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Motivation

Weighted Max-Cut problem

Given a graph G = (V ,E), find a partition of
the vertex set into two sets S and V /S such
that the total weight of edges connecting the
set S and its complementary V /S is as large as
possible.
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Motivation

Traveling salesman problem

Given N cities and the distances (di,j)
N
i,j=1 be-

tween each pair of cities, what is the shortest
possible route that visits each city exactly once
and returns to the origin city?”
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Quadratic Unconstrained Binary Optimization (QUBO)

Ising model:

Given a finite simple graph G = (V ,E) and spin-spin coupling constants (Ji,j)i,j∈V and
external fields (hi)i∈V , where Ji,j = Jj,i , let us define the Hamiltonian H by

H(σ) = − ∑
{i,j}∈E

Ji,jσiσj −∑
i∈V

hiσi (1)

for each σ ∈ Ω = {−1,+1}V .

Let us consider the set of ground states of H:

GS = {σ ∶ H(σ) = min
η

H(η)}. (2)
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Example

Weighted Max-Cut problem

Given a graph G = (V ,E) and a family of weights (wi,j)i,j∈V such
that wi,j = wj,i and wi,j = 0 if {i , j} ∉ E . Then, let us consider the
Hamiltonian

H(σ) = ∑
{i,j}∈E

wi,j(1 − σiσj)/2 (3)

for σ ∈ {−1,1}V .

The weighted Max-Cut problem is equivalent to the minimization of H.
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Example

Traveling salesman problem

Given N cities and their distances (di,j)
N
i,j=1, where di,j = dj,i . For a spin configuration

τ = (τt,i)
N
t,i=1 ∈ {0,1}N×N , we have

⎧⎪⎪
⎨
⎪⎪⎩

τt,i = 1 if the city i is occupied at time t,

τt,i = 0 if the city i is NOT occupied at time t.
(4)

In that way, τ represents a legitimate trajectory iff

⎧⎪⎪
⎨
⎪⎪⎩

∑i τt,i = 1 for each t, and

∑t τt,i = 1 for each i .
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In that way, τ represents a legitimate trajectory iff

⎧⎪⎪
⎨
⎪⎪⎩

∑i τt,i = 1 for each t, and

∑t τt,i = 1 for each i .

Let us consider the Hamiltonian

H(τ) = A
N

∑
t=1

⎛

⎝
1 −

N

∑
i=1

τt,i
⎞

⎠

2

+A
N

∑
i=1

⎛

⎝
1 −

N

∑
t=1

τt,i
⎞

⎠

2

+B
N

∑
t=1

N

∑
i=1

N

∑
j=1

di,jτt,iτt+1,j (6)

where τ ∈ {0,1}N×N is defined by τt,i = (1 + σt,i)/2.

If 0 < B max{di,j} < A, then the TSP is equivalent to the minimization of H.
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Quadratic Unconstrained Binary Optimization (QUBO) problems
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Finance
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low-energy conformations of lattice protein models by quantum annealing. Sci Rep.
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● Li RY, Di Felice R, Rohs R, Lidar DA. Quantum annealing versus classical machine
learning applied to a simplified computational biology problem. NPJ Quantum Inf.
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Simulated Annealing (SA)

Let us consider the Metropolis dynamics at inverse temperature β:

Pβ(σ,τ)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
∣V ∣

⋅ e−βEi (σ)
+

if τ = σi for some i ∈ V ,

1 −∑i∈V Pβ(σ,σ
i) if τ = σ, and

0 otherwise;

(7)

where σi is the configuration given by

(σi
)j =

⎧⎪⎪
⎨
⎪⎪⎩

−σj if j = i

σj otherwise,
(8)

and
Ei(σ) = H(σi

) −H(σ). (9)

Theorem (B. Hajek)

Let (Xt)t≥0 be the discrete-time inhomogeneous Markov chain satisfying

P(Xt = σt ∣Xt−1 = σt−1, . . . ,X0 = σ0) = P(Xt = σt ∣Xt−1 = σt−1) = Pβt (σt−1,σt) (10)

for every t ≥ 1 and σ0, . . . ,σt in Ω. There is γc > 0 such that if we choose βn =
1
γ

log n, then

lim
n→∞

P(Xn ∈ GS) = 1 (11)

holds if and only if γ ≥ γc .
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Digital Annealer’s Algorithm
Fujitsu Laboratories has recently developed a CMOS hardware designed to solve fully
connected quadratic unconstrained binary optimization (QUBO) problems, known as the
Digital Annealer (DA).

