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Abstract

We study the deformation theory of fully faithful Fourier—Mukai trans-
forms between varieties with trivial canonical bundle in both characteristic
zero and mixed characteristic, generalizing work of Addington-Thomas and
Lieblich-Olsson. The main technical contribution is a formula for the ob-
struction class measuring the failure of a Chern character to remain within
the Hodge filtration as a cup product with a (derived) Kodaira—Spencer class.
As a side result, we obtain a new proof of nil-invariance of derived de Rham
cohomology in characteristic zero.

Contents
[1__Introductionl 4
I1.1  Background| . . . . .. ... 4
[1.2 Statement of main resultsl . . . . . . . ... oL 6
L3 Overview of thetext| . . . . . . . . . . .. .. .. ... ... .... 8
2 Preliminaries| 10
R _Filtrations . . - - - v o o e 10
2.2 Sheaves and stacksl . . . . . . . ... oo 12
[2.3 A survey of animation| . . . . ... ... L 13
P-4 Higher algebraic stacks|. . . . . . . . . . . . . 15
2.5 Module categories on stacks| . . . . . ... oo o000 16
[3__Derived de Rham cohomology| 17
3.1 e derived de Rham complex| . . . ... . ... ... .. ... ... 17
3.2 The derived crystalline complex|. . . . . ... .. .. ... ... 22
3.3 Comparison with derived completions| . . . . .. ... .. ... ... 27
4 Improving Quillen’s convergence theorem| 34
4.1 Strict-essentially-zero systems| . . . . . . . . . ... 34
4.2 Improving Quillen’s result| . . . . . ... ... ... 36
4.3 Application: Nil-invariance for derived de Rham cohomology in char- |
[ acteristiczerdl . . . . . . . . .. 40
[ Chern classes in derived de Rham cohomology]| 43
.1 Relative derived de Rham cohomology| . . . . . . .. ... ... ... 43
5.2 The classifying stack of short exact sequences| . . . . . . . ... ... 46
53 Avesult of Totarol . . . . . . . . .. . 47
.4 Chern classes in derived de Rham cohomology|. . . . . . . ... ... 48
.5 Chern classes without Hodge completion| . . . . . .. ... ... ... 54




|6 __Kodaira—Spencer classes and variation of Hodge structures| 56
|6.1 Hodge-theoretic obstructions for (derived) completed de Rham co- |
| homology| . . . . . . . L 56
6.2 Hodge-theoretic obstructions for (derived) crystalline cohomology|. . 60
6.3 The (derived) Kodaira—Spencer map| . . . . . . ... .. .. ..... 61
6.4 'The computation for a square-zero extension| . . . . .. .. ... .. 65
6.5 The obstruction class as a cup product with the Kodaira—Spencer |
[ class in characteristic zerol . . . . . . . . . .. ... ... ... 72
6.6 The obstruction class as a cup product with the Kodaira—Spencer |
| class in the p-adiccasel . . . . . ... ... .. 0oL 73
7 Obstruction Theory for complexes| 79
[7.1 The universal derivation and square zero extensions| . . . . .. ... 79
7.2 Modules over split square zero extensions| . . . . . . ... ... ... 82
7.3 Atiyah classes and Chern characters| . . . .. .. .. ... ... ... 85
[7.4 Obstruction classes for complexes| . . . . ... ... ... ... ... .. 91
[7.5 Computing signs for (shifted) permutation actions] . . . .. ... .. 93
[7.6 Relating the obstruction classes| . . . . . . . . . . ... ... ..... 95
|8 Hochschild (co)homology and the semiregularity map| 98
8.1 Fourier Mukai transforms, duality and Hochschild (co)homology] . . 98
3.2 'The Hochschild-theoretic semiregularity map| . . . . . . .. ... .. 100
8.3 Functoriality for Fourier—Mukai transtorms| . . . . . . . . ... ... 104
8.4 The action of Hochschild cohomology and the semiregularity map|. . 107
[varieties| 111
9.1 Injectivity of the semiregularity map| . . . . . . . .. ... ... ... 111
9.2 Deformations in the characteristic zero casel . . . . . . ... ... .. 114
9.3 Deformations in mixed characteristic] . . . . . .. ... ... ... .. 115
A _Appendix 119
IA.1 Compact projective generators| . . . . . .. ... ... ... ..... 119
|A.2 Homological algebra in stable oo-categories| . . . . .. .. ... ... 124
IA.3  Homological algebra in symmetric monoidal stable co-categories|. . . 125
A4 Notes on trace maps| . . . . . . . . . . . . Lo e 128




1 Introduction

1.1 Background

We start by discussing some background and motivation. The reader familiar with
the subject may skip ahead to Section [I.2]

Around 1960, Grothendieck and Verdier [51] constructed for any scheme X its
derived category D(X). They initially intended the notion of a derived category to
be nothing more then a formal framework, in which it was easy to formulate con-
cepts such as higher direct images, derived tensor products or cohomology groups.
Their main goal was to vastly generalize Serre duality to a statement which is now
known as Grothendieck duality.

About 20 years later the realization came that the derived category was an in-
teresting invariant in itself. Mukai [44] constructed interesting geometric examples
of varieties whose derived categories are isomorphic (such varieties are called de-
rived equivalent), but which were not isomorphic themselves. On the other hand,
Bondal and Orlov |11 showed that varieties with ample or anti-ample canonical
bundle were completely determined by their triangulated category.

Independently, Kontsevich also took an interest in the derived category when
formulating his mirror symmetry conjecture [34]. He conjectured that one could
view mirror symmetry as an equivalence between a derived category of coherent
sheaves of one variety with the Fukaya category of its mirror variety.

In 1990, Bondal and Kapranov |10| introduced the notion of a semi-orthogonal
decomposition, essentially allowing one to study the derived category in terms of
much smaller building blocks called admissible subcategories.

Of particular interest are derived categories of varieties with trivial canonical
bundle, such as elliptic curves, higher dimensional abelian varieties, or K3 surfaces.
One may show that the derived category of a variety with trivial canonical bundle
(often called a Calabi—Yau variety) is always indecomposoable, i.e. it admits no
non-trivial semi-orthogonal decompositions. Therefore, it is especially interesting
to study when the derived category of a Calabi—Yau variety embeds into the derived
category of some larger variety.

Kuznetsov [20] gave an especially interesting example of the above phenomenon.
He showed that the derived category of any cubic fourfold X admits a semi-
orthogonal decomposition consisting of a trivial part (generated by the line bundles
Ox,0x(1) and Ox(2)), and a non-trivial part called the Kuznetsov component (or
residual component) Ax. The Kuznetsov component Ay has many properties
similar to the derived category of a K3 surface, and in many cases is actually iso-
morphic to the derived category of a K3 surface. If this is the case, Ax is said to be
geometric. Kuznetsov conjectured that Ax is geometric if and only if X is rational,
and showed Ax to be geometric for all cubic fourfolds known to be rational.

Motivated by Kuznetsov’s conjecture, Addington and Thomas [1] showed the
Kuznetsov component of a much larger class of class of cubic fourfolds to be ra-
tional. One of the main technical contributions in their paper is to answer the
following question.

Question 1.1. Let S be a K3 surface, and let X be any smooth and projective
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variety. Suppose we are given a fully faithful embedding D*(S) — D*(X). If S
and X are deformations of S and X respectively, when does the embedding extend
to a fully faithful embedding Db(S) < Db(X)?

The starting point to analyzing the question above is the following construction.
Let X and Y be smooth and projective varieties, and denote with 7x: X xY — X
and 7y : X xY — Y the projection maps. Then any perfect complex £ € D?(X xY)
induces a functor

de: DP(X) — DO(Y)
Fray(rxFQE)

where all functors involved are understood to be derived. Such a morphism ®¢ is
called a Fourier-Mukai transform, and &£ is often referred to as the kernel of the
transform. We then have the following classical result.

Theorem 1.2 (Orlov [26, Theorem 5.14]). Let X and Y be smooth and projective
varieties. Let

®: DY(X) — DO(Y)

be a fully faithful evact functor. Then there exists an object € € D*(X x Y) such
that ® is isomorphic to the functor ®g¢.

Using the above theorem, one may reduce Question [I.I]to the following question
(where Z = S x X).

Question 1.3. Let Z be a smooth and projective variety, and let £ € DY(Z). If
Z is a deformation of Z, when does there exist an object € in D*(Z) such that the
derived restriction of £ to Z is quasi-isomorphic to £7

A necessary condition for the object £ to exist is that the Chern character of £
remains within the Hodge filtration along Z. This condition on the Chern character
is the same as the condition used in formulating the variational Hodge conjecture
[23, Footnote 13]. We refer to sections and [6] for details on this condition.

The technical contribution of Addington and Thomas |1, Theorem 7.1] then can
be formulated as follows.

Theorem 1.4. Let S be a K3 surface and let X be a cubic fourfold. Let € €
Db (S x X) be the kernel of a fully faithful transform Db(S) — D®(X). If the Chern
character of € remains within the Hodge filtration along S x X, then there exists £
in DP(S x X) such that the derived restriction of € to S x X is quasi-isomorphic
to £.

In particular, the above theorem can also be interpreted as a very specific case
of the variational Hodge conjecture.

In this work, we generalize the above theorem to the case where S is a gen-
eral Calabi—Yau variety, and X is any smooth and projective (or proper) variety.
Moreover, we also give a result in mixed characteristic, generalizing a theorem of
Lieblich and Olsson [36].
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1.2 Statement of main results

As explained in the previous section, the goal of these notes is to study deformation
theory of Fourier—Mukai transforms between varieties with trivial canonical bundle,
in both characteristic zero and mixed characteristic. We already mentioned our
main result comes with an obstruction coming from Hodge theory, to accurately
describe this we first set up some notation.

Recall |9, Proposition 3.8] that if A is an Artinian local C-algebra, and X —
Spec(A) is a smooth and proper morphism with special fiber X := X Xgpec(a)
Spec(C), there exists a canonical isomorphism

ox: Hip(X/C) ®c A = Hjg(X/A)

relating the de Rham cohomology of X’ with that of the special fiber (see Section
@. Moreover, for any morphism X — S of schemes over C de Rham cohomology
comes with a canonical filtration

F™ Hig (X/S) € Hir (X/95)

for m € Zso, called the Hodge filtration [48, OFM7|. Finally, for i € Z>¢ and
& € D*(X) one may define a Chern character

ch;(£) € FTHZL(X/S)

see [48, OFWB].

We are now ready to state our main result in characteristic zero.

Theorem 1.5. Let X and Y be smooth and proper varieties over C, such that X
has trivial canonical bundle. Let A be an Artinian local C-algebra, and let X and
Y be deformations of X and Y over A. Let £ € DP(X xY) be the kernel of a fully
faithful transform ®¢: D*(X) — D*(Y).

Then € deforms to an object £ € D(X x V) if and only if

Pxxy(chi(E) ®1) € FIHR (X x Y/A)

for all0 < ¢ < dim(X)+dim(Y). Moreover, ®z is fully faithful, and an equivalence
if and only if ® is an equivalence.

This question has been studied before in 2007 by Toda [49] in the case that
A = C[x]/(2z?*). In 2009, Huybrechts, Macri and Stellari [28] proved the above to
be true when X and Y are K3-surfaces, A = C[z]/(2") and ® is an equivalence.
In 2013, Addington and Thomas [1] proved the above to be true in the case that
A = Clz]/(2™), X is a K3-surface and Y is a cubic fourfold.

Our second main result is a generalization of the above to mixed characteristic.

Theorem 1.6. Let p be a prime number, let A be an Artinian local Zy)-algebra
with a divided power structure v on mg such that v, acts nilpotently on my (see

Definition . Set Ag = A/my.
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Let X and Y be smooth and proper varieties over Ag. Let £ € D*(X xY) be
the kernel of a fully faithful transform ®¢: D*(X) — D*(Y). Let X and Y be lifts
of X andY over A.

If X has trivial canonical bundle, p > dim(X) + dim(Y'), and the crystalline
Chern character

ch;(£) € FIHIL (X x Y/A)

of € lands in the Hodge filtration for all 0 < i < dim(X) + dim(Y') then & admits
a lift £ € D°(X x V). Moreover, ®z is always fully faithful, and an equivalence if
and only if ®¢ is an equivalence.

Corollary 1.7. Let k be a field of characteristic p > 2 and let W = W (k) be the
ring of Witt vectors over k. Let X and 'Y be smooth and proper varieties over k.
Let £ € DY(X xY) be the kernel of a fully faithful transform ®¢: D(X) < Db(Y).
Let X and Y be lifts of X and Y over W.

If X has trivial canonical bundle, p > dim(X) + dim(Y’), and the crystalline
Chern character

ch;(£) € FPHAR (X x Y/W)

of € lands in the Hodge filtration for all 0 < i < dim(X) + dim(Y") then £ admits
a lift £ € D°(X x V). Moreover, ®; is always fully faithful, and an equivalence if
and only if ®g is an equivalence.

This question was studied before in 2011 by Lieblich and Olsson [36]. They
showed the above to be true if X and Y are K3-surfaces and k is algebraically
closed of characteristic p > 2, using a technique specific to K3-surfaces and their
moduli spaces of perfect complexes.

As a side result of the methods used, we will also obtain the following result.

Theorem 1.8 (Theorem . Let A be a simplicial ring, and let I C A be a
regular simplicial ideal. Suppose the image of wo(I) in mo(A) is nilpotent. Then A
is I-adically complete, i.e. the natural map A — Rlim A/I™ is a weak equivalence
of simplicial Tings.

This was proved by Quillen [47, Theorem 8.8] in the case that mo(I) = 0. Using
the above theorem, we give a new proof the following well-known result.

Theorem 1.9 (Nil-invariance for derived de Rham cohomology in characteristic
zero). Let k be a Q-algebra. Let A be a k-algebra, let I C A be a nilpotent ideal,
and set B = A/I. Then the natural map on derived de Rham cohomology

dRA/k — dRB/k
1s an equivalence of E-algebras.

Multiple proofs of this theorem were already known, for example by compar-
ing with periodic Hochschild homology [45], or by comparing with Harthshorne’s
algebraic de Rham cohomology [5].

{corol_mixed}



1.3 Overview of the text

The main technical difficulty in the proofs of Theorem [I.5] and Theorem is
analyzing whether or not a Chern class remains of Hodge type when deforming
a variety. The starting point on this subject is a classical article by Bloch [9],
who showed that one can define a Hodge-theoretic obstruction class measuring the
failure of the Chern class to remain within the Hodge filtration along a square zero
extension. Moreover, Bloch gave an expression for the Hodge-theoretic obstruction
class as a cup product with a Kodaira—Spencer class (with conditions on the base
A).

It was already shown that a similar expression exists for the obstruction class
to deforming a vector bundle by Tllusie |31], using his cotangent complex. This
was generalized to the case of a perfect complex by Huybrechts and Thomas [29].
Moreover, Buchweitz and Flenner [13] constructed a semiregularity map relating
the two obstruction classes.

In Section [6] we give an expression for the Hodge-theoretic obstruction class
as a cup product with a Kodaira—Spencer class for a general base A. The main
difficulty here is that Bloch’s construction is of a topological nature, and therefore
hard to apply algebraic techniques to. This is where derived algebraic geometry
makes its appearance: The work of Pridham [45] suggests that one could replace
the topological isomorphism in the work of Bloch by nil-invariance of derived de
Rham cohomology. It is here that the main technical results are stated.

To achieve this we will construct a theory of Chern classes in derived de Rham
cohomology in Section [5| (essentially following Bhatt—Lurie [7]). Moreover, we will
show this Chern class corresponds to the trace of the Atiyah class, unifying it with
Hlusie’s construction of the Chern class in [31] (see Proposition [7.18).

It then turns out that the above generalizes quite easily to mixed characteristic,
if one replaces derived de Rham cohomology with derived crystalline cohomology.
Throughout the text, the various related results for the crystalline case will usually
be stated directly after the characteristic zero result, allowing for an easy compar-
ison.

Section [4] is a bit of an oddity and independent of the rest of the text. It
provides an improvement of Quillen’s convergence theorem, and, as a corollary, a
new proof of nil-invariance for derived de Rham cohomology. Except the statement
of nil-invariance for derived de Rham cohomology, none of it is used throughout
the rest of the text, and the reader may skip it.

Using the work of Cald&raru [15] [16], we will finally show the semiregularity
map is injective under the conditions of Theorem [I.6] In Section [§] we provide
a Hochschild—theoretic formulation of the semiregularity map by means of the
Hochschild-Kostant-Rosenberg isomorphism. Finally in Section [0] we show the
semiregularity map is injective in the cases we need, to prove Theorems [I.5] and
1L.0l

Our proof of Theorem relies heavily on derived algebraic geometry, which is
needed since we assume A to be very general. If one is only interested in the case
A = CJt]/(t"™), one can give a classical proof using only Theorem and T'-lifting
methods.



Acknowledgements: I wish to express my gratitude to Lenny Taelman for sug-
gesting the problem, for countless helpful conversations with valuable insights, and
for his support along the way. Without his help, this work would not exist.



2 Preliminaries

We will use the language of oo-categories as developed in [39]. By an n-category
we mean an oo-category in which all mapping spaces are (n — 1)-truncated. For
example, a 1-category is an oo-category in which all mapping spaces are discrete.
We write S for the oo-category of spaces, and denote with S<,, the full subcategory
of n-truncated spaces. We write Cato, for the co-category of co-categories. The
inclusion
S — Cato

has a right adjoint which we will denote by (—)

For an oo-category C, we shall denote with sC, resp. cC the oo-category of
simplicial, resp. cosimplicial diagrams in C.

For any stable oo-category C and n € Z we shall denote with [n]: C — C the
n-fold composition of the suspension functor |38, Notation 1.1.2.7].

For k a ring, we denote with Ch(k) the 1-category of chain complexes over k,
with Ch(k)qg the dg-category of chain complexes over k and with D(k) the stable
oo-category Ngg(Ch(k)qe). Note that we have a canonical functor Ch(k) — D(k).

If C is a symmetric monoidal oo-category, we shall denote with CAlg(C) the
oo-category of Eo-algebras in C, see [38]. We will write CAlg,, := CAlg(D(k)),
and denote with CAIgg the 1-category of discrete commutative k-algebras.

~

2.1 Filtrations

The structure of a partially ordered set on N gives N the structure of a 1-category
such that is there is a unique morphism i — j if i < j. We denote N9¢ for the
1-category with objects the natural numbers, and all morphisms the identity.

Definition 2.1. Let C be an arbitrary oo-category. Then we define

Cq) := Fun(N°P, ()
the oo-category of filtered objects in C. For X € Cg, we write F'X = X(i).
Similarly, we let ‘

Cgr := Fun(Ns¢ C)
If C is stable, define a functor gr: Ca — Cg by

gr(X)(i) = cofib(F""(X) — F'(X))

on X € Cp. We will refer to gr(X) as the associated graded of the filtered object
X, and use the shorthand notation gri(X) := gr(X)().

One may give N45¢ and NP the structure of a symmetric monoidal category
by setting [p] ® [¢] := [p + ¢]. If C is symmetric monoidal, the procedure of Day
convolution (38, §2.2.6] then gives Cg, and Cg; the structure of a symmetric monoidal
category. Explicitly, one has

F" (X @ Y) := colim FPX ® F1Y
p+q=n
(A@P B)(n):= | | Alp)® B(q)

pt+g=n

10
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for X,Y € Cq and A, B € Cy. Moreover, gr has a canonical structure of a sym-
metric monoidal functor, that is there exist canonical isomorphisms

or” (X @Pay Y) ~ |_| gr’ X @ griy
ptqg=n

for X, Y € Cqi. We will denote with
7 erP (X @PYY) — g H(X) @ gr' (V) (2.1)

the projection on the ith component.

Definition 2.2 (Filtered E..-algebras). Let C be a symmetric monoidal co-category.

We define the oo-category of filtered E.-algebras in C as
CAlgg (C) := CAlg((Cai, ©°™)).

Lemma 2.3. The symmetric monoidal structure on CAlgg,(C) is cocartesian, that
1s the coproduct of algebras is given by the Day convolution product of their under-
lying objects. In particular CAlgg,(C) admits finite coproducts.

Proof. See |38, Proposition 3.2.4.7]. O

We warn the reader that this is a distinctly different category then CAlg(C)g.
For k a discrete commutative ring, we will write CAlgg, (k) := CAlgg, (D(k)).

For any stable symmetric monoidal oco-category C and p € N, we have a lax
symmetric monoidal functor

gr[o’p) : Cﬁ] — Cﬁ]

defined by
cofib(FPX — F'X) i<p

2.2
0 1>p (22)

Figr[o’p)(X) = {

For any p < ¢ we have a natural transformation grl®® — grl0?) Thus if C admits
all limits, we may define the completion functor

—

(7): Cﬁ] — Cﬁ]
X — X := lim grl®”(X)

p—o0
which is also lax symmetric monoidal. Explicitly, one has

FPX = lim cofib(F*X — F7X)

q—o0
for any X € Cg;. We thus get induced functors

grl%#1: CAlgg (C) — CAlgg (C)

(—): CAlgg (C) — CAlgg ()

11
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By |38l Corollary 3.2.2.4], we have an equality

—

V= i [0.p)

(=)= lim gr
of functors CAlgg,(C) — CAlgg,(C). If one sets Caicomp to be the full subcategory
consisting of those X € Cg) such that the natural map X — X is an equivalence, one

may show the functor (—): Cai — Chil,comp 1S left adjoint to the inclusion Cai comp —
Ca1. For X, Y € Cqicomp We will denote

XQY = )@

and similarly for complete X, Y € CAlgg,(C).
Finally we will often use without mention that the functor gr: Cgi comp — Car
is conservative.

2.2 Sheaves and stacks

For any oo-category C equipped with a Grothendieck topology 7, and any oo-
category D in which all limits exist, we shall denote by Shv,(C, D) the co-category
of D-valued sheaves on C, see |39, Definition 7.3.3.1]. More generally, for any co-
topos X we shall denote by Shvp(X) the category of D-valued sheaves on X, i.e.
the category of functors A°P — D that preserve small limits.

Definition 2.4. We define
Sty := Shvg,pe((CAlgY )P, S)
the oco-category of higher stacks over k.

By [39, Proposition 6.2.2.7], St; has the structure of an co-topos. We warn the
reader that these are underived stacks, since CAlgg is the 1-category of discrete
commutative k-algebras. Note that inclusion Set — & induces a functor Sch/, —
St, so in particular we get a fully faithful Yoneda embedding

Spec: (CAlg))°P — Sty

(essentially because the fppf topology on affine schemes is subcanonical, see [48,
0304]).

For any oo-category D in which all limits exist, a functor F: CAlgg — D
induces (by right Kan extension) a unique functor St;” — D which we shall also
denote by F. Explicitly, for any k-stack X one has

F(X):= 1 F(R 2.3

(X):= lm  F(R) (23)

and in particular F(Spec(R)) = F(R). Using 39, Theorem 4.1.3.1], one may show
that if X is a scheme, the above can be computed as

F(X) = Spe(}%%gX F(R) (2.4)

12
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where the limit is over all affine opens Spec(R) in X.
For any oo-category D admitting all limits, the inclusion

ShVD(Stk) g Fun(Stzp7 D)

admits a left adjoint F + FT called sheafification. If F is a sheaf one has F(X) =
F(X) for all k-stacks X.

2.3 A survey of animation

If A is aring and M is an A-module, the functor — ® 4 M is in general not exact.
However, it is exact when restricting to the subcategory of free modules. One may
introduce the notion of a free resolution P, — N of a general A-module N, and
define

NRYM:=P,®s N

to get a better behaved tensor product. For this to make any sense, one needs a
category of free resolutions, and it is well known that D(A)>¢ is a good notion for
this category.

In this section we give a quick survey of animation, a technique introduced in
[18] (based on ideas in [47] and [39, §5.5.8]) to give a general way of achieving the
above. Given a l-category C generated under colimits by a full subcategory Cy of
nice (compact and projective) objects, we can form the oo-category Ani(C) freely
generated under sifted colimits of these objects. Given a functor C — D which
behaves well on Cy, one then obtains a well-behaved functor Ani(C) — D.

We will give a quick and by no means complete complete survey, we urge the
reader to read [39 §5.5.8] and [41] first. Throughout this section, n can be any
natural number or the symbol co.

Definition 2.5 (39} §5.5.8], [41, Definition A.18]). Let C be a cocomplete category,
and C € C. We say C is compact if the functor Map(C, —): C — S commutes
with filtered colimits.

If C is a cocomplete n-category, we say that C' is n-projective if the functor
Map.(C,—): C — Spaces,,_; commutes with geometric realizations. If n = oo,
we wil say C is projective.

Note that although we work with n-projective for general n, we shall only be
interested in the cases n =1 and n = oo.

Definition 2.6 ([41, Definition A.22]). Let C be an n-category and S C C a set of
objects in C. We say that S is a set of compact n-projective generators for C if

1. C is cocomplete.
2. Every X € S is compact n-projective.
3. The set S generates C under small colimits.

If there exists a set of compact n-projective generators of C, we say that C is compact
n-projectively generated. If n = oo, we say C is compact projectively generated.

13
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Definition 2.7. Let C a n-category which admits finite coproducts. We write
P (C) := Fun(C°?, S<p—1)

and denote with Py, ,,(C) C P, (C) the full subcategory consisting of those functors
which preserve finite products.

Proposition 2.8. Let C be an n-category, and let S be a set of compact n-projective
generators for C. Let Cy be the full subcategory on finite coproducts of objects in S.
Then the Yoneda embedding Ps ,(Co) — C is an equivalence.

Proof. See |41, Proposition A.29]. O

Definition 2.9 (|41, Definition A.32]). Let C be a compact n-projectively gener-
ated n-category, let S be a set of compact and n-projective generators, and let Cy
be the full subcategory spanned by finite coproducts of objects in S. We define

Al’li(C) = PZ)OO(C())
the animation of C.

It is good to observe that Ani(C) is independent of the choice of compact projec-
tive generators for C, see |41, Remark A.33]. Note that we have a natural Yoneda
embedding C — Ani(C) given by X — Map.(X,—). Moreover, by [39, Remark
5.5.8.26], the Yoneda embedding C — Ani(C) admits a left adjoint .

Lemma 2.10. Let C be a compact n-projectively generated n-category and let S be
a set of compact and n-projective generators. Then Ani(C) is compact projectively
generated, and S is a set of compact projective generators.

Proof. By definition, for any X € S the image in Ani(C) is compact and projective.
Since clearly any element in Ani(C) can be written as a colimit of objects in S, the
result follows. O

Definition 2.11. Let C and D be oco-categories. We denote with
Funs(C,D) C Fun(C, D)

the full subcategory of those functors which preserve filtered colimits and geometric
realizations.

Proposition 2.12 (|39, Proposition 5.5.8.15]). Let C be a cocomplete n-category,
and let S C C be a set of compact n-projective generators for C. Let Co C C be
the full subcategory spanned by finite coproducts of objects in S. Let D be any
oo-category which admits filtered colimits and geometric realizations.

Then the restriction map

U: Funyx(C,D) — Fun(Cy, D)

induces an equivalence of categories. Moreover, any g € Funy(C, D) commutes with
all colimits if and only if ¥(g) commutes with finite coproducts. Finally, for any
f € Fun(Co, D) the inverse image V~1(f) is given by left Kan extension.
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We end by giving two example of compact projectively generated categories
which are essential to the rest of the text.

Example 2.13. Let k be a ring. The set S = {k} is a set of compact 1-projective
generators for the category of discrete k-modules D(k)¥. The full subcategory
spanned by finite coproducts of objects in S is the 1l-category of finite free k-
modules. Moreover one has Ani(D(k)%) = D(k)>o.

Example 2.14. For k a ring, we denote with CAlgg the 1-category of commutative

k-algebras. The set S = {k[z]} is a set of compact 1-projective generators, and

the full subcategory Poly, C CAlgS spanned by coproducts of objects in S is the
an

category of finitely generated polynomial k-algebras. The oco-category CAlg;" =
Ani(CAlgk@) is equivalent to the co-category of simplicial rings.

2.4 Higher algebraic stacks

We now give an inductive definition of higher algebraic stacks, following Lurie’s
thesis [37].

Definition 2.15. Let k& be a ring. A morphism f: X — Y in Sty is a relative
0-stack if for any A € CAlgkQQ and any map Spec(A) — Y in Stg, the fiber product
Spec(A) xy X is an algebraic space in the sense of |48| 025X]. We say that f is
smooth if the maps Spec(A4) xy X — Spec(A) are smooth.

For n > 0, a morphism f: X — Y in Sty is a relative n-stack if for any
Ae CAlgg and any map Spec(A) — Y in Sty, there exists a effective epimorphism
p: U — Spec(A) xy X which is a smooth relative (n—1)-stack, where U is a disjoint
union of affine schemes. We will say that a relative n-stack f: X — Y is smooth if
for all Spec(A) — Y, the cover U can be chosen to be smooth over Spec(A).

Finally, we define an algebraic stack to be a morphism X — Spec(k) which is a
relative n-stack for some n € N.

We may similarly define open immersions of relative n stacks inductively.

