for CO using Ising Model

Comparison of Annealing Policies

SA (Simulated Annealing) Random Select

- Single update

DA (Digital Annealing) Flip?

000000

- Parallel trial
- Single update

SCA (Stochastic Cellular Automata Annealing)

- Parallel trial
- Parallel update

- Parallel trial
- Managed parallel update

Simulated Annealing (SA)

Simulated Annealing (SA)

Let us consider the Metropolis dynamics at inverse temperature β :

$$P_{\beta}(\boldsymbol{\sigma},\boldsymbol{\tau}) \begin{cases} \frac{1}{|V|} \cdot e^{-\beta E_{i}(\boldsymbol{\sigma})^{+}} & \text{if } \boldsymbol{\tau} = \boldsymbol{\sigma}^{i} \text{ for some } i \in V, \\ 1 - \sum_{i \in V} P_{\beta}(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{i}) & \text{if } \boldsymbol{\tau} = \boldsymbol{\sigma}, \text{ and} \\ 0 & \text{otherwise;} \end{cases}$$
(7)

where σ^i is the configuration given by

$$(\boldsymbol{\sigma}^{i})_{j} = \begin{cases} -\sigma_{j} & \text{if } j = i \\ \sigma_{j} & \text{otherwise,} \end{cases}$$

$$\tag{8}$$

and

$$E_i(\boldsymbol{\sigma}) = H(\boldsymbol{\sigma}^i) - H(\boldsymbol{\sigma}). \tag{9}$$

Simulated Annealing (SA)

Let us consider the Metropolis dynamics at inverse temperature β :

$$P_{\beta}(\boldsymbol{\sigma},\boldsymbol{\tau}) \begin{cases} \frac{1}{|V|} \cdot e^{-\beta E_{i}(\boldsymbol{\sigma})^{+}} & \text{if } \boldsymbol{\tau} = \boldsymbol{\sigma}^{i} \text{ for some } i \in V, \\ 1 - \sum_{i \in V} P_{\beta}(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{i}) & \text{if } \boldsymbol{\tau} = \boldsymbol{\sigma}, \text{ and} \\ 0 & \text{otherwise;} \end{cases}$$
(7)

where σ^i is the configuration given by

$$(\boldsymbol{\sigma}^{i})_{j} = \begin{cases} -\sigma_{j} & \text{if } j = i \\ \sigma_{j} & \text{otherwise,} \end{cases}$$
(8)

and

$$E_i(\boldsymbol{\sigma}) = H(\boldsymbol{\sigma}^i) - H(\boldsymbol{\sigma}). \tag{9}$$

Theorem (B. Hajek)

Let $(X_t)_{t\geq 0}$ be the discrete-time inhomogeneous Markov chain satisfying

$$\mathbb{P}(X_t = \sigma_t | X_{t-1} = \sigma_{t-1}, \dots, X_0 = \sigma_0) = \mathbb{P}(X_t = \sigma_t | X_{t-1} = \sigma_{t-1}) = P_{\beta_t}(\sigma_{t-1}, \sigma_t)$$
(10)

for every $t \ge 1$ and $\sigma_0, \ldots, \sigma_t$ in Ω . There is $\gamma_c > 0$ such that if we choose $\beta_n = \frac{1}{\gamma} \log n$, then

$$\lim_{n \to \infty} \mathbb{P}(X_n \in GS) = 1 \tag{11}$$

holds if and only if $\gamma \geq \gamma_c$.

Digital Annealer's Algorithm

Fujitsu Laboratories has recently developed a CMOS hardware designed to solve fully connected quadratic unconstrained binary optimization (QUBO) problems, known as the Digital Annealer (DA).

(b) The DA's Algorithm

Comparison of Annealing Policies

SA (Simulated Annealing) Random Select

- Single trial
- Single update

DA (Digital Annealing) Flip?

000000

- Parallel trial
- Single update

SCA (Stochastic Cellular Automata Annealing)

- Parallel trial
- Parallel update

- Parallel trial
- Managed parallel update

$$P_{\beta}^{\mathsf{DA}}(\sigma,\tau) = \begin{cases} \sum_{\substack{S \subseteq V \\ S \ni i}} \frac{1}{|S|} \prod_{j \in S} e^{-\beta E_j(\sigma)^+} \prod_{j \in V \setminus S} (1 - e^{-\beta E_j(\sigma)^+}) & \text{if } \tau = \sigma^i, \\ \prod_{j \in V} (1 - e^{-\beta E_j(\sigma)^+}) & \text{if } \tau = \sigma, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

$$P_{\beta}^{\mathsf{DA}}(\sigma,\tau) = \begin{cases} \sum_{\substack{S \subseteq V \\ S \ni i}} \frac{1}{|S|} \prod_{j \in S} e^{-\beta E_j(\sigma)^+} \prod_{j \in V \setminus S} (1 - e^{-\beta E_j(\sigma)^+}) & \text{if } \tau = \sigma^i, \\ \prod_{j \in V} (1 - e^{-\beta E_j(\sigma)^+}) & \text{if } \tau = \sigma, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

The algorithm works as follows.

$$P_{\beta}^{\mathrm{DA}}(\sigma,\tau) = \begin{cases} \sum_{\substack{S \subseteq V \\ S \ni i}} \frac{1}{|S|} \prod_{j \in S} e^{-\beta E_{j}(\sigma)^{+}} \prod_{j \in V \setminus S} (1 - e^{-\beta E_{j}(\sigma)^{+}}) & \text{if } \tau = \sigma^{i}, \\ \prod_{j \in V} (1 - e^{-\beta E_{j}(\sigma)^{+}}) & \text{if } \tau = \sigma, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

The algorithm works as follows.

