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Abstract
We study the deformation theory of fully faithful Fourier–Mukai trans-

forms between varieties with trivial canonical bundle in both characteristic
zero and mixed characteristic, generalizing work of Addington-Thomas and
Lieblich-Olsson. The main technical contribution is a formula for the ob-
struction class measuring the failure of a Chern character to remain within
the Hodge filtration as a cup product with a (derived) Kodaira–Spencer class.
As a side result, we obtain a new proof of nil-invariance of derived de Rham
cohomology in characteristic zero.
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1 Introduction

1.1 Background
We start by discussing some background and motivation. The reader familiar with
the subject may skip ahead to Section 1.2.

Around 1960, Grothendieck and Verdier [51] constructed for any scheme X its
derived category Db(X). They initially intended the notion of a derived category to
be nothing more then a formal framework, in which it was easy to formulate con-
cepts such as higher direct images, derived tensor products or cohomology groups.
Their main goal was to vastly generalize Serre duality to a statement which is now
known as Grothendieck duality.

About 20 years later the realization came that the derived category was an in-
teresting invariant in itself. Mukai [44] constructed interesting geometric examples
of varieties whose derived categories are isomorphic (such varieties are called de-
rived equivalent), but which were not isomorphic themselves. On the other hand,
Bondal and Orlov [11] showed that varieties with ample or anti-ample canonical
bundle were completely determined by their triangulated category.

Independently, Kontsevich also took an interest in the derived category when
formulating his mirror symmetry conjecture [34]. He conjectured that one could
view mirror symmetry as an equivalence between a derived category of coherent
sheaves of one variety with the Fukaya category of its mirror variety.

In 1990, Bondal and Kapranov [10] introduced the notion of a semi-orthogonal
decomposition, essentially allowing one to study the derived category in terms of
much smaller building blocks called admissible subcategories.

Of particular interest are derived categories of varieties with trivial canonical
bundle, such as elliptic curves, higher dimensional abelian varieties, or K3 surfaces.
One may show that the derived category of a variety with trivial canonical bundle
(often called a Calabi–Yau variety) is always indecomposoable, i.e. it admits no
non-trivial semi-orthogonal decompositions. Therefore, it is especially interesting
to study when the derived category of a Calabi–Yau variety embeds into the derived
category of some larger variety.

Kuznetsov [20] gave an especially interesting example of the above phenomenon.
He showed that the derived category of any cubic fourfold X admits a semi-
orthogonal decomposition consisting of a trivial part (generated by the line bundles
OX ,OX(1) and OX(2)), and a non-trivial part called the Kuznetsov component (or
residual component) AX . The Kuznetsov component AX has many properties
similar to the derived category of a K3 surface, and in many cases is actually iso-
morphic to the derived category of a K3 surface. If this is the case, AX is said to be
geometric. Kuznetsov conjectured that AX is geometric if and only if X is rational,
and showed AX to be geometric for all cubic fourfolds known to be rational.

Motivated by Kuznetsov’s conjecture, Addington and Thomas [1] showed the
Kuznetsov component of a much larger class of class of cubic fourfolds to be ra-
tional. One of the main technical contributions in their paper is to answer the
following question.

{iaa}
Question 1.1. Let S be a K3 surface, and let X be any smooth and projective

4



variety. Suppose we are given a fully faithful embedding Db(S) ↪→ Db(X). If S
and X are deformations of S and X respectively, when does the embedding extend
to a fully faithful embedding Db(S) ↪→ Db(X )?

The starting point to analyzing the question above is the following construction.
Let X and Y be smooth and projective varieties, and denote with πX : X×Y → X
and πY : X×Y → Y the projection maps. Then any perfect complex E ∈ Db(X×Y )
induces a functor

ΦE : Db(X)→ Db(Y )
F 7→ πY,∗(π∗

XF ⊗ E)

where all functors involved are understood to be derived. Such a morphism ΦE is
called a Fourier-Mukai transform, and E is often referred to as the kernel of the
transform. We then have the following classical result.

Theorem 1.2 (Orlov [26, Theorem 5.14]). Let X and Y be smooth and projective
varieties. Let

Φ: Db(X)→ Db(Y )

be a fully faithful exact functor. Then there exists an object E ∈ Db(X × Y ) such
that Φ is isomorphic to the functor ΦE .

Using the above theorem, one may reduce Question 1.1 to the following question
(where Z = S ×X).

{iab}
Question 1.3. Let Z be a smooth and projective variety, and let E ∈ Db(Z). If
Z is a deformation of Z, when does there exist an object Ẽ in Db(Z) such that the
derived restriction of Ẽ to Z is quasi-isomorphic to E?

A necessary condition for the object Ẽ to exist is that the Chern character of E
remains within the Hodge filtration along Z. This condition on the Chern character
is the same as the condition used in formulating the variational Hodge conjecture
[23, Footnote 13]. We refer to sections 1.2 and 6 for details on this condition.

The technical contribution of Addington and Thomas [1, Theorem 7.1] then can
be formulated as follows.

Theorem 1.4. Let S be a K3 surface and let X be a cubic fourfold. Let E ∈
Db(S×X) be the kernel of a fully faithful transform Db(S) ↪→ Db(X). If the Chern
character of E remains within the Hodge filtration along S ×X , then there exists Ẽ
in Db(S × X ) such that the derived restriction of Ẽ to S ×X is quasi-isomorphic
to E.

In particular, the above theorem can also be interpreted as a very specific case
of the variational Hodge conjecture.

In this work, we generalize the above theorem to the case where S is a gen-
eral Calabi–Yau variety, and X is any smooth and projective (or proper) variety.
Moreover, we also give a result in mixed characteristic, generalizing a theorem of
Lieblich and Olsson [36].
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1.2 Statement of main results
{sec_main_res}

As explained in the previous section, the goal of these notes is to study deformation
theory of Fourier–Mukai transforms between varieties with trivial canonical bundle,
in both characteristic zero and mixed characteristic. We already mentioned our
main result comes with an obstruction coming from Hodge theory, to accurately
describe this we first set up some notation.