Definition 2.16. A morphism of relative 0-stacks is an open immersion if it is an
open immersion of algebraic spaces. For n > 0, we say that a morphism U — X of
relative n-stacks is an open immersion if there exists surjective map T'— X which
is a relative (n — 1)-stack such that Ur — Xp is an open immersion. In this case,
we say U C X is an open substack.

For G an affine group scheme (in the classical sense) we can form a simplicial

object
- 5= G Xspeen) G =5 G == Spec(k)

in sStg, see |33, Definition 4.25]. We define the classifying stack BG to be the
colimit of this diagram in St;. One may show BG is an algebraic 1-stack. By
[33, Theorem 4.28], for any k-scheme X one may canonically identify the groupoid
Map, (X, BG) with the groupoid of G-torsors T — X.
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2.5 Module categories on stacks

Let k be a ring. For any stack X over k, we denote with D(X) the stable oo-
category defined as
D(X):= lim D(A)
Spec(A)CX

For A € CAlgg, we say that an object £ € D(A) is perfect if it is compact. For a
general X in Sty, we say that & € D(X) is perfect if the pullback f*(€) is perfect
for all f: Spec(4) — X. We denote with Perf(X) the full subcategory of perfect
objects. We will say that an object £ € D(X) is finite locally free (of rank n) if
f*(€) is a finite locally free A-module (of rank n) in homological degree 0 for all
maps f: Spec(4) — X. We will denote with Vect(X) the full subcategory of finite
locally free modules, and with Vect,, (X) the full subcategory of finite locally free
modules of rank n. We will write

Pic(X) := Vect; (X)=

We refer to elements £ € Vect(X) as vector bundles, and to elements £ € Pic(X)
as line bundles. We will write Kq(Vect(X)) for the abelian group generated by the
vector bundles on X with relations coming from short exact sequences, see [48|
OFDE]. For t: Z < X a closed immersion of schemes and £ € D(X), we will
sometimes write £|z = t*(E).

Lemma 2.17. Let k be a ring. Let

F: St — Catoo
be an element of {D(—),Perf(—), Vect(—), Vect,,(—),Pic}. Then F is a sheaf (for
the fppf topology).

Proof. For D(—) this follows from [40, Corollary D.6.3.3]. Since the condition that
an object is perfect or locally free (of rank n) is local for the flat topology by [40}
Proposition 2.8.4.2], the rest follow by [39, Corollary 3.3.3.2]. O
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3 Derived de Rham cohomology

In this section we give the constructions of derived de Rham cohomology and
derived crystalline cohomology, and state various basic results we need. Most defi-
nitions and results are due to Bhatt and Mao, see [5] [4] [41]. In section|3.3|we state
and prove a result comparing (Hodge completed) derived de Rham cohomology of
a surjective ring map A — (A/I) with the derived completion of A in I, a result
originally due to Bhatt [5].

Throughout this section, fix a base ring k.

3.1 The derived de Rham complex

In this section, we briefly recall the definition of the derived de Rham complex, and
state some of the properties we need. Recall that classical de Rham cohomology is
defined for a morphism of rings A — B. Thus one would like to define derived de
Rham cohomology for a morphism of animated rings A — B. To do this, it is help-
ful to find a set of compact projective generators for the category Fun(A!, CAlgi").
This can be done in big generality as follows.

For C a compact and 1-projectively generated 1-category with .S a set of compact
1-projective generators, the oco-category Fun(AP, Ani(C)) is compact projectively
generated. By Lemma[A3] a set of compact projective generators is given by

Spi=20=2 250X - X | € or)

7 times p—i+1 times

We will write Fun(AP, Ani(C))gen for the full subcategory of Fun(AP, Ani(C)) spanned
by finite coproducts of elements in .S, (see Definition , note that this depends
on a choice of compact 1-projective generators for C.

We are now ready to define the derived de Rham complex.

Definition 3.1 (Derived de Rham complex). We define the derived de Rham com-

plex
dR_/ : Fun(A', CAlgy") — CAlgg (k)

as the left Kan extension of the composition

Q.
Fun(A', CAlgi™)gen € Fun(A', Poly, ) — = CAlg(Ch(k)m) — CAlgg, (k)

where Q° /- denotes the classical de Rham complex equipped with the Hodge
filtration (|48l OFKL]) and (graded) multiplication. For p € N will write

]Lji/_ = gr’dR_,_[p]
for the graded pieces, and refer to the completion dR_ /— as the Hodge completed
derived de Rham complex.

If A — B is a smooth map of k-algebras one has L4 = Qp 4. It follows
that for any map of k-algebras A — B, the complex Lp,4 coincides with Illusie’s
cotangent complex (see [30]).
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Construction 3.2. Let A — B be a smooth map of k-algebras. Then Qp /4 is a
finitely generated B module. Hence the Hodge filtration on €%, /A is finite, and in
particular Q% /A is complete. We thus get a canonical map

in CAlgg, (k). Applying [48, 08R5| to the graded pieces, we get a canonical equiv-
alence .

in CAlgg, (k).

Lemma 3.3. Let p be a prime, let k be a Z/p"Z-algebra for some n € N, and let
A — B a smooth map of k-algebras. Then the maps

dRB/A — dRB/A — QE%/A
are equivalences in CAlgg, (k).

Proof. Tt suffices to show the first map is an equivalence, as the second was already
shown to be an equivalence in general. By [4, Corollary 3.10] the natural map

dRpya = U (3.1)

is an equivalence in D(k). For any ¢ > 0, we have a commutative diagram

FidRB/A E— dRB/A e dRB/A/Fi

| l |

FiQ% )4 Vp/a O a/F

in D(k), where the rows are fiber sequences. The middle vertical map is an equiv-
alence by 1D Since A — B is smooth, the map L7, /A Q7 /4 18 an equivalence
for all j, hence the right vertical map is an equivalence as well. It follows that the
left map is an equivalence for all ¢ > 0, and thus the map

dRB/A — (TRB/A

is an equivalence in D(k)g;. Since the map CAlgg (k) — D(k)g is conservative, we
conclude. O

On the contrary, if @ C k, one may show using the Poincaré lemma that
dRp/4 = A for any polynomial A-algebra P. By the lemma below, it follows that
FodRB/A = A for all A-algebras B.

Lemma 3.4. The functor
dR_,_: Fun(A', CAlgl") — CAlgg (k)

commutes with small colimits.
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Proof. By Proposition [2.12] it suffices to show the functor

Q.
Fun(A, Poly ) gen ——— CAlgg, (k)

preserves finite coproducts. By Lemma [2.3] and an induction argument, it suffices
to show the natural maps

dRB/A ®]]€3ay k[fL‘] — dRB[m]/A[x] (32)
dRB/A ®],3ay de[x]/k — dRB[m]/A (3.3)

are equivalences in CAlgg (k) for any (A — B) € Fun(A!,Poly;)gen. Since the
forgetful functor CAlgg, (k) — D(k)g is conservative, it suffices to check (3.2) and

are equivalences in D(k)g.

Now is an equivalence by [48, OFL5]. To show that is an equivalence
in D(k)g, it suffices to check that the induced map on associated gradeds in D(k)g,
is an isomorphism (note that filtered objects are complete as we are considering
finitely generated polynomial algebras). We thus need to confirm the natural map

Q%_/i‘ Ok Lufa/i ® U O k2] = Q)4

is an equivalence in D(k) for all p, which follows by taking wedge powers of the
equation
QB/A Rk k[x]@B[:U]dl'ZQBM/A O

Corollary 3.5. The functor
dR_,_: Fun(A', CAlgd™) — D(k)s

commutes with sifted colimits, and sends finite coproducts to finite Day convolution
products.

Proof. The statement about sifted colimits follows by combining |38 Corollary
3.2.3.2] with Lemma The statement about finite coproducts follows by com-
bining Lemma [2.3] with Lemma [3.4} O

Corollary 3.6 (Kiinneth formula). Let k be a ring, let X be a smooth scheme over
k, and let' Y be any stack over k. Then the natural map

dRx/x ® dRy/x = dRxxv/k (3.4)
is an equivalence in CAlgg (k).

Proof. If A and B are discrete k-algebras and A is smooth, then the underived
tensor product A ®; B computes the coproduct in CAlgy". It follows that the map

dRA/k ®dRB/k — dRA@B/k

is an equivalence in CAlgg, (k) whenever A is smooth. Using (2.3)), it follows that
for any stack Y over k and any smooth k-algebra A the natural map

dRa/x ® dRy . — dRgpec(a)x vk
is an equivalence in CAlgg; (k). The result follows using (2.4). O
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We warn the reader that dR generally does not commute with colimits. If
it would, then since dRp/g ~ Q for all polynomial Q-algebras, one would have

(Tf\{B/Q ~ Q for any Q-algebra B. But since Q[z, 2] is smooth over Q, by Con-
struction [3.2] we would get an equivalence
Q= D110

in D(Q). This clearly cannot exist since
1 . _
H (%, 11/0) = Q@

but H'(Q) = 0.

For the readers convenience, we give an explicit description of both dR and
dR. By [39, Lemma 5.5.8.13], for any A € CAlg;", there exists a simplicial ring
A, € Fun(A°P, Poly;,) such that

A = colim A,
Aop
One may use Lemma [3.4] to show the chain complexes
Tot® (9:4*/1@) and Tot" (Q;l*/k)

are isomorphic to FUdR 44, and Focﬁ\{A/;C respectively (in D(k)).

We end by showing that dR_,_ /F? and dR_ /— satisfy a derived descent state-
ment, as was first observed by [5, Remark 2.8]. To formulate the statement, we
first introduce some notation.

Recall that for any oo-category C, we denote with ¢C the co-category Fun(A, C)
of cosimplicial diagrams in C. For any A € CAlgkO, the functor

evi): CCAIgZ — CAng
commutes with all limits by [39, Proposition 5.1.2.3], and thus admits a left adjoint
Cech(A — —): CAlg%, — cCAlg};

Explicitly, for B € CAng the cosimplicial object Cech(A — B) € cCAng is given
by
[n]— B®a---®a B
—_——
n+1 times
Moreover, for any element (A — A’) in Fun(A', CAlg)), one has a commutative
diagram

CAlg}) o cCAlgy

M

forgetT forgetT

CAlg}, <z cCAlgy,
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For any B € CAlg", one has (evio) o forget)(Cech(A” — B)) = B. Thus the counit
of the adjunction
Cech(A — —) - evyy

induces a natural transformation Cech(A — —) — Cech(A’" — —). We thus get a

functor
Cech(— — —): Fun(A', CAlgi")gen — cCAlgi"

and by left Kan extension a functor

Cech(— — —): Fun(A', CAlgi") — cCAlgi"

Lemma 3.7. Let (A — B — C) € Fun(A2,CAlgi"). Then for all p > 1,

1

hin IL‘ICJTeCh(A—>B)/A 0
0

12

hgn C ®Cech(A~>B) Lz(jjecll(A—)B)/A

in D(k).

Proof. The first statement is [5, Corollary 2.7]. For the second statement, write
B,, = B®4™, Then note that Lemma [3.4] one has

Lp,/a®p, C = (Lpa@pC)""

Thus the second statement follows by taking wedge powers of |5, Lemma 2.5], where
one takes A to be the constant cosimplicial ring C' and M to be Lp,4 ®p C. [

Corollary 3.8. For any (A — B — C) € Fun(A2 CAlgi™) and p € Zso, the
natural map

lim Cech(B — C) @p Ll ), — lim L een(B—0)/A
is an equivalence.

Proof. We follow [8, Theorem 3.1]. The transitivity sequence for A — B —
Cech(B — C) is a short exact sequence

Cech(B — C) ®@p Lp/a — Leech(B—c)/a = Leeen(B—c)/B

in ¢D(k). Taking (pointwise) wedge powers, we see that }L%ech( BosC) A COmes with
a natural filtration with graded pieces
8 (Leeen(p—cyya) = Lgya ®8 Lt soy/m

By the first statement in Lemma [3.7] all graded pieces except the j = p piece vanish
after taking the limit over A, which gives the result. O

Proposition 3.9. Let k be a ring. The functor
dR_p.: Ste® — CAlgg (k)

1s a sheaf for the fppf topology.
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Proof. By |40, Proposition 1.3.1.7], it suffices to show the functor
dR_: CAlgY — CAlgg (k)

is a sheaf for the fppf topology. Commuting limits with limits, this follows directly
from Lemma 3.8 O

We also need the following statement, which can best be described as ‘descent
on the base’.

Lemma 3.10. For any (A — B — C) € Fun(A?% CAlgl") and p € Z>o, the
natural map
dRgya/FP — hgndRC/Cech(AaB)/Fp

s an equivalence.

Proof. 1t suffices to show the natural map
L%/A - hgn ILZé/Cech(A—nE;)

is an equivalence for all p. The transitivity sequence for A — Cech(4 — B) — C
induces a filtration on L¢, , with

gr’ (LZ()J/A) = (Léech(AaB)/A ®ech(a-8) C) ®c Lg—/jcech(AﬁB)

for 7 € {0,...,p}. By the second part of Lemma and an Eilenberg-Zilber
argument, after taking the limit over A all terms vanish except the j = 0 term,
which proves the result. O

3.2 The derived crystalline complex

In this section, we give a short survey of the Mao’s construction of derived crys-
talline cohomology [41]. We start by generalizing our definition of de Rham coho-
mology to morphisms of divided power rings. Throughout this section, & can be any
commutative ring. Before we can give the definition, we need some preliminaries.
Following [41], we will denote with PDPairj, the 1-category of PD-rings (R, I,7)
such that R is a commutative k-algebra, see |48, 07GU]. We write IP! C R for the
p-th divided power ideal, see [48, 07THQ|. We will often omit 7 from the notation
and denote a PD-ring (R, I,~y) with (R — R/I) intead. For A a ring, we will denote
with (A(z1,...,z,) — A) the PD-ring freely generated on n variables x1, ..., Zpy,
see [48,|07H4]. For (R’ — R) — (A’ — A) a morphism of PD rings, we will denote
with Q4 4)/(r'—r) the A’-module of divided power differentials over R, see |48,
07HQ)| (note that it only depends on (A" — A) and R’). Finally we will write

P
QI(DA/—>A)/(R/—>R) = /\ Qarsa)/(r—R)
AI

Unfortunately, the category PDPairy, is not compact projectively generated, but
we can remedy the situation. Define PDPairy gen to be the full subcategory of f.g.
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free PD-rings over f.g. polynomial algebras, i.e. the full subcategory on objects
of the form k[y1,...,ym]{(x1,...,2n). Then [41, Lemma 3.13] shows there exists a
fully faithful embedding PDPairy, < Px 1(PDPairy gen). Following [41], we set

AniPDPair, := Ani(PDPairy gen)

the category of animated divided power algebras.

Definition 3.11 (PD-de Rham cohomology). Let

A — A

[

R —» R

be a an object of Fun(A!, PDPairy). Write J = ker(A’ — A). We define the PD
de Rham complex by

Warsay/(w—r) = [A' = Qs ay(r—r) = Varsay(wor) — | € Ch(k)

It comes with a filtration Fp_, 4;. given by

adic

P o {J[i_p] ®a Upay)rsmy 2P
A A)/(R'—R) = ,
W/ Q) m) <P

F'Q
and a canonical (graded) multiplication. We define the derived PD filtered de Rham
complex

FPD_adiedR(=——)/(———): Fun(A', AniPDPair;,) — CAlgg, (k)
as the left Kan extension of the functor
Fhpadic_ )/ Fun(A', PDPairy)gen — CAlgg (k)

Observe that 7,/ 1)/ (g, g) only depends on A" — A and R'. However,
dR(a/—4)/(r'—r) does depend on the pair (R’ — R). Clearly, for any (A — B) €
Fun(A', CAlgy) one has

dR(p=B)/(a—a) = dRp/a
in CAlgg, (k).
{lem_extended
Lemma 3.12. The functor
;’D—adicdR(fﬁf)/(fﬂf) : Fun(Al, AniPDPairk) — CAlgﬁl(kj)

commutes with small colimits.
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Proof. Similarly as in the proof of Lemma by Proposition and Lemma [2.3
it suffices to show that for any ((R" — R) — (A’ — A)) € Fun(A!, PDPairy)gen
the maps

coimFPQC 1, 1)/ (rr—s ry @k FIXu 101 5 k1al) s kil ki) = F U a)) = Ale)) /(R 2] RIa)

p+q=>n
(3.5)
COMMEPOTar 4y (1 ) Ok Tty kpa)) ko) = F 2ol ale ()
(3.6)

COMMETOL s 4)/ (s 1) Ok T ki) o) iy o) = F Uiy )0 )1y
(3.7)

COUmFPOys ) jrrsmy Ok TNy (nsky = B Qv ) ()
(3.8)

are equivalences in D(k) for all n > 0. One immediately sees (3.5)) is an equivalence
after observing that

QA o) Ale)) /(R o) Rla)) = Q> a)/ (R~ R) Ok k7]

(see [48 |07HS]). Similarly, (3.6) is seen to be an equivalence after observing that

Qara]—Al]) /(R —>R) = Qar—a) /(R —R) Ok klz] @ A'[z]dx

(see [48 O7THS]). For (3.7)), write J = ker(A’ — A), write I = ker(k{(z) — k) and
write H = ker(A’(z) — A). One observes first that

FIQ, ay—siy () ok) = 10

so it suffices to show
colim JP! @, 114l = pln]
ptq=>n
holds in D(k) for all n > 0. By a cofinality argument, one may reduce this to the

finite colimit diagram
colim JIP @, 14l = F

ptqzn
nzp
nzq

In this diagram, all objects are discrete k-modules and all maps are cofibrations
for the standard model structure on chain complexes. Hence one may compute the
colimit in the 1-category of discrete k-modules, and reduce to the statement

Z Jllfld — ginl

p+g>n

which is classical. Finally for (3.8]), a computation shows that

. k0] ¢=0
FgQ(k(z}ﬁk)/(kak) = {O q>0

24

{crys_coprod2

{crys_coprod4

{crys_coprodi

{crys_coprod3


https://stacks.math.columbia.edu/tag/07HS
https://stacks.math.columbia.edu/tag/07HS

hence it suffices to show the natural map

FanAqA)/(RwR) - FnQZA’(a:)HA)/(R’ﬁR)

is a quasi-isomorphism. This can be easily achieved by constructing an explicit
homotopy between the composition

noe z—0 noe noe
F Q(A’(z)%A)/(R’%R) = F Q(A’%A)/(R'*)R) - F Q(A’(z/’)*)A)/(R/ﬁR)

and the identity map (see [3, Theorem 6.13]). O

Lemma 3.13 (Filtered Poincaré lemma). Let (A" — A) € PDPairy gen, and let
I =ker(A’ — A). The natural map

18 a quast-isomorphism.

Proof. By Lemma we may (by factoring into coproducts) reduce to the case
n = 1, which again can be easily done by constructing an explicit homotopy (see
[3, Theorem 6.13]). O

The input to the classical crystalline cohomology functor is a PD-ring (A4, I,7)
and a morphism of rings A/I — R. The following oco-category, introduced by Mao
[41, p.49], thus gives a natural input category for derived crystalline cohomology.

Definition 3.14. For k a ring, we define the co-category
Cryscony, := AniPDPairy X caig» Fun(A', CAlgd™)

where the functor PDPair;, — CAlg?" is informally given by (A — A’) — A’, and
the functor Fun(A®, CAlgyl") — CAlgy" is given by (A — B) — A.

By [41, p. 52], a set of compact projective generators is given by objects of the
form

k[xlr"aznayl)"'aym]

[

k(z1,. .y z0)[z1, oy ] ————— K[z, ..., 2y

We write Cryscony, ,,, for the full subcategory spanned by these objects. Note that
the forgetful functor AniPDPair; — Fun(A!, CAlgy") induces a functor

Cryscon,, — Fun(A?, CAlgi")
sending (A" — A),(A— R)) —» (A’ - A — R).
Lemma 3.15. The functor

Cryscon,, — Fun(A?, CAlgd")

commutes with colimits.
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Proof. By |39, Lemma 5.4.5.5] it suffices to show the forgetful functor AniPDPair;, —
Fun(Al, CAlgi") preserves colimits, which follows from Lemma and |41}
Proposition 3.34]. O

It is also shown in |41} p. 52] that we have a forgetful functor L: Fun(A!, AniPDPairy) —
Cryscon,, informally given by

A — A A
+~ + = +
R — R R —» R

with right adjoint R: Cryscon, — Fun(A!, AniPDPairy,) informally given by

A’_>Aﬂ>A
+ ~ +
R — R R —» R

The following might be somewhat surprising.

{lem_R_colim}
Lemma 3.16. The functor R: Cryscon, — Fun(A!, AniPDPairy) preserves small

colimits.

Proof. By Lemma and [41, Proposition 3.34] it suffices to show the functor

Fun(A?, CAlgd") — Fun(A® x A!, CAlgq™)

sending
(A-B—-C)— f - f
A— B
commutes with colimits, which follows directly from [39, Proposition 5.1.2.3]. O

By the above lemma, the functor R also admits a right adjoint. We hope to
study this adjoint in future work, we believe it to be related to the functor G#
defined in [6, Definition 2.4.1].

Definition 3.17. Let k be a ring. We define the PD-adic filtered derived crystalline
cohomology functor Crys_,__,_y: Cryscon — CAlgg, (k) as

Crys_;— ) :==Fpp-adicdR(-»-)/(-»—) o R

We will write
L’i/(__)_): Cryscon — D(k)

for the p-th suspension of the p-th graded piece.
By definition, for any (R — A) € Fun(A!, CAlg}") we have
CrysA/(RﬂR) =dR4/r
in CAlgg, (k).
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{lem_crys_col
Lemma 3.18. The functor

Crys_,__,_): Cryscon — CAlgg, (k)

commutes with small colimits.
Proof. Combine Lemma [3.12] with Lemma [3.16} O

The following proposition basically states that the crystalline cohomology of A

over (R’ — R) can be computed as the de Rham cohomology of a lift A’ over R'.
{prop_iso_cry

Proposition 3.19. Let k be a ring, and (R’ — R) — (A’ — A) € Fun(A!, AniPDPairy).
The unit of the adjunction L 4 R induces an equivalence

Fpp—adicdR(a -4y /(R Rr) = Cr¥YSa/(rR)

Proof. See also |41, Proposition 4.16], we give some more details. Since all functors
involved commute with small colimits it suffices to show this for the four types of
compact projective generators of Fun(A!, AniPDPair) given by Lemma ie.
we need to show the maps

Fep—adicdR(k(z) k) /(k(z)—k) = FPD—adicdR(k—k)/(k(z)—k) (3.9) {eq_giso_1}
Fpp-adicdR (k(z) k) /(k—k) = FPD-adicdR (k1) / (k= k) (3.10) {eq_qiso_2}
Frp—adicdR (kfa] s kla]) /(kle) k1)) = FPD-adicdR(kla]shla]) /e okl (3:11)  {eq_giso 3}
Frp-—adicdR(k[z] > kia])/(k—k) = FPD—adicdR (k[z] > k[z])/(k—k) (3.12) {eq_giso_4}
are filtered quasi-isomorphisms. Now (3.11]) and (3 1-) are evidently quasi-isomorphisms,
and (3.10)) is a quasi-isomorphism by Lemma To compute the right hand side
of (3.9), we need to find a simplicial resolutlon of (k — k) over (k(z) — k).

A construction analogous to |32, Construction 4.16] gives a sunphaal resolution
Ce — (k — k) over (k{(x) — k) with

Cpn = (k{z,x1,...,2,) = k)
If we write I = ker(k(z) — k), then Lemma tells us the natural map
FPp—adicdRe, /iy -t) = 17

is a quasi-isomorphism for all n, which shows (3.9) is a quasi-isomorphism, estab-
lishing the result. O

3.3 Comparison with derived completions

: - .. . . . {ss_comp_dr}
In this section we define for any surjection of rings A — A/I the derived completion

Comp(A — A/I) also known as the Adams completion, see [5]. If A is Noetherian
this completion agrees with the usual completion, however for general A it can be
different.
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Moreover, Bhatt [5, Remark 4.5] shows that for any surjection of Q-algebras
A — A/I, there exists a canonical equivalence

COInp(A — A/I) &= &ﬁ(A/I)/A

in CAlgg, (k).

Before we can begin we need a good source category for the derived completion
functor, which the definition below gives for p = 1. We will consider this in slightly
bigger generality and consider a composition of multiple surjective ring maps, as
we will need this later.

Definition 3.20. We denote with Fun(AP, CAlg};")suyj the full subcategory of
Fun(AP, CAlg:") consisting of objects Ag — --- — A, such that mo(Ay) — mo(4;)
is surjective for all 7.

By Corollary [A13] a set of compact projective generators can be described as
follows. For i € {0,...,p}, let F;: AP — CAlgg be the unique functor satisfying

Fi(j) = {km =

k j>1

where the maps k[z] — k are given by x +— 0, and all other maps are the identity.
Then the set S, := {Fp,...,Fp} is a set of compact projective generators for
Fun(AP, CAlg}" )surj. For example, if p = 2 we have

klx] = k — k,
Sy = klx] — klz] — k,
klz] — klz] — k[z]

We shall write Fun(A?, Poly}, )surj,gen for the full subcategory spanned by coprod-
ucts of objects in S, (see Definition [A.14)).

Following [41], we will denote with Pairy the 1-category of surjections R — R’ of
(discrete) commutative k-algebras. We warn the reader that Pairy is not compact
1-projectively generated, however [41, Lemma 3.7] shows there does exist a fully
faithfull embedding Pairy < Fun(A', CAlgy")surj. We will often abuse notation by

writing (see also Definition [A.10))
AniPairy, ;= Fun(A", CAlg?™)ur

there is no chance for confusion as the left hand side is a priori not well-defined.
Note that if F': Fun(A!, CAlg}") — D preserves (sifted) colimits, then so does
F: AniPair;, — D, by Lemma [AT5]

Definition 3.21. We define the derived divided power envelope functor
(—)Len": AniPair;, — AniPDPairy,
as the left Kan extension of the composition

Pairy gen =, PDPairy gen € AniPDPairy,
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where env is the functor sending the surjective ring map

k[gj17"'az7lay17"'aym] - k[xlv"'7xn]
to the element k[z1,...,2,](Y1,. .., Ym) = k[z1,...,2,] in PDPairy gen.

By [41} Corollary 2.2] the derived divided power envelope admits a right adjoint
AniPDPairy — PDPair; to which we will refer as the forgetful functor.
We now wish to discuss filtrations.

Definition 3.22. Let (A — A/I) € Pair;, where A is a k-algebra and I is an ideal
of A. Then the rule n — I"™[0] defines an object in (D(k)>0)a = Fun(N°P, D(k)>o).
Using the multiplication on A this defines a functor

{derived_fil_

Fadic: Pairy — CAlgg, (k)>o (3.13) {eq_underived
(A= A/D) = {1},

We define the derived adic filtration functor
LF . qic: AniPairk — CAlgﬁl(k)ZO

as the left Kan extension of F,q;. restricted to the subcategory Fun(Al, Poly},)surj,gen-
We shall sometimes write

10V = LFZy (A — A/I)
and refer to it as the derived n-th power of I.
Lemma 3.23. The functor
LFadic : AniPairy — CAlgg, (k)0

{lem_fil_coli

preserves small colimits.

Proof. By Proposition [2.12] it suffices to show the map
Fadi05 Pairkgen — CAlgﬁl(k)

commutes with coproducts. By an induction argument, we thus need to show that
for any t € N and any (P — Q) € Pair gen the natural maps

F'(FLaie (P = Q) ® Flge (k[z] = k) = Figie(Pl2] = Q)

F'(Flaic(P = Q) ® Flgie(kl2] = k[2])) = Flaic(Plz] — Ql2])

are equivalences. We shall only give a proof for the first map, the second is similar
but easier. Write P = k[z1,...,Zn,¥1,---,Ym] and Q = k[x1,...,x,] so that the
map P — @ is given by y; — 0. By Lemma [2.3] it suffices to show

COlim (y17 R 7ym)p ®k7 (Z)q _> (y17 A 7ym7 Z)t
ptqg>t

is an equivalence in D(k). By a similar argument as in the proof of Lemma
one may reduce this to showing that

Z (ylv"-7y7n)p ' (Z)q = (yla"' 5y’m?Z)t

ptg>t

as discrete ideals in P[z], which we leave for the reader to verify. O
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Remark 3.24. Explicitly, using [39, Lemma 5.5.8.13] and Corollary one
can show that if k is a commutative Q-algebra, one may represent any object
(A — A/I) € AniPair, by a simplicial ring A, with a simplicial ideal I, such that
A; is a polynomial algebra for all simplicial degrees i, and I; C A; is generated by a
subset of the generators of A;. Then LF",. (A — A/I) is isomorphic to the image

adic

of I"" in D(k) under the Dold-Kan correspondence.

Construction 3.25. Denote with 7<¢: CAlgg (k) — CAlgg (k) the truncation
map induced by the t-structure on D(k). Write T7<oLFaqic = T<o © LFaqic. The
natural transformation id — 7<o of functors CAlgg (k) — CAlgg (k) induces a
natural transformation

LFadic = 7<oLFadic

of functors AniPair, — CAlgg, (k). For any (A — B) € Pairy one has
T<oFadic(A = B) = Faqic(A — B)
and thus we get canonical natural transformations
LFadic = T<oLFadic = Fadic
of functors Pair;, — CAlgg, (k).