(a) The DA architecture

initial state← random state;
for each run do

initialize to initial state;
for each MC step do

update the temperature;
for each variable j, in parallel do

propose a flip using e−βEj
+

;
if accepted, record;

end
if at least one flip accepted then

choose one flip uniformly at
random among them;

update the state and cavity
fields in parallel;

end

end

end

(b) The DA’s Algorithm
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In our framework, the Digital Annealer’s Algorithm transition matrix PDA
β at inverse

temperature β is defined by

PDA
β (σ,τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
S⊆V
S∋i

1

∣S ∣
∏
j∈S

e−βEj (σ)
+

∏
j∈V /S

(1 − e−βEj (σ)
+

) if τ = σi ,

∏
j∈V

(1 − e−βEj (σ)
+

) if τ = σ, and

0 otherwise.

The algorithm works as follows.

1 Given a state Xt = σ at time t, we propose a parallel-trial where each spin variable σj
is assigned as eligible to be flipped with probability exp(−βtEj(σ)+).

2 If the set S of all vertices associated with eligible spin variables contains at least one
element, then a vertex i is chosen uniformly at random from S, and we place
Xt+1 = σi ; otherwise, nothing is done, and we consider Xt+1 = σ.
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2 If the set S of all vertices associated with eligible spin variables contains at least one
element, then a vertex i is chosen uniformly at random from S, and we place
Xt+1 = σi ; otherwise, nothing is done, and we consider Xt+1 = σ.
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Theorem (Fukushima-Kimura, Kawamoto, Noda, Sakai)

Let (βt)t≥1 be a nondecreasing sequence of positive numbers such that limt→∞ βt = +∞,
and let (Xt)t≥0 be the discrete-time inhomogeneous Markov chain satisfying

P(Xt = σt ∣Xt−1 = σt−1, . . . ,X0 = σ0) = P(Xt = σt ∣Xt−1 = σt−1) = PDA
βt

(σt−1,σt) (12)

for every t ≥ 1 and σ0, . . . ,σt in Ω.

There exists γc > 0 such that the limit

lim
t→∞

P(Xt ∈ GS) = 1 (13)

holds if and only if
∞

∑
t=1

e−βtγc = +∞. (14)

In particular, if (βt)t≥1 assumes the form

βt =
1

γ
log t (15)

then, equation (13) holds if and only if γ ≥ γc .
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Definition

We say τ is reachable from σ at height E if there exists a path σ = σ0, σ1, . . . , σn = τ such
that max0≤k≤n H(σk) ≤ E .

Definition

We say σ is a local minimum if there is no τ satisfying H(τ) < H(σ) which is reachable
from σ at height H(σ). So, the depth of a local minimum σ which is not a ground state is
defined as

d(σ) = min{E > 0 ∶ ∃τ with H(τ) < H(σ) that is reachable from σ at height H(σ) + E}.
(16)

The constant γc coincides with the depth of the second
deepest local minimum, i.e.,

γc = max{d(σ) ∶ σ is a local minimum not in GS}.

σ τ

E

d(σ)
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Simulations
Let us consider the following Hamiltonian:

H(σ) = − ∑
{i,j}∈E

Ji,jσiσj . (17)

1 Max-cut problem. The Hamiltonian is defined in an Erdös-Rényi random graph
G(N,p), with spin-spin coupling satisfying Ji,j = −1 if {i , j} is an edge of the graph
and Ji,j = 0 otherwise.

2 Spin glasses. Let us consider a spin glass Hamiltonian in a complete graph with N
vertices, where the values for the spin-spin couplings Ji,j = Jj,i are realizations of i.i.d.
normal random variables.

Each plot in the following figure illustrates the histogram of minimal energy achieved by the
DA and Metropolis dynamics Considering a graph with N = 128 vertices and M = 1024
annealing trials, where on each trial we applied L = 20000 Markov chain steps and considered
the exponential cooling schedule with initial temperature Tinit = 1000 and final temperature
Tfin = 0.05, explicitly, we considered

1

βt
= Tinit (

Tfin

Tinit
)

t−1
L−1

(18)

for t = 1,2, . . . ,L.
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G(N,p), with spin-spin coupling satisfying Ji,j = −1 if {i , j} is an edge of the graph
and Ji,j = 0 otherwise.