Recall [9, Proposition 3.8] that if A is an Artinian local C-algebra, and X →
Spec(A) is a smooth and proper morphism with special fiber X := X ×Spec(A)
Spec(C), there exists a canonical isomorphism

φX : H∗
dR(X/C)⊗C A

∼−→ H∗
dR(X/A)

relating the de Rham cohomology of X with that of the special fiber (see Section
6). Moreover, for any morphism X → S of schemes over C de Rham cohomology
comes with a canonical filtration

Fm H∗
dR(X/S) ⊆ H∗

dR(X/S)

for m ∈ Z≥0, called the Hodge filtration [48, 0FM7]. Finally, for i ∈ Z≥0 and
E ∈ Db(X) one may define a Chern character

chi(E) ∈ Fi H2i
dR(X/S)

see [48, 0FWB].
We are now ready to state our main result in characteristic zero.

{thm_zero}
Theorem 1.5. Let X and Y be smooth and proper varieties over C, such that X
has trivial canonical bundle. Let A be an Artinian local C-algebra, and let X and
Y be deformations of X and Y over A. Let E ∈ Db(X × Y ) be the kernel of a fully
faithful transform ΦE : Db(X) ↪→ Db(Y ).

Then E deforms to an object Ẽ ∈ Db(X × Y) if and only if

φX×Y (chi(E)⊗ 1) ∈ Fi H2i
dR(X × Y/A)

for all 0 ≤ i ≤ dim(X)+dim(Y ). Moreover, ΦẼ is fully faithful, and an equivalence
if and only if Φ is an equivalence.

This question has been studied before in 2007 by Toda [49] in the case that
A = C[x]/(x2). In 2009, Huybrechts, Macri and Stellari [28] proved the above to
be true when X and Y are K3–surfaces, A = C[x]/(xn) and Φ is an equivalence.
In 2013, Addington and Thomas [1] proved the above to be true in the case that
A = C[x]/(xn), X is a K3-surface and Y is a cubic fourfold.

Our second main result is a generalization of the above to mixed characteristic.

{thm_mixed}
Theorem 1.6. Let p be a prime number, let A be an Artinian local Z(p)-algebra
with a divided power structure γ on mA such that γp acts nilpotently on mA (see
Definition 9.8). Set A0 = A/mA.
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Let X and Y be smooth and proper varieties over A0. Let E ∈ Db(X × Y ) be
the kernel of a fully faithful transform ΦE : Db(X) ↪→ Db(Y ). Let X and Y be lifts
of X and Y over A.

If X has trivial canonical bundle, p > dim(X) + dim(Y ), and the crystalline
Chern character

chi(E) ∈ Fi H2i
dR(X × Y/A)

of E lands in the Hodge filtration for all 0 ≤ i ≤ dim(X) + dim(Y ) then E admits
a lift Ẽ ∈ Db(X × Y). Moreover, ΦẼ is always fully faithful, and an equivalence if
and only if ΦE is an equivalence.

{corol_mixed}
Corollary 1.7. Let k be a field of characteristic p > 2 and let W = W (k) be the
ring of Witt vectors over k. Let X and Y be smooth and proper varieties over k.
Let E ∈ Db(X×Y ) be the kernel of a fully faithful transform ΦE : Db(X) ↪→ Db(Y ).
Let X and Y be lifts of X and Y over W .

If X has trivial canonical bundle, p > dim(X) + dim(Y ), and the crystalline
Chern character

chi(E) ∈ Fi H2i
dR(X × Y/W )

of E lands in the Hodge filtration for all 0 ≤ i ≤ dim(X) + dim(Y ) then E admits
a lift Ẽ ∈ Db(X × Y). Moreover, ΦẼ is always fully faithful, and an equivalence if
and only if ΦE is an equivalence.

This question was studied before in 2011 by Lieblich and Olsson [36]. They
showed the above to be true if X and Y are K3–surfaces and k is algebraically
closed of characteristic p > 2, using a technique specific to K3–surfaces and their
moduli spaces of perfect complexes.

As a side result of the methods used, we will also obtain the following result.

Theorem 1.8 (Theorem 4.4). Let A be a simplicial ring, and let I ⊆ A be a
regular simplicial ideal. Suppose the image of π0(I) in π0(A) is nilpotent. Then A
is I-adically complete, i.e. the natural map A→ R limA/In is a weak equivalence
of simplicial rings.

This was proved by Quillen [47, Theorem 8.8] in the case that π0(I) = 0. Using
the above theorem, we give a new proof the following well-known result.

Theorem 1.9 (Nil-invariance for derived de Rham cohomology in characteristic
zero). Let k be a Q-algebra. Let A be a k-algebra, let I ⊆ A be a nilpotent ideal,
and set B = A/I. Then the natural map on derived de Rham cohomology

d̂RA/k → d̂RB/k

is an equivalence of E∞-algebras.

Multiple proofs of this theorem were already known, for example by compar-
ing with periodic Hochschild homology [45], or by comparing with Harthshorne’s
algebraic de Rham cohomology [5].
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1.3 Overview of the text
The main technical difficulty in the proofs of Theorem 1.5 and Theorem 1.6 is
analyzing whether or not a Chern class remains of Hodge type when deforming
a variety. The starting point on this subject is a classical article by Bloch [9],
who showed that one can define a Hodge-theoretic obstruction class measuring the
failure of the Chern class to remain within the Hodge filtration along a square zero
extension. Moreover, Bloch gave an expression for the Hodge-theoretic obstruction
class as a cup product with a Kodaira–Spencer class (with conditions on the base
A).

It was already shown that a similar expression exists for the obstruction class
to deforming a vector bundle by Illusie [31], using his cotangent complex. This
was generalized to the case of a perfect complex by Huybrechts and Thomas [29].
Moreover, Buchweitz and Flenner [13] constructed a semiregularity map relating
the two obstruction classes.

In Section 6, we give an expression for the Hodge-theoretic obstruction class
as a cup product with a Kodaira–Spencer class for a general base A. The main
difficulty here is that Bloch’s construction is of a topological nature, and therefore
hard to apply algebraic techniques to. This is where derived algebraic geometry
makes its appearance: The work of Pridham [45] suggests that one could replace
the topological isomorphism in the work of Bloch by nil-invariance of derived de
Rham cohomology. It is here that the main technical results are stated.

To achieve this we will construct a theory of Chern classes in derived de Rham
cohomology in Section 5 (essentially following Bhatt–Lurie [7]). Moreover, we will
show this Chern class corresponds to the trace of the Atiyah class, unifying it with
Illusie’s construction of the Chern class in [31] (see Proposition 7.18).