• Given a state $X_t = \sigma$ at time t, we propose a parallel-trial where each spin variable σ_j is assigned as eligible to be flipped with probability $\exp(-\beta_t E_j(\sigma)^+)$.

$$P_{\beta}^{\mathsf{DA}}(\sigma,\tau) = \begin{cases} \sum_{\substack{S \subseteq V \\ S \ni i}} \frac{1}{|S|} \prod_{j \in S} e^{-\beta E_j(\sigma)^+} \prod_{j \in V \setminus S} (1 - e^{-\beta E_j(\sigma)^+}) & \text{if } \tau = \sigma^i, \\ \prod_{j \in V} (1 - e^{-\beta E_j(\sigma)^+}) & \text{if } \tau = \sigma, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

The algorithm works as follows.

- Given a state X_t = σ at time t, we propose a parallel-trial where each spin variable σ_j is assigned as eligible to be flipped with probability exp(-β_tE_j(σ)⁺).
- If the set S of all vertices associated with eligible spin variables contains at least one element, then a vertex i is chosen uniformly at random from S, and we place X_{t+1} = σⁱ; otherwise, nothing is done, and we consider X_{t+1} = σ.

Theorem (Fukushima-Kimura, Kawamoto, Noda, Sakai)

Let $(\beta_t)_{t\geq 1}$ be a nondecreasing sequence of positive numbers such that $\lim_{t\to\infty} \beta_t = +\infty$, and let $(X_t)_{t\geq 0}$ be the discrete-time inhomogeneous Markov chain satisfying

$$\mathbb{P}(X_t = \sigma_t | X_{t-1} = \sigma_{t-1}, \dots, X_0 = \sigma_0) = \mathbb{P}(X_t = \sigma_t | X_{t-1} = \sigma_{t-1}) = P_{\beta_t}^{DA}(\sigma_{t-1}, \sigma_t)$$
(12)

for every $t \ge 1$ and $\sigma_0, \ldots, \sigma_t$ in Ω .

There exists $\gamma_c > 0$ such that the limit

$$\lim_{t \to \infty} \mathbb{P}(X_t \in GS) = 1 \tag{13}$$

holds if and only if

$$\sum_{t=1}^{\infty} e^{-\beta_t \gamma_c} = +\infty.$$
(14)
Theorem (Fukushima-Kimura, Kawamoto, Noda, Sakai)

Let $(\beta_t)_{t\geq 1}$ be a nondecreasing sequence of positive numbers such that $\lim_{t\to\infty} \beta_t = +\infty$, and let $(X_t)_{t\geq 0}$ be the discrete-time inhomogeneous Markov chain satisfying

$$\mathbb{P}(X_t = \boldsymbol{\sigma}_t | X_{t-1} = \boldsymbol{\sigma}_{t-1}, \dots, X_0 = \boldsymbol{\sigma}_0) = \mathbb{P}(X_t = \boldsymbol{\sigma}_t | X_{t-1} = \boldsymbol{\sigma}_{t-1}) = P_{\beta_t}^{DA}(\boldsymbol{\sigma}_{t-1}, \boldsymbol{\sigma}_t)$$
(12)

for every $t \ge 1$ and $\sigma_0, \ldots, \sigma_t$ in Ω .

There exists $\gamma_c > 0$ such that the limit

$$\lim_{t \to \infty} \mathbb{P}(X_t \in GS) = 1 \tag{13}$$

holds if and only if

$$\sum_{i=1}^{\infty} e^{-\beta_t \gamma_c} = +\infty.$$
 (14)

In particular, if $(\beta_t)_{t\geq 1}$ assumes the form

$$\beta_t = \frac{1}{\gamma} \log t \tag{15}$$

then, equation (13) holds if and only if $\gamma \geq \gamma_c$.

Definition

We say τ is reachable from σ at height E if there exists a path $\sigma = \sigma_0, \sigma_1, \ldots, \sigma_n = \tau$ such that $\max_{0 \le k \le n} H(\sigma_k) \le E$.

Definition

We say σ is a local minimum if there is no τ satisfying $H(\tau) < H(\sigma)$ which is reachable from σ at height $H(\sigma)$. So, the depth of a local minimum σ which is not a ground state is defined as

 $d(\sigma) = \min\{E > 0 : \exists \tau \text{ with } H(\tau) < H(\sigma) \text{ that is reachable from } \sigma \text{ at height } H(\sigma) + E\}.$ (16)

The constant γ_c coincides with the depth of the second deepest local minimum, i.e., $\gamma_c = \max\{d(\sigma) : \sigma \text{ is a local minimum not in GS}\}.$

Let us consider the following Hamiltonian:

$$H(\boldsymbol{\sigma}) = -\sum_{\{i,j\}\in \boldsymbol{E}} J_{i,j}\sigma_i\sigma_j.$$
(17)

Let us consider the following Hamiltonian:

$$H(\boldsymbol{\sigma}) = -\sum_{\{i,j\}\in \boldsymbol{E}} J_{i,j}\sigma_i\sigma_j.$$
(17)

• Max-cut problem. The Hamiltonian is defined in an Erdös-Rényi random graph G(N, p), with spin-spin coupling satisfying $J_{i,j} = -1$ if $\{i, j\}$ is an edge of the graph and $J_{i,j} = 0$ otherwise.

Let us consider the following Hamiltonian:

$$H(\boldsymbol{\sigma}) = -\sum_{\{i,j\}\in \boldsymbol{E}} J_{i,j}\sigma_i\sigma_j.$$
(17)

- Max-cut problem. The Hamiltonian is defined in an Erdös-Rényi random graph G(N, p), with spin-spin coupling satisfying $J_{i,j} = -1$ if $\{i, j\}$ is an edge of the graph and $J_{i,j} = 0$ otherwise.
- Spin glasses. Let us consider a spin glass Hamiltonian in a complete graph with N vertices, where the values for the spin-spin couplings J_{i,j} = J_{j,i} are realizations of i.i.d. normal random variables.