Example 3.26. We warn the reader that even in characteristic 0, for a gen-
eral surjective map A — A/I of discrete rings, it is not generally the case that
T<oLFadic = Fadic. For example, let k be a ring of characteristic 0, A = k[z]/ (2?)
and I = (z). Applying the resolution from [32, Construction 4.16] to the regular
element (¢ — %) € k[t,z] one obtains a simplicial resolution for k[z]/(z?). Using
this resolution, one may show that 7<o(LFZy.) # 0 for all n > 0, even though
I™ =0 for n > 2.

We now give a divided power analogue of Definition [3.22]

Definition 3.27. Let A be a k-algebra, I an ideal of A, and v a PD-structure
on I, so that (A — A/I) € PDPairy. Then the rule n + I™[0] defines an object
in (D(k)>o0)a = Fun(N°P, D(k)>(). Using the multiplication on A this defines a
functor

FPD—adic: PDPairk — CAlgﬁl(k)ZO (314)
(A— A/I) — {1},

We define the derived PD-adic filtration functor
LFPD—adic: AniPDPairk — CAlgﬁl(k)ZO

as the left Kan extension of Fpp_aaic restricted to the subcategory PDPair, gen.

Lemma 3.28. The functor
LFpp_adic: AniPDPairk — CAlgﬁl(k)ZO

preserves small colimits.
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Proof. Analogous to the proof of Lemma [3.12 O

We shall sometimes abuse notation by writing LF 4q;c : AniPDPairy — CAlgg, (k)
for the composition

AniPDPair; — AniPair, —-2dic, CAlgg (k)
Note that we have a natural transformation

LFadic — LFPDfadiC (315>

{abb}

of functors AniPDPairy, — CAlgg (k) induced by the inclusion I C T [ on PDPairy, gen.

Lemma 3.29. If k is a Q-algebra, the natural functor
LFadic — LFPDfadic
is an equivalence of functors AniPDPairy, — CAlgg, (k).

Proof. It suffices to check this on PDPairy ge, where the statement is obvious. [J

Note that for (A — Ag) € AniPairy, the unit of the adjunction (—)" I forget
induces a canonical map LFaqgic(4A — Ag) — LFaqic((A — Ag)e™).

Lemma 3.30. Let k be a ring, and (A — Ag) € AniPair;. Then the composition
LFaqic(4 = Ao) = LFaaic((A = Ag)"™) — LFpp_adic((4 — Ag)*™)  (3.16)
induces an equivalence
Lgragic(A — Ao) = Lgrbp _aaic (A = Ao)™*™)
fori=0,1.

Proof. Since all functors commute with colimits it suffices to check this for k[z] —
k[z] and k[z] — k. The only nontrivial thing to check is that the map

(@)/ (=) = grpp_aaic (k(z) = k)
is an isomorphism in D(k)¥, which we leave for the reader to verify. O
Construction 3.31. Let k be a ring. Let (A — Ap) € AniPair;. Then the maps
(A— A) = (A— Ay) = (Ag — Ay)
in AniPair; induce maps
(A— A) = (A — Ag)t™ — (49 — Ay)
in AniPDPairy. We thus get a diagram

{compare_01}

{abc}

{construction

dR A, /4 <= AR (4o ag)tenv /(A 4y = AR (A A )en /(A Ag)Leny = LFpp _adic((A = Ag)™")

where the first arrow is an equivalence by Proposition [3.19] Inverting the first
arrow, we thus get a map

dR 4,4 — LFpp_adic((4 = Ag)"™) (3.17)
in CAlgg,(k), functorial in (A — Ag) € AniPairy.
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Proposition 3.32. Let k be a ring. Then the map induces an equivalence
dR_/— = LFpp_aqic((— — —)""™)

of functors AniPairy, — CAlgg, (k).

Proof. See |41] Proposition 4.64]. O

Corollary 3.33. Let k be a ring, and (A — Ag) € AniPairg. The natural map
A — dRy, 4 induces an equivalence

A/LF2 (A—)AQ)%dRAO/A/FZ

adic
in CAlgg, (k).
Proof. Combine Proposition [3.32| and Lemma [3.30 O

If k is a ring such that Q C k, the categories AniPDPair; and AniPairj are
canonically isomorphic, and we get the following result.

Corollary 3.34. Let k be a ring such that Q C k. Then the map induces
an equivalence
dR_,_ =5 LFagic(— — —)

of functors AniPairy, — CAlgg, (k).
Definition 3.35. We define the derived completion functor (see Remark |3.39)

Comp(— — —): Fun(Al, CAlg},")surj — CAlgg, (k)
as the composition

Fun(A', CAIg®)uy 25, CAlgy (k) =0 CAlgg (k)

We will refer to the filtration on Comp(A — A/I) as the derived adic filtration.

One may think of Comp(A — A/I) as the filtered E.-algebra whose p-filtered
piece is given by
lim_cofib (1 — 1))

n—oo

using the suggestive notation from Definition [3.22}

Remark 3.36. More explicitly, one may compute the derived completion Comp(A —
A/I) as follows. Start by taking a simplicial ring A, with a simplicial ideal I, such
that for all simplicial degrees i, A; is a polynomial algebra, I; C A; is generated by
a subset of the generators of A;, and

1€ A°P

in AniPairy,.
Then
Comp(A — A/I) = lim colim A;/I"

n—o00 (€ A°P

in CAlg}".

32

{surj_dr_adfi

{rem_compute_



Remark 3.37. Using Propositon and [47, Proposition 8.5, Corollary 10.4(iii)]
one may in fact show that if &k is of characteristic zero, A, is a simplicial ring and
I, is a (termwise) quasi-regular ideal, then the comparison map

Comp (cogm A; — Ai/IZ) — lim colim A; — A;/I
i€ ACP

n—o0o i€ A°p

is an equivalence in CAlg?". In particular, if A is a discrete ring and I C A is a

quasi-regular ideal, the derived completion agrees with the usual completion.
{surj_dr_comp
Corollary 3.38. If Q C k, the natural transformation

(Tf\{_/_ — Comp(— — —)

of functors

AniPair, — CAlgg, (k)
induced by Construction[3.31] is an equivalence.
Proof. Follows directly by applying Proposition [3.32 O

{rem_derived_

Remark 3.39. Let k£ be a ring such that Q C k. Given (A — B) € AniPairy,
using Lemma and Corollary we see that the natural map

Comp(A — B) — lign Comp(Cech(A — B) — B)

is an equivalence. Since mo(A) — mo(B) is surjective we see that the map mo(B®A") —
mo(B) is an equivalence. Hence

Comp(Cech(A — B) — B) = Cech(A — B)

by Theorem It follows that our definition of derived completion agrees with
the definition of the Adams completion given in [5].
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4 Improving Quillen’s convergence theorem

In [47], Quillen introduced the notion of a quasi-regular ideal. We warn the reader
that is not equivalent to the definition in [48, 07CU].

Definition 4.1. Let A be a ring. We say an ideal I C A is quasi-regular if
1. I/I? is a flat A/I-module.

2. The canonical map A,(I/I1%) — Tor?(A/I,A/I) constructed in [47, Defini-
tion 8.4] is an isomorphism for all ¢ > 0.

Definition 4.2. Let A be a simplicial ring, and let I C A be a simplicial ideal.
We say that I is quasi-reqular if I,, C A, is a quasi-regular ideal for all n.

Then Quillen proved the following (see [47, Theorem 8.8]).

Theorem 4.3 (Quillen’s convergence theorem). Let A be a simplicial ring, and
I C A be a simplicial ideal. If I is quasi-regular and mo(I) = 0, then A is I-adically
complete, i.e. the natural map A — Rlim(A/I™) is a weak equivalence of simplicial
rings.

The goal of this section is to show the assumption my(I) = 0 in the theorem
above can be weakened to merely assuming the image of 7y(I) in mo(A) is a nilpo-
tent ideal.

Theorem 4.4 (Quillen’s convergence theorem, improved version). Let A be a
simplicial ring, and let I C A be a quasi-reqular simplicial ideal. Suppose the image
of mo(I) in mo(A) is nilpotent. Then A is I-adically complete, i.e. the natural map
A — Rlim A/I" is a weak equivalence of simplicial Tings.

Note that the assumptions of the theorem do not necessarily imply that 7o (1*) =
0 for some k > 0, in fact it could happen that my(I*) is always nontrivial.

4.1 Strict-essentially-zero systems

Before we can prove Theorem [£.4] we need an intermezzo on strict-essentially-zero
systems (or Artin-Rees-zero systems, see [24, exposé V, 2.2]), which will be our
main computational tool. Let .4 be an abelian category. Write C = Fun(N°P, 4)
for the category of inverse systems in A.

Definition 4.5. A system {K,}, € C is strict-essentially-zero if there exists an
integer k£ > 0 such that all maps K, — K,, are zero for n —m > k.

We write Cy for the full subcategory of C of strict-essentially-zero systems.
The key motivation for studying strict-essentially-zero systems is the following.

Lemma 4.6. Suppose {K,}, € Co. Then lim K,, = R!lim K,, = 0.

Proof. The fact that lim K,, = 0 follows directly from the definition of the direct
limit. The condition that {K,}, is strict-essentially-zero also implies that {K,},
satisfies the Mittag-Leffler condition, hence R! lim K,, = 0. O
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The following lemma is key in studying strict-essentially-zero systems. It implies
that Cp is a Serre subcategory, see [48, 02MN].

Lemma 4.7. Suppose we are given a diagram
A, I B, 20,

in Fun(N°P, A) such that ker(gn) C im(fy,) for all n. If {An}n and {Cp}y are
strict-essentially-zero, then so is { By }y.

Proof. Let k such that A, — A,, is the zero map for n — m > k, and k' such that
C,, — C,, is zero for n —m > k'.

We claim that B,, — B,, is zero for n — m > k + k’. Indeed, let n,m € N such
that n—m > k+k'. Write / =n —k’, so that n —¢ =k’ and ¢ — m > k. Consider
the diagram

An B n On
I
A ¥ B[ CZ

L

A, —— B,, —— C,,

Since n—{ = k' the map C,, — Cy is the zero map, hence im(B,, — By) C im(A; —
By). But £ —m > k, hence Ay — A,, is the zero map, therefore im(A4, — By) maps
to 0 in B,,. It follows that B,, — B,, is the zero map. O

Corollary 4.8. The category Cy is a Serre subcategory of C. There exists an abelian
category C/Coy and an ezxact functor

F:C— C/CO
which is essentially surjective and has kernel Cy.
Proof. See |48 |02MS]. O

To end this section, we develop some machinery to detect when an element of
C actually lies in Cy.

Definition 4.9. For {A,},, € C and ¢ > 0, the shift map is the map {A,1c}n —
{A,}, in C given by the map A, . — A, in each degree.

Definition 4.10. Let f: A — B be a morphism in C. Then f is said to be
strict-essentially-zero if F(f) = 0.

Lemma 4.11. For any {A,}, € C and ¢ > 0, the shift map {Apictn — {Ankn
maps to an isomorphism in C/Cy.

Proof. This follows since the objects {ker(A,+. — An)}n, and {coker(A, . —
Ap)}n lie in Co. O

Corollary 4.12. Let {A,}, € C and ¢ > 0. If the shift map {Anictn — {An}tn is
strict-essentially-zero, then {A,}n € Co.
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4.2 Improving Quillen’s result

We now move on to proving Theorem[4.4] The basic strategy is to prove {m(I")},
is strict-essentially-zero by induction on k. We highly recommend the reader to
compare with the proof of [47, Theorem 8.8], in which it is shown that 74 (I¥+1) =0
by induction on k after assuming mo(I) = 0.

Write C = Fun(N°P, Ab) and let Cy be the full subcategory of strict-essentially-
zero systems. By Lemma [4.7] Cy is a Serre subcategory of C.

By Corollary to show that {m,(I™)}, € Co, it suffices to show that the
shift map

{7 (In+c)}n = A{m(I")}n

is strict-essentially-zero, which motivates what follows.
The following is a slight improvement of [47, Proposition 8.5], and is the basis
for Theorem .4

Lemma 4.13. Let A be a ring and let I C A be a quasi-reqular ideal. For fized
q >0 and k > 0, the system {Torj;‘(A/Ik,A/I")}n €Cp.

Proof. We give a proof by induction on k for fixed ¢ > 0. The case k = 1 is
proven in [47, Proposition 8.5, B,], in fact Quillen shows that Tor,(A/I, A/I") —
Tor,(A/I,A/I"1) is the zero map for all ¢ and n.

Now suppose the statement holds for £ — 1, we show it holds for k. Note that
by |47, Proposition 8.5, A;] the A/I-module I*~1/I* is flat, hence

Tor, (IF=1/IF, A/T™) = H, (IF1/IF @5 A/I™)

~H, (I’H/Ik ©%r (A/1 &Y A/I"))
= TR IR @4, Hy (A/T @Y% A/IT)
= ML/ 1M @4 Tor) (A1, A/I™)

is strict-essentially-zero (as an inverse system in n). The short exact sequence

0— 1"/ 1% 5 AJTF — A/TFE 0
induces an exact sequence
Tory (I*=1 /1%, A/T™) — Tor,(A/I*, AJI") — Tor,(A/T*1 A/I™)

The result now follows from Lemma [£.7] as the rightmost term is strict-essentially-
zero by our induction hypotheses, and we already showed the leftmost term was
strict-essentially-zero. O

Lemma 4.14. Let A be a simplicial ring, and let I C A be a simplicial ideal.
Suppose the image of wo(I) in wo(A) is a nilpotent ideal. Then {mo(I")}n € Co.

Proof. Let J be the image of my(I) in mo(A), and let k& > 0 be such that J* = 0.
Note that for any n, the image of mo(I™) in mo(A) is equal to J™. In particular, it
follows that mo(I*) — mo(A) is the zero map.
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Since If @4, I — 17" is surjective for all n, the map mo(I*) @nro(a) mo(I™) —
mo(I™) is surjective for all n. Now consider the commutative diagram

Wo([k) ®Tro(A) 7T0(In) —> 7T0(In+k)

| |

7o (A) @rocay To(I") —— mo(I™)

Since left vertical map is the zero map by assumption, and the top vertical map
is surjective, the right vertical map is the zero map as well. We conclude that
7o(I"Hk) — mo(I™) is the zero map for all n > 0, which proves the lemma. O

Note that for any simplicial ring A, we can consider the graded ring m.(A).
Then 7,(I") is a graded module over this ring for all n, and in particular we get
graded groups

i (A c n
Torp* W (,(1°), m.(I™))

for all p,n,c € Z>o. We will denote the ¢-th graded piece by
Torl* A (m,(I°), m (1)),

The following lemma is needed to analyze the spectral sequence from [46) 11, §6,
Theorem 6].

{lemma_graded
Lemma 4.15. Let A be a simplicial ring, and let I C A be a simplicial ideal. Let

k > 0. Suppose that {m;(I")}n € Cy for all0 < j < k. Then

{Torg*(A) (m. (I°), m(zn))k_p}n € C

for all p >0 and ¢ > 0.

Proof. Let P, o — m.(I°) be a graded projective resolution of m,(I°) as a m.(A)-
module. Then in each homological degree i, we have a surjection

k—p
{@Pa,i o (A) 7rk—p—a(f”)} - {(Pm ®Or. () W*(In))kfp}n

a=0

in C. Since the left hand side is an element of Cy, so is the right-hand side. Since
this holds for all 4, it follows that

{Hp ((P*,. Br. (4) ”*(In))k—p) }n

is an element of Cy, which is what we needed to show. O
{lemma_sez_de
Lemma 4.16. Let A be a simplicial ring, and let I C A be a simplicial ideal. Let

k > 0. Suppose that {m;(I")}n € Co for all 0 < i < k. Then for any c, the natural
map

{(m(I%) @4y m(I™)) 1o = {me(I° @5 1)}

is an epimorphism in C/Cy.
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Proof. By |46, 11, §6, Theorem 6] we have a spectral sequence
Er%,q = {Tor;r*(A) (W*(IC)’W*(IH))q}" = {mp4q(I° ®h ")}y,

in C. By Lemma one has E2, € Cy for p > 0, hence By € Co for p > 0.
It follows that
Egs = {m (I° @5 1)}

is an isomorphism in C/Cy. The result now follows since Ea r — Eg7, is an epimor-
phism (already in C). O

Lemma 4.17. Let A be a simplicial ring, and let I C A be a simplicial ideal. Let
k > 0. Suppose that {m;(I™)}, € Co for all 0 <i < k. Then there exists ¢ > 0 for
which the natural map

{me(I° @4 I")}n — {m(I")}n
is strict-essentially-zero.

Proof. Let ¢ be such that mo(I¢) — m(A) is the zero map. By Lemma 4.16 it
suffices to show the natural map

{(7(I%) @ () meI™)) Yo = {7 ()}

is strict-essentially-zero. Note that we have a diagram in C

(Do malI®) @ry(ay Th—a(I™) }n —> {(me(I€) @, (a) T (I™))  In

! !

(Do Ta(A) @rg(a) ThmaI™) by ——————> {me(I")}n

in which the horizontal arrows are surjections. Since the left vertical map is strict-
essentially-zero (note {m—_q(I")}n € Co for a > 0), we get a diagram

{@5:0 ma(1€) Qo (A) Th—a(I™)}n —> {(71-* (1°) Q. (A) 71-*(In))k}n
\ l
{m(I™)}n
in C/Cy. The result follows. O

At first glance, the Lemma below might seem identical to the Lemma above,
however this is not quite the case as the derived tensor product has been replaced
by the underived version, and I is now assumed to be regular.

Lemma 4.18. Let A be a simplicial ring, and let I C A be a simplicial ideal. Let
k > 0. Suppose that I is quasi-reqular, and {m;(I"™)}, € Co for all0 <i < k. Then
there exists ¢ > 0 such that

{m(I°@a ") }n = {me(I") }n

18 strict-essentially-zero.
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Proof. By Lemma there exists ¢ > 0 such that
{me(1° @4 I")}n — {m(I™)}n

is strict-essentially-zero. Now by [46, II, §6, Theorem 6], we have a spectral se-
quence in C

E}%q = {mp(Torg (1, 1"))}n = {mpt4(I° ®IA ")}

Note that for ¢ > 0, one has Tory (¢, I"™) = Tor,42(A/I¢, A/I"™). Hence by Lemma
one has E2 € Cy for all ¢ > 0. It follows that {my(I° @45 I")}, — Ef , is an
isomorphism in C/Cy. We thus get a diagram in C/Cy

{ﬂ'k(IC ®L Im }n AN {7Tk I°®4y In)}

|

7Tk I"

The result follows. O

Proposition 4.19. Let A be a simplicial ring, and let I C A be a simplicial
ideal. Let k > 0. Suppose that I is quasi-reqular, and {mo(I™)}, € Co. Then
{Wk(ln)}n € Cy for all k.

Proof. By induction on k, assume the statement holds for k' < k. By Lemma [4.18
there exists ¢ > 0 such that {7, (I° ®a4 I"™)} — {m(I™)}, is strict-essentially-zero.
Consider the short exact sequence

0 — Tori (A/I¢,I") —— I° @, I™ Ite 0

of simplicial A-modules, inducing a short exact sequence
me(I¢ @4 I™) —— mu(I"+) —— m_, (Tor{‘(A/Ic,In))
functorial in n. Note that
{mr_1 (Torf(A/Ian))}n = {mk—1 (TOFIQL‘(A/Ica A/In)>}n €Co
by Lemma We thus get a diagram in C/Cy

{1 ®@aI") b — {me(I"F)}n

|

{mi (1) }n
It follows that the shift map {m,(1"%°)}, — {7k (I™)}, is strict-essentially-zero, so
that we may conclude {7 (I")}, € Co by Corollary O
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Using the above proposition we now prove the promised theorem.

Proof of Theorem[/.]} By Lemma and Proposition we see that {m;(I")}n
is strict-essentially-zero for all £ > 0. From the short exact sequence of simplicial

A-modules
0—-I"—>A—A/I" =0 (4.1)

we obtain exact sequences
Wk(A) — Wk(A/I") — kal(ln)

functorial in n. Since {mi_1(I™)}, is strict-essentially-zero, there exists ¢ such that
Tp—1(I") = m—1(I™) is the zero map for n — m > c. For fixed m and n > m + ¢,
we have a commutative diagram

Tl'k(A) E— Wk(A/In) E— Tl'k-_l(In)

l | ls

Wk(A) —_— Wk(A/Im) —_— kal(fm)

It follows that the image of 7 (A/I™) in 7 (A/I™) is equal to the image of m(A),
and in particular stabilizes. Thus {m(A/I™)} satisfies the Mittag-Leffler condition,
and R lim 7, (A/I™) = 0 for all k > 0. Since {my(I™)}, is strict-essentially-zero,
by Lemma we conclude that Rlim m,(I™) = 0 for all k& > 0. The long exact
sequence associated to together with the fact that Rlim is an exact functor
then shows that the natural map

ﬂk(A) :—> Rhmwk(A/I")

is an isomorphism for all k.
Since we already showed that R! lim 7 (A/I™) = 0, we conclude that the natural
map
7, (A) = lim 7, (A/17)

is an isomorphism for all k. Furthermore, the Milnor exact sequence
0 — R'limmpy 1 (A/I™) — 7 (Rlim A/I™) — lim 7, (A/I™) — 0

implies that the map 71 (R1lim A/I™) = lim m(A/I™) is an isomorphism for all k.
It follows that the natural map

1 (A) = (R lim A/1™)

is an isomorphism for all k, as desired. O

4.3 Application: Nil-invariance for derived de Rham coho-
mology in characteristic zero
In |21} |22], Goodwillie showed that if k is a Q-algebra and A — B is a surjective

morphism of (simplicial) associative k-algebras with a nilpotent kernel, the natural

e HP*(A/k) — HP*(B/k)
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on periodic Hochschild homology gives a quasi-isomorphism of chain complexes.
Using the Hochschild-Kostant-Rosenberg isomorphism, one may transfer this result
to derived de Rham cohomology to show that for any surjective morphism A — B
of commutative k-algebras with nilpotent kernel, the natural map

aﬁA/k - aﬁB/k

is a quasi-isomorphism, see also [45]. In this section we give a direct proof of this
result, without comparing to periodic Hochschild homology.

The idea of the proof is to apply the trick from [5, Proposition 4.16] twice to
reduce to the case that mo(k) — mo(A) is an isomorphism (where now k might no
longer be discrete). In this case the statement is obvious since both sides of
are isomorphic to k by our improved version of Quillen’s convergence theorem.

Theorem 4.20 (Nil-invariance of derived de Rham cohomology). Let k be a ring
such that Q C k, and let A — B be a morphism in CAlg}" such that mo(A) — mo(B)
is surjective. If ker(mo(A) — mo(B)) is a nilpotent ideal in mo(A), then the natural
map

dRA/k — dRB/k (42)

is an equivalence in CAlg,.

Note that although the map is a morphism of filtered E-algebras, it is not an
equivalence of filtered algebras, as the graded pieces need not be isomorphic.

Proof of Theorem[{.20. By Lemma (descent on the base) and commuting lim-
its with limits we see that the natural map

dRz/x — 1i£n dR z/cech(x -Y)

is an equivalence for all (X — Y — Z) € Fun(A?, CAlg}"). Applying this to
k—A— Aand k — A — B, we get a commutative diagram

AR/, — lima dR 4 /ceen (ks A)

| l

dRp/r — lima dR B/ cech(k—4)

Since mo(A®™) — mo(A) is surjective, it thus suffices to show that for any F €
CAlgy" and any map F — A such that mo(F) — mo(A) is surjective, the natural
map

dRA/F%dRB/F (43)

is an isomorphism.

Repeating this trick, we see it suffices to show is an equivalence if 7o (F') —
mo(A) is an isomorphism. Since 7y(F) — mo(A) is an isomorphism, it is surjective,
and hence by Corollary we may identify the map with

Comp(F — A) — Comp(F — B) (4.4)
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Since mo(F) — mp(A) is an isomorphism, we see that ker(mo(F') — mo(B)) is nilpo-

tent. Hence by Theorem (and Remark [3.36)) both sides of (4.4)) are equivalent

to F, hence in particular (4.4]) is an equivalence. O
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5 Chern classes in derived de Rham cohomology

Let k be aring. Let X be a scheme over k with the resolution property ([48,|0F85]).
In this chapter, we define for any £ € Perf(X) and any ¢ > 0 a Chern class

¢i(€) € B (F'dR x 1)
Moreover, if ¢! is invertible in k, we will construct the ith part of the Chern character
Chz(g) S HZi(Fiaﬁx/k)

Then we will show our construction is uniquely determined by additivity, functo-
riality and its value on line bundles, see Proposition [5.24]

We mostly follow the approach of Bhatt and Lurie from |7} §7, §9.2]. To avoid
needing to introduce syntomic cohomology, we adapt their construction of higher
Chern classes to the case of derived de Rham cohomology. The first three sections
merely provide results needed to make the machinery work, the entire construction
is contained in the last section.

5.1 Relative derived de Rham cohomology

In this section, we define derived de Rham cohomology relative to an open subset,
and construct a cup product map for relative derived de Rham cohomology in a
very general way.

Definition 5.1. Let k be a ring, let X be an algebraic stack over k, and let U C X
be an open substack. Then we define the relative derived de Rham cohomology

CTI\{(X,U)/k = fib(dRx 5 — &EU/I@)

The limit exists by [38, Proposition 3.2.2.1] and can be computed in D(k)g.
Note that since this is a filtered algebra, we immediately get a canonical map

FPAR (x,v)/k @k FIAR(x,v)/k — FPHAR(x,0)/k
The remainder of this section is devoted to constructing a map
FPAR (xv)/6 @ F1AR(x,v) /1 — FPHAR(x vov) /i
for different open substacks U,V C X. We start with a lemma.

Lemma 5.2. Let k be a ring. Let X be an algebraic stack over k, and let U,V C
X be open substacks which cover X (i.e. the map UV — X is an effective
epimorphism in Sty ). Then the diagram

UXXV%U
V—— X

is a pushout diagram in Sty.
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Proof. We thank Dhyan Aranha for teaching us the following argument. We prove
the following more general statement: For any relative n-strack X — Y and U,V C
X open relative n-substacks which cover X, the diagram

UxxV — U

| !

V — X

is a pushout square.

If X is an algebraic space, then this follows from the analogous statement in the
category of sheaves of sets. Now suppose the statement is known for any relative
(n — 1)-stack, and pick a relative n-stack f: X — Y. Let U,V C X be relative
n-substacks which cover X. Let Z be defined by the pushout diagram

UxxV —— U
Vv—— 7

It suffices to show the natural map Z — X is an open immersion. Let T'— X be
a smooth cover of X which is a relative (n — 1)-stack. Since T — X is a smooth
cover, it suffices to show the map Zr — T is an open immersion. But Zr fits in a
pushout diagram

UT XT VT — UT

| |

Vp ——— Zp
so the result follows by the induction hypothesis. O

Proposition 5.3. Let C® be a symmetric monoidal stable co-category. Let X be
any oo-topos, and let F,G be C-valued sheaves on X. Let U,V € X, and define
U UV as the unique object sitting in a pushout square

UxxV —U

| !

V—UuV

in X. Write
F(X,U) :=fib(F(X) — F))

Then there exists a map
FX,U)@G(X,V) = (FRGX,UUV)
fitting in a commutative diagram

FX,U)@G(X,V) — (FRG)(X,UUV)

| |

FX)©G(X) ——— (Feg)X)
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in C.
Proof. Define T € C as the unique object fitting in a cartesian diagram
T — F(X)®§G(V)
| o
FU)@G(X) —— FU)@G(V)

We then have a diagram

T FV)oG(V)
l | (5.1) {diagramt}
FW)@GU) —— FU xx V) 26U xx V)
By the sheaf property of F @ G we have a pullback diagram
(FRGOUUV) —— (FRG)(V)

| |

(FRGU) —— (FG)(U xx V)

Thus the diagram induces a map
T—= (Feg)UuuV)

fitting in a commutative diagram

FX)®G(X) —— T

|
(F@lg)(X) —— (FRG)UUV)
By Lemma the canonical map
FX,U)@GX,V) > fib(F(X)®G(X)—>1T)
is an equivalence, the result follows. O
{prop_relativ
Corollary 5.4. Let X be an algebraic stack, and let U,V C X be open substacks.
Then there exists a map
FPAR (x,0)/k ® FUAR (x,v)/% — FPHAR (x, 00w n

fitting in a commutative diagram

Fp(Tﬁ(X,U)/k ® Fq&f\{(x,\/)/k — Ferqaﬁ(X,UUV)/k

l l

Fp(iﬁx/k ®Fq(ﬁx/k —_— Fp+q(ﬁx/k

in D(k).
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Proof. Since FPdR is a sheaf for any p by Proposition we may apply Lemma
and Proposition [5.3] to find a map

FPAR (x,v)/k @ FIAR (x,v) /i —= (deR(X,UUV)/k ® quR(X,UuV)/k)

the result follows by composing with the multiplication map. O

5.2 The classifying stack of short exact sequences

For n € N, denote with denote with GL,, the group scheme of invertible matrices
over Spec(Z), that is

GL,, := Spec (Z[Z‘i]‘ | 1,] € {1, . 7n}]det(mij)])
The following identifies BGL,, as the classifying stack of vector bundles of rank n.