It then turns out that the above generalizes quite easily to mixed characteristic,
if one replaces derived de Rham cohomology with derived crystalline cohomology.
Throughout the text, the various related results for the crystalline case will usually
be stated directly after the characteristic zero result, allowing for an easy compar-
ison.

Section 4 is a bit of an oddity and independent of the rest of the text. It
provides an improvement of Quillen’s convergence theorem, and, as a corollary, a
new proof of nil-invariance for derived de Rham cohomology. Except the statement
of nil-invariance for derived de Rham cohomology, none of it is used throughout
the rest of the text, and the reader may skip it.

Using the work of Căldăraru [15, 16], we will finally show the semiregularity
map is injective under the conditions of Theorem 1.6. In Section 8, we provide
a Hochschild–theoretic formulation of the semiregularity map by means of the
Hochschild–Kostant–Rosenberg isomorphism. Finally in Section 9 we show the
semiregularity map is injective in the cases we need, to prove Theorems 1.5 and
1.6.

Our proof of Theorem 1.5 relies heavily on derived algebraic geometry, which is
needed since we assume A to be very general. If one is only interested in the case
A = C[t]/(tn), one can give a classical proof using only Theorem 9.4 and T 1-lifting
methods.
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2 Preliminaries
{sec_notation}

We will use the language of ∞-categories as developed in [39]. By an n-category
we mean an ∞-category in which all mapping spaces are (n − 1)-truncated. For
example, a 1-category is an ∞-category in which all mapping spaces are discrete.
We write S for the∞-category of spaces, and denote with S≤n the full subcategory
of n-truncated spaces. We write Cat∞ for the ∞-category of ∞-categories. The
inclusion

S → Cat∞

has a right adjoint which we will denote by (−)≃.
For an ∞-category C, we shall denote with sC, resp. cC the ∞-category of

simplicial, resp. cosimplicial diagrams in C.
For any stable ∞-category C and n ∈ Z we shall denote with [n] : C → C the

n-fold composition of the suspension functor [38, Notation 1.1.2.7].
For k a ring, we denote with Ch(k) the 1-category of chain complexes over k,

with Ch(k)dg the dg-category of chain complexes over k and with D(k) the stable
∞-category Ndg(Ch(k)dg). Note that we have a canonical functor Ch(k)→ D(k).

If C is a symmetric monoidal ∞-category, we shall denote with CAlg(C) the
∞-category of E∞-algebras in C, see [38]. We will write CAlgk := CAlg(D(k)),
and denote with CAlg♡

k the 1-category of discrete commutative k-algebras.

2.1 Filtrations
The structure of a partially ordered set on N gives N the structure of a 1-category
such that is there is a unique morphism i → j if i ≤ j. We denote Ndisc for the
1-category with objects the natural numbers, and all morphisms the identity.
Definition 2.1. Let C be an arbitrary ∞-category. Then we define

Cfil := Fun(Nop, C)

the ∞-category of filtered objects in C. For X ∈ Cfil, we write FiX := X(i).
Similarly, we let

Cgr := Fun(Ndisc, C)
If C is stable, define a functor gr : Cfil → Cgr by

gr(X)(i) = cofib(Fi+1(X)→ Fi(X))

on X ∈ Cfil. We will refer to gr(X) as the associated graded of the filtered object
X, and use the shorthand notation gri(X) := gr(X)(i).

One may give Ndisc and Nop the structure of a symmetric monoidal category
by setting [p] ⊗ [q] := [p + q]. If C is symmetric monoidal, the procedure of Day
convolution [38, §2.2.6] then gives Cgr and Cfil the structure of a symmetric monoidal
category. Explicitly, one has

Fn
(
X ⊗Day Y

)
:= colim

p+q≥n
FpX ⊗ FqY

(A⊗Day B)(n) :=
⊔

p+q=n
A(p)⊗B(q)
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for X,Y ∈ Cfil and A,B ∈ Cgr. Moreover, gr has a canonical structure of a sym-
metric monoidal functor, that is there exist canonical isomorphisms

grn
(
X ⊗Day Y

) ∼= ⊔
p+q=n

grpX ⊗ grqY

for X,Y ∈ Cfil. We will denote with

πgr
i : grp(X ⊗Day Y )→ grp−i(X)⊗ gri(Y ) (2.1) {proj_i}{proj_i}

the projection on the ith component.
{def_filt_alg}

Definition 2.2 (Filtered E∞-algebras). Let C be a symmetric monoidal∞-category.
We define the ∞-category of filtered E∞-algebras in C as

CAlgfil(C) := CAlg((Cfil,⊗Day)).
{lem_alg_coprod}

Lemma 2.3. The symmetric monoidal structure on CAlgfil(C) is cocartesian, that
is the coproduct of algebras is given by the Day convolution product of their under-
lying objects. In particular CAlgfil(C) admits finite coproducts.

Proof. See [38, Proposition 3.2.4.7].

We warn the reader that this is a distinctly different category then CAlg(C)fil.
For k a discrete commutative ring, we will write CAlgfil(k) := CAlgfil(D(k)).

For any stable symmetric monoidal ∞-category C and p ∈ N, we have a lax
symmetric monoidal functor

gr[0,p) : Cfil → Cfil

defined by

Figr[0,p)(X) :=
{

cofib(FpX → FiX) i ≤ p
0 i > p

(2.2) {aae}{aae}

For any p < q we have a natural transformation gr[0,q) → gr[0,p). Thus if C admits
all limits, we may define the completion functor

(̂−) : Cfil → Cfil

X 7→ X̂ := lim
p→∞

gr[0,p)(X)

which is also lax symmetric monoidal. Explicitly, one has

FpX̂ = lim
q→∞

cofib(FpX → FqX)

for any X ∈ Cfil. We thus get induced functors

gr[0,p] : CAlgfil(C)→ CAlgfil(C)

(̂−) : CAlgfil(C)→ CAlgfil(C)
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By [38, Corollary 3.2.2.4], we have an equality

(̂−) = lim
p→∞

gr[0,p)

of functors CAlgfil(C)→ CAlgfil(C). If one sets Cfil,comp to be the full subcategory
consisting of those X ∈ Cfil such that the natural map X → X̂ is an equivalence, one
may show the functor (̂−) : Cfil → Cfil,comp is left adjoint to the inclusion Cfil,comp →
Cfil. For X,Y ∈ Cfil,comp we will denote

X⊗̂Y := X̂ ⊗ Y

and similarly for complete X,Y ∈ CAlgfil(C).
Finally we will often use without mention that the functor gr : Cfil,comp → Cgr

is conservative.