2 Spin glasses. Let us consider a spin glass Hamiltonian in a complete graph with N
vertices, where the values for the spin-spin couplings Ji,j = Jj,i are realizations of i.i.d.
normal random variables.

Each plot in the following figure illustrates the histogram of minimal energy achieved by the
DA and Metropolis dynamics Considering a graph with N = 128 vertices and M = 1024
annealing trials, where on each trial we applied L = 20000 Markov chain steps and considered
the exponential cooling schedule with initial temperature Tinit = 1000 and final temperature
Tfin = 0.05, explicitly, we considered

1

βt
= Tinit (

Tfin

Tinit
)

t−1
L−1

(18)

for t = 1,2, . . . ,L.

19 / 44



Simulations
Let us consider the following Hamiltonian:

H(σ) = − ∑
{i,j}∈E

Ji,jσiσj . (17)

1 Max-cut problem. The Hamiltonian is defined in an Erdös-Rényi random graph
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Simulations
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(a) Max-cut problem, p = 0.25
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Figure: Histograms obtained by using the SA and DA, where N = 128.
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Table: Summary of the simulations

Model
Success rate

SA DA
Max-cut 7.52% 58.01%

Spin-glass 5.08% 40.72%
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SCA

The extended Hamiltonian H̃ is defined by

H̃(σ,τ) = −
1

2
∑
i,j∈V

Ji, jσiτj −
1

2
∑
i∈V

hi(σi + τi) −
1

2
∑
i∈V

qiσiτi (19)

for each pair σ,τ of configurations in {−1,+1}V .

Let us define the SCA transition probability PSCA
β,q by

PSCA
β,q (σ,τ) =

e−βH̃(σ,τ)

∑τ ′ e
−βH̃(σ,τ ′)

. (20)

It is straightforward to verify that the distribution πSCA
β,q defined by

πSCA
β,q (σ) =

∑τ e
−βH̃(σ,τ)

∑σ′,τ ′ e
−βH̃(σ′,τ ′)

(21)

is the stationary distribution for PSCA
β,q .
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Moreover, we can rewrite PSCA
β,q as

PSCA
β,q (σ,τ) =∏

i∈V

e
β
2
(h̃i (σ)+qiσi )τi

2 cosh(β
2
(h̃i(σ) + qiσi))

, (22)

where the cavity fields h̃i(σ) are given by

h̃i(σ) = ∑
j∈V

Ji, jσj + hi . (23)

Theorem (Fukushima-Kimura, Handa, Kamijima, Kamakura, Kawamura,
Sakai)

For any non-negative q, if β is sufficiently small such that

r ≡ max
x∈V

( tanh
βqx

2
+ ∑

y∈V

tanh
β∣Jx,y ∣

2
) < 1, (24)

then tSCA
mix (ε) obeys

tmix(ε) ≤ ⌈
log ∣V ∣ − log ε

log(1/r)
⌉. (25)

T.P. Hayes and A. Sinclair (2007) proved that the mixing time for the Glauber dynamics is
Ω(∣V ∣ log ∣V ∣).
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Proof.

It suffices to show ρTM(PSCA
β,q (σ, ⋅),PSCA

β,q (τ , ⋅)) ≤ r for all σ,τ ∈ Ω with ∣Dσ,τ ∣ = 1. If

∣Dσ,τ ∣ ≥ 2, then, by the triangle inequality along any sequence (η0,η1, . . . ,η∣Dσ,τ ∣
) of spin

configurarions that satisfy η0 = σ, η∣Dσ,τ ∣
= τ and ∣Dηj−1,ηj

∣ = 1 for all j = 1, . . . , ∣Dσ,τ ∣, we
have

ρTM(PSCA
β,q (σ, ⋅),PSCA

β,q (τ , ⋅)) ≤
∣Dσ,τ ∣

∑
j=1

ρTM(PSCA
β,q (ηj−1, ⋅),P

SCA
β,q (ηj , ⋅)) ≤ r ∣Dσ,τ ∣. (26)

Suppose that Dσ,τ = {x}, i.e., τ = σx . For any σ ∈ Ω and y ∈ V , we let p(σ, y) be the
conditional SCA probability of σy → 1 given that the others are fixed:

p(σ, y) =
e
β
2
(h̃y (σ)+qyσy )

2 cosh(β
2
(h̃y (σ) + qyσy ))

=
1 + tanh(β

2
(h̃y (σ) + qyσy ))

2
. (27)

Notice that p(σ, y) ≠ p(σx , y) only when y = x or y ∈ Nx ≡ {v ∈ V ∶ Jx,v ≠ 0}. Using this as
a threshold function for i.i.d. uniform random variables {Uy}y∈V on [0,1], we define the
coupling (X ,Y ) of PSCA

β,q (σ, ⋅) and PSCA
β,q (σx , ⋅) as

Xy =

⎧⎪⎪
⎨
⎪⎪⎩

+1 [Uy ≤ p(σ, y)],

−1 [Uy > p(σ, y)],
Yy =

⎧⎪⎪
⎨
⎪⎪⎩

+1 [Uy ≤ p(σx , y)],

−1 [Uy > p(σx , y)].
(28)
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Proof.