Lemma 5.5. Let k be a ring and let X be a stack over k. Then there exists an
equivalence of spaces

Vect,, (X)= >~ Mapg,, (X, BGL,)
functorial in X.

Proof. Since both sides are sheaves on St (see Lemma/[2.17)), it suffices to construct
the equivalence of functors when restricted to (CAlg)Op. In this case, both sides
are 1-groupoids, and the construction is classical (see e.g. [33, Example 4.32]). O

We now wish to generalize the above to short exact sequences of vector bundles.
We start by introducing the corresponding group scheme. For m,n € N, we denote
P, m the group scheme of upper triangular block matrices in GL,,1,. Explicitly

P, m = Spec (Z[o:ij li,7€{l,....,n+ m}]det(mij)]/[mm)

where I, ,, is the ideal generated by all z;; with ¢ > n and j < n.
For any stack X over k, we denote with ExtVect,, ,,(X) the category of exact
triangles

A-sB-C*h
in D(X) such that A € Vect,,(X), B € Vect,+m(X) and C € Vect,,(X).

Lemma 5.6. The functor
ExtVecty, (=)~ : StF — S

1s a sheaf for the fppf topology.

Proof. For any k-stack X and any F € Fun(A! x Al D(X)), the condition that
F(i,7) is a vector bundle of a certain rank for some (i,5) € {0,1}? is local for the
flat topology. Moreover, the condition that F is a pullback square is also local for
the flat topology. It follows that the functor

ExtVect,, m : Sty” — Cato

is a sheaf for the fppf topology. The result follows after observing that (—)=
preserves limits. O
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Proposition 5.7. Let k be a ring and let X be a stack over k. Then there exists
an equivalence of spaces

ExtVect,, m (X)= =~ Mapg,, (X, BP;, )
functorial in X.

Proof. Again, since both sides are sheaves on St; by Lemma it suffices to
construct the equivalence of functors when restricted to (CAlgg)C’p7 in which case
both sides are 1-groupoids. Consider the standard short exact sequence

S = [0— 0% - oYt o8 O}

on X. Since any short exact sequence T' € Vect,, ,,(X) is locally isomorphic to S,
and moreover Aut(S) ~ P,, ,,,(Ox), the result follows. O

5.3 A result of Totaro

In this section, we slightly adapt a theorem on the de Rham cohomology classifying
spaces that is originally due to Totaro. The motivation for this excursion is to
provide a crucial ingredient for the Cartan formula for Chern classes in derived de
Rham cohomology in the next section. We start by recalling the result, see [50}
Theorem 6.1] for the proof.

Theorem 5.8 (Totaro). Let k be a field, and let P be a parabolic subgroup of
a reductive group G over a field k. Let L be the Levi quotient of P. Then the

restriction 4 4
RI'(BP,Y) — RI'(BL, )

is an equivalence for all j.
We now wish to extend this result slightly, and show & can be any ring.

Lemma 5.9. Let A € D(Z). If A Q =0 and A® (Z/pZ) = 0 for all prime
numbers p, then A = 0.

Proof. This is well known, we follow [40, Lemma E.9.3.1]. By induction on the
number of prime divisors of n, one may first show that A ®y (Z/nZ) = 0 for all
n € N, by choosing a prime divisor p | n and tensoring the exact triangle

(Z/pZ) — (Z/nZ) = (Z/(n/p)Z)

with A.
Next, note that we have

Q/zZ = c]%lel&n Z/NZ
in D(Z)¥. Since taking homology of chain complexes commutes with filtered col-

imits, it follows that the above equality also holds in D(Z). Commuting tensor
products with colimits it follows that

A®zQ/Z 20
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in D(Z). The result now follows by tensoring the exact triangle
+1
Z—Q—(Q/z) —

with A.

Corollary 5.10. If f: A — B is a morphism in D(Z) such that f ® Q is an
equivalence, and f ®yz (Z/pZ) is an equivalence for all primes p, then f is an
equivalence.

Proof. Follows by applying the previous lemma to the cone of f. O

With this, we can state and prove the version of Totaro’s theorem that we need.

Proposition 5.11. Let k be a ring. Let m,n € N. Write P = P, ,,,, and L =
GL,, x GL,,. Then for any p > 0, the map

deRBPk/k — deRBLk/k
is an equivalence in D(k).

Proof. Note that BP and BL can be written as a limit of smooth affine stacks (over
a cosimplicial diagram), so by Lemma it suffices to show that the natural map

RI(BP, Q=7

—/k) - RF(BLkv Q%?k)

is a quasi-isomorphism. By the (convergent) spectral sequence for hypercohomol-
ogy it suffices to show that

RI'(BPy, Q" ) — RT(BL;, Q)

is a quasi-isomorphism for all i. Note that BP is perfect by |2, Corollary 3.22].
Moreover, BP is smooth over Spec(Z), hence BPy, is the derived pullback BP X gpcc(z)
Spec(k) computed in Stz. Finally the sheaf QZ/Z on BP is flat since BP is smooth

over Z, hence the derived pullback is equal to Qi/k. Thus, by [2, Proposition 3.10]
the base change map

RI'(BP,Q ;) ®% k — RI(BP,, Q. ;)

is an equivalence (similarly for BL), so it suffices to prove the result in the case
k = Z. This follows directly from Corollary and Theorem 5.8 O

5.4 Chern classes in derived de Rham cohomology

In this section we define Chern classes in Hodge-completed derived de Rham coho-
mology, and show that they satisfy the usual axioms. To avoid having to introduce
syntomic cohomology, we adapt the results from [7, §9, 2] from the syntomic case.
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Definition 5.12. Define the functor
G : CAlgy — D(2)¥ C D(Z)
R+ R*
By right Kan extension to Stj and sheafifcation, we get an induced functor
RI'(—,Gy,) € Shveppt(Sty, D(Z))
Since G, is smooth, for any scheme X one has
RI'(X,G,,) = RT'(Xet, Gin)

where the right hand side denotes the cohomology of G,, on the étale site of X.
Moreover, one has a canonical isomorphism of spaces

Pic(X) ~ 75o(RI'(X,G)[1])

for any k-stack X (here we think of the right hand side of a space via the Dold-Kan

construction).
{gm_extend}
Lemma 5.13. The functor

Gy : CAlgy — Ab C D(Z)
R+— R*
1s the left Kan extension from its restriction to smooth k-algebras.

Proof. Since

1
Gm(R) = Homcmgf (kz, E]’ R)

this is a consequence of the following much more general statement: If C is any
category, Cop C C is a full subcategory and X € Cp, the left Kan extension of the
functor Home, (X, —) along the inclusion is given by Home (X, —). O

Construction 5.14 (First Chern class for line bundles). Let k be a ring. For any
ring R which is smooth over k, we have a commutative diagram

R* 0

b

Qpjp — Qf%/k — ...

defining a functor

CAlgY — Fun(A',D(Z))
R~ (R*[-1] = F'Q% ;)

By Construction we thus get for any smooth ring R over k a canonical map

Gm(R)[—l] — Fl(ﬁR/k
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functorial in R. By Lemma the functor G,, is the left Kan extension of
its restriction to smooth k-algebras. By [39, Proposition 4.3.2.17] we thus get a
canonical map

G (R)[-1] = F'dRp/y,
functorial in R € CAlg) .

By Proposition , the functor R FlaﬁR /i is a sheaf and thus we get a
natural map

c{®: T (Spec(R), Gy [-1]) — Flcﬁ\%R/k

for any R € CAlgg. By right Kan extension, this induces a functor Sty —
Fun(A'!, D(Z)) given on any k-stack X by the map

R D(X, G [~1]) = F'dRx s (5.2)
in D(Z). We call this the first Chern class in derived de Rham cohomology.

Definition 5.15. Let k be a ring, let X be a stack over k, and let £ be a line
bundle on X corresponding to an element [£] € H'(RT'(X,G,,)). We define its
first Chern class .

(L) e HQ(FlaﬁX/k)
to be the image of [£].

—

Remark 5.16. Since || is functorial in X, the construction of c{® commutes
with pullbacks, i.e. for any morphism of stacks f: X — Y and £ € Pic(Y) one has
Freft(L) = (L)

Lemma 5.17 (Projective space bundle formula). Let k be a ring, let X be a stack

over k, and let £ be a vector bundle on X of constant rank r. Set

ti= —R(O(1) e B (FdRege 1)

Then for all m, the map

r—1

@Fm*i&ﬁxm[—%]

=0

(Lt,t™™ N TS
F dR,]p(g)/k (5.3)

is an equivalence in D(k).

Proof. Since we have a map, it suffices to give a proof locally on X, in which case
P(£) 2 X Xgpec(k) Pj- By the Kiinneth formula (Corollary [3.6) one may reduce to
the case X = Spec(k), which is the statement of [48] 0FM.J|. O

In particular, setting m = 0 we get an equivalence
1, )
@dRX/k 22 —) dR]p(g)/k
in D(k).
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Definition 5.18 (Higher Chern classes). Let k be a ring, let X be a stack over k,
and let £ be a vector bundle on X of constant rank r. Write t = —c{®(O(1)). We
define the i-th Chern class

IR () € HY (FdRx)

as the (r—i)-th component of the image of —t" under the inverse of the isomorphism

(5-3)-
For a general vector bundle £ € Vect(X), we define the i-th Chern class by
decomposing X into components on which £ has constant rank.

Theorem 5.19 (Cartan formula). Let k be a ring, let X be a stack over k, and let
0=EE=F—=G—-0

be a short exact sequence of vector bundles on X. Then
ci(F) = ¢i()eiy(G)
§=0

Proof. After decomposing X into pieces where the vector bundles have constant
rank, by Propositionl@we only need to verify this for X = BP,, ,,, for alln,m € N,
so in particular we may assume that X is an algebraic stack.

Base changing along the map BGL,, x BGL,,, — BP,, ,,,, by Totaro’s theorem
(Proposition and Lemma it suffices to show the equality holds for the
universal (split) short exact sequence on BGL,, x BGL,,. We may thus reduce to
the case where F = £ @ G, where £ and G are vector bundles of constant rank n
and m respectively.

Let m: P(F) — X be the projection map, and let Op(z)(—1) be the tautological
subbundle of 7*(F), with Chern class t := ¢1(Opr)(—1)). Let Us € P(F) be the
open subset of P(F) for which the composite

Opry(—1) = 7 (F) = 7°(€)

is the inclusion of a subbundle, and similarly for Ug. Clearly Ug U Ug = P(F).
Note that we have a commutative diagram

Us —— X
e~
P(€)

and moreover,
Pe(Op(e)(—1)) = Opr)(—1)|ve
It follows that the element

3w (e(€)(—t) € B (F”cTI\{Ug /k)
=0

o1
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is equal to zero. Hence there exists an element 7 € HQ"(F”(ER(XUg)/k) in the
relative cohomology group mapping to

S (e E)(1) € 1 (P )

=0

Similarly, we find the existence of an element 7’ € H2m(Fm(TF\{( X,Ug)/k) in the
relative cohomology group mapping to

> (@(@)(—) € B (F"dRx)
=0

Using Corollary we find the existence of an element 7-/ € H2"+™) (F™*™dR(x x)/k)

mapping to
(ZW*(Ci(f))(—t)i> : (Z ﬂ—*(ci(g))(_t)i>
i=0 i=0
Since clearly F"+de( x,x)/k = 0 we find that this last expression is zero, which
implies the theorem. O

Corollary 5.20. Let k be a ring. The map c; defined above induces for any k-stack
X a unique map

¢i: Ko(Vect(X)) — H2 (F‘Eﬁx/k)

satisfying c;(f*€) = f*¢i(€).

Definition 5.21 (Chern character). Let k be a ring such that ¢! is invertible in k.
Let X be a stack over k. For i > 0, let o; € k[z1,...,z,] be the i-th symmetric
polynomial, and let 0; € k[o1,...,0;] be the unique polynomial such that

91'(0'17...,0'1') :1‘114__}'_1-?”
We define the i-th Chern character
chy s Ko(X) — H (FidARX/k)

by
Gi(cl(é’), ey Cl(g))

0!

Chl(g) =
using the algebra structure on

P H¥ (F/dRx/1,)
J

induced by the filtered E.-algebra structure on dr X/k-

We now wish to generalize to perfect complexes. Let X be a quasi-compact and
quasi-separated scheme over k which has the resolution property [48, OF8D]. By
[48, OF8E] any & € Perf(X) can be represented by a bounded complex of vector
bundles, so that we may talk about its image [£] € Ko(Vect(X)).
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Definition 5.22. Let k£ be a ring, and let X be a quasi-compact and quasi-
separated scheme over k which has the resolution property. For £ € Perf(X),
define the i-th Chern class

(€) e HY (FidARX/k)

as ¢;(€) := ¢;([€]). If 4! is invertible in k, we define ch;(£) := ch;([€]) for any
€ € Perf(X).

Using the natural map Fi(ﬁ\%x/k — Lix/k[—i], we also obtain Chern classes and
characters in H'(L¢ k)

Proposition 5.23. Let k be a ring, and let i be a number such that i! is invertible
in k. The ith Chern character ch; satisfies the following properties:

1. For any quasi-compact and quasi-separated scheme X over k with the resolu-
tion property and any exact triangle

EsFog

in Perf(X), one has
ch;(F) = ch; (&) + chi(9)

2. If X,Y are quasi-compact and quasi-separated schemes over k with the reso-
lution property and f: X — Y is a morphism of schemes over k, then

Chz(f*g) = f*Chl(g)
for all € € Perf(X).

3. For any scheme X over k and any line bundle L on X one has

C1 (,C)l

Proof. Statement (2) follows form Remark Statement (1) and (3) follow
from elementary identities between symmetric polynomials combined with Theorem
.19 O

We now show these properties characterise the Chern character uniquely. As
we will later need this for Hodge cohomology, we formulate the statement for both
de Rham and Hodge cohomology.

Proposition 5.24 (Uniqueness of Chern character). Let k be a ring such that i!
is invertible in k. Let A* € {Li_/k[—i],Fidfl:\{_/k},

Suppose that for every quasi-compact and quasi-separated scheme X over k
which has the resolution property and any £ € Perf(X), we are given an element

chy(€) € H* (A% )

satisfying the properties from Proposition [5-23
Then ch;(£) = ch; (&) for all quasi-compact and quasi-separated schemes X over
k with the resolution property, and all £ € Perf(X).
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Proof. Let X be a quasi-compact and quasi-separated scheme over k with the
resolution property, and £ € Perf(X). We wish to show that ch;(£) = ch;(&).
Since X has the resolution property we may represent £ by a boundex complex of
locally free sheaves, hence using (1) we may reduce to the case where £ is a locally
free sheaf on X. Since the pullback map

H* (A% ) = H? (Abey 1)

is injective for all 4 > 0, we may reduce to the case where £ has a filtration with
graded quotients given by line bundles. The result then follows by applying (1)
and (3). O

5.5 Chern classes without Hodge completion

In this section we construct Chern classes in uncompleted derived de Rham co-
homology in the p-adic case. The following lemma is the main ingredient in the
construction.

Lemma 5.25. Let p be a prime number, and let k be a ring over Z/p"7Z for some
n > 1. Let G be a smooth affine group scheme over k.
Then for any ¢ > 0, the map

H*(F'dRpg ) = H%(Fi&ﬁBG/k)
is an isomorphism.

Proof. Since BG can be written as a colimit of smooth affine stacks over a simplicial
diagram and we defined de Rham cohomology of stacks by right Kan extension,
its de Rham cohomology can be computed by computing it for the affine schemes
and taking the limit over the cosimplicial diagram. Thus the result follows from
Lemma 3.3 O

Construction 5.26. Let p be a prime number, and let k be a ring over Z/p"Z for
some n > 1. Let &yniv be the universal rank r vector bundle on BGL, ;. Let

C;}niv c H2i (Fz dRBGLT,,k)
be the inverse image of c{®(&€,y;,) under the isomorphism
H?(FdRpcr, ) = B (F'dRpar, )

from Lemma [5.25]
For X any stack over k and £ a vector bundle of rank r on X corresponding to
a map
fe: X = BGL, 4,
(see Lemma [5.5), we define ¢;(€) := fZ(c;). For general £ € Vect(X) we define its
Chern class by decomposing X into pieces on which £ has constant rank. If ¢! is
invertible in k, we define the ¢-th Chern character

0i(c1(E),...,ci(E))

7!

Chz(g) =
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When X is a quasi-compact and quasi-separated scheme over k which has the
resolution property, and £ € Perf(X), define the i-th Chern class as ¢;(E) := ¢;([€]).
If ¢! is invertible in k, we define ch;(€) := ch;([€]) for any &€ € Perf(X).

We leave it to the reader to verify that the above definition is the (unique)
construction satisfying the properties from Proposition (the only nontrivial
thing to check is the Cartan formula, which can be done by applying Lemma [5.25]
to BPn,m,k)~
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6 Kodaira—Spencer classes and variation of Hodge
structures

Let A be a local Artinian C-algebra and let X be a smooth and proper variety over
A. Let
XO =X ><Spec(A) Spec((C)

By |19, Lemma 5.5.3] the maps

A= Qo

C — Q%an /¢

are quasi-isomorphisms of complexes of sheaves on X?*. Combined with GAGA
we obtain isomorphisms

H* (X", A) = H*(X, Q%)
H*(X8n7 ) = H*(X()?Q;(O/C)

Denote with ¢ the composition
H* (X, Q}O/c) ®c A = H* (X", C) ®c A 2 H* (X", A) = H*(X, 0%/a) (6.1)
Given 7 > 0 and an element
v e F'HY(Xo, 9%, /c)

we want to determine whether or not ¢(v) lies in the i-th part of the Hodge filtra-
tion.

Bloch [9] showed this can be studied using the Gauss—Manin connection, how-
ever his procedure only works with conditions on the base A. The goal of this
section is to generalize his method to general bases (and even to mixed character-
istic). The main idea is to replace the isomorphism ¢ with its algebraic analogue
, an idea originally due to Pridham [45]. This will allow us to generalize
Bloch’s algebraic computation to all A.

6.1 Hodge-theoretic obstructions for (derived) completed de
Rham cohomology

In this section, we rephrase Bloch’s problem by a more algebraic problem. We first
define an algebraic analogue of the map for completed derived de Rham co-
homology, using nil-invariance. We then define an obstruction class that measures
whether or not a cohomology class that sits within the Hodge filtration over the
base remains within the Hodge filtration when that smaller base is enlarged by a
nilpotent thickening.

We start by introducing a more general notion of a local Artinian C-algebra.
Note that we will only be considering discrete thickenings.
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Definition 6.1. Let k be a ring. A nilpotent thickening of k is a commutative k-
algebra R and a nilpotent ideal I C R such that the composition k — R — (R/I)
is an isomorphism. A morphism of nilpotent thickenings is a commutative diagram

N

such that R’ — R is surjective. Finally, we say that a morphism of nilpotent
thickenings is square zero if J = ker(R' — R) satisfies J? = 0.

Example 6.2. Any local Artinian C-algebra is a nilpotent thickening of C.

Remark 6.3. If k is any ring such that Q C k and R is a nilpotent thickening of
k, for any smooth scheme X over R with X¢ := X Xgpec(r) Spec(k), the map

(TRX/R — (TRXO/R

is an equivalence in D(R) by globalizing Theorem using ([2.3)).

Definition 6.4. Let k be a ring such that Q C k, let R be a nilpotent thickening
of k, and let X be a smooth scheme over R. Let Xo = X Xgpec(r) Spec(k). Define
the stratifying map

PR.x dRx,/r @k R — dRx/Rr

as the composition
dRXO/k Rk R —— dRXO/R — dRX/R

after inverting the right equivalence.

Before we continue, we verify that our stratifying map agrees with the map
(6.1), so that there can be no confusion about the map ¢ x«y in Theorem

Lemma 6.5. Let R be a local Artinian C-algebra, and let X be a smooth and
proper scheme over R. Denote with Xo := X Xgpec(r) Spec(C). Then the diagram

~
dR, X

_ ¢ _

H*(Xo,dRx,/c) ® R —= H*(X,dRx/R)
. R ©-1) . .

H (X0, %, ) @c R H' (X, 0% )

commutes.

o7
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Proof. For Y — Spec(B) a morphism of schemes of finite type C such that Y can be
embedded in a smooth B-scheme, write Hyy,,(Y/B) for Harthshorne’s algebraic de
Rham cohomology 25| §I1.1], and Hjp,, (Y*"/B**) for the holomorphic (analytic)
version [25, §IV.1]. The main properties we need of Harthshorne’s theory are the
following.

e The cohomology groups Hjy,,(Y/B) and Hy,, (Y /B*") are functorial in the
pair (Y, B).

o Whenever Y — Spec(B) is smooth, there are functorial isomorphisms Hj (Y/B) &

Hjp.,(Y/B) and Hjig (Y2 /B?") = Hyp,, (Y22 /B2),

We get a commutative diagram

H*(dRox/p) —— Higa(X/R) — Hij, (X)™/(R)™) —=— H*(X*", R)

I | | 5

H*(dRx,/r) — Hifar(Xo/R) — " Hip (X3 /(R)™) +—— H*(X§", R)

T T T T

H* (AR, /c) — Hiar (Xo/C) —=— Hip,, (X5"/C™) —— H*(X3",C)

By [5, Corollary 4.27] the left horizontal arrows are isomorphisms. Then note that
Xy — R is still proper, since it is the composition of the proper map Xy — Spec(C)
with the closed immersion Spec(C) — Spec(R). Moreover Hi, . (Xo/R) is finite for
all 4, for example by comparing with Hij,, (X/R) via (4.2). Thus by [25| Proposition
4.1] the middle horizontal arrows are isomorphisms. Finally by |19, Lemma 5.5.3]
the right horizontal arrows are isomorphisms.

The top left vertical arrow is an isomorphism by . It follows that all
top vertical arrows are isomorphisms. The result now follows by carefully chasing
through the diagram after inverting all the relevant arrows: Going straight up from
the bottom left to the top left gives PR.x going all the way right-up-left gives

61 O

The following lemma is the algebraic version of the statement that Chern classes
are horizontal for the Gauss—Manin connection.

Lemma 6.6 (Horizontality of Chern classes). Let k be a ring and let R be a
nilpotent thickening of k. Let X be a smooth and proper scheme over R. Let
€ € Perf(X), and let & = E|x,. Then

L‘OHP\Q,X (Chi(go) ® 1) = Chz(((:)
m Hgi(aﬁx/R).
Proof. Since the diagram
Ko (X)) =———= Ko(Xi) «— Ko(X)

J{Chi J{Chi J{Chi

HQi(aﬁxk/k) — Hm(éﬁxk/fe) — HZi(aﬁX/R)
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commutes, this follows immediately by definition of the stratifying map. O

We now finally give our definition of the algebraic obstruction class, as promised.

Definition 6.7. Let k be a ring and let R be a nilpotent thickening of k. Let X

be a smooth and proper scheme over R. Let vy € H2i(Fi(IﬁXk/k).
We define the obstruction class to vy staying in the Hodge filtration

Obg(R}R('Uo) S H2i (aﬁx/R/Fz)
as the image of vg ® 1 under the composition

~
S0(1R,X

H%(CTRXk/k) ®r R —— Hzi(aﬁX/R) - Hzi(aﬁX/R/Fi)

Almost by definition, we see that the obstruction class to vy staying in the
Hodge filtration vanishes if and only if vy lands in the i-th parth of the Hodge
filtration on H*(dR x /r), which explains the terminology.

Remark 6.8. The following will not be needed for the rest of the text, but might
be of interested to readers familiar with more classical constructions.
Let k = C, and suppose R’ — R is a square zero morphism of nilpotent thicken-

ings with I = ker(R’ — R). Let X’ ER Spec(R’) be a smooth and proper morphism,
and set

X = XI XSpeC(R’) SpeC(R)
Xo =X X Spec(R’) Spec((C)

Suppose vy € Hzi(&f\{XO/C) is such that
Ob@R(UO) € H%(aﬁX/R/Fi)
vanishes. In this case, Bloch [9] defined an obstruction class in
H* (&I\{X/R/Fi) ®r Qrrjc
Note that the composition
IR 405
induces a map

H* (JﬁX/R/Fi> ®p I — H” (CTEX/R/Fi) ®r Qr/c

One would expect the image of obgﬁ /r(v0) to be Bloch’s obstruction class for the
horizontal section vy, however we do not see an easy argument for this, and since
we have no need for it we will not pursue this.
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6.2 Hodge-theoretic obstructions for (derived) crystalline co-
homology

In this section we give definitions analogous to those in Section Note however
that here we are working with uncompleted theories, which are not well behaved
in characteristic zero.

Most of the constructions and results make sense for the completed theory,
however for everything to be well-behaved, one needs a divided-power analogue of
Theorem [£.4] to conclude that the natural map

R — CrySRO/(R*)RO)

is an equivalence for any (R — Ry) € PDPairy with I = ker(R — Ry) such that
I = 0 for some n > 0. Unfortunately it seems difficult to prove such a result
using the methods from the proof of Theorem [£.4] so we instead work around this
issue using uncompleted theories.

We start by giving the crystalline analogue of the map .

Definition 6.9. Let k be a ring. Let (R — Ry) € PDPair;, and let X — Spec(R)
be a smooth scheme. Write Xo = X Xgpec(r) Spec(Ro). We define the crystalline
stratification map

Pcrys,x + AdRxy /. = dRx/r

in D(k) as the map obtained by inverting the equivalences in the diagram

dRXo/k — CrySXo/(R—>R0) & CrySX/(R—>R) SR CrySRo/(R%Ro) (—N— dRX/R

where the middle map is an equivalence by Lemma [3.18 and the last map is an
equivalence since

Crysgp,/(rsro) = R

We will denote with

acrys: Crysx, /(r—ro) = dRy/g (6.2)
the map obtained by inverting the two equivalences in the diagram above.
Remark 6.10. By [4, Proposition 3.25] or |41, Proposition 4.66, 4.87, 4.90], if R
is a (Z/p"7Z)-algebra we have a diagram

H*(Crysx, jrny) — H'(dRx/r)

I I

HEis(Xo/(R — Ro)) —— Har(X/R)

cris
thus our construction agrees with more classical constructions.

Definition 6.11. Let k be a ring. Let (R — Rg) € PDPairg, and let X be
a smooth and proper scheme over R. Write X := X Xgpec(r) Spec(fg). Let

v € H*(F'dR x, /1)
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We define the obstruction class to vy staying in the Hodge filtration

obPp(vo) € H* (dRx/p/F")

as the image of vy under the composition

PCrys, X

Y (F'dRx, /¢) = B (Crysy, /posny) ) H” (dRy,r) — H* (dRy/p/F")

6.3 The (derived) Kodaira—Spencer map

Let k£ be a commutative ring. In this section we define the derived analogue of
the Kodaira—Spencer map. That is, for any surjection of k-algebras A’ — A with
kernel I, we wish to construct a map

Lasx[-1] = I/1?

in D(A). Moreover, this map should be functorial in the pair (A" — A). In fact,
we believe this to be the map in [48| 0GPT], however we will not verify this. The

starting point is the following construction.
{cons_ks}
Construction 6.12. Let k£ be a ring. Combining Proposition [3.32] and Lemma

3.30) we get for any any (A" — A) € AniPairy an equivalence
dR4 4 /F* = A'/LF? (6.3) {dr_filadic}

adic

in CAlgg, (k). If we now assume A" — A is a map of discrete k-algebras with kernel
I, we can consider the composition

dRaya /F? = A'JLF24. — A'JF24. (6.4) {aaa}
in CAlgg, (k). Applying gr!(—) we get a map
Kajarn: Laja[—1] = I/1?
We will also denote the composition
Lask[~1] = Laja[~1] = graqic(A" — 4) = 1/1?
with k4,47 /k, and refer to it as the Kodaira—Spencer map.
Remark 6.13. Note that we may have chosen k = A’ in the above construction, {ead}
so that we get a commutative diagram
QT

J 1| (6.5)
dRA/A/ — dR,A/A//F2

in D(A").
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We now wish to lift k4/4//; to a map in D(A), functorial in A. For this, we
first need to construct a good target category.

Definition 6.14. We denote with CAlgModf the 1-category of pairs (A, M) where
A is a discrete commutative k-algebra and M is a discrete A module. A morphism
(A, M) — (B,N) is given by a map of k-algebras A — B (which gives N the
structure of an A-module), and a map of A-modules M — N.

A set of compact 1-projective generators for CAlgModg is given by S = {(k[z],0), (k, k)}.

The full subcategory spanned by coproducts of elements in S is the 1-category of
pairs (A, M) such that A is a finitely generated polynomial algebra over k and M
is a finite free A-module.