Let us consider the following Hamiltonian:

$$H(\boldsymbol{\sigma}) = -\sum_{\{i,j\}\in E} J_{i,j}\sigma_i\sigma_j.$$
(17)

- Max-cut problem. The Hamiltonian is defined in an Erdös-Rényi random graph G(N, p), with spin-spin coupling satisfying $J_{i,j} = -1$ if $\{i, j\}$ is an edge of the graph and $J_{i,j} = 0$ otherwise.
- **②** Spin glasses. Let us consider a spin glass Hamiltonian in a complete graph with N vertices, where the values for the spin-spin couplings $J_{i,j} = J_{j,i}$ are realizations of i.i.d. normal random variables.

Each plot in the following figure illustrates the histogram of minimal energy achieved by the DA and Metropolis dynamics Considering a graph with N = 128 vertices and M = 1024 annealing trials, where on each trial we applied L = 20000 Markov chain steps and considered the exponential cooling schedule with initial temperature $T_{init} = 1000$ and final temperature $T_{fin} = 0.05$, explicitly, we considered

$$\frac{1}{\beta_t} = T_{\text{init}} \left(\frac{T_{\text{fin}}}{T_{\text{init}}} \right)^{\frac{t-1}{L-1}}$$
(18)

for t = 1, 2, ..., L.

Figure: Histograms obtained by using the SA and DA, where N = 128.

Model -	Success rate			
	SA	DA		
Max-cut	7.52%	58.01%		
Spin-glass	5.08%	40.72%		

Table: Summary of the simulations

Comparison of Annealing Policies

SA (Simulated Annealing) Random Select

- Single update
- DA (Digital Annealing) Flip? Random Select Random Select

Single update

Annealing)

SCA

(Stochastic Cellular Automata

- Parallel trial
- Parallel update

- Parallel trial
- Managed parallel update

SCA

The extended Hamiltonian \tilde{H} is defined by

$$\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau}) = -\frac{1}{2} \sum_{i,j \in V} J_{i,j} \sigma_i \tau_j - \frac{1}{2} \sum_{i \in V} h_i (\sigma_i + \tau_i) - \frac{1}{2} \sum_{i \in V} q_i \sigma_i \tau_i$$
(19)

for each pair σ, τ of configurations in $\{-1, +1\}^V$.

The extended Hamiltonian \tilde{H} is defined by

$$\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau}) = -\frac{1}{2} \sum_{i,j\in V} J_{i,j}\sigma_i\tau_j - \frac{1}{2} \sum_{i\in V} h_i(\sigma_i + \tau_i) - \frac{1}{2} \sum_{i\in V} q_i\sigma_i\tau_i$$
(19)

for each pair σ, au of configurations in $\{-1, +1\}^V$.

Let us define the SCA transition probability $P_{\beta,q}^{SCA}$ by

$$P_{\beta,q}^{SCA}(\sigma,\tau) = \frac{e^{-\beta\tilde{H}(\sigma,\tau)}}{\sum_{\tau'} e^{-\beta\tilde{H}(\sigma,\tau')}}.$$
(20)

The extended Hamiltonian \tilde{H} is defined by

$$\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau}) = -\frac{1}{2} \sum_{i,j\in V} J_{i,j}\sigma_i\tau_j - \frac{1}{2} \sum_{i\in V} h_i(\sigma_i + \tau_i) - \frac{1}{2} \sum_{i\in V} q_i\sigma_i\tau_i$$
(19)

for each pair σ, τ of configurations in $\{-1, +1\}^V$.

Let us define the SCA transition probability $P^{SCA}_{\beta,q}$ by

$$P_{\beta,q}^{SCA}(\sigma,\tau) = \frac{e^{-\beta\tilde{H}(\sigma,\tau)}}{\sum_{\tau'} e^{-\beta\tilde{H}(\sigma,\tau')}}.$$
(20)

It is straightforward to verify that the distribution $\pi^{SCA}_{\beta,q}$ defined by

$$\pi_{\beta,q}^{SCA}(\boldsymbol{\sigma}) = \frac{\sum_{\tau} e^{-\beta \tilde{H}(\boldsymbol{\sigma},\tau)}}{\sum_{\boldsymbol{\sigma}',\tau'} e^{-\beta \tilde{H}(\boldsymbol{\sigma}',\tau')}}$$
(21)

is the stationary distribution for $P^{SCA}_{\beta,q}$.

Moreover, we can rewrite $P^{SCA}_{\beta,q}$ as

$$P_{\beta,q}^{SCA}(\sigma,\tau) = \prod_{i \in V} \frac{e^{\frac{\beta}{2}(\tilde{h}_i(\sigma) + q_i\sigma_i)\tau_i}}{2\cosh(\frac{\beta}{2}(\tilde{h}_i(\sigma) + q_i\sigma_i))},$$
(22)

where the cavity fields $ilde{h}_i({\pmb\sigma})$ are given by

$$\tilde{h}_i(\boldsymbol{\sigma}) = \sum_{j \in V} J_{i,j}\sigma_j + h_i.$$
(23)

Moreover, we can rewrite $P_{\beta,q}^{SCA}$ as

$$P_{\beta,q}^{SCA}(\boldsymbol{\sigma},\boldsymbol{\tau}) = \prod_{i \in V} \frac{e^{\frac{\beta}{2}(\tilde{h}_i(\boldsymbol{\sigma}) + q_i\sigma_i)\tau_i}}{2\cosh(\frac{\beta}{2}(\tilde{h}_i(\boldsymbol{\sigma}) + q_i\sigma_i))},$$
(22)

where the cavity fields $\tilde{h}_i(\sigma)$ are given by

$$\tilde{h}_i(\boldsymbol{\sigma}) = \sum_{j \in V} J_{i,j}\sigma_j + h_i.$$
(23)

Theorem (Fukushima-Kimura, Handa, Kamijima, Kamakura, Kawamura, Sakai)