Denote the measure of this coupling by Pσ,σx and its expectation by Eσ,σx . Then we obtain

Eσ,σx [∣DX ,Y ∣] = Eσ,σx [∑
y∈V

1{Xy≠Yy}
] = ∑

y∈V

Pσ,σx (Xy ≠ Yy ) = ∑
y∈V

∣p(σ, y) − p(σx , y)∣

= ∣p(σ, x) − p(σx , x)∣ + ∑
y∈Nx

∣p(σ, y) − p(σx , y)∣, (29)

where, by using the rightmost expression above satisfies

∣p(σ, x) − p(σx , x)∣ ≤
1

2
∣ tanh(

βh̃x(σ)

2
+
βqx

2
) − tanh(

βh̃x(σ)

2
−
βqx

2
)∣, (30)

and for y ∈ Nx ,

∣p(σ, y) − p(σx , y)∣ ≤
1

2
∣ tanh(

β(∑v≠x Jv,yσv + hy + qyσy )

2
+
βJx,y

2
)

− tanh(
β(∑v≠x Jv,yσv + hy + qyσy )

2
−
βJx,y

2
)∣. (31)

Since ∣ tanh(a + b) − tanh(a − b)∣ ≤ 2 tanh ∣b∣ for any a,b, we can conclude

ρTM(PSCA
β,q (σ, ⋅),PSCA

β,q (σx , ⋅)) ≤ Eσ,σx [∣DX ,Y ∣] ≤ tanh
βqx

2
+ ∑

y∈Nx

tanh
β∣Jx,y ∣

2
≤ r . (32)
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Theorem (Fukushima-Kimura, Handa, Kamijima, Kamakura, Kawamura,
Sakai)

Suppose that the pinning parameters q = (qi)i∈V satisfy qi ≥ λ/2, where λ is the largest
eigenvalue of the matrix (−Ji, j)i, j∈V . For any non-decreasing sequence (βt)t≥1 satisfying
limt↑∞ βt =∞, we have

∞

∑
t=1

∥πSCA
βt+1,q

− πSCA
βt ,q

∥TV <∞, lim
t↑∞

∥πSCA
βt ,q

− πG
∞∥TV = 0. (33)

In particular, if we choose (βt)t≥1 as

βt =
log t

Γ
, Γ = ∑

i∈V

Γi , Γi = ∑
j∈V

∣Ji,j ∣ + ∣hi ∣ + qi , (34)

then we obtain

∞

∑
t=1

(1 − δ(PSCA
βt ,q

)) =∞. (35)

As a result, for any initial j ≥ 1,

lim
t→∞

sup
µ

∥µPSCA
βj ,q

PSCA
βj+1,q

⋯PSCA
βt ,q

− πG
∞∥

TV
= 0. (36)
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Proof

Step 1. Let us show
lim
t↑∞

∥πSCA
βt ,q

− πG
∞∥TV = 0 (37)

We first define

µβ(σ,τ) =
e−βH̃(σ,τ)

∑ξ,η e−βH̃(ξ,η)
≡

e−β(H̃(σ,τ)−m)

∑ξ,η e−β(H̃(ξ,η)−m)
, (38)

where m = minσ,η H̃(σ,η). We conclude that

µβ(σ,τ) =
e−β(H̃(σ,τ)−m)

∣GS∣ +∑ξ,η∶H̃(ξ,η)>m e−β(H̃(ξ,η)−m)
ÐÐ→
β↑∞

Iσ∈GS

∣GS∣
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
πG
∞
(σ)

δσ,τ . (39)

Summing this over τ yields the second relation in (33).