2.2 Sheaves and stacks
{extend_functors}

For any ∞-category C equipped with a Grothendieck topology τ , and any ∞-
category D in which all limits exist, we shall denote by Shvτ (C,D) the ∞-category
of D-valued sheaves on C, see [39, Definition 7.3.3.1]. More generally, for any ∞-
topos X we shall denote by ShvD(X ) the category of D-valued sheaves on X , i.e.
the category of functors X op → D that preserve small limits.

Definition 2.4. We define

Stk := Shvfppf((CAlg♡
k )op,S)

the ∞-category of higher stacks over k.

By [39, Proposition 6.2.2.7], Stk has the structure of an ∞-topos. We warn the
reader that these are underived stacks, since CAlg♡

k is the 1-category of discrete
commutative k-algebras. Note that inclusion Set → S induces a functor Sch/k →
Stk, so in particular we get a fully faithful Yoneda embedding

Spec: (CAlg♡
k )op → Stk

(essentially because the fppf topology on affine schemes is subcanonical, see [48,
03O4]).

For any ∞-category D in which all limits exist, a functor F : CAlg♡
k → D

induces (by right Kan extension) a unique functor Stop
k → D which we shall also

denote by F . Explicitly, for any k-stack X one has

F (X) := lim
Spec(R)→X

F(R) (2.3) {def_extend}{def_extend}

and in particular F(Spec(R)) = F(R). Using [39, Theorem 4.1.3.1], one may show
that if X is a scheme, the above can be computed as

F(X) = lim
Spec(R)⊆X

F(R) (2.4) {def_extend2}{def_extend2}
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where the limit is over all affine opens Spec(R) in X.
For any ∞-category D admitting all limits, the inclusion

ShvD(Stk) ⊆ Fun(Stop
k ,D)

admits a left adjoint F 7→ F† called sheafification. If F is a sheaf one has F†(X) =
F(X) for all k-stacks X.

2.3 A survey of animation
If A is a ring and M is an A-module, the functor −⊗AM is in general not exact.
However, it is exact when restricting to the subcategory of free modules. One may
introduce the notion of a free resolution P• → N of a general A-module N , and
define

N ⊗L
AM := P• ⊗A N

to get a better behaved tensor product. For this to make any sense, one needs a
category of free resolutions, and it is well known that D(A)≥0 is a good notion for
this category.

In this section we give a quick survey of animation, a technique introduced in
[18] (based on ideas in [47] and [39, §5.5.8]) to give a general way of achieving the
above. Given a 1-category C generated under colimits by a full subcategory C0 of
nice (compact and projective) objects, we can form the ∞-category Ani(C) freely
generated under sifted colimits of these objects. Given a functor C → D which
behaves well on C0, one then obtains a well-behaved functor Ani(C)→ D.

We will give a quick and by no means complete complete survey, we urge the
reader to read [39, §5.5.8] and [41] first. Throughout this section, n can be any
natural number or the symbol ∞.

{def_compact}
Definition 2.5 ([39, §5.5.8], [41, Definition A.18]). Let C be a cocomplete category,
and C ∈ C. We say C is compact if the functor MapC(C,−) : C → S commutes
with filtered colimits.

If C is a cocomplete n-category, we say that C is n-projective if the functor
MapC(C,−) : C → Spaces≤n−1 commutes with geometric realizations. If n = ∞,
we wil say C is projective.

Note that although we work with n-projective for general n, we shall only be
interested in the cases n = 1 and n =∞.

{def_gen}
Definition 2.6 ([41, Definition A.22]). Let C be an n-category and S ⊆ C a set of
objects in C. We say that S is a set of compact n-projective generators for C if

1. C is cocomplete.

2. Every X ∈ S is compact n-projective.

3. The set S generates C under small colimits.

If there exists a set of compact n-projective generators of C, we say that C is compact
n-projectively generated. If n =∞, we say C is compact projectively generated.
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Definition 2.7. Let C a n-category which admits finite coproducts. We write

Pn(C) := Fun(Cop,S≤n−1)

and denote with PΣ,n(C) ⊆ Pn(C) the full subcategory consisting of those functors
which preserve finite products.

Proposition 2.8. Let C be an n-category, and let S be a set of compact n-projective
generators for C. Let C0 be the full subcategory on finite coproducts of objects in S.
Then the Yoneda embedding PΣ,n(C0)→ C is an equivalence.

Proof. See [41, Proposition A.29].

Definition 2.9 ([41, Definition A.32]). Let C be a compact n-projectively gener-
ated n-category, let S be a set of compact and n-projective generators, and let C0
be the full subcategory spanned by finite coproducts of objects in S. We define

Ani(C) := PΣ,∞(C0)

the animation of C.

It is good to observe that Ani(C) is independent of the choice of compact projec-
tive generators for C, see [41, Remark A.33]. Note that we have a natural Yoneda
embedding C → Ani(C) given by X 7→ MapC(X,−). Moreover, by [39, Remark
5.5.8.26], the Yoneda embedding C → Ani(C) admits a left adjoint π0.

{ani_gen}
Lemma 2.10. Let C be a compact n-projectively generated n-category and let S be
a set of compact and n-projective generators. Then Ani(C) is compact projectively
generated, and S is a set of compact projective generators.

Proof. By definition, for any X ∈ S the image in Ani(C) is compact and projective.
Since clearly any element in Ani(C) can be written as a colimit of objects in S, the
result follows.

Definition 2.11. Let C and D be ∞-categories. We denote with

FunΣ(C,D) ⊆ Fun(C,D)

the full subcategory of those functors which preserve filtered colimits and geometric
realizations.

{left_kan}
Proposition 2.12 ([39, Proposition 5.5.8.15]). Let C be a cocomplete n-category,
and let S ⊆ C be a set of compact n-projective generators for C. Let C0 ⊆ C be
the full subcategory spanned by finite coproducts of objects in S. Let D be any
∞-category which admits filtered colimits and geometric realizations.

Then the restriction map

Ψ: FunΣ(C,D)→ Fun(C0,D)

induces an equivalence of categories. Moreover, any g ∈ FunΣ(C,D) commutes with
all colimits if and only if Ψ(g) commutes with finite coproducts. Finally, for any
f ∈ Fun(C0,D) the inverse image Ψ−1(f) is given by left Kan extension.