Definition 6.15. We define CAlgMod?” := Ani(CAlgMod;).
One may show that for any A € CAlgf one has
CAlgMod}” xcaigen {A} = D(A)>o
We denote with
po: CAlgMod;" — CAlgh"
the functor informally given by (A4, M) — A, and with
p1: CAlgMod}" — D(k)

the functor informally given by (A, M) — M (these functors are easily constructed
by animating). Write evy: AniPair;, — CAlg:" for the morphism informally given
by (A" — A) — A, and

const: AniPair; — Fun(A®!, AniPairy,)

for the functor informally given by A — (A 1, A).
Informally, the following lemma shows there exists a functor sending an (ani-
mated) surjective ring map A’ — A to a morphism in D(A)>¢ lifting the morphism

Lajar[—1] = Lgrag. (4" — A)
in D(k).

Lemma 6.16. Let k be a ring. Denote with ©: AniPairy — Fun(Al, D(k)q)) the
functor sending an object (A" — A) to the map (6.5).
There exists a unique colimit-preserving functor

¢ : AniPairj, — Fun(A', CAlgMod3™)

such that pgot) ~ constoevy as functors AniPair;, — Fun(Al, CAlgd™) and p;ot) ~
er!(0) as functors AniPair;, — Fun(Al, D(k)),
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Proof. Let
¢: Fun(A', CAIgi™)surj — Fun(A', D(k))
be defined by ¢ := gr! (©). Informally, ¢ is given by
(A= A) > (Lapw =1 S Lerlge(4 - 4)
By |48l |08SI], we may restrict to get a functor

o: Fun(Al, Poly},)surj,gen — Fun(Al,D(k)O)

In particular, for any standard surjective ring map between polynomial algebras

k[zla"'axnvyla"'aym] ﬂ) k[y17"'7ym]
from now on denoted P — @ with kernel I := (z1,...,2,), we obtain a map
[
Losp[—1] =5 I/T? (6.6)

in D(k)?, functorial in P — Q.

We claim that, for a fixed standard surjection of polynomial k-algebras P — @,
the map is a map of -modules. Indeed, the entire construction above is
functorial in k, and we can consider the surjection P — @ as a standard surjection
of polynomial Q-algebras, so we may simply have chosen k = @ at the beginning.

We thus have a unique lift

¢: Fun(A?, Poly}.)surj.gen — Fun(A*, CAlgModg)
@7~ (@) “25 @)
By animating ¢, we obtain our desired functor
1 AniPair, — Fun(A!, CAlgMod}")

one easily checks it satisfies the compatibilities outlined in the statement. Unique-
ness is clear as the colimit-preserving property implies that ¢ is determined by

P O
We now can construct our lifted Kodaira—Spencer map.

Construction 6.17. Let k£ be a ring. Using animation, one may construct a
functor given informally by

o : AniPair, — Fun(A', CAlgMod3™)
(A= A) = ((A,Lask) = (A, Lajar))
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Animating the functor
zﬁlz Pairy, — CAlgModg
(A— AJI) v~ (A/I,1/T?)

we set 11 : Ani(1)1) — 1)1 to be the canonical natural transformation. Thus ¢, is
a functor

1y : Pairy — Fun(A', CAlgModi™)
(A= AJT) 1 (A, Lty (A — A/D)) > (A, 1/1%))
We define the functor
#: Pairy — Fun(A', CAlgMod3")
defined as the (pointwise) composition 11 o 1) o ¢y.
For R — R a surjective map of k-algebras with kernel I, we thus get a map
(p1 0 W)(R = R): Lygye[—1] = I/1°

in D(R)>0, which maps to kg g/ under the forgetful functor to D(k).

{c_k_compare}
Lemma 6.18. Let R' — R be a surjective map with kernel I. Let cg/p : I[1] —

Lr/r: be the map induced on cofibers of the commutative square

RR— R

| |

dRp/p /[F2 — R

Then the composition

I[l] ¢R/R/ LR/R’ KR/R'/k

1/1°(1]
in D(R') is (the suspension of) the natural projection I — I/I?.
Proof. First observe that the composition

R — dRp/r /F? — R /(LF24.(R' — R)) — R'/I?

adic

is the natural projection. The result follows by applying the functor cofib(— — R)

to the composition above. O
{lem_kodaira_
Lemma 6.19. Let k be a ring, and let R — R be a surjective ring map of k-

algebras with kernel I. For A’ € CAlgh, write J = A ®@p I and A = A’ @p' R,
so that (A" — A) € AniPairy. There exists a commutative diagram

ARg LR/R’[_l] — ]LA/A/[—l]

lid@nR/R//R/ l”A/A’/R’

AQpl ————— J

in CAlgMod%;, functorial in A’ € CAlgh.
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Proof. Follows since the equivalence in Proposition [3.32|commutes with coproducts.
O

Definition 6.20. Let k be a ring, R’ — R a surjective ring map with kernel
I and X’ a smooth scheme over R’. Write X = X' Xgpec(r/) Spec(R). For any
smooth R’-algebra A’ and any map Spec(A’) — X’ the Kodaira—Spencer map from
Construction [6.17] defines a map

Lasg[-1] = I/I* ®p A
in D(A), where A := R’ ®p A, functorial in A’. Hence we obtain a map
Ly/k[~1] = I/I* ®p Ox
in D(X). We obtain a class
kx/x /i € Bxty (Lx/k, I/T? ® Ox)

which we call the Kodaira—Spencer class.

6.4 The computation for a square-zero extension

In this section we do the main computation relating the Kodaira—Spencer map with
an abstract stratifying map to handle both the characteristic zero and the p-adic
case at once. We start by introducing the latter, for this we need some setup.

{sit_sqzero}
Situation 6.21 (Square-zero deformation context). Let k be a ring, and let R’ —
R be a surjective map of k-algebras such that I = ker(R’ — R) satisfies I? = 0.
Let
x4 Spec(R')
be a smooth morphism of schemes over k, and set
X = X/ XSpeC(R’) Spec(R)
Finally write Z := I ® Ox.

In this situation, the map
aﬁX'/R’ %aﬁR/R/ = &ﬁX/R’
is an equivalence in D(k)g by Corollary We will denote with
Kx/p cﬁ\%x/R/ = cﬁ\{X,/R/ gcﬁ\{R/R, (6.7) {xunneth_sqz}

the inverse in D(k)g).

{defalpha}
Definition 6.22. In Situation Denote with « the composition

aﬁR/R/ —)R//F2 =R

adic

in D(k)g1, where the first map is (6.4]), R’ is equipped with the adic filtration, and
the last identity holds since I% = 0.
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By definition we may identify

gr'(a) ~ (id: R — R)

grl(a)z(mR/R//k:LR/R/[—I] —)I/Iz) (68) {aab}
in D(k).

{acc}
Definition 6.23. In Situation Define the square-zero stratification map
Qgqz - CTI\R,X/R/ — d/'ﬁ‘X’/R/

in D(k)g as the composition

— Kx/r - ~ = ida 3 ~ -
dRX/R/ _— dRX’/R’ngR/R’ —_— dRX//ngR — dRX’/R’

where R’ is equipped with the adic filtration.
{aam}

Lemma 6.24. Let k be a Q-algebra. Then asq, s inverse to the isomorphism
dRX’/R’ — dRX/R/

in D(k) from Remark[6.5
Proof. Identifying dRp//r ~ R and R'/F2;, . ~ R’ (since I* = 0), by Remark

adic
we get a commutative diagram

dRR’/R’ — s R

" o

dRR/R’ —_— dRR/R//F2
Since the bottom map factors through dr Rr/R We get a commutative diagram

(TER’/R’ E— R/

" o]

(Tﬁ'R/R’ —_— dRR/R//F2

in D(k). It follows that the map «: &ER/R/ — R’ is inverse to the composition
R ~ (TER//R/ — (TER/R’

Now consider the commutative diagram

(T]‘:\{X'/R’ _— (TRX/R’

[ [

dRX//R’ %dRR’/R/ —_— dRX’/R’j%dR‘R/R’
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in which all arrows are isomorphisms. Inverting the bottom and rightmost arrow,
and identifying dRp//pr ~ R’ we get a commutative diagram

@‘X’/R’ R (EZF\{X/R’

1 Jeor
dRX’/R’gR/ m dRX’/R’ngR/R’
in which all arrows are isomorphisms. Since the composition down-left—up is csqy
by definition, the result follows. O

We now wish to relate the square—zero stratification map to the Kodaira—
Spencer map. We isolate an essential ingredient in the following lemma.

Lemma 6.25. Let C® be a symmetric monoidal stable co-category, and let A, B €
D(C)a1. Suppose that FI(B) =0 for all j > 2.
Then for any i € N, there exists a commutative diagram

F(A® B) — FPAQF'B — gtl0) A F°B

| I

T(gr . 1 o .
gr'(A® B) —— grim1(A) ® gr'(B) “12% gri~1(4) @ F'B

in C, where ©§" is defined in , grl®® in , and o denotes the composition
gr’(B) ~F'B - F°B
in C.

Proof. For any ¢,j € N with £+ j > i + 1, one either has £ > ¢ or j > 2. Thus
either ¢ > i or F/(B) = 0. It follows that the composition

F{(A) @ F/(B) - FPAQF'B — grl®Y A F°B
is zero. Since ' 4
Fi"1(A® B) = colim F(A) ® F/(B)
L+ >it1
it follows that the composition
FH(A®B) » FPA@F'B - gtV A0 FOB

is zero. We thus get a diagram

Fi(A® B) —— FA® F'B

| |

gr'(A® B) —— grlY A F'B

Since
gr'(A® B) = (gr'(A) @ gr’(B)) & (gr' ' (A) @ gr' (B))
the result follows. O
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The following lemma contains the essential computation, relating the square-

zero stratification map with the Kodaira—Spencer map.
{main_comput}
Lemma 6.26. In Situation|0.21. There exists a commutative diagram

Fi (d/]\R/X//R,gd/]\R/R/R/) e d/l\q,X//ngd/ﬁ,R/R/ Lm) (Tﬁ/X//R//FzgR/

l T

iRy ® Rpymr ) — LS (1 —i] @ Ly [=1] 2225 L5 =i @1
gr( X/R S R/R) X/R[ Z]R/ r/r/[—1] X/R[ Z]R,

(6.9) {aac}
in D(k), where k is shorthand for KR/R'/k, and q; is the quotient map.

Proof. Applying Lemma to A = F* dRX/ r and B = F?,. R’ we obtain a

commutative diagram

adic

F? (d/l?{X’/R’ @R/> E— &RX’/R’ @R/ E— CTI?{X//R//Fi@R/
R R’ R’

: T

g (dRX, @ R/> LG - oI — Lighpll—i o’

(6.10) {6231}
We thus see the existence of the following commutative diagram

Fi (dARX,/R, @BdARR/R,) Ad®a, pi (dRX,/R, ®R> ——— ARy p /[F' & R
R’ R’

i l (6.10) T

gri ((T}\{X’/R’%(T]‘:\{R/R') % gri <(§.}\{X//R/§R/> L} Lg(ll/R/[l *Z} % R,

(6.11) {aad}
By general properties of the tensor products of filtered objects, the composition
of the top horizontal arrows in is equivalent to the composition of the top
horizontal arrows in . Since

78" o (id ®a) ~ (id ®gr'(a)) o wér (id ®k R R/ /1) © W5
(the second equivalence follows from (6.8)), the result follows. O

We now wish to slightly tweak the above result, to improve our understanding
of the map 7;'. We start by defining the antisymmetrization map

i—1
/\ M — < A ) ® M
for any (animated) ring A and any connective A-module M.
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Definition 6.27. Let k be a ring. Define the antisymmetrization map functor
Fun(A', CAlgMod2") — Fun(A!, CAlgModi")
as the left Kan extension of the functor

Fun(A!, CAlgMod, )gen — Fun(Al, CAlgMody)
(A, M) — (A,/\(M) — 77\1(M) ®M)
where A;_1 is given by
mlAu-/\miHzi:(—l)’“mlA~-~A@A~-Ami®mk
k=1

where by my we mean that m;, does not appear in the wedge product.

For any fixed ring R/, by right Kan extension we obtain for any stack X over k
a map
LT i—1
Ai—l- ]L?X/R’ — ]LZX/R/ (%){ ]LX/R’

in D(X).

Definition 6.28. Let k& be a ring. For any two objects A, B € CAlg}", write
C = A ® B and denote with 8 the composition

i ~ il ~orie1
Lok 9 L/ — (L), ® C) ® (c ® Lp/k) = Lep ® Lecya
clearly 3 is an isomorphism. Define the map
i1 i—1
Beyes Leyw @ Lo = Ly, @ Lk
as the unique map fitting in a commutative diagram

i1 Be/k i—1
Lo @Lopm — Ly, @ Lk

~ 6.12
Lg/lB ?LC/A

in D(k).

If A=k[zy,...,2,] and B = k[zp41,...,2Tnim] are polynomial algebras over
k, then a k-basis for the module LiC/k ® Ly can be given by the set

n+m
{(H mzk> cday, A Aday, ® dag
k=1

0<t<n+m

a;g ZO
<y << <n+m
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One may check the map B¢, is the unique A-linear map sending

n+m n n+m
( H x?) dxy, A Adxy, @dxy — ((H xZ") cdmy, A A dxm) ®<< H xzk> dme)
k=1 k=1 k=n+1

ifvp <nforallke{l,...,n} and £ > n+ 1, and sending everything else to 0.
By right Kan extending from ([6.12) and using (2.4)), we obtain for k-algebra R
and any smooth scheme X over k a diagram

i Bx
L l/k ® LXR/k%]Lx/k@LR/k

l =

i—1
H"XR/R ® Lxp/x

in D(k). In particular, in Situation we obtain a diagram

i— BX/R/ ie .

l / (6.13) {aag}

sz/lg[ — i (% Lx/x/[—1]

in D(k).
Lemma 6.29. In Situation|6.21, There exists a commutative diagram

{beta_lemma}

LfX/R/[_Z} <+ gri (dRX'/R/ngR/R’)
J/Ai—l lﬂgr
1
i . B / i .
L/l =1 ox Lo/ [=1] =5 Lyl =1 ® Lp/r 1]

in D(k), where v := gri(KX/R/) is the i-th graded piece of the Kiinneth isomorphism
(67
Proof. Since all corners of the square define D(R’)-valued sheaves on Stp/ it suffices
to construct the diagram in the case X = Spec(A’) for some smooth R’-algebra A’,
functorially in A’.

It thus suffices to construct a functor

Fun(A2, CAlg?") — Fun(A' x A', D(k))
given on (A’ < R’ — R) € Fun(A2, CAlg}?) by

i i—k
LYy = @i ]LA’/R’ ® L) g
J{Ai_l lﬁr
i Bay i
]LA/1R’®]LA/R/ —)]LA,}R, ®R/LR/R’
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where we write A = A’ Qp' R.
We leave it to the reader to verify that for any

(A" + R' = R) € Fun(A', Poly, )gen Xpoly, Fun(A', Poly,)gen

the diagram

i i i—k
Qfa&/R' ~ Do QA’/R’ %ﬁ Q]13/3/

lAi_ 1 lﬁr

. Bayr! -
Qi‘/lR/ % QA/R/ % QZ/}R/ QR QR/R’

in D(k)¥ commutes, where again A = A’ ®@p R. The desired functor is then
obtained by left Kan extension. O

{kappa_comp_s
Proposition 6.30. In Situation|6.21] There exists a commutative diagram

Osqz

Fi(ﬁ,x/R/ _— (TﬁX/R’ CTE’X//R’ _— @,X//R//Fi

! I

; . A i— . id i— . ~ i— .
Lic g (=] == Ligpl =] ® Lyyxo[-1] =5 Ligh[1—i] © T —=5 Lighl—i T
Ox Ox R
in D(k), where k = Kkx/x1/k-

Proof. Globalizing Lemma and combining it with Lemma and (6.13]), we

obtain a commutative diagram

LfX/R’ — gI‘i (dRX//R’ % dRR/R’)
lAi,l Lemma [6.29] lﬂgr
1
Bx/r

Lighel1 -1 L1l 225 LG 0 - g Layal-1
l N (6.14) {aan}
B
Li a1 — ] (gi))(LX/X’[_l] d®rnyp!/x
lid®"@x/x’/k Lemma [6.19
Lé(_/lR[l —i] @ T +—Fg—— Li(_/lR[l —1 % I

Ox

in D(k). Combining the above diagram with Lemma we obtain a commutative
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diagram

L~ K ’ . —~ PO —~ "~ Qa — .
Flde/R/ ﬂ) F* (dRX//R’ ngR/R/> _—> dR‘X’/R/ %dR‘R/R’ L dR‘X//R’/FlE

l Lemma [6.20 T
Li a4 Bx/pr IR S dR i L=l 1 —ileL LN
X/R/ [—i] —— gr X'/R! % R/R | — X//R/[ — % r/r[=1] — X’/R/[ — ]
©19) |
i A i— . id ®k i— . ~ i— .
ILX/R,[fz] /4 LX/lR[l — 1 (%ILX/X/[fl} _— ILX/lR[l — 58;1' _— ]LX/lR[l —1]
in D(k). The result follows by definition of cgqy. O

6.5 The obstruction class as a cup product with the Kodaira—
Spencer class in characteristic zero

{sec_compute_
In this section we refine Bloch’s computation, expressing the Hodge-theoretic ob-

struction class as a cup product with a (derived) Kodaira—Spencer class.

{label_chern_
Proposition 6.31. Let k be a ring with Q C k, and suppose R' — R is a square

zero morphism of nilpotent thickenings with I = ker(R' — R). Let X' EN Spec(R')
be a smooth and proper morphism, and set

X = X/ XSpec(R’) Spec(R)
X() = XI XSpCC(R’) Spec(k)

WriteZ :=1®r0Ox. Letv € Hzi(FicTﬁX/k). Let vy € H%(Fi(ﬁ\{xo/k) be the image

of vg.
Then the composition

H (Fi(ﬁ\{X/k> SH (Lf’x/k)
2en g (Lich, ® Lyw
xR &
— H’ (Qéf/lR ® LX/X/>
X
d®kx/x'/r/ Ht+ (i-t
> X/R gi

B (dARX,/R,/Fi) ®1

maps v to obgg/R, (vo).
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The reader should keep the following example in mind (which will be the only
application for us): £ is a vector bundle on X with Chern character v = ch;(€), so
that Vo = Chi(5|X0).

Proof of Proposition[6.31 Consider the commutative diagram

CT];\{X/R’ — (T];\{XO/R/

>

(TﬁX’/R’

where all arrows are seen to be isomorphisms by Remark [6.3] Inverting the two
vertical arrows (using Lemma [6.24)), we obtain a commutative diagram

Fi(ﬁX/R/ —_— CTRX/R/ —— CT?{XO/R/ — dRXO/k (g R

~
a‘ Z o~
saz PR, x/
—

dRx/ /e

where the right triangle exists by definition of CIR x/ (see Definition .
Applying H*(—) and chasing v through the diagram we see that ob}i(P,” / (Vo) is
equal to the image of v under the composition

H2i(Fi&-].:\{X/R/) — H2i((§EX/R/) Eiz—) H2i((§-].:\{X//R/) — H2i(aﬁx//R//Fi)

Thus the result follows from Proposition [6.30} O

6.6 The obstruction class as a cup product with the Kodaira—
Spencer class in the p-adic case

In this section we state the analogue of the result in Section [6.5] for the p-adic case.

Proposition 6.32. Let k be a ring over Z/p"Z for some n > 1, and let Ry be a
k-algebra. Let
(R/ — R0771) — (R — ROuW)

be a morphism in PDPairy such that R' — R is a surjection with kernel I and
I = .
Let X' L Spec(R') be a smooth and proper morphism, and set
X = X/ XSpec(R’) Spec(R)
X() = XI XSpec(R’) Spec(Ro)

Write T := I ®p Ox. Let v € H*(FidRy ), write vy € H*(F'dRy, 1) for the
image of vg.
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Then the composition
2 (FldRo/e) — H' (L, )
— HZ ( 1X/R’)

A i
5 (]L X 9 LX/R/>

—)HZ <QZ /R [029] LX/X’)

id®HX/X’/R’ i1 1
X/R

~ H% (&ﬁx/ e /F® I)
maps v to obgﬁ;sR, (vo).
Proof. Recall that the derived divided power envelope functor (see Definition
(—)kn: AniPairj, — AniPDPairy,
admits a right adjoint
forget: AniPDPair;, — AniPairy

We will denote the unit for this adjunction with 1 and the counit with e.
We may consider (R' — R) as an obJect in PDPairy C AniPDPairy by giving
it the trivial PD-structure (since I'?l = 0). Write

(T" — R) := (forget(R' — R))Lenv

which lives in AniPDPairy.
By the triangle identity for an adjunction, the composition of the counit and
unit
forget(R' — R) & forget(T" — R) < forget(R' — R)
is equivalent to the identity in AniPairg, so that the composition
LFaqic(R — R) 2 LFaqic(T — R) = LFaqic(R' — R)

is equivalent to the identity in CAlgg; (k). We thus get a commutative diagram

LFpp_aqaic(T" = R) LFaqic(T” — R) +—— LF,qc(R — R)

| |

LFppaaic(R — R) S22 LF4(R — R)
in CAlgg,(k), inducing a commutative diagram

Lerl%? (T = B) &2 152 (R - R)

~ ETadic

€
l (3.15)

Lgrg’)gladic(Rl — R)
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in D(k), where the horizontal map is an equivalence by Lemma We thus get
a commutative diagram

©3)

dR g/ /P2 B Ler%? (R — R)

PD adic adic

JE (6.15) {abe}
13.15)

[0,

Lgrl? (R’ —R)

in D(k).
On the other hand, the commutative diagram

dRp/r «——— dR(rp)/(r>r) — AR SRy /(1 >R) —— LFpD_adic(T” — R)

I ! | J

d n ~
CrySR/(R/*}R) 1—> CrySR/(R/*)R) —_— CrySR/(T/*)R) —_— LFPD—adic (T’ — R)
induces a commutative diagram

dRpp — B2 LFpp_oqie(T' — R)

| I

Cl"ySR/(R,%R) L> LFPDfadiC(T/ — R)

and hence a commutative diagram

dRR/R’ LFPDfadic(T/ — R)
l l (6.16) {abt}

CrySR/(R/*}R) % LFPDfadiC(R/ — R)

in CAlgg (k). Applying grl®? (—) to the diagram (6.16) and combining it with the
diagram (6.15]), we get a commutative diagram

dRpp /F2 —E2 100D (R R)

J l3.15 (6.17)

CrysR/(R,%R)/F —— Lgr[0 )adic(R' — R)

in D(k), and hence a commutative diagram

AR g [ el®? (R - R)
J l (6.18) {abg}
CrysR/(R,HR)/F —— gr[o ,2) ? die(R— R)

(0]



in D(k). Using that 1'%l = 0, we may identify
0,2 0,2
gr[adlc) (R/ - R) = gr%D) adic (R/ - R) = RI
so that by moving around the arrows in (6.18]) we obtain a commutative diagram

dRR/R//F2 Emd CI'YSR/(R/%R)/FQ

TR

in D(k). Denote with « also the composition
dRR/R’ — CTf{R/R/ 1) R
so that by definition of « (Definition [6.22) we obtain a commutative diagram

dRR/R' —_— CI"YSR/(R’—>R)

\ lN (6.19) {abm}
R/

in D(k). Applying dRx//p ® (=) to the diagram |j we obtain a diagram
R/

dR‘X’/R/ ®dRR/R/ —_— dR‘X’/R/ ® CYYSR/(R'aR —— CrySX/(R’HR)
m l %
dRX’/R' %R/

(6.20) {abo}
in D(k), where the right triangle comes by definition of acyys, see (6.2)).
Define ax as the unique map fitting in a commutative diagram

dRx//p ® AR/ 2% dRy /e ® R

~l JN (6.21) {abl}
dRX/R/ L) dRX//R’

in D(k). By definition of agq, (see Definition [6.23)), we have a commutative diagram

dRx/r — dRx/ g
l l (6.22) {acb}

dRX/R' ﬂ) dRXI/R/

in D(k).
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Combining (6.20) and (6.21)) we get a diagram

dRX/RI Emd CrySX/(quR)

N [oc (6.23) {abj}

dRX//R/

in D(k).
On the other hand, the commutative diagram

Crysr/(r—r) — CT¥YSR,/(R'—Ro)
dRR//R/‘

in D(k) induces a commutative diagram

Crysx/(r—r) — > CI¥Sx,)(r'—Ro)

QCrys

dRX//R

in D(k). Combining the above diagram with the diagram (6.23)), we get a commu-
tative diagram

dRX/R’ E— CYYSXO/(R’—>R0)
dRXI/R/

in D(k). By definition of ¢cyys, x+ (see Definition , we thus get a commutative
diagram
dRX/k —_— dRXO/k

l l

dRX/R’ E— CrySXO/(R/*)RD) (624) {aca}

ax dRX’/R/

in D(k). We thus get a commutative diagram

Pcrys, x!

H2Z(Flde/k) E— HZZ(de/k) —_— H2Z(dRXO/k)

l l (6:24) l@c%x,

H*(FidRx/p) — H*(dRy /) — H*(dRx/r/)

l l ©.22) l \

H2i<Fiﬁx/R/) e Hzi(ﬁx/R/) ﬂ} H2i<ﬁx//R/) e HZi(ﬁX//R//Fi)

7



Tracing v around the edges of the diagram above, it follows that obir,fR, (vg) is

equal to the image of v under the composition
H? (F'dR x/4) — HZ(F'dRx/r/) — B2 (ARx/m/) —2 H2 (AR ) — H¥ (AR x/, g /F?)

The result then follows from Proposition [6.30) O
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7 Obstruction Theory for complexes

{sec_obs_theo
The goal of this section is to study the obstruction class to deforming a complex,
and relate it to the Hodge-theoretic obstruction class of its Chern class.

In section [7.1] we study square zero extensions of rings, expressing them as a
pullback square involving the Kodaira—Spencer class and the de Rham differential.
In section [7.2] we study the derived category of modules over a split square zero
extension of rings. These two sections are rather technical and only needed for the
proofs in section [7.4]

In section [7.3] we define the Atiyah class and show that its trace equals the
Chern character from Definition[5.21l Then in section [.4] we define the obstruction
class to deforming a complex along a square zero extension, and express it as a
product of the Kodaira—Spencer class with the Atiyah class. Finally in section
we relate with the Hodge-theoretic obstruction class of its Chern class, by means
of the semiregularity map.

7.1 The universal derivation and square zero extensions

. . . .. ... . {sec_univ_der
The main purpose of this technical section is the proof of Proposition [7.4] relating

square zero extensions of rings with the Kodaira—Spencer class and the de Rham
differential.

{def_univ_der
Definition 7.1. Let &k be a ring. We define the universal derivation
§: Fun(A', CAlgi") — Fun(A', CAlgd™)
as the left derived functor of the functor

Fun(A', Poly},)gen — Fun(A', CAlg,)

(P—Q)— (Q Qe QQ/P)

(id,d)

where the multiplication on @ & Qg p is given by

(z,w) - (y,n) == (wy, zn + yw)
By right Kan extension, we obtain for any stack X over k a map
Ox % 0x® Lix/k
in ShVCAlgk (X)
In particular, for any map of (animated) rings A — B, we obtain a map §: B —

B ®Lp/a in CAlg}”, which is informally given by sending b — (b, db).
{lem_com_squa
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Lemma 7.2. Let k be a ring. There exists a commutative diagram of functors

Fun(Al, CAlgi*) — CAlg}”, given on (A — B) € Fun(A', CAlgi") by

A—— B

[N
(id,0)

B —> B@]LB/A

/7

id

Proof. For any morphism P — @ of polynomial algebras, the diagram

P—Q

RN

(id,0)
Q—— QodQq/p

id

L

commutes, hence the diagram in the lemma is obtained by extending by sifted

colimits.

Lemma 7.3. Let k be a ring, and (A — B) € CAlg},". The composition

B BoLpa 5 Lpa
in D(k) agrees with the map B — L4 coming from the fiber sequence

LB/A[fl] — dRB/A/F2 — B

Proof. Since both constructions of the map commute with sifted colimits, it suffices
to show this in the case that B is a polynomial A-algebra, in which case this follows

from the construction of the boundary map in the long exact sequence.

Proposition 7.4. Let k be a ring, and let A — B be a surjective ring map with

kernel I such that I? = 0. There exists a pullback diagram

A— B

| "

B Y% e

in CAlgi". Moreover, the composition
BL BoI[l] - I[1]

agrees with the composition

KB/A/k

B — LB/A
in D(k) (see Definition [6.13).