Step 2. Let us show
∞

∑
t=1

∥πSCA
βt+1,q

− πSCA
βt ,q

∥TV <∞ (40)

To show the first relation in (33), we note that

∂µβ(σ,τ)

∂β
= (Eµβ [H̃] − H̃(σ,τ))µβ(σ,τ), (41)

and that Eµβ [H̃] ≡ ∑σ,τ H̃(σ,τ)µβ(σ,τ) tends to m as β ↑∞, due to (39).
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We first define

µβ(σ,τ) =
e−βH̃(σ,τ)

∑ξ,η e−βH̃(ξ,η)
≡

e−β(H̃(σ,τ)−m)

∑ξ,η e−β(H̃(ξ,η)−m)
, (38)

where m = minσ,η H̃(σ,η). We conclude that

µβ(σ,τ) =
e−β(H̃(σ,τ)−m)

∣GS∣ +∑ξ,η∶H̃(ξ,η)>m e−β(H̃(ξ,η)−m)
ÐÐ→
β↑∞

Iσ∈GS

∣GS∣
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
πG
∞
(σ)

δσ,τ . (39)

Summing this over τ yields the second relation in (33).

Step 2. Let us show
∞

∑
t=1

∥πSCA
βt+1,q

− πSCA
βt ,q

∥TV <∞ (40)

To show the first relation in (33), we note that

∂µβ(σ,τ)

∂β
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Therefore, ∂
∂β
µβ(σ,τ) > 0 for all β if H̃(σ,τ) = m, while it is negative for sufficiently large

β if H̃(σ,τ) > m. Let n ∈ N be such that, as long as β ≥ βn, (41) is negative for all pairs
(σ,τ) satisfying H̃(σ,τ) > m. As a result,

N

∑
t=n

∥πSCA
βt+1,q − π

SCA
βt ,q ∥TV

=
1

2
∑

σ∈GS

N

∑
t=n

∣πSCA
βt+1,q(σ) − πSCA

βt ,q (σ)∣ +
1

2
∑

σ∉GS

N

∑
t=n

∣πSCA
βt+1,q(σ) − πSCA

βt ,q (σ)∣

≤
1

2
∑

σ∈GS

N

∑
t=n

(µβt+1
(σ,σ) − µβt (σ,σ)) +

1

2
∑

σ∈GS

∑
τ≠σ

N

∑
t=n

(µβt (σ,τ) − µβt+1
(σ,τ))

+
1

2
∑

σ∉GS

N

∑
t=n

(πSCA
βt ,q (σ) − πSCA

βt+1,q(σ))

=
1

2
∑

σ∈GS

(µβN+1
(σ,σ) − µβn(σ,σ)) +

1

2
∑

σ∈GS

∑
τ≠σ

(µβn(σ,τ) − µβN+1
(σ,τ))

+
1

2
∑

σ∉GS

(πSCA
βn,q(σ) − πSCA

βN+1,q(σ))

≤
3

2
(42)

holds uniformly for N ≥ n.
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Step 3. Let us show
∞

∑
t=1

(1 − δ(PSCA
βt ,q

)) =∞. (43)

To show the equation above, we use the following bound on PSCA
β,q , which holds uniformly in

(σ,τ):

PSCA
β,q (σ,τ) = ∏

x∈V

e
β
2
(h̃x (σ)+qxσx )τx

2 cosh(β
2
(h̃x(σ) + qxσx))

≥ ∏
x∈V

1

1 + eβ∣h̃x (σ)+qxσx ∣

≥ ∏
x∈V

e−βΓx

2
=
e−βΓ

2∣V ∣
. (44)

Then, we obtain

∞

∑
t=1

(1 − δ(PSCA
βt ,q )) =

∞

∑
t=1

min
σ,η
∑
τ

PSCA
βt ,q (σ,τ) ∧ PSCA

βt ,q (η,τ) ≥
∞

∑
t=1

e−βtΓ, (45)

which diverges, as required, under the cooling schedule (34). This completes the proof of the
theorem.

30 / 44



Ratio-controlled Parallel Annealing (RPA or ε-SCA)

Given the inverse temperature β ≥ 0 and a number ε ∈ [0,1], let the transition kernel of the
ε-SCA be defined by

Pβ,ε(σ,τ) = ∏
i ∶σi=−τi

(εpi(σ)) ∏
j ∶σj=τj

(1 − εpj(σ)), (46)

where we recall that

pi(σ) =
e−

β
2
h̃i (σ)σi

2 cosh(β
2
h̃i(σ))

(47)

is the probability of flipping the spin σi from the configuration σ disregarding a pinning
parameter at i .