14



We end by giving two example of compact projectively generated categories
which are essential to the rest of the text.

Example 2.13. Let k be a ring. The set S = {k} is a set of compact 1-projective
generators for the category of discrete k-modules D(k)♡. The full subcategory
spanned by finite coproducts of objects in S is the 1-category of finite free k-
modules. Moreover one has Ani(D(k)♡) ∼= D(k)≥0.

Example 2.14. For k a ring, we denote with CAlg♡
k the 1-category of commutative

k-algebras. The set S = {k[x]} is a set of compact 1-projective generators, and
the full subcategory Polyk ⊆ CAlg♡

k spanned by coproducts of objects in S is the
category of finitely generated polynomial k-algebras. The ∞-category CAlgan

k :=
Ani(CAlg♡

k ) is equivalent to the ∞-category of simplicial rings.

2.4 Higher algebraic stacks
We now give an inductive definition of higher algebraic stacks, following Lurie’s
thesis [37].

Definition 2.15. Let k be a ring. A morphism f : X → Y in Stk is a relative
0-stack if for any A ∈ CAlg♡

k and any map Spec(A)→ Y in Stk, the fiber product
Spec(A) ×Y X is an algebraic space in the sense of [48, 025X]. We say that f is
smooth if the maps Spec(A)×Y X → Spec(A) are smooth.

For n > 0, a morphism f : X → Y in Stk is a relative n-stack if for any
A ∈ CAlg♡

k and any map Spec(A)→ Y in Stk, there exists a effective epimorphism
p : U → Spec(A)×Y X which is a smooth relative (n−1)-stack, where U is a disjoint
union of affine schemes. We will say that a relative n-stack f : X → Y is smooth if
for all Spec(A)→ Y , the cover U can be chosen to be smooth over Spec(A).

Finally, we define an algebraic stack to be a morphism X → Spec(k) which is a
relative n-stack for some n ∈ N.

We may similarly define open immersions of relative n stacks inductively.

Definition 2.16. A morphism of relative 0-stacks is an open immersion if it is an
open immersion of algebraic spaces. For n > 0, we say that a morphism U → X of
relative n-stacks is an open immersion if there exists surjective map T → X which
is a relative (n− 1)-stack such that UT → XT is an open immersion. In this case,
we say U ⊆ X is an open substack.

For G an affine group scheme (in the classical sense) we can form a simplicial
object

· · · G×Spec(k) G G Spec(k)

in sStk, see [33, Definition 4.25]. We define the classifying stack BG to be the
colimit of this diagram in Stk. One may show BG is an algebraic 1-stack. By
[33, Theorem 4.28], for any k-scheme X one may canonically identify the groupoid
Mapk(X,BG) with the groupoid of G-torsors T → X.
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2.5 Module categories on stacks
Let k be a ring. For any stack X over k, we denote with D(X) the stable ∞-
category defined as

D(X) := lim
Spec(A)⊆X

D(A)

For A ∈ CAlg♡
k , we say that an object E ∈ D(A) is perfect if it is compact. For a

general X in Stk, we say that E ∈ D(X) is perfect if the pullback f∗(E) is perfect
for all f : Spec(A) → X. We denote with Perf(X) the full subcategory of perfect
objects. We will say that an object E ∈ D(X) is finite locally free (of rank n) if
f∗(E) is a finite locally free A-module (of rank n) in homological degree 0 for all
maps f : Spec(A)→ X. We will denote with Vect(X) the full subcategory of finite
locally free modules, and with Vectn(X) the full subcategory of finite locally free
modules of rank n. We will write

Pic(X) := Vect1(X)≃

We refer to elements E ∈ Vect(X) as vector bundles, and to elements L ∈ Pic(X)
as line bundles. We will write K0(Vect(X)) for the abelian group generated by the
vector bundles on X with relations coming from short exact sequences, see [48,
0FDE]. For ι : Z ↪→ X a closed immersion of schemes and E ∈ D(X), we will
sometimes write E|Z := ι∗(E).

{vect_sheaf2}
Lemma 2.17. Let k be a ring. Let

F : Stop
k → Cat∞

be an element of {D(−),Perf(−),Vect(−),Vectn(−),Pic}. Then F is a sheaf (for
the fppf topology).

Proof. For D(−) this follows from [40, Corollary D.6.3.3]. Since the condition that
an object is perfect or locally free (of rank n) is local for the flat topology by [40,
Proposition 2.8.4.2], the rest follow by [39, Corollary 3.3.3.2].
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3 Derived de Rham cohomology
In this section we give the constructions of derived de Rham cohomology and
derived crystalline cohomology, and state various basic results we need. Most defi-
nitions and results are due to Bhatt and Mao, see [5] [4] [41]. In section 3.3 we state
and prove a result comparing (Hodge completed) derived de Rham cohomology of
a surjective ring map A → (A/I) with the derived completion of A in I, a result
originally due to Bhatt [5].

Throughout this section, fix a base ring k. {sec_cohomology_affine}

3.1 The derived de Rham complex
In this section, we briefly recall the definition of the derived de Rham complex, and
state some of the properties we need. Recall that classical de Rham cohomology is
defined for a morphism of rings A→ B. Thus one would like to define derived de
Rham cohomology for a morphism of animated rings A→ B. To do this, it is help-
ful to find a set of compact projective generators for the category Fun(∆1,CAlgan

k ).
This can be done in big generality as follows.

For C a compact and 1-projectively generated 1-category with S a set of compact
1-projective generators, the ∞-category Fun(∆p,Ani(C)) is compact projectively
generated. By Lemma A.3, a set of compact projective generators is given by

Sp :=

0→ · · · → 0︸ ︷︷ ︸
i times

→ X → · · · → X︸ ︷︷ ︸
p−i+1 times

| i∈{0,...,p}
X∈S


We will write Fun(∆p,Ani(C))gen for the full subcategory of Fun(∆p,Ani(C)) spanned
by finite coproducts of elements in Sp (see Definition A.4), note that this depends
on a choice of compact 1-projective generators for C.

We are now ready to define the derived de Rham complex.