11
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Proof. Shifting the Kodaira—Spencer map, we obtain a map
k(A — B): Lg/a — I[1]
in D(B)>o. We thus get a map
B®Lpa— B I[1]
in CAlg?". Thus by Lemma we get the desired commutative diagram

A— B

J n (7.1) {show_pullbac
B Y% B

Remains to show this is a pullback square in CAlgy". Let A" = B X gg 1) B be the
actual pullback, so that we have a commutative diagram

NN

Al— B

| l

B 1Y% pa

We wish to show the map A — A’ is an isomorphism. The commutative square

A—— B

L

A —— B
induces a morphism of fiber sequences

A—— B —— I[1]

Lol

A —— B 1]

It suffices to verify that € is an isomorphism. But since A’ = fib(B — I[1]) and
dRp/a = fib(B — Lp/4), we may factor as

A B 111]

! I

dRp/a/F2 —— B —%= L e

| [l

A B % 111]

By Lemma the map ¢ is induced by the projection I — I/I?, hence it is an
isomorphism since we assumed I? = 0. O
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7.2 Modules over split square zero extensions

In this section, we venture slightly into the world of derived algebraic geometry.
The goal is to eventually construct an obstruction class to deforming complexes
along a square zero extension in Section [7.4] We shall use the notion of a spectral
scheme as in Lurie [40, Definition 1.1.2.8].

Although we could theoretically use the notion of a derived scheme for all of the
constructions we need, the main reason for choosing to work with spectral schemes
is that the theory is substantially better developed, so that we can bootstrap the
results we need from [40].

For any spectral scheme X, we shall denote by D(X) the category of quasi-
coherent sheaves on X (see [40, Definition 2.2.2.1]).

Let X be a scheme, and let M € D(X)>o. Let XM be the spectral scheme
(X,0x®M). The goal of this section is to give an explicit description of D(X™M)x.
In fact, we will construct another oo-category Dx s in terms of D(X)>¢ and M,
and show that it is equivalent to D(X™M)~.

To this end, let 7: XM — X be the morphism of spectral schemes induced by
the morphism of sheaves of Eo-rings informally given by (id,0): Ox — Ox ® M,
and let t: X — XM be the morphism of spectrally ringed spaces induced by the
projection Ox & M — Ox. We then have a fiber sequence

LM — Ox ®M — 1,O0x
in D(XM)5, inducing a map
a: 1.0x — 1. M[1]

in D(XM)>g. Note that m.a ~ 0 in D(X)>q, since Ox & M is split as an Ox-
module (but not as an (Ox @& M)-module).
We define the oo-category

DXJ\/[ = Fun(Al,D(X)ZO) X D(X)ZO
Fun({0,1},D(X)>0

where the functor
Fun(A, D(X)s0) — Fun({0, 1}, D(X)o)
is induced by the inclusion of simplicial sets {0,1} — A!, and the functor
D(X)z0 — Fun({0,1}, D(X)>0) = D(X) 20 x D(X)>0

is given by (id, (—) ®o, M[1]).
By [39, Corollary 2.3.2.5, Corollary 2.4.6.5] the restriction map

Fun(A', D(X)>0) — Fun({0, 1}, D(X)>0)

is a categorical fibration. It follows by [39, Remark A.2.4.5] that the homotopy
fiber product defining Dx ps can be computed as the fiber product of simplicial
sets. In particular, an object in Dx psr can be described by an object F € D(X)>q
and a morphism n: F — F ®o, M|[1] in D(X)>o.
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We now construct an equivalence of categories D(X M)zo = Dx,m- Denote
with ¢ the composition

DXM)so 2% Fun(AL, D(XM)50) =5 Fun(Al, D(X)so)

By the projection formula ([40, Remark 3.4.2.6]) one may identify

Tu(F @ 1:.0x) 2 ' F
T (F ® 1. M[1]) & ' F @0, M[1]

functorially in F € D(XM)5,. One thus has a commutative diagram

D(XM)5, L4 Fun(A!, D(X)>0)

|- |

(id,(—-)®o  M[1])
D(X)>0 ox Fun({0, 1}, D(X) o)

inducing a functor ®: D(X™)> — Dx um-
{lem_cat_squa
Lemma 7.5. The functor ®: D(X™)>q — Dx s is an equivalence of categories.

Proof. First note that ¢ and ¢* commute with all colimits, hence ® commutes with
all colimits by [39), Proposition 5.5.3.12].

We then show that & is fully faithful. Observe that for two objects (F,nr), (G,ng) €
Dx,wm, one has

Mapp ., ((F,17),(G,1g)) = T>0(fib(RHomx (F, G) = RHomx (F,G @0, M[1])))

where the map
RHomx (F,G) — RHomyx (F,G ®0, MI1])

is given by f = (ng o f — (f ® idap)) 0 nF).
Now let F/,G' € D(XM)sg, and let (F,nr) = ®(F), (G,ng) = ®(G’). It
suffices to show that the natural map

T>oRHom x i (]:/, g/) — T>0 ﬁb(RHOmx(.F, Q) — RHom x (.7:, G ®oy M[l]))

is a weak equivalence. Since ® commutes with colimits we may reduce to the case
F'=0Ox ® M. Then nr = 0, so it suffices to show

.G — fib(G 1% G ®o, M(1))

is an equivalence in D(X), which is immediate by definition 7 (since 7, is exact).

Remains to show that ® is essentially surjective. First note that by [39, Propo-
sition 5.5.3.6, Proposition 5.5.3.12] one may show Dx js is presentable. Since ®
commutes with colimits it follows by the adjoint functor theorem ([39, Corollary
5.5.2.9]) that ® admits a right adjoint W. Thus, to show that ® is essentially sur-
jective, it suffices to show that the canonical map ® o U(A) — A is an equivalence
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for all A € Dx pr. Let (P,p) = fib(Po®(A) — A) in Dx u, it suffices to show that
P=0.

Note that ¥ commutes with limits, so ¥(P) 2 0 (as Vo ® o U(A) — U(A) is
an equivalence by general nonsense), and thus

Mapp, ,, (®(Oxn), P) = Mapqoon(x )., (Ox,m, ¥(P)) =0
But clearly
mi(Mapp, ,, (®(Oxn), P)) = Ext} (Ox, fib(P % P ®0, M[1]))

An induction argument (using that P is connective) shows that H™* RT['(X, P) = 0
for all ¢ > 0, hence P = 0 as required. O

Corollary 7.6. Let X be a scheme, let M € D(X)>o, and let £ € D(X)>o. Let
a: 1.O0x = 1. M[1]

be the unique map in D(X™M) whose fiber is isomorphic to Ox ® M.
Then the functor Q — m,.(Q ® «) induces a bijection

~

D (D(XM)ZO D()>(<)> {5}) ~ Mappx) (€, € ®o, M[1]) (7.2)

of pointed sets.

Lemma 7.7. Let R be a discrete ring, and let M be a discrete R-module. Then
the composition

Autp(ren (R ® M) s {idr} %> m1 Mappp) (R, M[1]) = Homp (R, M)
utp(r)

(7.3)
is given by ¢ — mpr 0 @ 0 LR, where
tirR: R— RO M
vy ReEM — M

are the inclusion and projection maps.

Proof. Write

AR = AutD(R@M)(R@M) X {idR}
AutD(R)(R)

Note that 7.: D(R ® M) — D(R) is just forgetful functor induced by the zero
section R — R @& M. Recall that we have a fiber functor |38 Definition 1.1.1.6,
Remark 1.1.1.7]

fib: Fun(A', D(R)) — D(R)

Hence by definition of ® we see that for any ¢ € Ar one has

fib(®(p)) = fib(m.(p ® a))
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asmaps R M — Ro M.
Thus by Lemma the map (7.3 is given by

w0 fib(mi(p @ @) orLg

Since 7, and (—) ® « are exact functors, we see that the map (7.3) can also be
described as
w0k (p & fib(a)) oLg

But by definition, one has fib(a) = R ® M, so the functor
(=) ®fib(a): D(R® M) - D(R® M)

is equivalent to the identity. The result follows.

7.3 Atiyah classes and Chern characters

Let k£ be a ring, and let X be a scheme over k which has the resolution property
[48 0F85]. The goal of this section is to construct, for any £ € Perf(X), an Atiyah
class

Atx /() € Extk (£, @ Lx )

Moreover, we will introduce a notion of a trace map

tr
Ext} (£,€ @ Lk ;) <5 B (LY )

and show that if p! is invertible k£ then

At )P
r (W) € HP (L%, ;) (7.4)
agrees with the image of ch,(P) (see Definition under the natural map
FPdR X/k — ]L’;( / x[—p]. The expression 1) was taken as the definition for Chern
classes in the affine case by Illusie in [30]. In the classical (smooth) case this result
is well known, see for example |27, Section 10.1]. However we are not aware of the
result for derived de Rham cohomology appearing anywhere in the literature.

Before giving the definition of the Atiyah class, observe that for any scheme X
over a ring k there exists a spectral scheme X' := (X,Ox ® Ly/y,), together with
maps of spectral schemes

L (X,0x) = (X,0x ®Lxy)
7o, Ts: (X, 0x @ Lx/i) — (X, Ox)

which are given by the identity maps on topological spaces, and where the mor-
phisms of sheaves of E,-rings are as follows:

7'('3§E = (id,O)Z Ox — Ox EBLX/k
¥ =48 0x — Ox ® Lx/k (see Definition [Z.1])
o= oy Ox ®Lx/, — Ox (projection to Ox)
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Thus clearly mg ot = w5 ot = idx. Moreover this construction is functorial in X,
that is a map f: X — Y induces a map f: X — Y for which the natural squares
with 79, ms and ¢« commute.

We now wish to define the Atiyah class. Inspired by the philosophy of [29], we

first define the universal Atiyah class. Cacal
aea
Definition 7.8. Let k£ be a ring, and let X be a scheme over k. We define the

universal Atiyah class to be the unique element
ax € ExtﬁgL(L*(’)X/k, tellix /)
as the boundary map induced by the fiber sequence
tLx/p = Ox ®© Lix/p 2 1,0x

in D(X") (here 7, is the unit of the adjunction +*  1,). P
aeb
Definition 7.9 (Atiyah class). Let k be a ring, and let X be a scheme over k. Let

& € Perf(X). We define the Atiyah class of £
Atx/r(€) € Extx (€,€ @ Lxy)

as
Atx/k(E) 1= (m0)«(m5(E) ® ax)
We denote with

Atx/k(g)p S EXtZ))((g,g ®L§(/k>

the composition

@(p—1
Atx/k Atx/r(E)®Lx k(1] Atx/k(g)@l‘x(/[;c lp—1]

(€)
——— EQLx (1]

€ ‘C/‘@L?}I/jk [p] = ERLL . [p]

which we call the p-th power of the Atiyah class.
Note that the first power AtX/k(E)1 is simply Atx/(E).

{lem_atiyah_t
Lemma 7.10. Let k be a ring, and let f: X — Y be a morphism of schemes over

k. Let n € Z. Denote with
¢: "Ly — Lxyk
the canonical map induced by f.
Then the equality

Aty (f*E) = (idg ® ¢) o f*Aty (€)
holds in Exty (€,£ ® Ly /i) for all £ € Perf(Y').

Proof. Denote both maps X — X and Y — Y by ¢, similarly for 75, my. Tensor-
ing the commutative diagram

I Ly, EALA F Oy [1]
Ly po(base change)l lbase change

L*LX/k: L L*Ox[l]
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in D(XY) with f*m;€, we obtain a commutative diagram

*(miERa
FrL(€ @ Ly ) T2 b (80 0y 1))

| |

TEFE)Ra
L (FFE @ Ly ) TE00 (e @ Ox 1))

in D(X"). Applying (7). we obtain the lower square in the following commutative
diagram

frAty &)

f(E@Lym) f(€®Oy[1])
(70) f* 14 (€ ®]Ly/k) (m0)« f* (15 EQay) (70) f* 1 (€ @ Oy [1])

| !

Atx /L (f*E
FE€ Ly x/e(78) F7E€® Ox[1]

where the upper square is obtained via the base change map f*(mo). — (mo)s«f™*.
The composition down-down-right is equal to Atx,;(f*E) and the composition
right—-down—down is equal to the composition (ide ® ¢) o f*Aty (E), so the result

follows.
{haa}

Definition 7.11 (Dualizable object). Let C® be a symmetric monoidal co-category
with unit object O, and let £ € C. We say that &£ is dualizable if there exists an
object £V € C and maps

ev: EQREY - 0O
coev: O 5 EV®E

such that the compositions
EV O @gY LN oV og eV MOV evig L gV
EnE@O MY, coeVge YO ngeng

are homotopic to the identity.

It is well known that for any scheme X, an object £ € Perf(X) is dualizable.

For any dualizable object, we may define a trace map.
{def_trace_ma
Definition 7.12 (Trace map). Let C® be a symmetric monoidal co-category, and

let £ € C be a dualizable object. For two objects M, N € C and a map
a:EQM - ERN
in C, we define

trg(a): M - N
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as the composition

MM, eV p e M LB Voo N D e o N 22N, N

in C.
{lem_atiyah_o
Lemma 7.13. Let k be a ring, and let X be a scheme over k. Fixn € Z, and let

EsF—=gih
be an exact triangle of objects in Perf(X). Then
tr (Atx/e(F)7) = tr (Atx/u(E)F) + tr (Atx/k(G)P)
for allp > 0.

Proof. We have a commutative diagram

£ F g —+
JAtX/k(S)P iAtX/k(ﬂp lAcX/kw)P
EQLy, — FOLL, — GOLL, ——

in D(X), in which the rows are exact triangles. Thus this follows from a well-known
result on traces, see Proposition [A-24] O

Next, observe that any element f € Ext (£, £ ® Ly /i) can be considered as a
map

f: ,C—)L@LX/]C[].]

in D(X). In particular, we may consider tr(f), which is a map
Ox — Lx/i[1]

We thus get a natural trace map trz: Exty (£, £ ® Lx/k) — Hl(]LX/k). Our goal
now is to show this map sends the Atiyah class to the first Chern class (see Corollary
7.17)).

Construction 7.14. Let k be a ring, let X be a scheme over k, and let £ € Pic(X).
Then we have canonical equivalences

(i L@nfly) ~ LR LY ~Ox
We thus obtain a map

v: Pic(X) — Pic(X") Xpic(x) {Ox}
L miLomiLy

in D(Z)ZO
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{bcc}
Lemma 7.15. The composition

Pic(X) % Pic(X™) Xpie(x) {Ox} = HY(X, Ly/x)
of maps of abelian groups sends L € Pic(X) to trp(Atx (L)), where ® is the map
.
Proof. By definition, for any £ € Pic(X), we have
(®ov)(L)=mou(mLRTHLY @ ax)

=mos(miL®ax)® LY

= Atx/n(L) @ LY

= tre(Atx (L))
Here the first equality follows by definition of ®, the second is the projection for-

mula, the third equality follows by definition of the Atiyah class (see Definition
, and the last equality follows by observing that the trace map

tre: Exty (£, £ ® Ly/) — H' (X, Lx/s)

is simply given by (—) ® LY (since L is a line bundle). O
{bcb}
Lemma 7.16. Let k be a ring, and let X be a scheme over k. Then there exists a

commutative diagram

Pic(X) - 7>0RI(X, G [1])

| J s

Pic(XY) xpic(x) {Ox} —2= Mappx)(Ox, Lx/k[l]) —— 7>0RI(X, Lx/x[1])

mn D(Z)ZO

Proof. Since all terms appearing in the diagram are fppf-sheaves, it suffices to
construct a diagram

Pic(R) — 7>oRI'(Spec(R), G, [1])

lv ld log
Pic(R ® Lpy1) Xpie(r) {R} —=— Mapp ) (R, Lp/k[1]) —=— m>0RHomp(p) (R, Lz/x[1])
functorial in R € CAlgg. Recall that we denote with G,,,(—) the functor
CAlgy — D(2)
R+— R*

Thus if we denote with BG,,,(R) the associated functor taking values in 1-groupoids
(with a Z—action), we see that the functor

CAlgy — D(Z)>o
R — RI'(Spec(R), Gy, [1])
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can be identified with the sheafification of the functor R — BG,,(R). By the uni-
versal property of sheafification it thus suffices to construct a commutative diagram

Pic(R) BG, (R)

lv ld log

Pic(R & L) Xpic(r) {R} —=— Mapp ) (R, Lg/i[1]) —— 7>0RHom(R, Lp,[1])

in D(Z)>o, functorial in R € CAlgg. By Lemma and the universal property
of left Kan extension |39, Proposition 4.3.2.17] we may assume R is smooth over
k, so that Lg/;, >~ Qg/y is an abelian group.

Since the unique point in BG,,(R) maps to zero under both compositions, it
suffices to show the diagram of abelian groups

Autp(r)(R) Gm(R)

lv ld log

Autp(reay ) (R @ Qr/k) X Autpn (r) {idr} 2 m Mapp gy (R, Qr/k(1]) —<— Hom(R, Qg/k)

commutes. By definition of v, the composition left-down sends r» € R* to the
automorphism given by multiplication with the element

(r,dr) - (r~1,0) = (1, %dr)

It thus follows from Lemmal[7.7]that the composition left-down-right sends r € R*
to the map s — s - %dr, which completes the proof. O

{corol_atiyah
Corollary 7.17. Let k be a ring, and let X be a scheme over k. Let L be a line

bundle on X. Then the trace map

try: BExty (£, L® Lx/x) — Hl(]LX/k)
sends Atx (L) to the image of c‘lﬁ(ﬁ) under the natural map
H2(F'dR ;) — H' (Lx/s)
Proof. By Lemma we obtain a commutative diagram

Pic(X) —~—— HY(X,G,,)

lv ld log

Pic(X") Xpic(x) {Ox} —2= H'(X,Ly/z)

of abelian groups. By definition of ¢{® (see Definition ) the composition right—

down sends £ — c‘f/ﬁ(ﬁ). Hence the result follows from Lemma |7.15 O
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Proposition 7.18. Leti € N, and let k be a ring such that i! is invertible in k. Let
X be a quasi-compact and quasi-separated scheme over k which has the resolution
property. Then for all £ € Perf(X), the equality

tre (AtX/k(E)i)
7!

holds in H' (L ).

Proof. Write
tre (Atx/x(€)")

7!
we verify axioms (1) - (3) of Proposition[5.24] this will imply the result. Clearly (1)
is a direct consequence of Lemma [7.13] n, and (2) is a direct consequence of Lemma
Finally (3) is implied by the combination of Lemma and Corollary -
Wthh completes the proof.

ch;(€) ==

7.4 Obstruction classes for complexes

In this section we provide a result constructing an obstruction class to deforming
complexes, and show that it can be written as the product of the Atiyah class
with the Kodaira—Spencer class. This result is quite well-known, and already goes
back to [30]. Our approach is to bootstrap from [40, Theorem 16.2.0.1]. A direct
construction of the obstruction class (originally due to Gabber) in a similar setting
can be found in [36]. For a proof of the same result in a different language using
the truncated cotangent complex, see [29)].
The precise result we will need is the following.

Proposition 7.19. Let k be a ring, and let R — R be a surjective ring map
with kernel I such that I? = 0. Let X’ be a smooth and proper scheme over R,
and let X = X' Xgpec(rr) SPec(R) be the base change, and let T = I @ Ox. Let
E € Perf(X). Then there exists a complex &' € Perf(X') such that &'|x = & if and
only if the obstruction class

ob(E, X, X") == (E @ kx/x 1) 0 Atx /() € Ext} (£,€ ®o I)
is equal to zero.

Proof. By shifting we may assume £ is connective. Let X, X’ be the associated
spectral schemes (see [40, Remark 1.1.8.5]), and let X, X’ be the associated spectral
Deligne-Mumford stacks (see [40, 1.6.6, Remark 1.6.6.5]). By Proposition and
[40, Prop 16.1.3.1], we get a pushout diagram

Spét(R @ I[1]) —— Spét(R)

" |

Spét(R) ———— Spét(R')
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in the co-category SpDM of spectral Deligne-Mumford stacks. Write
X" = X Xgper(ry SPEL(R @ I[1))

so that by |40, Prop 16.3.1.1], we get a pushout diagram

XI _ X X Spét(R’) Spét(R)

i |

X' Xgper(rr) SPét(R) ————— X’

in the oo-category SpDM of spectral Deligne-Mumford stacks. By [40, Corollary
1.6.7.5], the fiber product X’ Xgpet(rr) Spét(RR) may be computed as the fiber prod-
uct X’ Xgpec(r/) Spec(R) in the co-category SpSch of (connective) spectral schemes.
By (the proof of) [39, Corollary 4.3.1.11] one may show that this fiber product is
the spectrally ringed space

(X/, Ox' @r' R)

where the tensor product is computed in the oo-category Shvoaigpry) (X'). Now
since X’ is smooth over R’, the map R’ — Ox- is flat, so we conclude the fiber
product X’ Xgpee(rr) Spét(R) is simply X. We thus get a pushout diagram

in SpDM. By [40, Theorem 16.2.0.1], we get a pullback diagram

QCoh(X')*® —— QCoh(X)"

| b

QCoh(X)™ — QCoh (%)™

of oo-categories. By [40, Corollary 2.2.6.2] we may identify QCoh(%X) with D(X)
(and similarly for X’). We conclude that & exists if and only if there exists an
equivalence 7. (&) ~ (1)« () in QCoh (X7). By Lemma this is the case if and
only if the class

[n.(€)] € Extp, (Ox,Ox @ Z[1])

is equal to 0 (the zero object is the class of [(19)«(€)]). The result now follows
directly by noting that the map 7 factors as

Ox % 0x & Lx/ MI@ROX

(which follows essentially from Corollary [6.19)). O
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7.5 Computing signs for (shifted) permutation actions

In this section we gather some technical computations in order to streamline the
proofs of Section [7.6]

We start by introducing some notation. For any n > 0, we denote with &,, the
symmetric group on n elements. For any symmetric monoidal co-category C, any
object X € C and any o € G,,, the symmetric monoidal structure provides a map

o(X): XO" — Xon
If C is also stable, then C comes with a shift (suspension) functor [1]: C — C. These
constructions are related in the following way.

Lemma 7.20. - Let C be a presentable stable symmetric monoidal co-category for
which the tensor product preserves finite limits in each variable. For any o € &,
and X € C, there exists a commutative diagram

o(X)[n]

X®n[n] X®n[n]
b f (7.5)
(X[A)®" ——— (X[1))*"

in C, where s = sgn(o) - o(X[1]).

Proof. By decomposing o into cycles of length 2, we may reduce to the case where
n = 2 and o is the only nontrivial element of G5. Denote with S the sphere
spectrum in the stable co-category of spectra Sp. By an explicit computation, one
may verify that the composition

2, sy e s[1] s S[2)

S[2] = S[1] % S[1] z

is equivalent to —idg[2]. Let O € C be the unit for the symmetric monoidal
structure, so that we have an essentially unique symmetric monoidal functor Sp —
C sending S — O (see |38, Corollary 4.8.2.19]). Then by functoriality we see that
the composition

mﬂﬁom%quﬂ@lomgauﬁom
is equivalent to —idp[2]. For arbitrary X € C, we get a commutative diagram

(X ©X)[2 =< (X ©X)[2] (X ©X)[2]

| | |

{signi}

{tensor_sign}

X Oeol)eX 25 X O1leol)eX — X (O[] 0[1])® X

| |

X[ ® X[1] — X[1]® X[1]

where we denote with ¢;; the morphism given by the symmetric monoidal structure
on C swapping factors ¢ and j in a tensor product. The outer square now gives the
desired diagram. O

93



For any n € N, we shall denote by ¢»" the unique permutation sending i — n
and keeping all other elements in order. Explicitly, o®" is given by

J J<i
o (5) =< n ji=1
j—1 j7>1

for j € {1,...,n}.
For C any stable symmetric monoidal co-category and X € C we define

n n
o i,n —n . n—i _i,n
XY =) oy Xyt = E (—1)"toy
i=1 i=1
as maps X" — X®7

Lemma 7.21. Let k be a ring and let X be a stack over k. Write

Y=y

= Lx/k

Then there exists a commutative diagram

]L®i Li

X/k X/k
[
i i—1
L?}/k ’ LX/k (;8)’( Lx/k

in D(X), where A;_1 is the map from Definition [6.27

Proof. Unwinding the definitions, we may reduce to the case where X is the spec-
trum of a finitely generated polynomial algebra over k, and the result follows by
definition of A;_1. O

Corollary 7.22. Let k be a ring and let X be a stack over k. Write

+ y— +7i
XT= Z]Lx/k[l]

Then there exists a commutative diagram

®i
LX)k

S |8

[i] ———— Li,li]

LYli] —— L [i — 1] & Ly/x[1]
in D(X).
Proof. Combine Lemma [7.20] and Lemma [7.21] O
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7.6 Relating the obstruction classes

In this section we relate the obstruction class to deforming a perfect complex with
the Hodge-theoretic obstruction classes of its Chern character staying in the Hodge
filtration along the deformation. The short slogan is that there exists a semiregu-
larity map between the two obstruction spaces, mapping the former to the latter.
This is essentially a result from Buchweitz and Flenner, see |13 Proposition 4.2],
however they only defined the Hodge-theoretic obstruction in a restricted charac-
teristic zero setting, using Bloch’s technique.
We start by defining the map that will relate the obstruction classes.

Definition 7.23. Let i,j € Z>o. Let k be a ring such that 3! is invertible in k.
Let X be a scheme over k, let £ € Perf(X). We define the semiregularity map

oxqt Bxth (£,€) = HY (L 1)
as the composition

At;(/k(é')

Ext’ (€,€) —— Exti{7(£,£ ® L) —5 HH (L))
P . . Até{/k(‘g)
where the first map is induced by postcomposing with ——.
If X is smooth over k of dimension d such that d! is invertible in k, we write

d
ox: Ext}(€,€) - PHTI(Q )
=0

for the total semiregularity map given componentwise by ox ;.

The following result contains the essential computation, expressing the image
of the obstruction class under the semiregularity map in terms of the Atiyah class.

Lemma 7.24. Let k be a ring such that ¢! is invertible in k, and let " — R be
a surjective ring map with kernel I such that I? = 0. Let X' be a smooth and
proper scheme over R', let X = X' Xgpec(rr) Spec(R) and let T = I ®r Ox. Let
€ € Perf(X) and let & = &|x,-

If a denotes the composition

£ Atx(€)

€@ Ll ,[i]
E®A 1 [i-1]

€@ L li— 1] @ Lxk[l]

EQLY )} [i-1®@rx,x /3 [1]

E@Li L li—1]eI[2]

then
tre(a) =il - ox-1(ob(€, X, X))

in H”l(ng/lk ®1I)
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Proof. By Corollary we obtain a commutative diagram

Atx /5 (E)
£ x/+() E® L,

J/Atx/k($)1 J{Aiil

) + i
E® (Lx[1])® 2 & ® L% © L/

By symmetry of the trace map, it follows that

trg((é' AV 1) o Atx/k(g) ) = tI‘g ((5 ® E+) o AtX/k(g) )
= ZO’L ~otre AtX/k(g) )

=1- trg(AtX/k(é') )

in HZ(]L;(/lk ® Lx/). Thus

tre(a) =i tre((id®@krx, xr k(1)) 0 Atx/i(E)")
in Hl(]L;(/lk) ®pr I. By Proposition we obtain
tre(a) =i-tre(Atx/s(E)" " oob(€,X, X))
which proves the result. O
The following result compares the obstruction classes of a complex and it’s

Chern character in characteristic zero.
{thm_compare_

Theorem 7.25. Let k be a ring with Q C k, and suppose R' — R is a square zero

morphism of nilpotent thickenings with I = ker(R' — R). Let X' ER Spec(R') be a
smooth and proper morphism, and set

X = X/ XSpec(R’) SpeC(R)
XO =X’ xSpec(R’) Spec(k)

Write T :== 1 ®p Ox. Let £ € Perf(X) and let & = E|x,.
Then for all i > 1, the semireqularity map
oxp: Exti(E,€©T) —» HTH QY L@ T)

sends ob(€, X, X') to obgﬁ/R, (ch;(&))-

Proof. By Proposition we have tre(Atx/x(€)") = 4! ch;(€). Thus by Lemma

ax,i_l(ob(é’,X, X’)) = Z,—lltrg(a) = (K:X/X’/k: o Al_l)(chz(é'))
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in Hi“(]]_é;/lk). Since the diagram

i A i i Kx/x! i i— i i—
H (LY ) ——= H'(L ), @ L) —— HFHLL L) —— HP(LG )

| l | H

i ADi1 i i— RX/X! /R ri i— i i—
HY (LY ) — H(LY @ L) == HPH (LG ) —— HPH(LG L)

commutes, the result follows from Lemma [6.6] and Proposition [6.31} O
And we have the following result in mixed characteristic.

Theorem 7.26. Let k be a ring over Z/p"Z for some n > 1, and let Ry be a
k-algebra. Let
(R/ — R0771) — (R — ROJ/}/)

be a morphism in PDPairy such that R' — R is a surjection with kernel I and
12 = 0.
Let X' L Spec(R') be a smooth and proper morphism, and set

X=X XSpec(R’) Spec(R)

X() = XI XSpeC(R’) Spec(k)
Write T :== I @r Ox. Suppose that i! is invertible in k. Let € € Perf(X) and let
50 = 5|X0,

Then the semiregularity map

oxi-1: Ext}(£,€@T) - HY Qg @ T)

sends ob(€, X, X') to obgr,y/SR, (ch;(&9)).