For any non-negative \mathbf{q} , if β is sufficiently small such that

$$r \equiv \max_{x \in V} \left(\tanh \frac{\beta q_x}{2} + \sum_{y \in V} \tanh \frac{\beta |J_{x,y}|}{2} \right) < 1,$$
(24)

then $t_{\mathrm{mix}}^{\mathrm{SCA}}(arepsilon)$ obeys

$$t_{\min}(\varepsilon) \le \left\lceil \frac{\log |V| - \log \varepsilon}{\log(1/r)} \right\rceil.$$
(25)

Moreover, we can rewrite $P_{\beta,q}^{SCA}$ as

$$P_{\beta,q}^{SCA}(\boldsymbol{\sigma},\boldsymbol{\tau}) = \prod_{i \in V} \frac{e^{\frac{\beta}{2}(\tilde{h}_i(\boldsymbol{\sigma}) + q_i\sigma_i)\tau_i}}{2\cosh(\frac{\beta}{2}(\tilde{h}_i(\boldsymbol{\sigma}) + q_i\sigma_i))},$$
(22)

where the cavity fields $\tilde{h}_i(\sigma)$ are given by

$$\tilde{h}_i(\boldsymbol{\sigma}) = \sum_{j \in V} J_{i,j}\sigma_j + h_i.$$
(23)

Theorem (Fukushima-Kimura, Handa, Kamijima, Kamakura, Kawamura, Sakai)

For any non-negative \mathbf{q} , if β is sufficiently small such that

$$r \equiv \max_{x \in V} \left(\tanh \frac{\beta q_x}{2} + \sum_{y \in V} \tanh \frac{\beta |J_{x,y}|}{2} \right) < 1,$$
(24)

then $t_{\mathrm{mix}}^{\mathrm{SCA}}(arepsilon)$ obeys

$$t_{\min}(\varepsilon) \le \left[\frac{\log|V| - \log\varepsilon}{\log(1/r)}\right].$$
(25)

T.P. Hayes and A. Sinclair (2007) proved that the mixing time for the Glauber dynamics is $\Omega(|V|\log |V|)$.

Proof.

It suffices to show $\rho_{\mathrm{TM}}(P_{\beta,q}^{\mathrm{SCA}}(\sigma,\cdot), P_{\beta,q}^{\mathrm{SCA}}(\tau,\cdot)) \leq r$ for all $\sigma, \tau \in \Omega$ with $|D_{\sigma,\tau}| = 1$. If $|D_{\sigma,\tau}| \geq 2$, then, by the triangle inequality along any sequence $(\eta_0, \eta_1, \ldots, \eta_{|D_{\sigma,\tau}|})$ of spin configurations that satisfy $\eta_0 = \sigma$, $\eta_{|D_{\sigma,\tau}|} = \tau$ and $|D_{\eta_{j-1},\eta_j}| = 1$ for all $j = 1, \ldots, |D_{\sigma,\tau}|$, we have

$$\rho_{\mathrm{TM}}\Big(P_{\beta,\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma},\cdot),P_{\beta,\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\tau},\cdot)\Big) \leq \sum_{j=1}^{|D_{\boldsymbol{\sigma},\boldsymbol{\tau}}|} \rho_{\mathrm{TM}}\Big(P_{\beta,\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\eta}_{j-1},\cdot),P_{\beta,\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\eta}_{j},\cdot)\Big) \leq r|D_{\boldsymbol{\sigma},\boldsymbol{\tau}}|.$$
(26)

Suppose that $D_{\sigma,\tau} = \{x\}$, i.e., $\tau = \sigma^x$. For any $\sigma \in \Omega$ and $y \in V$, we let $p(\sigma, y)$ be the conditional SCA probability of $\sigma_y \to 1$ given that the others are fixed:

$$p(\boldsymbol{\sigma}, \boldsymbol{y}) = \frac{e^{\frac{\beta}{2}(\tilde{h}_{\boldsymbol{y}}(\boldsymbol{\sigma}) + q_{\boldsymbol{y}}\sigma_{\boldsymbol{y}})}}{2\cosh(\frac{\beta}{2}(\tilde{h}_{\boldsymbol{y}}(\boldsymbol{\sigma}) + q_{\boldsymbol{y}}\sigma_{\boldsymbol{y}}))} = \frac{1 + \tanh(\frac{\beta}{2}(\tilde{h}_{\boldsymbol{y}}(\boldsymbol{\sigma}) + q_{\boldsymbol{y}}\sigma_{\boldsymbol{y}}))}{2}.$$
 (27)

Notice that $p(\sigma, y) \neq p(\sigma^x, y)$ only when y = x or $y \in N_x \equiv \{v \in V : J_{x,v} \neq 0\}$. Using this as a threshold function for i.i.d. uniform random variables $\{U_y\}_{y \in V}$ on [0, 1], we define the coupling (X, Y) of $P_{\beta,q}^{SCA}(\sigma, \cdot)$ and $P_{\beta,q}^{SCA}(\sigma^x, \cdot)$ as

$$X_{y} = \begin{cases} +1 & [U_{y} \le p(\sigma, y)], \\ -1 & [U_{y} > p(\sigma, y)], \end{cases} \qquad Y_{y} = \begin{cases} +1 & [U_{y} \le p(\sigma^{x}, y)], \\ -1 & [U_{y} > p(\sigma^{x}, y)]. \end{cases}$$
(28)

Proof.