Definition 3.1 (Derived de Rham complex). We define the derived de Rham com-
plex

dR−/− : Fun(∆1,CAlgan
k )→ CAlgfil(k)

as the left Kan extension of the composition

Fun(∆1,CAlgan
k )gen ⊆ Fun(∆1,Polyk)

Ω•
−/−−−−−→ CAlg(Ch(k)fil)→ CAlgfil(k)

where Ω•
−/− denotes the classical de Rham complex equipped with the Hodge

filtration ([48, 0FKL]) and (graded) multiplication. For p ∈ N will write

Lp−/− := grpdR−/−[p]

for the graded pieces, and refer to the completion d̂R−/− as the Hodge completed
derived de Rham complex.

If A → B is a smooth map of k-algebras one has LB/A = ΩB/A. It follows
that for any map of k-algebras A → B, the complex LB/A coincides with Illusie’s
cotangent complex (see [30]).
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{dr_iso_z}
Construction 3.2. Let A → B be a smooth map of k-algebras. Then ΩB/A is a
finitely generated B module. Hence the Hodge filtration on Ω•

B/A is finite, and in
particular Ω•

B/A is complete. We thus get a canonical map

d̂RB/A → Ω•
B/A

in CAlgfil(k). Applying [48, 08R5] to the graded pieces, we get a canonical equiv-
alence

d̂RB/A
∼−→ Ω•

B/A

in CAlgfil(k).
{dr_iso_p}

Lemma 3.3. Let p be a prime, let k be a Z/pnZ-algebra for some n ∈ N, and let
A→ B a smooth map of k-algebras. Then the maps

dRB/A → d̂RB/A → Ω•
B/A

are equivalences in CAlgfil(k).

Proof. It suffices to show the first map is an equivalence, as the second was already
shown to be an equivalence in general. By [4, Corollary 3.10] the natural map

dRB/A → Ω•
B/A (3.1) {dr_iso}{dr_iso}

is an equivalence in D(k). For any i ≥ 0, we have a commutative diagram

FidRB/A dRB/A dRB/A/Fi

FiΩ•
B/A Ω•

B/A Ω•
B/A/Fi

in D(k), where the rows are fiber sequences. The middle vertical map is an equiv-
alence by (3.1). Since A→ B is smooth, the map LjB/A → ΩjB/A is an equivalence
for all j, hence the right vertical map is an equivalence as well. It follows that the
left map is an equivalence for all i ≥ 0, and thus the map

dRB/A → d̂RB/A

is an equivalence in D(k)fil. Since the map CAlgfil(k)→ D(k)fil is conservative, we
conclude.

On the contrary, if Q ⊆ k, one may show using the Poincaré lemma that
dRP/A

∼= A for any polynomial A-algebra P . By the lemma below, it follows that
F0dRB/A

∼= A for all A-algebras B.
{lem_dr_colim}

Lemma 3.4. The functor

dR−/− : Fun(∆1,CAlgan
k )→ CAlgfil(k)

commutes with small colimits.
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Proof. By Proposition 2.12, it suffices to show the functor

Fun(∆1,Polyk)gen
Ω•

−/−−−−−→ CAlgfil(k)

preserves finite coproducts. By Lemma 2.3 and an induction argument, it suffices
to show the natural maps

dRB/A ⊗Day
k k[x]→ dRB[x]/A[x] (3.2) {eq_coprod_dr1}{eq_coprod_dr1}

dRB/A ⊗Day
k dRk[x]/k → dRB[x]/A (3.3) {eq_coprod_dr2}{eq_coprod_dr2}

are equivalences in CAlgfil(k) for any (A → B) ∈ Fun(∆1,Polyk)gen. Since the
forgetful functor CAlgfil(k)→ D(k)fil is conservative, it suffices to check (3.2) and
(3.3) are equivalences in D(k)fil.

Now (3.2) is an equivalence by [48, 0FL5]. To show that (3.3) is an equivalence
in D(k)fil, it suffices to check that the induced map on associated gradeds in D(k)gr
is an isomorphism (note that filtered objects are complete as we are considering
finitely generated polynomial algebras). We thus need to confirm the natural map

Ωp−1
B/A ⊗k Ωk[x]/k ⊕ ΩpB/k ⊗k k[x]→ ΩpB[x]/A

is an equivalence in D(k) for all p, which follows by taking wedge powers of the
equation

ΩB/A ⊗k k[x]⊕B[x]dx = ΩB[x]/A
{dr_coprod_fil}

Corollary 3.5. The functor

dR−/− : Fun(∆1,CAlgan
k )→ D(k)fil

commutes with sifted colimits, and sends finite coproducts to finite Day convolution
products.

Proof. The statement about sifted colimits follows by combining [38, Corollary
3.2.3.2] with Lemma 3.4. The statement about finite coproducts follows by com-
bining Lemma 2.3 with Lemma 3.4.

{corol_kunneth}
Corollary 3.6 (Künneth formula). Let k be a ring, let X be a smooth scheme over
k, and let Y be any stack over k. Then the natural map

dRX/k ⊗ dRY/k → dRX×Y/k (3.4) {kunneth}{kunneth}

is an equivalence in CAlgfil(k).

Proof. If A and B are discrete k-algebras and A is smooth, then the underived
tensor product A⊗kB computes the coproduct in CAlgan

k . It follows that the map

dRA/k ⊗ dRB/k → dRA⊗B/k

is an equivalence in CAlgfil(k) whenever A is smooth. Using (2.3), it follows that
for any stack Y over k and any smooth k-algebra A the natural map

dRA/k ⊗ dRY/k → dRSpec(A)×Y/k

is an equivalence in CAlgfil(k). The result follows using (2.4).
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We warn the reader that d̂R generally does not commute with colimits. If
it would, then since d̂RP/Q ≃ Q for all polynomial Q-algebras, one would have
d̂RB/Q ≃ Q for any Q-algebra B. But since Q[x, 1

x ] is smooth over Q, by Con-
struction 3.2 we would get an equivalence

Q ∼−→ Ω•
Q[x, 1

x ]/Q

in D(Q). This clearly cannot exist since

H1(Ω•
Q[x, 1

x ]/Q) = Q

but H1(Q) = 0.
For the readers convenience, we give an explicit description of both dR and

d̂R. By [39, Lemma 5.5.8.13], for any A ∈ CAlgan
k , there exists a simplicial ring

A∗ ∈ Fun(∆op,Polyk) such that

A = colim
∆op

A∗

One may use Lemma 3.4 to show the chain complexes

Tot⊕
(

Ω•
A∗/k

)
and TotΠ

(
Ω•
A∗/k

)
are isomorphic to F0dRA/k and F0d̂RA/k respectively (in D(k)).