Proof. Again, using that i! is invertible, by Proposition and Lemma we
have
(TXJ'_l(Ob(g, X, XI)) = (HX/X’/k: O Al_l)(Chz((S))

in H”l(Lg(_/lk). Thus the result follows from Lemma [6.6{and Proposition O
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8 Hochschild (co)homology and the semiregular-
ity map

In this section, we relate the semiregularity map from Definition[7.23]with Hochschild—

theoretic constructions. There are two main results we need. The first is in section
B:2] where we relate the semiregularity map with a Hochschild—theoretic semiregu-
larity map (Deﬁnition and Proposition . The second is Corollary re-
lating the Hochschild—theoretic semiregularity map with the action from Hochschild
cohomology on Hochschild homology. Later, in section these results will com-
bine to show the semiregularity map is injective in specific cases.

{sec_hochschi

8.1 Fourier—-Mukai transforms, duality and Hochschild (co)homology

If X and Y are smooth and proper schemes over a ring k, then any £ € Perf(X xY)
induces a functor

®¢: Perf(X) — Perf(Y)
Fray(rx(F)®E)

We shall refer to ®¢ as the Fourier-Mukai transform associated to £, and to £ as
the kernel associated to ®g¢.
For any three smooth and proper schemes X,Y and Z over a field k we have a
projection map
Txy: X XY XZ—>XxY

Similarly we have projections 7wy z and myz. For any two objects £ € Perf(X x Y)
and F € Perf(Y x Z), we shall write

F*x&E =nmxz4(nxyE @my 5 F) € Perf(X x Z) (8.1)

One may show that @7 o &g ~ O r,¢ as functors Perf(X) — Perf(Z), see e.g. |26,
Proposition 5.10].

From now on, we restrict our attention to the case where k is a field. Since we
will use many techniques from [15| |16], in this case we adapt to match Caldararu’s
notation. In particular, for any smooth and proper scheme X over a field k we shall
write D°(X) := Perf(X) to match the notation of Caldararu. For X a smooth and
proper scheme over a field k of dimension d we denote with A: X — X x X the
diagonal embedding. We will write Oa, := A,Ox € D’(X x X). We will write
Sx = Q%[d] € D*(X), and we will sometimes denote with Sx(—) the functor

Sx ®(—): D*(X) — D"(X)
The starting point for most of the constructions is the following classical theorem.
Theorem 8.1 (Grothendieck—Verdier—Serre duality). Let X be a smooth and proper
scheme over a field k. There exists a map

trx: HomX(0X7SX) — k
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such that for any &, F € Perf(X) the pairing
Exti*(é‘, SxF) Qx Ext*(]:,g) — k
fog—({f,g) =trx(trr(fog))
is a perfect pairing (see Definition for the definition of trx).

Proof. The existence of a perfect pairing is well known, see for example |26, The-
orem 3.12]. This explicit description of the pairing is given by Caldararu, see [15,
§2.2]. The proof identifying Caldararu’s construction with more classical construc-
tions can be found in [17, Theorem 17]. O

We will often write Trx (f) := trxtr=(f) for f € Homx (F,F ® Sx).

Definition 8.2. Let k be a field and let X, Y be smooth and proper schemes over
k. Let £, F € Perf(X) and let &', F" € Perf(Y'). Then any map

: Exty (F,E) — Ext} (F, &)

has a unique left adjoint for the pairing from Theorem That is, there exists a
unique map
U: Exty (F, &)Y — Ext (F, &)Y

such that for any f € Exty (F', &)Y = Exty (€, Sy F’') and g € Exty(F,&) one
has (f,®(g)) = (¥(f), g). We will refer to ¥ as the Serre left adjoint of ®, and to
® as the Serre right adjoint of U.

For X a smooth and proper scheme over a ring k, we write A;: D*(X) —
DP(X x X) for the left adjoint of A*. Explicitly, A, is given by

F s Syt x @A (Sx @ F) (8.2)

for F € D*(X).

Definition 8.3. Let k be a field, and let X be a smooth and projective scheme
over k. We define the Hochschild homology of X as

HH*(X) = EXt;(t(X(A!Ox, A*Ox)
where A, is the left adjoint of A*.

Definition 8.4. Let k be a field, and let X be a smooth and projective scheme
over k. We define the Hochschild cohomology of X as

HH*(X) = Ext}xX(A*Ox, A*Ox)
Note that by Serre duality one has

HH, (X)Y = Ext’, ¢ (A.Ox, A, Sx)
HH*(X)Y = Ext, x(AOx, A*Ox @ Sxxx)

since A/Ox = S}lxXA*SX.
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8.2 The Hochschild—theoretic semiregularity map

Let X be a smooth and proper scheme over a field k. In this section, we define the
Hochschild—theoretic semiregularity map

ogt Ext*(€,€) — HH_.(X)

for any & € D(X), which is essentially due to [14]. Moreover, we show the this
map corresponds to the semiregularity map(s) defined in Definition under the
Hochschild-Kostant-Rosenberg isomorphism.

Definition 8.5. We define the universal Hochschild—-Atiyah character
AR € Homp(xy x)(Oax, AcA*Oay)
to be the unit of the adjunction A* 4 A,.

Construction 8.6. Let k be a ring, and let X,Y be smooth and proper schemes
over k. Let
a: F—G

be a morphism in D(X X Y). Then « induces a natural transformation
Po(=): ©x(=) = Pg(-)
of functors D(X) — D(Y), sending £ € D(X) to the morphism
D, (E) := Mo (7€ R )
in D(Y).
In particular for any £ € D(X), we get a map
AtRT(E) i= Pppun (€): € = E® A" Ony (8.3)

in D(X).

We now wish to relate At't" with the universal Atiyah class (see Deﬁnition,
by means of the Hochschild-Kostant—Rosenberg isomorphism. For this, we need
some setup first.

Let k be a ring and let X be a smooth and proper scheme over k. If JA C Oxxx
is the ideal sheaf of the diagonal, we let Ag?) C X x X be the nilpotent thickening
of Ax corresponding to the ideal J3.

Lemma 8.7. There exists an an isomorphism

pa: Ox @ Qxpp — O (8.4)

@
A)(

of sheaves of rings on X, given locally by (f,gdz) — 1@ f+2Rg9—1® gx.
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Proof. We first verify that pa is a well-defined map of sheaves of abelian groups.
Since it is clearly linear, we only need to check compatibility with the Leibniz rule.
Indeed, one sees that

©((0,dzy) — (0,zdy) — (0,ydz)) =2y @1 -1@ry - (y@r—-1Qxy) — (r @y — 1 Q1Y)
=2yR1+1Qzy—yRr—z®y
=@2®l1-1®z) - (y®1-1Qy)

lies in JZ. To check that it is a ring map, we compute

e((f1.1dz1)) - @((f2, g2d2))
=1e0fit(1®g) (@:101-1821) 1@ f2+(10g0) (2201 -101,))
=10 /12 + (1@ fig2) (22®1 -10 ) + (18 fogr) - (1@ 1 1@ 21) (mod J3)
= o((f1f2, figedzs + fogidx1))
= o((f1, ndz1) - (f2, g2dx2))

as desired. We leave it to the reader to verify that the map is an isomorphism. [
Write X% = Specy (Ox @ Qx/k), s0 that pa induces an isomorphism
AR = x© (8.5) {bab}

of schemes over k. {bac}

Lemma 8.8. The map fits in a commutative diagram

SN

XQ<—A

" A

X
Proof. By the definition of w5 and 7y (Section it suffices to show the diagram

Ox

commutes. For f a local section of Ox, we compute

eao(idd)(f)=pa((fdf)) =10 f+fol-10f=f®l=1](f)
pa o (id,0)(f) = pal((f,0) =1 f =75 (f)

as required. O
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Definition 8.9. The universal Atiyah class ax (see Definition can be repre-
sented by a map
Ox — Qx/r[1]

in D(X*). Under the isomorphism (8.5), this induces a map

Oax — AQx/i[1]

in D(Ag?)). Pushing forward along the closed immersion Ag?) C X x X, we get a
map
Oayx — AQx/i[1]

in D(X x X). We define ax € Ext&xX(OAwA*QX/k) to be the element corre-
sponding to this map.

Explicitly, ax is given by the extension

0= A%/, = Op = Oay =0
X

where the first map is locally given by sending gdz — = ® g — 1 ® gx. We denote

with
d

exp(dx): Oay — EP A% ]i]
=0

the map whose i-th component is the composition of the maps

& ax @A Qx k(1] dX@A*Q;@;(/ikil)[iil] i o Axe i .
Ony — Ay (1] A*Q?}/k[z] —>A*QX/k[z]
where € is locally given by v; ® - - ® v; — %vl A A

{afd}
Lemma 8.10. Let k be a field and let X be a smooth and proper scheme over

k of dimension d, such that d! is invertible in k. Let £ € D*(X). Then the i-th
component of the map (see Construction

d
Dexp(ax)(E): €~ @ E @ Qli]
1=0

is given by LAt (£).

Proof. Denote with a% € Exté(xX(OAX,A*Q];(/k) the composiition

& ax®AL Qx5 1] ax®A. Q50 Vli-1] PN i
Onax 255 AQx 1] = L ks AL L[] =5 AL 1]
and with o} € Extyq(Ox, Q&/k) the composition
o ax®Qx/p[l] ax @8 i—1] e
Ox 25 Qypll] —L L. ks QL L li] = Qi ]
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Lemma [8.8] then implies that
(I)CXP(d})(g) = m0,+(75(€) ® aZX) (8.6) {eaa}

in Ext’y (€, ® QY k). The result follows as by definition of the Atiyah class
(Definition , the right hand side of is equal to %Atfx /k(E).

O
{thm_hkr}
Theorem 8.11 (Hochshild-Kostant—Rosenberg, |52], |[16]). Let k be a field and let
X be a smooth and proper scheme over k of dimension d, such that d! is invertible
in k. Then there exists an isomorphism
d .
I: A*Oa, = @ %] (8.7) {atc}
i=0
in D(X), such that there exists a commutative diagram
Oay
HH
At lexp(dx) (88) {bea}

AN Os, T @ ALY

in D(X x X).

Proof. Yekutili [52] originally showed the existence of an isomorphism I. It was
shown by Caldararu |16} §4] that I can be chosen such that a diagram exists
(technically speaking Caldararu assumes k = C, but if one reads §4 of |16] carefully
one sees that he only uses that d! is invertible in k). 0

Construction 8.12 (Of the map Iggf{) Let j € Z>¢. Let k be a field and let X
be a smooth and proper scheme over k of dimension d, such that d! is invertible in
k. Then the composition

HH;(X) = Exty’ (AOx, A Ox)

=~ Exty (Ox, A*AOx) (A4 A¥)
d
= (P Exty’ (Ox, Ali]) (%)
=0

defines an isomorphism

d
HH; i—j i
Ik HH;(X) — @H T(X, Q% 1)
i=0
{def_hocshchi
Definition 8.13. Let k be a field, and let X be a smooth and proper scheme over

k. For P € D*(X), define the Hochschild-theoretic semiregularity map

oBHe s Exty (P, P) — HH_.(X)
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as the composition

HH ( pyo(_
Ext’ (P, P) A 7o),

where the last isomorphism is given by the adjunction A, 4 A*.

Remark 8.14. Although useful for relating it to the classical Chern character, in
practice the above definition is rather hard to work with. Instead we will often
work with its Serre left adjoint, which can be shown to be “evaluation at P”, see
Lemma [8:19] for a precise statement.

Proposition 8.15. Let k be a field and let X be a smooth and proper scheme over
k of dimension d, such that d! is invertible in k. Let i € Z. The diagram

Ext’ (P, P)
HH

B

~ d i+J j
HH_;(X) <5 @) H (X, 9% )
HKR

commutes, where ox 1is the map given componentwise by the semiregularity maps

defined in Definition [7.23,
Proof. Let f € Ext'(P, P). By definition one has
% (f) = trp(Ath (P) o f)
so that using Lemma we obtain
ox(f) = trp(ma. (7] P @ exp(dx)) o f)
Using the diagram we may rewrite this as
ox(f) = trp(ma (1] P ® (AL 0 At™)) o f)

= T otrp(mo.(mi P @ Athh) o f)

= Totrp(AtY(P) o f)

=Toop™(f)

where the second equality follows from the projection formula, the third by defini-
tion of At and the last by definition of o, The result follows. O

8.3 Functoriality for Fourier—-Mukai transforms

Let X and Y be smooth and proper schemes over a field k. In this section, we define
for any Fourier-Mukai transform ®p: D(X) — D*(Y) a map &3 : HH,(X) —
HH.(Y). Moreover, we show that this map is compatible with the Hochschild—
theoretic semiregularity maps defined in Deﬁnition (see Propositionbelow
for a precise statement).

Although it is possible to define the map (DI;H* without referring to Serre duality
explicitly (see |1, §6.2]), for some reason it appears to be quite difficult to prove
Proposition in this way directly. Instead, we follow the proof of |15, Theorem
7.1], which is basically a slightly less general statement then Proposition

104

Ext% (P, PRA*A,Ox) 25 Ext’ (Ox, A*A,Ox) = HH_,(X)

{prop_semireg



Definition 8.16. Let X and Y be smooth and proper schemes over a field k. For
P € DX xY) we define

Pp = PY @ 7y Sy
Pp:=PY @ 71%Sx
in DH(X x V).

It is well known that ®p, = ®pv oSy and ®p, = Sx o Ppv are left, resp. right
adjoint to ®p. By abstract nonsense (see |15, Proposition 5.1]) there exist maps

np: OAX —)PR*P
Ep: PL*P—>0AY

in D(X x X) corresponding to the unit, resp. counit of the adjunctions ®p 4 P p,,
and ‘I)PL = (I)p.

Definition 8.17 (Functoriality for Hochschild homology). Let X and Y be smooth
and proper schemes over a field k. For P € D?(X x Y) we define

dp: Ext} v (A.Oy,ASy) = Bxty, v (A Ox,A,Sx)

by sending a map v: A, Oy — A, Sy[i] in D(Y x Y) to the composition

AOx ™2 P P~ Ppr Opy + P 2205 Ppx Sy 5 P S % P P25 Oa

in D°(X x X). We define
RH- HH, (X) — HH.(Y)
as the Serre left adjoint of the map ®p (see Definition .

Definition 8.18. Let k be a field, and let X be a smooth and proper scheme over
k. For £ € Db(X), define the evaluation map

eve: Extle, v (A.Ox,A,Sx) — Exty (£, ® Sx)
n = @, (€)

see Construction [8.6

Lemma 8.19. The map eve is the Serre left adjoint of U?H*, that is for any
p € Exty, x (ALOx,ASx) and o € Ext'(€,E) one has

<€Vg (/’L)a CK> - </’L7 O'(IS‘{H* (Oé)>

in k (see Theorem for the definition of the pairing).

{def_hochschi

{bec}

{lem_semiregu

Proof. Essentially the same argument as in [16, Theorem 4.5]. Let i/ € Ext’ (A*A,Ox, Sx)

be the image of p under the adjunction A* 4 A, so that u = A,pu’ o At%H.
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We have

(eve(),a) = Trx (eve (1) o a)
=Trx (Pu(€) o) (Definition B8]
=Trx (w2, (7€ ® p) o ) (Construction [B.6))
(71'27*(7ng @ (A o At o a) (n= A,y o AtH)
=Trx (wzy*(A*(S @ u')omiE @ At o a) (projection formula)
((5 ® 1) 0 oy (5 @ AL oz)
= try (,/ o tre (AL (£) o a)) (8:3)
The adjunctions A; 4 A* and A* 4 A, give equivalences
@1 EXt}(Ox, A*A*Ox) l) EXt}XX(A!OX, A*Ox)
©a: EXt}(A*A*Ox, Sx) = Ext}xx(A*Ox, AOx ® Sxxx)

Here for the second equivalence, we used that A/\Ox ® Sxxx ~ A,Sx, see (8.2)).
One may show these are compatible with the Serre trace, that is

Trx(go f) = Trxxx(#2(g) o p1(f))
for f € Ext% (Ox,A*A,Ox) and g € Ext% (A*A,Ox, Sx). It follows that

feve(u), a) = trx (' o tre(AR () 0 a))

= trxx (travox (0 o8 ()

= (08" (a))
as required. O

{prop_functor
Proposition 8.20. Let X and Y be smooth and proper schemes over a field k.

For P € D*(X xY) and £ € D*(X), the diagram

Extly (€,€) —" Ext} (2p(£), p(£))
lgs ’ q:‘HH—i lU‘I’P(S)
HH;(X) ———— HH_;(Y)
commutes.
Proof. Let
®h,: Extl (®p(£),®p(E) ® Sy) — Exty(€,€ @ Sx)
be the map sending v: ®p(€) — ®p(€) ® Sy to the composition

Dpp(v) Sx (ep)
—r X,

EX Dp. 0o Bp(E) Pp, oSy oPp(E) = Sx oPp, o Dp(E) Sx&
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By |15, Proposition 3.1], the map (I)J}r, is a Serre left adjoint for ®p. Using Lemma
and Definition [8:17) to identify the other Serre left adjoints of the diagram, we
see it suffices to show the diagram

Exty .y (A.Oy,A,Sy) %, Ext%, v (A.0x,A,Sx)

J{ewpp (€] J{evs

. @T .
Extl (Dp(£),®p(E) ® Sy) ——— Ext’y (£,€ ® Sx)

commutes (by uniqueness of adjoints for a perfect pairing), which is obvious from
the definitions. O

8.4 The action of Hochschild cohomology and the semireg-
ularity map
Let X be a smooth and proper scheme over a field k. The Hochschild-theoretic
semiregularity map (Definition [8.13)) defines a map
oo HH*(X) — HH_, (X x X)
(see Definition [8.13)). In this section, we will construct a Kiinneth isomorphism
K: HH_.(X x X) - @O HH_;(X) ® HH; _.(X)

and an isomorphism +: HH_;(X) ~ HH;(X)V. Moreover, we will show that the
composition
SHHx .

HH"(X) —22 HH_ (X xX) 208, O i, (X)V@HH, (X)) ~ Homy, (HH,(X), HH,_, (X))
can be identified with the natural action of Hochschild cohomology on Hochschild
homology (see Corollary below for a precise statement). Again, for some
reason this seems to be difficult to prove directly, but by passing to the Serre duals
it is possible to establish a comparison result.

We start off by introducing the natural action.

Definition 8.21. Let k be a field, and let X be a smooth and proper scheme over
k. We define the action map

HH*(X) < @5 Hom(HH, (X), HH,_.(X))

[ ((@i)i = (foxi)i)
where z; € HH;(X) = Ext " (AO0x, A, Ox).

Remark 8.22. Since for any two finite dimensional vector spaces V, W we have a
canonical isomorphism Hom(V, W) = VY ® W, we may also think of the action as
a map

HH*(X) — @O HH;(X)" @ HH; _.(X)

which we will also denote with a.
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{lem_dual_act
Lemma 8.23. Let k be a field, and let X be a smooth and proper scheme over k.
The Serre left adjoint of the action map is given by the map

a': @OHH;(X) ® HH;_.(X)" — Exty’ x (A.O0x,A,O0x ® Sxxx)

a; ® B = (Sxxx(as) o B;)
for a; € Exty (A1Ox, A.Ox) and B; € Ext’y (A.Ox, A.Sx).
Proof. Fix
a; € HH;(X) = Exty’, 4 (A/Ox, A Ox)
Bi € HH;_.(X)" = Ext’s (A.Ox, A, Sx)

Let {v;}jes be a basis of HH;(X), and let {v}/ } je s be the dual basis of Extly, ¢ (A.0x, A.Sx).
Then by definition the action map is given by

a(f) =) v @ (fouy)
jed
It follows that
(i ® Bi,a(f)) = Z<ai ® Bi,v] @ (fovy))

jeJ
= Z<ai71};/> : <Bia f © UJ>
JjeJ
= (Bi, fo D> (W au)-v;|)
jeJ
= <6’i7 f © Oéi>
By |15, Lemma 2.2] it follows that
(i ® Bisa(f)) = Trxxx(Bio f o)
= Trxxx(Sxxx(a;)oBiof)
= (Sxxx(ai)o By, f)
as required. O

Note that if X and Y are two smooth and proper schemes over a field k, one
has a Kiinneth isomorphism

Kxy: @QHH;(X) ®; HH,_;(Y) & HH.(X x Y)

given by sending o € Ext;(ixX(AIOX,A*OX) and € EXtii*(A!Oy,A*Oy) to
the element

Ti3(@) @ m34(B) € Exty iy xxy (A1O0xxy, AuOx xy)

(note A, Oxxy = m3A.Ox @ m5,A,Oy, and similarly for A).
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Definition 8.24. Let X be a smooth and proper scheme over a field k. Define the
map

¢: Extly, v (ALOx, A.Sx) = Exty, « (A1O0x, AOx)
e (0x)(n@ w355
where ox is the map X x X — X x X swapping the two factors

{prop_compare
Proposition 8.25. Let X be a smooth and proper scheme over a field k. Then

the diagram

EXt}ix(A*OX7A*OX & SXXX) W EXt)_(*XXXxXX(A*OXXX7A*SXXX)

aﬁ (K;}X)VT

commutes.
Proof. Let
o € HH;(X)Y = Extly, x(A.Ox, A, Sx)
BeHH, ;(X)" = Exty, (A.Ox, ASx)
and consider evp, © (K )" (@ ® B). Then

evo, © (Kxx)"(a® B) = m31.(175(0a) @ miza @ m3,)
= 344 ((Ax X idx x1dx)+(Oxxxxx) ® T30 @ 75, 3)
= 34 (Ax X idx X idx)« (7] @ 713/5)
= T3 (7120 ® m13/3)

where in the second equality we used that 775(Oa) = (Ax Xidx X idx)«(Oxxxxx)
(which follows by base change), and the rest follows from the projection formula.
Now let

A: X xX 5 XxXxX

be the map informally given by (z,y) — (z,y,), so that we have the equality
i3 Ax = A,7T induced by the pullback square

XxX —X X

|5 J2

XxXxX 25 XxX
Similarly, we have m7,A, = (Ax x idx)«7}. Thus
234 (Tl ® i35 3) = T3 ((wﬁa oid(ay xidx)*OxXx) ® (idA*w;sX °7Tik35))
= T3 (Th90 ® A} Sx) 0 Mazu (Ax X idx )uOxxx ® i3 3)

= (7723 o A)*(Oz ®7T1‘SX> o (71'23 oAx x idX)*(ﬁ)
= O’X*(OZ®7TTSX) Oﬂ
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On the other hand one has

(aTo(p®id))(a®B) = Sxxx(ox«(a@m55%")) 0 8 =ox.(a®@miSx) o

which completes the proof. U

Corollary 8.26. Let k be a field, and let X be a smooth and proper scheme over
k. Then the diagram

HH

HH*(X) 2a HH_, (X x X)

|s =

@, HH;(X)" @ HH;_.(X) @, HH_;(X) @ HH;_.(X)

(p¥) '@id

commutes.

Proof. This follows directly from Proposition [8:25] after identifying a with the Serre
right adjoint of a' and Ugi* with the Serre right adjoint of evp, using Lemma

R23land Lemma [B10 O
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9 Deformations of Fourier—Mukai transforms be-
tween Calabi—Yau varieties

In this section we restrict our attention to so—called Calabi—Yau varieties.

Definition 9.1. Let X be a smooth and proper scheme over a field k. We say

that X is Calabi-Yau if X is equidimensional and Q%I/Z(X) = Ox.

We combine everything to prove Theorem and Theorem In section [9.1
we show the semiregularity map is injective for Calabi—Yau varieties. Then in the
following sections we prove our main results.

9.1 Injectivity of the semiregularity map
Recall (Definition [7.23)) that for any scheme X and £ € Perf(X), we have a semireg-
ularity map

ox: Exty(€,€) = PH(LL )
p

By the results in Section @ the p-th component o x , maps obstructions to defor-
mations of € to obstruction classes to ch, (&) staying within the Hodge filtration.

In this section we show that if X =Y x Z where Y is Calabi—Yau and & is the
kernel of a fully faithful Fourier-Mukai transform D(Y) — D(Z), then the total
map ox map is always injective. Informally speaking, this says that one can read
of whether or not £ will deform by checking whether or not ch,(€) remains within
the Hodge filtration for all p > 0.

Our strategy is essentially due to [49]: The fact that £ is fully faithful implies
that the transform € x (—=): D(X x X) = D(X x Y) has a left inverse, which will
allow us to reduce to the case where X =Y and £ = A,Ox. Thus the following
lemma is all we will need.

Lemma 9.2. Let k be a field and let X be a smooth and proper scheme over k. If
X is Calabi—Yau, then the semiregularity map

agg; s HHY(X) — HH_;(X x X)
is injective for all i.

Proof. By Corollary [8:26] it suffices to show the map

a: @HI (X) — €D Hom(HH;(X), HH;_;(X)) (9.1)

2
is injective. Since X is Calabi-Yau, we have Sx = Ox|[d] where d = dim(X). Thus
HH;, (X) = EXt;(ixX (OAX [d]’ OAX) = EXt?{xiX(OAX ) OAX) = HH™ (X)
Under this identification, the map

a: HH (X) — Hom(HH,4(X),HH, (X))
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corresponds to the map
HH/ (X)) — Hom(HH’(X), HH/ (X))

given by composition (i.e. the natural ring multiplication on Hochschild cohomol-
ogy). But this last map is clearly injective (since we can evaluate at ido, ). We
conclude that (9.1)) is injective as desired. O

The following observation is probably well known and used in the footnote in
|1, page 19, footnote 6] to construct a left inverse to € x (—), however we could not
find it anywhere in the literature so we give a direct proof.

Lemma 9.3. Let k be a field, and let X andY be smooth and proper schemes over
k. Let £ € D(X xY) be the kernel of a Fourier—Mukai transform ®g: D(X) —
D(Y). Let
Er = &V ® W;(SX
be the kernel of the right adjoint. Then the convolution functor Eg * (—): D(X X
Y) = D(X x X) (see ) is right adjoint to Ex(=): D(X x X) - D(X xY).
Proof. Denote with A: X x X — X x X x X the map sending (z,y) = (z,y,x).
Let A € D(X x X). Then
Ex A =mi3.(Ti A ® m3sE)
= T3 (A X idy ) (7] A ® T35E))
344 ((A % idy ) (Ox x xxy) @ TiA @ 13,E)
= 7734*(7TT2A & (7T§4g ® 7TT3A*O)())
Thus 75,€ @ mi3A,.Ox € D(X x X x X xY) is the kernel corresponding to € (—).
It follows that the kernel corresponding to the right adjoint of £ x (—) is given by

(m354€ @ mi30,0x)" @ maSxxx = (m5,EV 75 ® Sx) ® 7i5((ALOx)Y @ 7} Sx)
= (m54(EY @ 11 Sx)) @ mi3(A.Ox)
= (m34(Er) ® m13(AOx)

where in the second equality we have used (A.Ox)V ®@7iSx = A.Ox (this follows
from the fact that Oa , is the kernel of the identity functor, hence the kernel of its
right adjoint is equal to itself).

By the exact same argument as above, this last expression is the kernel corre-
sponding to £g * (—), which completes the proof. O

We now have everything we need to conclude the injectivity we need.

Theorem 9.4. Let k be a field, and let X and Y be smooth and proper schemes
over k. Let £ € D(X xY) be the kernel of a Fourier—Mukai transform

be: D(X) - DY)
If ©¢ is fully faithful and X is Calabi—Yau, then the semiregularity map
ogt: Extley(6,) — HH_;(X x Y)

1s injective for all i.
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Proof. Let g =&Y @ 5% Sx € D(Y x X) be the kernel of the right adjoint

De,: DY) = D(X)

R

to ®g. Since ¢ is fully faithful, its right adjoint ®¢, is a left inverse by abstract
nonsense. We thus have &g x &€ ~ Oa,. Write £ e DX x X x X xY) and
Er € D(X xY x X x X) for the kernels of the functors € x (=) and Ex * (—)
respectively.

By Proposition [8:20] we have a commutative diagram

N
EXt;(XX(OAX ) OAX) — EXt;(xY (5’ 5)

HH. HH
o *
J{ Oay HH_, J{Ug
5N

HH_, (X x X) —=— HH_,(X xY)

Since Eg x € ~ Op, it follows from Lemma that the map

D
EXt;(xX(OAx ’ OAX) —= EXt;(xY(ga 5)

is an isomorphism. Since ®z is a right inverse to @, by Proposition@ the map
@?H* : HH,(X x X) — HH, (X x Y)

admits a left inverse (given by @gH*), thus in particular is injective. Finally by
R

Lemma the map agf* is injectiyve7 the result follows. O
X

Finally, we state the analogous result for Hodge cohomology under the Hochschild-
Kostant-Rosenberg isomorphism.

{corol_semire
Corollary 9.5. Let k be a field and let X and Y be smooth and proper equidimen-

sional schemes over k. Suppose that d = dim(X x Y') is such that d! is invertible
ink. Let £ € D(X xY) be the kernel of a Fourier—-Mukai transform

de: D(X) — D(Y)

If ©¢ is fully faithful and X is Calabi-Yau, then for all j the (total) semiregularity

map
dim(X)+dim(Y")

ox: Exth v (,€) = P HIX XY, Q)
i=0
18 injective.