Denote the measure of this coupling by $P_{\sigma,\sigma^{\times}}$ and its expectation by $E_{\sigma,\sigma^{\times}}$. Then we obtain

$$\mathbf{E}_{\boldsymbol{\sigma},\boldsymbol{\sigma}^{\mathsf{X}}}[|D_{X,Y}|] = \mathbf{E}_{\boldsymbol{\sigma},\boldsymbol{\sigma}^{\mathsf{X}}}\left[\sum_{y \in V} \mathbb{1}_{\{X_{y} \neq Y_{y}\}}\right] = \sum_{y \in V} \mathbf{P}_{\boldsymbol{\sigma},\boldsymbol{\sigma}^{\mathsf{X}}}(X_{y} \neq Y_{y}) = \sum_{y \in V} |p(\boldsymbol{\sigma}, y) - p(\boldsymbol{\sigma}^{\mathsf{X}}, y)|$$
$$= |p(\boldsymbol{\sigma}, x) - p(\boldsymbol{\sigma}^{\mathsf{X}}, x)| + \sum_{y \in N_{\mathsf{X}}} |p(\boldsymbol{\sigma}, y) - p(\boldsymbol{\sigma}^{\mathsf{X}}, y)|,$$
(29)

where, by using the rightmost expression above satisfies

$$|p(\boldsymbol{\sigma}, \boldsymbol{x}) - p(\boldsymbol{\sigma}^{\boldsymbol{x}}, \boldsymbol{x})| \leq \frac{1}{2} \left| \tanh\left(\frac{\beta \tilde{h}_{\boldsymbol{x}}(\boldsymbol{\sigma})}{2} + \frac{\beta q_{\boldsymbol{x}}}{2}\right) - \tanh\left(\frac{\beta \tilde{h}_{\boldsymbol{x}}(\boldsymbol{\sigma})}{2} - \frac{\beta q_{\boldsymbol{x}}}{2}\right) \right|, \quad (30)$$

and for $y \in N_x$,

$$|p(\sigma, y) - p(\sigma^{x}, y)| \leq \frac{1}{2} \left| \tanh\left(\frac{\beta(\sum_{v \neq x} J_{v,y}\sigma_{v} + h_{y} + q_{y}\sigma_{y})}{2} + \frac{\beta J_{x,y}}{2}\right) - \tanh\left(\frac{\beta(\sum_{v \neq x} J_{v,y}\sigma_{v} + h_{y} + q_{y}\sigma_{y})}{2} - \frac{\beta J_{x,y}}{2}\right) \right|.$$
(31)

Since $|\tanh(a+b) - \tanh(a-b)| \le 2 \tanh|b|$ for any a, b, we can conclude

$$\rho_{\mathrm{TM}}\Big(P_{\beta,\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma},\cdot),P_{\beta,\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma}^{\mathrm{X}},\cdot)\Big) \leq \mathbf{E}_{\boldsymbol{\sigma},\boldsymbol{\sigma}^{\mathrm{X}}}[|D_{X,Y}|] \leq \tanh\frac{\beta q_{x}}{2} + \sum_{y \in N_{x}} \tanh\frac{\beta |J_{x,y}|}{2} \leq r.$$
(32)

26 / 44

Theorem (Fukushima-Kimura, Handa, Kamijima, Kamakura, Kawamura, Sakai)

Suppose that the pinning parameters $q = (q_i)_{i \in V}$ satisfy $q_i \ge \lambda/2$, where λ is the largest eigenvalue of the matrix $(-J_{i,j})_{i,j \in V}$. For any non-decreasing sequence $(\beta_t)_{t \ge 1}$ satisfying $\lim_{t \uparrow \infty} \beta_t = \infty$, we have

$$\sum_{t=1}^{\infty} \|\pi_{\beta_{t+1},q}^{SCA} - \pi_{\beta_t,q}^{SCA}\|_{TV} < \infty, \qquad \qquad \lim_{t\uparrow\infty} \|\pi_{\beta_t,q}^{SCA} - \pi_{\infty}^G\|_{TV} = 0.$$
(33)

In particular, if we choose $(\beta_t)_{t\geq 1}$ as

$$\beta_t = \frac{\log t}{\Gamma}, \qquad \Gamma = \sum_{i \in V} \Gamma_i, \qquad \Gamma_i = \sum_{j \in V} |J_{i,j}| + |h_i| + q_i, \qquad (34)$$

then we obtain

$$\sum_{t=1}^{\infty} \left(1 - \delta(P_{\beta_t, q}^{SCA}) \right) = \infty.$$
(35)

As a result, for any initial $j \ge 1$,

$$\lim_{t \to \infty} \sup_{\mu} \left\| \mu P_{\beta_{j,q}}^{SCA} P_{\beta_{j+1},q}^{SCA} \cdots P_{\beta_{t,q}}^{SCA} - \pi_{\infty}^{G} \right\|_{TV} = 0.$$
(36)

Proof

Proof

Step 1. Let us show

$$\lim_{t\uparrow\infty} \|\pi_{\beta_t,q}^{SCA} - \pi_{\infty}^G\|_{TV} = 0$$
(37)

We first define

$$\mu_{\beta}(\boldsymbol{\sigma},\boldsymbol{\tau}) = \frac{e^{-\beta\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau})}}{\sum_{\boldsymbol{\xi},\boldsymbol{\eta}} e^{-\beta\tilde{H}(\boldsymbol{\xi},\boldsymbol{\eta})}} \equiv \frac{e^{-\beta(\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau})-m)}}{\sum_{\boldsymbol{\xi},\boldsymbol{\eta}} e^{-\beta(\tilde{H}(\boldsymbol{\xi},\boldsymbol{\eta})-m)}},$$
(38)

where $m = \min_{\sigma,\eta} \tilde{H}(\sigma,\eta)$. We conclude that

$$\mu_{\beta}(\boldsymbol{\sigma},\boldsymbol{\tau}) = \frac{e^{-\beta(\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau})-m)}}{|\mathrm{GS}| + \sum_{\boldsymbol{\xi},\boldsymbol{\eta}:\tilde{H}(\boldsymbol{\xi},\boldsymbol{\eta})>m} e^{-\beta(\tilde{H}(\boldsymbol{\xi},\boldsymbol{\eta})-m)}} \xrightarrow{\beta\uparrow\infty} \underbrace{\frac{\mathbf{I}_{\boldsymbol{\sigma}\in\mathrm{GS}}}{|\mathrm{GS}|}}_{\boldsymbol{\pi}_{\infty}^{\mathrm{G}}(\boldsymbol{\sigma})} \delta_{\boldsymbol{\sigma},\boldsymbol{\tau}}.$$
 (39)

Summing this over au yields the second relation in (33).