We end by showing that dR−/−/Fp and d̂R−/− satisfy a derived descent state-
ment, as was first observed by [5, Remark 2.8]. To formulate the statement, we
first introduce some notation.

Recall that for any∞-category C, we denote with cC the∞-category Fun(∆, C)
of cosimplicial diagrams in C. For any A ∈ CAlg♡

k , the functor

ev[0] : cCAlg♡
A → CAlg♡

A

commutes with all limits by [39, Proposition 5.1.2.3], and thus admits a left adjoint

Cech(A→ −) : CAlg♡
A → cCAlg♡

A

Explicitly, for B ∈ CAlg♡
A the cosimplicial object Cech(A→ B) ∈ cCAlg♡

A is given
by

[n] 7→ B ⊗A · · · ⊗A B︸ ︷︷ ︸
n+1 times

Moreover, for any element (A → A′) in Fun(∆1,CAlg♡
k ), one has a commutative

diagram
CAlg♡

A cCAlg♡
A

CAlg♡
A′ cCAlg♡

A′

ev[0]

forget

ev[0]

forget
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For any B ∈ CAlg♡
A′ one has (ev[0] ◦ forget)(Cech(A′ → B)) = B. Thus the counit

of the adjunction
Cech(A→ −) ⊢ ev[0]

induces a natural transformation Cech(A → −) → Cech(A′ → −). We thus get a
functor

Cech(− → −) : Fun(∆1,CAlgan
k )gen → cCAlgan

k

and by left Kan extension a functor

Cech(− → −) : Fun(∆1,CAlgan
k )→ cCAlgan

k

{bhatt_neat}
Lemma 3.7. Let (A→ B → C) ∈ Fun(∆2,CAlgan

k ). Then for all p ≥ 1,

lim
∆

LpCech(A→B)/A
∼= 0

lim
∆
C ⊗Cech(A→B) LpCech(A→B)/A

∼= 0

in D(k).

Proof. The first statement is [5, Corollary 2.7]. For the second statement, write
Bn = B⊗An. Then note that Lemma 3.4 one has

LBn/A ⊗Bn C
∼= (LB/A ⊗B C)⊕n

Thus the second statement follows by taking wedge powers of [5, Lemma 2.5], where
one takes A to be the constant cosimplicial ring C and M to be LB/A ⊗B C.

{corol_descent_dr2}
Corollary 3.8. For any (A → B → C) ∈ Fun(∆2,CAlgan

k ) and p ∈ Z≥0, the
natural map

lim
∆

Cech(B → C)⊗B LpB/A → lim
∆

LpCech(B→C)/A

is an equivalence.

Proof. We follow [8, Theorem 3.1]. The transitivity sequence for A → B →
Cech(B → C) is a short exact sequence

Cech(B → C)⊗B LB/A → LCech(B→C)/A → LCech(B→C)/B

in cD(k). Taking (pointwise) wedge powers, we see that LpCech(B→C)/A comes with
a natural filtration with graded pieces

grj(LpCech(B→C)/A) = LjB/A ⊗B Lp−j
Cech(B→C)/B

By the first statement in Lemma 3.7, all graded pieces except the j = p piece vanish
after taking the limit over ∆, which gives the result.

{prop_dr_sheaf}
Proposition 3.9. Let k be a ring. The functor

d̂R−/k : Stop
k → CAlgfil(k)

is a sheaf for the fppf topology.
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Proof. By [40, Proposition 1.3.1.7], it suffices to show the functor

d̂R−/k : CAlg♡
k → CAlgfil(k)

is a sheaf for the fppf topology. Commuting limits with limits, this follows directly
from Lemma 3.8.

We also need the following statement, which can best be described as ‘descent
on the base’.

{lem_descent_dr}
Lemma 3.10. For any (A → B → C) ∈ Fun(∆2,CAlgan

k ) and p ∈ Z≥0, the
natural map

dRC/A/Fp → lim
∆

dRC/Cech(A→B)/Fp

is an equivalence.

Proof. It suffices to show the natural map

LpC/A → lim
∆

LpC/Cech(A→B)

is an equivalence for all p. The transitivity sequence for A → Cech(A → B) → C
induces a filtration on LpC/A with

grj(LpC/A) = (LjCech(A→B)/A ⊗Cech(A→B) C)⊗C Lp−j
C/Cech(A→B)

for j ∈ {0, . . . , p}. By the second part of Lemma 3.7 and an Eilenberg-Zilber
argument, after taking the limit over ∆ all terms vanish except the j = 0 term,
which proves the result.

3.2 The derived crystalline complex
In this section, we give a short survey of the Mao’s construction of derived crys-
talline cohomology [41]. We start by generalizing our definition of de Rham coho-
mology to morphisms of divided power rings. Throughout this section, k can be any
commutative ring. Before we can give the definition, we need some preliminaries.

Following [41], we will denote with PDPairk the 1-category of PD-rings (R, I, γ)
such that R is a commutative k-algebra, see [48, 07GU]. We write I [p] ⊆ R for the
p-th divided power ideal, see [48, 07HQ]. We will often omit γ from the notation
and denote a PD-ring (R, I, γ) with (R→ R/I) intead. For A a ring, we will denote
with (A⟨x1, . . . , xn⟩ → A) the PD-ring freely generated on n variables x1, . . . , xn,
see [48, 07H4]. For (R′ → R)→ (A′ → A) a morphism of PD rings, we will denote
with Ω(A′→A)/(R′→R) the A′-module of divided power differentials over R′, see [48,
07HQ] (note that it only depends on (A′ → A) and R′). Finally we will write

Ωp(A′→A)/(R′→R) :=
p∧
A′

Ω(A′→A)/(R′→R)

Unfortunately, the category PDPairk is not compact projectively generated, but
we can remedy the situation. Define PDPairk,gen to be the full subcategory of f.g.
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free PD-rings over f.g. polynomial algebras, i.e. the full subcategory on objects
of the form k[y1, . . . , ym]⟨x1, . . . , xn⟩. Then [41, Lemma 3.13] shows there exists a
fully faithful embedding PDPairk ↪→ PΣ,1(PDPairk,gen). Following [41], we set

AniPDPairk := Ani(PDPairk,gen)

the category of animated divided power algebras.