Proof. Combine Proposition [8.15] and Theorem O
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9.2 Deformations in the characteristic zero case

We combine all the previous results in the characteristic zero case to prove Theorem
[[-5] at the end of this section. We isolate the statement of the inductive step in the
following proposition.

Proposition 9.6. Let k be a field with Q C k, and let R' — R be a surjective ring
map of local Artinian k-algebras with kernel I such that I = 0 and mg - I = 0.
Let X' Y' be smooth and proper schemes over R’, and let

X = X/ XSpec(R’) SpeC(R)
XO =X’ XSpeC(R’) Spec(k)

and similarly for Y)Yy, Let £ € Perf(X x Y) be the kernel of a fully faithful
Fourier—Mukai transform ®g: Perf(X) — Perf(Y). Let & := &|xoxvy- If Xo is
Calabi-Yau, then the following are equivalent.

1. There exists a kernel &' € Perf(X' x Y') of a fully faithful Fourier—Mukai
transform ®g, : Perf(X') — Perf(Y”') such that &'|xxy =~ E.

2. The image of ch;(Ey) ® 1 under the stratifying map (Definition

Pixray s B (AR xoxvo ) @k R = H* (AR ey /)

lands in ]Z:‘Z Hzi(&f{X/XY//RI) fOT’ all g Z 0.
If these hold then ®g/ is an equivalence if and only if ®¢ is.

Proof. Note that by definition of the obstruction class, we have

Pam.xr v (Chi(&0) ©1) € F'H* (AR x/ v/ /r7)

if and only if ob%r,, v/ (chi(€0)) = 0. Since mp: - I = 0, the semiregularity map
OXxY,it EXt%{xY(gv & ®I) - @ Hi+2(Lg(><Y/R ® I)
is just the map

Txoxve: Exti,xy, (Xo x Yo, &, &) @k I — @H”Q(XO X Yo, Uy, vo k) Ok 1

7

hence injective by Corollary Thus ob% v /R (chi(&p)) = 0 for all p if and only
if ob(€,X x Y, X’ x Y’') =0 by Theorem
By Proposition it follows that there exists £’ € Perf(X’ x Y') deforming &

if and only if we have ObdXP/{Xy//R/ (ch;(&)) = 0 for all 4. By [42, Proposition 2.15]
we see that ®g is always fully faithful, and an equivalence if and only if ®¢ is an
equivalence, which proves the result. O

Proof of Theorem[1.5 By induction on the size of A, using Proposition O

114

{prop_inducti



9.3 Deformations in mixed characteristic

In this section we combine all the previous results in the p-adic case, to prove
Theorem [I.6] The following proposition gives the essential ingredient, allowing us
to lift the transform to a slightly smaller extension. The proposition is very general,
we urge the reader to keep in mind the following example: k a field of characteristic
p > 2, W = W (k) the ring of Witt vectors of k, R' = W11 = W/p™tt R=W,,
and I = (pm) - Wm+1~

Proposition 9.7. Let W be a ring. Let k be a field with a map W — k. Let
(R = k,y') = (R—k,v)

be a morphism of divided power W -algebras such that R’ — R is a surjection with
kernel I, such that ), (x) =0 for allz € I and alln > 2, and such that mp/ -1 = 0.
Let X', Y’ be smooth and proper schemes over R', and let

X = XI XSpEC(R’) SpeC(R)
Xo = X' Xgpec(rr) Spec(k)

and similarly for Y,Yy. Let € € Perf(X x Y) be the kernel of a fully-faithful
Fourier—Mukai transform ®g: Perf(X) — Perf(Y). Let & = &|xoxvy- If Xo is
Calabi-Yau, Yy is equidimensional and d := dim(Xo) + dim(Yp) 4s such that d! is
invertible in W, then the following are equivalent.

1. There exists a kernel &' € Perf(X' x Y') of a fully faithful Fourier—Mukai
transform ®g, : Perf(X') — Perf(Y”') such that &'|xxy =~ E.

2. The image of ch;(Ey) ® 1 under the stratifying map (Definition
PCrys, X' xY" HQi(dRXOXYO/k) QR — H%(dRX/xY'/R/)
lands in F*H* (AR x/xy+/pr) for all i > 0.

If either of the equivalent conditions holds then ®¢/ is an equivalence if and only if
(I)g 1s.

Proof. Similar to the proof of Proposition[0.6] we only give details where the proof
differs. Note that by definition of the obstruction class, we have

PCrys, X' xY" (Chz(g()) ® 1) S FZ H2i (dRX’XY//R’)
if and only if obgr,yxsy, IR (ch;(&)) = 0. Again, by Corollary [9.5|the semiregularity
map is injective, thus obgj(r,yxsy, r(chi(&)) = 0 for all ¢ if and only if ob(€, X x
Y, X’ xY") = 0 by Theorem We may again conclude by Proposition and
[42, Proposition 2.15]. O

Definition 9.8. Let (A4,I,v) be a divided power ring, and let n € N. Define
79(I) := I and inductively define the ideals

1) = (@) [ @ € 73~ (D))

for k > 1. We say that v, acts nilpotently on I if v*(I) = 0 for some k € N.
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We now wish to show that this condition on <, implies that we can find a
suitable sequence of ideals to apply Proposition to.

Lemma 9.9. Let p be a prime, let A be a Z)-algebra and let I C A be an ideal
with a divided power structure v. Then any x € T2\ I? can be written as

r=a+c "7p<bl>+"'+cm7p(bm)
for somea € I?, meN, cp,...,¢;, € A and by, ... b, € T\ I?.

Proof. Since x € I?l there exists m € N;a € I? and ¢y, ...,¢m € A, by, ... by €1
and nq,...,Ny, € N>o such that

r=a+ Zcz%,- (bs)
=1

Choose such a representation such that

i=1

is minimal. Note N > 1 since = & I°.
Note that if some n; were not divisible by p, we could write n; = pk + ¢ with
te{l,...,p—1}. Hence
k+ 0)!
C%v:::gegjlgl
! (pk)!e!

is not divisible by p, and thus invertible in A. It follows that

Vo, (@) = C b A (@) - ()

lies in I?, contradicting minimality of N (note & = 0 implies £ > 2). Thus all n;
are divisible by p.
Next, suppose there exists ¢ such that n; = pb for some b > 2. A calculation
with valuations shows that the integer
(pb)!

Cpp = (p)t0!

is not divisible by p, and hence a unit in A. It follows that v, (z) = C’;; A (7p(2))-
Since b > 2, this again contradicts minimality of N. We conclude that n; = p for
all 4.

Finally if b; € I? for some i, then v, (b;) € I?, which again contradicts minimal-
ity of N. The result follows. O

Corollary 9.10. Let (A, 1,v) be a divided power ring, and let p be a prime number.
If A is a local Artinian Zy)-algebra, 0 C I Cma and vy, acts nilpotently on I, then
P cr.
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Proof. Since A is Artinian we see that m4 is nilpotent, therefore I is nilpotent. In
particular I? # I since I # 0. Thus after replacing A by A/I? one still has I # 0.
We may thus assume without loss of generality that I2 = 0.

Suppose that Il = I, we show this leads to a contradiction. Since I # 0 there
exists & € I such that = # 0. Since we assumed 12l = I, we have z € Il? \ I, so
that by Lemma [0.9] we may write

z=c1-Yp(b1) + -+ cmYp(bm) (9:2)

for some m € N, ¢; € A and b; € I nonzero. Hence x € ’y; (I). Again using that
Il = I, we may represent each b; as

bi = cinvp(bi1) + - + cimYp(bim,) (9.3)

for some m; € N, ¢;; € A and b;; € I nonzero. Combining (9.2]) and (9.3) it follows
that = € 2(I). Continuing like this, we may show that = € v¥(I) for all k > 0.
Thus = = 0 since v, acts nilpotently on I, which is a contradiction. O

Proposition 9.11. Let (A,I,7v) be a divided power ring, and let p be a prime
number. If A is a local Artinian Zy)-algebra and v, acts nilpotently on ma, then
there exists a finite chain of ideals

mu=hL2L 2 21;,=0
such that Iim Clit1.

Proof. One simply defines I := m4 and I;4 1 := Ii[Q]. Then ;41 € I; as long as

=

I; # 0 by Corollary and this sequence terminates since A is Artinian. O
Proof of Theorem[I.¢, Combine Proposition [0.11] and Proposition [9.7] O

Proof of Corollary[I.7]. Forn > 0,let X, := X Xgpec(w)Spec(W,) and similarly for
Vy. By induction on n and Theorem we may find a compatible system of lifts
En € D(X,, xV,). Thus there exists a lift £ € D?(X x Y) by [35, Proposition 3.6.1].
The induced transform is fully faithful (or an equivalence) by [42, Proposition
2.15]. 0
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Summary

This thesis contributes to the field of algebraic geometry, which in essence is the
study of geometric objects coming from algebraic equations. For example, the
equation

af+ri+ a3 +a3=0

defines a 2-dimensional surface in the 3-dimensional projective space P3. In fact,
the above equation is known to define a particularly nice surface: It has trivial
canonical bundle, and therefore is a K3 surface. Another example is the equation

3 3 3 3 3 3
o +z]+x5+as+ay+x5=0

which defines a 4-dimensional object in P°. Since the object is 4-dimensional and
the equation is of degree 3, the corresponding geometric object is called a cubic
fourfold. The geometric object induced by algebraic equations is called an algebraic
variety. Thus, a K3 surface or a cubic fourfold are an example of an algebraic vari-
ety. Another interesting example are Calabi- Yau varieties (also known as varieties
with trivial canonical bundle). A K3 surface is an example of a Calabi-Yau variety,
but not every Calabi-Yau variety is a K3 surface. Another example of a Calabi-Yau
variety is an abelian variety, for example an elliptic curve.

Any algebraic variety X defines a derived category D(X). The derived category
of an algebraic variety is an important invariant containing a lot of information
about the geometry of X, and has many applications in mathematical physics. For
a Calabi-Yau variety X, the derived category of X is known to be particularly
interesting.
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A Appendix

A.1 Compact projective generators

Let R be a ring and k¥ € N. The main goal of this section is to construct the
compact projectively generated categories Fun(AF, CAlg® )suj. The case k = 0
and k = 1 were done by Mao, see |41, Theorem 3.23]. We try and clean up the
argument slightly in the process.

Throughout this section, n can be any integer greater than or equal to 1, or the
symbol co. The key ingredient to finding sets of compact projective generators is

the following result from Lurie.
{prop_generat

F
Proposition A.1. Suppose given a pair of adjoint functors C — D. between

n-categories. Assume that:

1. The n-category D admits filtered colimits and geometric realizations, and G
preserves filtered colimits and geometric realizations.

2. The n-category C is compact n-projectively generated.
3. The functor G is conservative.

Then:
1. The n-category D is compact n-projectively generated.

2. An object D € D is compact and n-projective if and only if there exists a
compact n-projective object C' € C such that D is a retract of F(C).

3. The functor G preserves all sifted colimits.

4. If S is a set of compact n-projective generators for C, then F(S) is a set of
compact n-projective generators for D.

Proof. See 38, Corollary 4.7.3.18]. Note that 4. isn’t stated but follows from the
proof as well. O

The following lemma will be very useful along the way.
{fun_adjoint}

F
Lemma A.2. Suppose given a pair of adjoint functors between n-categories C < D .
Let K be a simplicial set. Then there exists an induced pair
Fo—
FUH(K7C) W FuH(K, D)
of adjoint functors.
Proof. Apply [39, Proposition 5.2.2.8] twice. O

We now wish to study Fun(A*, Ani(C)).

119



{lem_fun_proj

Lemma A.3. LetC be a compact n-projectively generated n-category. Then Fun(A*,C)

is compact n-projectively generated. Moreover, if S is a set of compact n-projective
generators for C, then the set

{ins;(X) | i €{0,... k}, X € S}

where
ing;(X)=0—=-—=0—-X—-—X

i times (k—i+1) times
is a set of compact n-projective generators for Fun(A*,C).

Proof. Since C is cocomplete, it follows that Fun(A¥, C) is cocomplete by [39, Corol-
lary 5.1.2.3]. The forgetful functor

Fun(A*,C) — Fun(ske(A*),C) (A.1)

is conservative, commutes with colimits by |39, Corollary 5.1.2.3] and admits a left
adjoint explicitly given by

(X(),,Xk)P—)(Xo—)XoﬂXl—)—)X()HHXk)

The result now follows by applying Proposition [A] to the set of compact n-
projective generators for Fun(sko(AF),C) given in [41, Lemma 2.7]. O

Definition A.4. Let C be a compact n-projectively generated n-category and
let S be a set of compact n-projective generators. We write Fun(Ak,C)gen for
the full subcategory of Fun(A*,C) spanned by coproducts of objects in the set
{ins;(X) | X € S,i €{0,...,k}}.

Corollary A.5. Let C be a compact n-projectively generated n-category. Then the
map
Ani(Fun(A*,C)) = Fun(A*, Ani(C))

s an equivalence of categories.

Proof. Let S be a set of compact n-projective generators for C, and let j: C —
Ani(C) be the Yoneda embedding. Then j(.5) is a set of compact projective gener-
ators for Ani(C), so by Lemma we see that

{ins;(5(X)) | i € {0,...,k}, X € S}

gives a set of compact projective generators for Fun(AF, Ani(C)). Let Cy C Fun(AF,C)

be the full subcategory spanned by finite coproducts of objects in the set
{ins;(X) |1 € {0,...,k}, X € S}
Since j is fully faithful one then has Ani(Cy) = Fun(A*, Ani(C)). However, applying

Lemma[A 3] again we see that Cy is a set of compact n-projective generators for the
n-category Fun(AF,C). The result follows. O
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By Lemma we see that the (pointwise) Yoneda embedding Fun(A*, C) —
Fun(A*, Ani(C)) admits a left adjoint 7p: Fun(AF, Ani(C)) — Fun(A*,C) given by
applying the left adjoint Ani(C) — C pointwise.

For the rest of this section, we restrict our attention to the co-categories D(R) >0
and CAlg%', where R is a discrete commutative ring.

Lemma A.6. Let R be a ring and k € N. The oo-category Fun(A*, D(R)V) is
compact 1-projectively generated. A set of generators is given by {ins;(R) | i €

{0,...,k}}.

Proof. By Lemma [AZ3]it suffices to give a proof for k = 0. Then this is a classical
result about the category of discrete R-modules, we give a short sketch. Since
any R-module can be written as a colimit of free modules, it suffices to show
the functor Hompg)w (R, —): D(R)¥ — Set commutes with filtered colimits and
geometric realizations.

Note that Homppyo (R, —) is just the forgetful functor D(R)Y — Set, hence it
commutes with filtered colimits (for example by |12, Proposition 2.13.5]). By [41}
Remark A.21], to show it commutes with geometric realizations it suffices to show
it commutes with colimits over A%, which we leave for the reader to verify. [

Corollary A.7. Let R be a ring and k € N. The oo-category Fun(A* D(R)>q) is
compact projectively generated. Moreover, a set of generators is given by {ins;(R) |
i €{0,...,k}}.

Proof. By [38], Corollary 7.1.4.15] and [38, Theorem 7.1.2.13] we have a canonical
equivalence Ani(D(R)¥) =& D(R)>o. By Corollary it thus suffices to show
Ani(Fun(A*, D(R)")) is compact projectively generated by the mentioned set of
generators. This follows by combining Lemma and Lemma [2.10 O

Lemma A.8. Let R be a ring. There exists an adjunction

Sym
Fun(AF, D(R)>o) m> Fun(AF, CAlg%)
Moreover, forget is conservative, forget preserves sifted colimits, and the canonical
map mg o forget — forget o mg is an equivalence.

Proof. We have an adjunction

Sym
D(R)Y —— CAlg5,

forget

Since CAlgg is cocomplete, the forgetful functor commutes with filtered colimits
and geometric realizations, D(R)" is 1-projectively generated (by LemmalA.6]) and
forget is conservative, by |41}, Corollary 2.3] there exists an adjunction

Symp

D(R)>o0 Sorget CAlgR'

for which forget is conservative, forget preserves filtered colimits and geometric
realizations, and the canonical map mq o forget — forget o 7y is an equivalence. By
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Lemma we obtain the desired adjunction (use [39, Corollary 5.1.2.3] to show
that the induced map forget again preserves sifted colimits). O

Corollary A.9. Let R be a ring and k € N. The co-category Fun(AF, CAlgy) is
projectively generated. A set of generators is given by {ins;(R[z]) | i € {0,...,k}}.

Proof. We verify the conditions of Proposition [A:] for the adjunction given by
Lemma Note that CAlg%' is cocomplete by definition, hence Fun(A*, CAlg})
is cocomplete by |39 Corollary 5.1.2.3]. Moreover, forget preserves filtered colimits
and geometric realizations by Lemma, so condition 1 holds. By Corollary
condition 2 hods, and by Lemma condition 3 holds. Thus all conditions are
satisfied and we may conclude by applying Proposition O

Definition A.10. Let R be a ring and k € N. Let C € {D(R)", CAng}. Define
Fun(AF, C)surj € Fun(A¥,C) to be the full subcategory of all objects

(Xo — --- — X3) € Fun(AF,C)

for which the composition Xy — X is a surjective map in C for all ¢ € {0,...,k}.
We set

Fun(AF, Ani(C))susj := Fun(A®, Ani(C)) X pun(ar,c) Fun(A¥, C)surj
Following [41], we write AniPairg := Fun(A', Ani(CAlg%))surj-
Thus, an object of Fun(A*, Ani(C))su; is specified by a diagram
Xg— X1 — = X

of objects in Ani(C) such that mo(Xo) — mo(X;) is surjective for all 4. In particular,
an element of AniPairg is a morphism of animated rings A — B such that mo(A) —
mo(B) is a surjective ring map.

{corol_comp_p

{def_anipair}

We now want to find a set of compact projective generators for Fun(AF, CAlgR)surj-

Definition A.11. Let C be an n-category, and let k € Nand i € {0, ..., k}. Define
the functor

coins;: Fun(A',C) — Fun(A¥,C)

X=2Y)»[X—>  2X>3Y > - oY

i+1 times (k—i—1) times

Lemma A.12. Let R be a ring and k € N. The co-category Fun(A¥, D(R)>0)surj
18 compact projectively generated. Moreover, a set of compact projective generators
s given by

{coins;(R = 0) | i € {0,...,k}}
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Proof. One may construct an equivalence of categories

fiby,

Fun(AF, D(R)>0) Fun(AF, D(R)>0)surj

cofibg

(Xo = X1 == Xp) ——————— (Xip = (Xn/Xo) = ... (Xi/Xk-1))

(fib(Yo =Y) > =>fbYy oY) oY) +———— Yoo - = V)

It follows that {fibg(ins;(0 — R)) | i € {0,...,k}} is a set of compact pro-
jective generators for the category Fun(A* D(R)>0)suj. The result follows as
fib (ins; (0 — R)) = coins; (R — 0). O

Corollary A.13. For R be a ring and k € N, the co-category Fun(AF, CAlgy')surj
18 compact projectively generated. Moreover, a set of compact projective generators
s given by
{coins;(R[z] = R) | i € {0,...,k}}
Proof. Restricting the adjunction in Lemma we obtain an adjunction
Symp

Fun(Ak,D(R)ZO)surj m Fun(Ak, CAlgaRn)surj

where forget is conservative and preserves filtered colimits and geometric realiza-
tions. Moreover, the subcategory Fun(AF, CAlg )surj € Fun(AF, CAlg?h') is closed
under colimits (since my preserves colimits), hence Fun(A*, CAlgh )suj is cocom-
plete. Finally Fun(A¥, D(R)>0)surj is compact projectively generated by Lemma
[AT2] The result follows by applying Proposition [A.1] O

Definition A.14. For R be a ring, we let Fun(A*, Poly ;)surj.gen be spanned by
coproducts of objects in the set

{coins;(R[z] = R) | i € {0,...,k}}
as a full subcategory of the 1-category Fun(A*, CAlgR )suri-
Lemma A.15. Let R be a ring. The natural map

Fun(A*, CAlgh)suj — Fun(A*, CAlg%)
commutes with colimits.

Proof. Since the left hand side is a full subcategory of the right hand side, it suf-
fices to show it is closed under colimits. Since the functor mp: Fun(A¥ CAlg%:') —

Fun(A*, CAng) preserves colimits, it suffices to show Fun(AF, CAlgz)surj C Fun(AF,

is closed under colimits.

To see that it is closed under sifted colimits, note that the natural map CAlgg —
D(R)" commutes with sifted colimits, hence it suffices to show Fun(A*, D(R)" )surj C
Fun(A*, D(R)®) is closed under sifted colimits. This follows since it is closed under
all colimits, as the cofiber functor is a colimit, and hence commute with colimits.

Thus remains to show Fun(AF, CAlg},)eurj € Fun(A*, CAlg}) is closed under
coproducts. To this end, we need to show that if A’ — A and B’ — B are surjective
maps, then the map A’ ®r B’ — A®pg B is surjective. This follows since the tensor
product is right exact by [48], (00DF]. O
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A.2 Homological algebra in stable co-categories

Construction A.16. Let C be a stable co-category. Let A, B € C. Then the fiber
functor |38| Definition 1.1.1.6, Remark 1.1.1.7]

fib: Fun(A',C) — C

sends
A% BA)— AaB

We thus get a map
fib: m (Map. (A, B[1]),0) — mo Map. (A4, B)

We will denote with 64 g the composition

™1 (Mape (A, B[1]),0) 22 mo Mape (A ® B, A ® B) Z2°=°4; 7 Map, (A @ B)
where t4: A - A® B and ng: A @ B — B are the canonical inclusion and
projection maps.

{bce}
Lemma A.17. Let C be a stable co-category, and let A, B € C. Then the map

m1(Map (A, B[1]),0) = mo Map. (A ¢ B)
induced by the equivalences
QMape (A4, B[1]),0) ~ Maps(A, QB[1])) ~ Map.(A & B)
agrees with the map 64 .

Proof. Denote with D the oo-category Fun(A',C). Let € D be the element
corresponding to the map 0: A — B[1] in C. The natural morphism of simplicial
sets A — S! induces a canonical map

s: QMape (A, B[1]) = Mapp(z, x)

Let a € D be the element (A — 0), and denote with b € D the element (0 — BJ[1]).
Denote with f € Mapp(a, x) the element corresponding to the commutative square

A——

|

A — B[]
and with g € Mapp(z,b) the element corresponding to the commutative square

A —2 B[]

| s

0 —— BJ1]
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We then get a natural map Mapp(z, ) — Mapp(a, b), given by precomposing with
f and postcomposing with g. The universal property of the pullback square

B——0

I

0 —— B[1]
in C induces a canonical equivalence Mapy, (a,b) ~ Map. (A4, B). It is not too hard
to see that the composition

71 Mape (A, B[1]) 2 mo Mapyp (z, ) gozof, 7o Mapp (a, b) ~ Map,(A, B)

is equal to the composition
m1 Map (4, B[1]),0) ~ 7o Map¢(A, QB[1])) ~ mo Map (A4, B)

Since the fiber functor fib: D — C sends f + ¢4 and g — 7, the result follows. [

A.3 Homological algebra in symmetric monoidal stable co-
categories

In this section we record some results on tensor products of fiber sequences in
stable oco-categories. These result are well-known in the triangulated setting, see
for example [43].

Lemma A.18. Let C® be a symmetric monoidal stable co-category for which the
tensor product preserves finite limits in each variable. Let

A1—>A2—)A3
By — By — Bs

be fiber sequences in C. Write E;; := A; ® Bj. Then the canonical map
E11 — ﬁb(E22 — (E23 X Eas E32))
s an equivalence.

Proof. Consider the diagram

L3y —— Ea3

L

E3p —— E33

[

Egy —— E3m

Since limits commute with limits, we may identify the fiber of the vertical pullbacks
with the vertical pullback of the fibers of the horzontal arrows. As the first is equal
to F11 and the second to fib(E92 — Eag X gy, E32), the result follows. O
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Similarly, we have the dual statement.
Lemma A.19. Let C® be a symmetric monoidal stable co-category, and let
Al — Ay — Az
By — By — B3
be fiber sequences in C. Write E;; := A; ® Bj. Then the canonical map
cofib(E12 Ug,, Ea1 — Ea22) — E1;
is an equivalence.

Proof. Dual to Lemma [A7T8] O

The following result essentially summarizes all of the homological algebra con-
structions in [43].

Lemma A.20. Let C® be a symmetric monoidal stable co-category for which the
tensor product preserves finite limits in each variable. Let

A1—>A2—>A3
Bl—>BQ—>Bg

be fiber sequences in C. Write E;; == A; @ Bj. Then there exists a commutative
diagram

By ——— By

|

Eiy —— EppUg,, Byy ———— Eg

| !

Ei3 ——— FEi13® E31 —— Ey3 Xpg,, F3g —— Ea3

| | |

0 —— E5 Es39 E33

in which all squares are pullback (thus pushout) squares, and all maps are the
canonical ones.

Proof. Taking the coproduct of the squares

FE{1 —— E9 00— 0
0 —— E3 Ey3 —— Es

we obtain the pullback (thus pushout) square

By —— Ey

| |

Ei3 —— E13@ E3
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and thus by functiorality of pushouts a commutative diagram

By —— Ey

| I

Ei3 —— Ei13Ug,, B2

| |

Ey3 —— E130 B
By Lemma there exists a pullback (thus pushout) square

Eig ———— Ey

| |

Ei3 —— Ey3 Xy, F3o
hence again by functoriality of pushouts we get an induced diagram

By —— By

| l

Ei3 —— Ei12Ug,, Fyy ———— Eoa»

| | !

Ei3 —— Ei3® E3; ——— Ea3 Xy, E3o

The two bottom-right pullback (thus pushout) squares of the final diagram are con-
structed dually to the construction of the two upper-right pullback (thus pushout)
squares, the final square is then obvious. O

Lemma A.21. Let C® be a symmetric monoidal stable co-category for which the
tensor product preserves finite limits in each variable. Let

A1—>A2—>A3
BlﬁBgﬁBg

be fiber sequences in C. Write E;; := A; ® B;. Suppose T' € C is any object, and
we are given a diagram

By —— Epp

L

Eyy —— Eys

L

Eyy —— T
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in C. Then there exists an extension to a commutative diagram

Eyy ——— Eg

| |

B3 —— E31 Xpg,, E3

N

T

inC.

Proof. Consider the diagram

By Eyy Eyo
0 E3; Es31 X B33 E3o
T

Clearly the left square is a pullback (thus pushout) square, and the rectangle is a
pullback (thus pushout) square by Lemma Thus the right square is a pushout
square, which yields the result. O

A.4 Notes on trace maps

{haa}
Definition A.22 (Dualizable object). Let C® be a symmetric monoidal co-category

with unit object O, and let £ € C. We say that & is dualizable if there exists an
object £V € C and maps

ev: EREY = O
coev: O 5 EV®E

such that the compositions

EV O @gY LNV oV og eV MOV evig g gy

EnE@O BN, eV ge 0 hoeng

are homotopic to the identity. A dualizable object is said to be invertible if the
evaluation and coevaulation maps are isomorphisms.

For any dualizable object £ and any map € ® M — £ ® N we may consider its
trace M — N, see Definition We give some general properties of this trace
map.
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Lemma A.23. Let C® be a symmetric monoidal co-category with unit object O,
and let L be an invertible object of C. For any three objects M, N, K € C and any
two maps

a: LR M — LR N
B: LR N = LR K

we have tr(f o ) = tr(B) o tr(«).
Proof. Since L is invertible, the composition
LYo L5022 Vel
is the identity map. Thus
tr(B) otr(a) = (ev® K)o (LY @ ) o (coev®@ N) o (ev® N) o (LY @ a) o (coev @ M)
=(eva K)o (LY®pB)o (LY ®a)o (coev® M)
=tr(foa)
as required. O

Proposition A.24 (Additivity of traces). Let C® be a symmetric monoidal stable
oo-category. Suppose

X Y z !

is a fiber sequence in C of dualizable objects. Given a commutative diagram

MX — MY — Mo Z 1,
ls s [
NeX — s N®Y — s Nz 11,

in which the lower and upper fiber sequence are obtained by tensoring the original
fiber sequence, one has

trx (f) + trz(h) = try(g)
in moHome (M, N).
Proof. Essentially due to [43]. Write
V = (X ® YV) U(X@ZV) Y ® ZV
W = (Z(X}Yv) X(Z@XV) X® A

Some calculations with adjoints yields a commutative diagram

X2V — XYV — XXV

| |

YZY — Y YV ev
Z®Z\/ ev\]l
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so by applying Lemma and its symmetric twin we obtain a commutative
diagram
YeYY XXV

~_ !

Z®ZV4>W

such that the composition
YRYY W =1

is homotopic to the evaluation map. Tensoring this diagram with N and the dual
of this diagram (involving coevaluations) with M, using the construction of the
middle square from Lemma and functoriality of pushouts (twice), we obtain
a commutative diagram

(M®coev{W J{ Wev

MRXRX\)e(MRZ22ZY)+— MV —s M@ (Y YY)

/

(f®XY,h®z") MeW geY"Y

|

(NeX@XV)o(M®Z®ZY) — NW +— N (YY)

(le%

The result follows by comparing the outer compositions. O
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