Proof

Step 1. Let us show

$$\lim_{t\uparrow\infty} \|\pi_{\beta_t,q}^{SCA} - \pi_{\infty}^G\|_{TV} = 0$$
(37)

We first define

$$\mu_{\beta}(\boldsymbol{\sigma},\boldsymbol{\tau}) = \frac{e^{-\beta\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau})}}{\sum_{\boldsymbol{\xi},\boldsymbol{\eta}} e^{-\beta\tilde{H}(\boldsymbol{\xi},\boldsymbol{\eta})}} \equiv \frac{e^{-\beta(\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau})-m)}}{\sum_{\boldsymbol{\xi},\boldsymbol{\eta}} e^{-\beta(\tilde{H}(\boldsymbol{\xi},\boldsymbol{\eta})-m)}},$$
(38)

where $m = \min_{\sigma,\eta} \tilde{H}(\sigma,\eta)$. We conclude that

$$\mu_{\beta}(\boldsymbol{\sigma},\boldsymbol{\tau}) = \frac{e^{-\beta(\tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau})-m)}}{|\mathrm{GS}| + \sum_{\boldsymbol{\xi},\boldsymbol{\eta}:\tilde{H}(\boldsymbol{\xi},\boldsymbol{\eta})>m} e^{-\beta(\tilde{H}(\boldsymbol{\xi},\boldsymbol{\eta})-m)}} \xrightarrow[]{\beta\uparrow\infty} \underbrace{\frac{\mathbf{I}_{\boldsymbol{\sigma}\in\mathrm{GS}}}{|\mathrm{GS}|}}_{\boldsymbol{\pi}_{\infty}^{\mathrm{G}}(\boldsymbol{\sigma})} \delta_{\boldsymbol{\sigma},\boldsymbol{\tau}}.$$
 (39)

Summing this over τ yields the second relation in (33). Step 2. Let us show

$$\sum_{t=1}^{\infty} \|\pi_{\beta_{t+1},q}^{SCA} - \pi_{\beta_t,q}^{SCA}\|_{TV} < \infty$$

$$\tag{40}$$

To show the first relation in (33), we note that

$$\frac{\partial \mu_{\beta}(\boldsymbol{\sigma},\boldsymbol{\tau})}{\partial \beta} = \left(\mathbb{E}_{\mu_{\beta}}[\tilde{H}] - \tilde{H}(\boldsymbol{\sigma},\boldsymbol{\tau}) \right) \mu_{\beta}(\boldsymbol{\sigma},\boldsymbol{\tau}), \tag{41}$$

and that $\mathbb{E}_{\mu_{\beta}}[\tilde{H}] \equiv \sum_{\sigma,\tau} \tilde{H}(\sigma,\tau) \mu_{\beta}(\sigma,\tau)$ tends to m as $\beta \uparrow \infty$, due to (39).

Therefore, $\frac{\partial}{\partial\beta}\mu_{\beta}(\sigma,\tau) > 0$ for all β if $\tilde{H}(\sigma,\tau) = m$, while it is negative for sufficiently large β if $\tilde{H}(\sigma,\tau) > m$. Let $n \in \mathbb{N}$ be such that, as long as $\beta \ge \beta_n$, (41) is negative for all pairs (σ,τ) satisfying $\tilde{H}(\sigma,\tau) > m$. As a result,

$$\begin{split} &\sum_{t=n}^{N} \|\pi_{\beta_{t+1},\boldsymbol{q}}^{\mathrm{SCA}} - \pi_{\beta_{t},\boldsymbol{q}}^{\mathrm{SCA}}\|_{\mathrm{TV}} \\ &= \frac{1}{2} \sum_{\boldsymbol{\sigma} \in \mathrm{GS}} \sum_{t=n}^{N} |\pi_{\beta_{t+1},\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma}) - \pi_{\beta_{t},\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma})| + \frac{1}{2} \sum_{\boldsymbol{\sigma} \notin \mathrm{GS}} \sum_{t=n}^{N} |\pi_{\beta_{t+1},\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma}) - \pi_{\beta_{t},\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma})| \\ &\leq \frac{1}{2} \sum_{\boldsymbol{\sigma} \in \mathrm{GS}} \sum_{t=n}^{N} \left(\mu_{\beta_{t+1}}(\boldsymbol{\sigma},\boldsymbol{\sigma}) - \mu_{\beta_{t}}(\boldsymbol{\sigma},\boldsymbol{\sigma}) \right) + \frac{1}{2} \sum_{\boldsymbol{\sigma} \in \mathrm{GS}} \sum_{\tau\neq\boldsymbol{\sigma}} \sum_{t=n}^{N} \left(\mu_{\beta_{t}}(\boldsymbol{\sigma},\tau) - \mu_{\beta_{t+1}}(\boldsymbol{\sigma},\tau) \right) \\ &+ \frac{1}{2} \sum_{\boldsymbol{\sigma} \notin \mathrm{GS}} \sum_{t=n}^{N} \left(\pi_{\beta_{t},\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma}) - \pi_{\beta_{t+1},\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma}) \right) \\ &= \frac{1}{2} \sum_{\boldsymbol{\sigma} \in \mathrm{GS}} \left(\mu_{\beta_{N+1}}(\boldsymbol{\sigma},\boldsymbol{\sigma}) - \mu_{\beta_{n}}(\boldsymbol{\sigma},\boldsymbol{\sigma}) \right) + \frac{1}{2} \sum_{\boldsymbol{\sigma} \in \mathrm{GS}} \sum_{\tau\neq\boldsymbol{\sigma}} \left(\mu_{\beta_{n}}(\boldsymbol{\sigma},\tau) - \mu_{\beta_{N+1}}(\boldsymbol{\sigma},\tau) \right) \\ &+ \frac{1}{2} \sum_{\boldsymbol{\sigma} \notin \mathrm{GS}} \left(\pi_{\beta_{n},\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma}) - \pi_{\beta_{N+1},\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma}) \right) \\ &\leq \frac{3}{2} \end{split} \tag{42}$$

holds uniformly for $N \ge n$.