Theorem (Fukushima-Kimura, Kamijima, Kawamura, Sakai)

For any parameter ε ∈ (0,1], if β is sufficiently small such that

r ≡ (1 − ε) + εmax
i∈V

(∑
j∈V

tanh
β∣Ji,j ∣

2
) < 1, (48)

then tmix satisfies

tmix(δ) ≤ ⌈
log ∣V ∣ − log δ

log(1/r)
⌉. (49)

31 / 44



Ratio-controlled Parallel Annealing (RPA or ε-SCA)
Given the inverse temperature β ≥ 0 and a number ε ∈ [0,1], let the transition kernel of the
ε-SCA be defined by

Pβ,ε(σ,τ) = ∏
i ∶σi=−τi

(εpi(σ)) ∏
j ∶σj=τj

(1 − εpj(σ)), (46)

where we recall that

pi(σ) =
e−

β
2
h̃i (σ)σi

2 cosh(β
2
h̃i(σ))

(47)

is the probability of flipping the spin σi from the configuration σ disregarding a pinning
parameter at i .

Theorem (Fukushima-Kimura, Kamijima, Kawamura, Sakai)

For any parameter ε ∈ (0,1], if β is sufficiently small such that

r ≡ (1 − ε) + εmax
i∈V

(∑
j∈V

tanh
β∣Ji,j ∣

2
) < 1, (48)

then tmix satisfies

tmix(δ) ≤ ⌈
log ∣V ∣ − log δ

log(1/r)
⌉. (49)

31 / 44



Ratio-controlled Parallel Annealing (RPA or ε-SCA)
Given the inverse temperature β ≥ 0 and a number ε ∈ [0,1], let the transition kernel of the
ε-SCA be defined by

Pβ,ε(σ,τ) = ∏
i ∶σi=−τi

(εpi(σ)) ∏
j ∶σj=τj

(1 − εpj(σ)), (46)

where we recall that

pi(σ) =
e−

β
2
h̃i (σ)σi

2 cosh(β
2
h̃i(σ))

(47)

is the probability of flipping the spin σi from the configuration σ disregarding a pinning
parameter at i .

Theorem (Fukushima-Kimura, Kamijima, Kawamura, Sakai)

For any parameter ε ∈ (0,1], if β is sufficiently small such that

r ≡ (1 − ε) + εmax
i∈V

(∑
j∈V

tanh
β∣Ji,j ∣

2
) < 1, (48)

then tmix satisfies

tmix(δ) ≤ ⌈
log ∣V ∣ − log δ

log(1/r)
⌉. (49)

31 / 44



32 / 44



Simulations
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(a) Max-cut problem, p = 0.25
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(b) Spin-glass

Figure: Histograms obtained by using the ε-SCA, SCA and Glauber dynamics, where N = 128.
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Simulations
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(b) Spin-glass

Figure: Success rate dependence on ε.
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Table: Summary of the simulations

Model
Success rate

ε-SCA SCA SA DA
Max-cut 85.9% 0% 7.52% 58.01%

Spin-glass 59.28% 40.82% 5.08% 40.72%

Let us consider the following Hamiltonian:

H(σ) = − ∑
{i,j}∈E

Ji,jσiσj , (50)

where
P(Ji,j = 1) = p+,

P(Ji,j = −1) = p−,

and
P(Ji,j = 0) = 1 − (p+ + p−).
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Simulations

(a) eSCA vs SCA (b) eSCA vs SA
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Simulations

(a) eSCA vs DA (b) SCA vs SA
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Simulations

(a) SCA vs DA (b) SA vs DA
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Next goals

● Prove rigorous results for exponential cooling schedules.

● Derive results that are not asymptotic, that is, consider finite time simulation.

● Provide rigorous results for the ε-SCA.
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Colaborations

● K. Yamamoto, et al. STATICA: A 512-Spin 0.25M-Weight Annealing Processor With
an All-Spin-Updates-at-Once Architecture for Combinatorial Optimization With
Complete Spin–Spin Interactions. IEEE Journal of Solid-State Circuits, 56 (2021):
165–178.

● K. Kawamura, et al. 2.3 Amorphica: 4-replica 512 fully connected spin 336MHz
metamorphic annealer with programmable optimization strategy and
compressed-spin-transfer multi-chip extension. In 2023 IEEE International Solid-State
Circuits Conference, 2023.

(a) STATICA chip (2021) (b) Amorphica chip (2023)
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STATICA Amorphica
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Thanks for your attention!
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