Step 3. Let us show

$$\sum_{t=1}^{\infty} \left(1 - \delta(P_{\beta_t, q}^{SCA}) \right) = \infty.$$
(43)

To show the equation above, we use the following bound on $P_{\beta,q}^{\text{SCA}}$, which holds uniformly in (σ, τ) :

$$P_{\beta,\boldsymbol{q}}^{\mathrm{SCA}}(\boldsymbol{\sigma},\boldsymbol{\tau}) = \prod_{x \in V} \frac{e^{\frac{\beta}{2}(\tilde{h}_{x}(\boldsymbol{\sigma}) + q_{x}\sigma_{x})\tau_{x}}}{2\cosh(\frac{\beta}{2}(\tilde{h}_{x}(\boldsymbol{\sigma}) + q_{x}\sigma_{x}))} \geq \prod_{x \in V} \frac{1}{1 + e^{\beta|\tilde{h}_{x}(\boldsymbol{\sigma}) + q_{x}\sigma_{x}|}}$$
$$\geq \prod_{x \in V} \frac{e^{-\beta\Gamma_{x}}}{2} = \frac{e^{-\beta\Gamma}}{2^{|V|}}. \tag{44}$$

Then, we obtain

$$\sum_{t=1}^{\infty} \left(1 - \delta(P_{\beta_t, \boldsymbol{q}}^{\text{SCA}}) \right) = \sum_{t=1}^{\infty} \min_{\boldsymbol{\sigma}, \boldsymbol{\eta}} \sum_{\boldsymbol{\tau}} P_{\beta_t, \boldsymbol{q}}^{\text{SCA}}(\boldsymbol{\sigma}, \boldsymbol{\tau}) \wedge P_{\beta_t, \boldsymbol{q}}^{\text{SCA}}(\boldsymbol{\eta}, \boldsymbol{\tau}) \ge \sum_{t=1}^{\infty} e^{-\beta_t \Gamma},$$
(45)

which diverges, as required, under the cooling schedule (34). This completes the proof of the theorem.

Ratio-controlled Parallel Annealing (RPA or ε -SCA)

Ratio-controlled Parallel Annealing (RPA or ε -SCA)

Given the inverse temperature $\beta \ge 0$ and a number $\varepsilon \in [0,1]$, let the transition kernel of the ε -SCA be defined by

$$P_{\beta,\varepsilon}(\sigma,\tau) = \prod_{i:\sigma_i=-\tau_i} (\varepsilon p_i(\sigma)) \prod_{j:\sigma_j=\tau_j} (1-\varepsilon p_j(\sigma)),$$
(46)

where we recall that

$$p_{i}(\boldsymbol{\sigma}) = \frac{e^{-\frac{\beta}{2}\tilde{h}_{i}(\boldsymbol{\sigma})\sigma_{i}}}{2\cosh(\frac{\beta}{2}\tilde{h}_{i}(\boldsymbol{\sigma}))}$$
(47)

is the probability of flipping the spin σ_i from the configuration σ disregarding a pinning parameter at *i*.

Ratio-controlled Parallel Annealing (RPA or ε -SCA)

Given the inverse temperature $\beta \ge 0$ and a number $\varepsilon \in [0,1]$, let the transition kernel of the ε -SCA be defined by

$$P_{\beta,\varepsilon}(\sigma,\tau) = \prod_{i:\sigma_i=-\tau_i} (\varepsilon p_i(\sigma)) \prod_{j:\sigma_j=\tau_j} (1-\varepsilon p_j(\sigma)),$$
(46)

where we recall that

$$p_{i}(\boldsymbol{\sigma}) = \frac{e^{-\frac{\beta}{2}\tilde{h}_{i}(\boldsymbol{\sigma})\sigma_{i}}}{2\cosh(\frac{\beta}{2}\tilde{h}_{i}(\boldsymbol{\sigma}))}$$
(47)

is the probability of flipping the spin σ_i from the configuration σ disregarding a pinning parameter at *i*.

Theorem (Fukushima-Kimura, Kamijima, Kawamura, Sakai)

For any parameter $\varepsilon \in (0,1]$, if β is sufficiently small such that

$$r \equiv (1 - \varepsilon) + \varepsilon \max_{i \in V} \left(\sum_{j \in V} \tanh \frac{\beta |J_{i,j}|}{2} \right) < 1,$$
(48)

then t_{mix} satisfies

$$t_{\min}(\delta) \le \left\lceil \frac{\log|V| - \log \delta}{\log(1/r)} \right\rceil.$$
(49)

Comparison of Annealing Policies

SA (Simulated Annealing) Random Select Filp?

- Single update

DA (Digital Annealing)

Random Select

- Parallel trial
- Single update

SCA (Stochastic Cellular Automata Annealing)

- Parallel trial
- Parallel update

- Parallel trial
- Managed parallel update

Figure: Histograms obtained by using the ε -SCA, SCA and Glauber dynamics, where N = 128.

The effect of ϵ on the success rate

The effect of ϵ on the success rate

Figure: Success rate dependence on ε .

Model —		Succes	s rate	
	ε-SCA	SCA	SA	DA
Max-cut	85.9%	0%	7.52%	58.01%
Spin-glass	59.28%	40.82%	5.08%	40.72%

Table: Summary of the simulations

Model —	Success rate			
	ε -SCA	SCA	SA	DA
Max-cut	85.9%	0%	7.52%	58.01%
Spin-glass	59.28%	40.82%	5.08%	40.72%

Table: Summary of the simulations

Let us consider the following Hamiltonian:

$$H(\boldsymbol{\sigma}) = -\sum_{\{i,j\}\in E} J_{i,j}\sigma_i\sigma_j,\tag{50}$$

where

$$\mathbb{P}(J_{i,j}=1) = p_+,$$
$$\mathbb{P}(J_{i,j}=-1) = p_-,$$

and

$$\mathbb{P}(J_{i,j} = 0) = 1 - (p_+ + p_-).$$

Parameter space for the Max-Cut problem

0.1 ε-SCA SA 0.8 Tie 0.6 ď 0.4 02 0.0 0.0 0.2 0.4 0.6 0.8 1.0 p,

Parameter space for the Max-Cut problem

(a) eSCA vs SCA

(b) eSCA vs SA

Parameter space for the Max-Cut problem

10 SCA SA 0.8 Tie 0.6 ď 0.4 02 0.0 0.0 0.2 0.4 0.6 0.8 1.0 p,

Parameter space for the Max-Cut problem

(a) eSCA vs DA

(b) SCA vs SA

(a) SCA vs DA

Parameter space for the Max-Cut problem

Parameter space for the Max-Cut problem

(b) SA vs DA

Next goals
• Prove rigorous results for exponential cooling schedules.

- Prove rigorous results for exponential cooling schedules.
- Derive results that are not asymptotic, that is, consider finite time simulation.

- Prove rigorous results for exponential cooling schedules.
- Derive results that are not asymptotic, that is, consider finite time simulation.
- Provide rigorous results for the ε -SCA.

Colaborations

- K. Yamamoto, et al. STATICA: A 512-Spin 0.25M-Weight Annealing Processor With an All-Spin-Updates-at-Once Architecture for Combinatorial Optimization With Complete Spin–Spin Interactions. *IEEE Journal of Solid-State Circuits*, 56 (2021): 165–178.
- K. Kawamura, et al. 2.3 Amorphica: 4-replica 512 fully connected spin 336MHz metamorphic annealer with programmable optimization strategy and compressed-spin-transfer multi-chip extension. In 2023 IEEE International Solid-State Circuits Conference, 2023.

Technology	TSMC 65nm CMOS		
Chip Size	12mm ²		
Core V _{co}	1.1V		
VO V _{oo}	3.3V		
Frequency	320MHz		
Power	649mW		
Gate Count	336K		
SRAM	256word,140bitx18 256word,40bitx2		

Specification Table						
Technology	TSMC 40nm CMOS (LP)					
Package	QFN80					
Chip Size	3mm x 3mm					
Core Area	SRAM: 3.55mm ² Logic: 1.48mm ²					
Core V _{DD}	0.8-1.1V					
I/O V _{DD}	3.3V					
Max Freqency	336MHz@1.1V 134MHz@0.8V					
Gate Count	1.2M Gates					
SRAM	WMEM: 8Mb DMEM: 64Kb IMEM: 64Kb Total: 8.125Mb					

One of the set of the training the last

(a) STATICA chip (2021)

(b) Amorphica chip (2023)

Performance Comparison

	STATICA	ISSCC2021 4.6	VLSI2021 JFS2-6	ISSCC2022 16.5	Amorphica
Technology	65nm CMOS	40nm CMOS	65nm CMOS	65nm CMOS	40nm CMOS
Inter-Spin Couplings	Full/Complete	Local/Sparse	Local/Sparse	Local/Sparse	Full/Complete
#Spins / Replica	512	16K	560	256 or 1K	2K
#Replicas	1	1	1	1	4
#Couplings / Spin	512	8	8	28 or 7	2K
Weight Width	5bit	5bit	3bit	8bit	8bit
Multi-Chip Extension	No	Up to 9	No	Up to 2	Up to 4
Annealing Algorithm	SCA	SA	SA	SA	Metamorphic Annealing
Operating Power	649mW	N/A	9.9mW@0.8V	1.167mW	151.6–474.9mW @1.1V, 320MHz

Evaluation

Best policy in Amorphica varies depending on the problem

Power Consumption

- ✓ [GPU, Nvidia RTX2080] ≈ 250W
- ✓ [Amorphica] < 500mW</p>

References

- B.H. Fukushima-Kimura, N. Kawamoto, E. Noda, A. Sakai. Mathematical aspects and simulated annealing for the Digital Annealer's Algorithm. *Manuscript in preparation*.
- K. Kawamura, et al. 2.3 Amorphica: 4-replica 512 fully connected spin 336MHz metamorphic annealer with programmable optimization strategy and compressed-spin-transfer multi-chip extension. In 2023 IEEE International Solid-State Circuits Conference, 2023.
- B.H. Fukushima-Kimura, S. Handa, K. Kamakura, Y. Kamijima, K. Kawamura, A. Sakai. Mixing time and simulated annealing for the stochastic cellular automata. *arXiv preprint arXiv:2007.11287* (2023).
- B.H. Fukushima-Kimura, Y. Kamijima, K. Kawamura and A. Sakai. Stochastic optimization: stochastic cellular automata versus Glauber dynamics. *Transactions of the Institute of Systems, Control and Information Engineers* 36(1):9–16, 2023.
- B.H. Fukushima-Kimura, Y. Kamijima, K. Kawamura and A. Sakai. Stochastic optimization via parallel dynamics: rigorous results and simulations. Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, 2022, 65-71, 2022.
- B.H. Fukushima-Kimura, A. Sakai, H. Toyokawa and Y. Ueda. Stability of energy landscape for lsing models. *Physica A: Statistical Mechanics and its Applications*, 583:126208, 2021.
- K. Yamamoto, et al. STATICA: A 512-Spin 0.25M-Weight Annealing Processor With an All-Spin-Updates-at-Once Architecture for Combinatorial Optimization With Complete Spin–Spin Interactions. *IEEE Journal of Solid-State Circuits*, 56 (2021): 165–178.

Thanks for your attention!