Definition 3.11 (PD-de Rham cohomology). Let

A′ A

R′ R

be a an object of Fun(∆1,PDPairk). Write J = ker(A′ → A). We define the PD
de Rham complex by

Ω•
(A′→A)/(R′→R) :=

[
A′ → Ω(A′→A)/(R′→R) → Ω2

(A′→A)/(R′→R) → . . .
]
∈ Ch(k)

It comes with a filtration F•
PD−adic given by

FiΩp(A′→A)/(R′→R) :=
{
J [i−p] ⊗A′ Ωp(A′→A)/(R′→R) i ≥ p
Ωp(A′→A)/(R′→R) i < p

and a canonical (graded) multiplication. We define the derived PD filtered de Rham
complex

F•
PD−adicdR(−→−)/(−→−) : Fun(∆1,AniPDPairk)→ CAlgfil(k)

as the left Kan extension of the functor

F•
PD−adicΩ•

(−→−)/(−→−) : Fun(∆1,PDPairk)gen → CAlgfil(k)

Observe that Ω•
(A′→A)/(R′→R) only depends on A′ → A and R′. However,

dR(A′→A)/(R′→R) does depend on the pair (R′ → R). Clearly, for any (A→ B) ∈
Fun(∆1,CAlg♡

k ) one has

dR(B→B)/(A→A) = dRB/A

in CAlgfil(k).
{lem_extended_dr_colim}

Lemma 3.12. The functor

F•
PD−adicdR(−→−)/(−→−) : Fun(∆1,AniPDPairk)→ CAlgfil(k)

commutes with small colimits.
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Proof. Similarly as in the proof of Lemma 3.4, by Proposition 2.12 and Lemma 2.3
it suffices to show that for any ((R′ → R) → (A′ → A)) ∈ Fun(∆1,PDPairk)gen
the maps

colim
p+q≥n

FpΩ•
(A′→A)/(R′→R) ⊗k FqΩ•

(k[x]→k[x])/(k[x]→k[x]) → FnΩ•
(A′[x]⟩→A[x])/(R′[x]→R[x])

(3.5) {crys_coprod2}{crys_coprod2}

colim
p+q≥n

FpΩ•
(A′→A)/(R′→R) ⊗k FqΩ•

(k[x]→k[x])/(k→k) → FnΩ•
(A′[x]⟩→A[x])/(R′→R)

(3.6) {crys_coprod4}{crys_coprod4}

colim
p+q≥n

FpΩ•
(A′→A)/(R′→R) ⊗k FqΩ•

(k⟨x⟩→k)/(k⟨x⟩→k) → FnΩ•
(A′⟨x⟩→A)/(R′⟨x⟩→R)

(3.7) {crys_coprod1}{crys_coprod1}

colim
p+q≥n

FpΩ•
(A′→A)/(R′→R) ⊗k FqΩ•

(k⟨x⟩→k)/(k→k) → FnΩ•
(A′⟨x⟩→A)/(R′→R)

(3.8) {crys_coprod3}{crys_coprod3}

are equivalences in D(k) for all n ≥ 0. One immediately sees (3.5) is an equivalence
after observing that

Ω(A′[x]→A[x])/(R′[x]→R[x]) ∼= Ω(A′→A)/(R′→R) ⊗k k[x]

(see [48, 07HS]). Similarly, (3.6) is seen to be an equivalence after observing that

Ω(A′[x]→A[x])/(R′→R) ∼= Ω(A′→A)/(R′→R) ⊗k k[x]⊕A′[x]dx

(see [48, 07HS]). For (3.7), write J = ker(A′ → A), write I = ker(k⟨x⟩ → k) and
write H = ker(A′⟨x⟩ → A). One observes first that

FqΩ•
(k⟨x⟩→k)/(k⟨x⟩→k) = I [q]

so it suffices to show
colim
p+q≥n

J [p] ⊗k I [q] = H [n]

holds in D(k) for all n ≥ 0. By a cofinality argument, one may reduce this to the
finite colimit diagram

colim
p+q≥n
n≥p
n≥q

J [p] ⊗k I [q] = H [n]

In this diagram, all objects are discrete k-modules and all maps are cofibrations
for the standard model structure on chain complexes. Hence one may compute the
colimit in the 1-category of discrete k-modules, and reduce to the statement∑

p+q≥n

J [p]I [q] = H [n]

which is classical. Finally for (3.8), a computation shows that

FqΩ•
(k⟨x⟩→k)/(k→k) =

{
k[0] q = 0
0 q > 0
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hence it suffices to show the natural map

FnΩ•
(A′→A)/(R′→R) → FnΩ•

(A′⟨x⟩→A)/(R′→R)

is a quasi-isomorphism. This can be easily achieved by constructing an explicit
homotopy between the composition

FnΩ•
(A′⟨x⟩→A)/(R′→R)

x7→0−−−→ FnΩ•
(A′→A)/(R′→R) → FnΩ•

(A′⟨x⟩→A)/(R′→R)

and the identity map (see [3, Theorem 6.13]).
{lem_poincare}

Lemma 3.13 (Filtered Poincaré lemma). Let (A′ → A) ∈ PDPairk,gen, and let
I = ker(A′ → A). The natural map

FpPD−adicΩ•
(A′⟨x1,...,xn⟩→A)/(A′→A) → I [p][0]

is a quasi-isomorphism.

Proof. By Lemma 3.12, we may (by factoring into coproducts) reduce to the case
n = 1, which again can be easily done by constructing an explicit homotopy (see
[3, Theorem 6.13]).

The input to the classical crystalline cohomology functor is a PD-ring (A, I, γ)
and a morphism of rings A/I → R. The following ∞-category, introduced by Mao
[41, p.49], thus gives a natural input category for derived crystalline cohomology.

Definition 3.14. For k a ring, we define the ∞-category

Crysconk := AniPDPairk ×CAlgan
k

Fun(∆1,CAlgan
k )

where the functor PDPairk → CAlgan
k is informally given by (A→ A′) 7→ A′, and

the functor Fun(∆1,CAlgan
k )→ CAlgan

k is given by (A→ B) 7→ A.

By [41, p. 52], a set of compact projective generators is given by objects of the
form

k[x1, . . . , xn, y1, . . . , ym]

k⟨z1, . . . , zℓ⟩[x1, . . . , xn] k[x1, . . . , xn]

We write Crysconk,gen for the full subcategory spanned by these objects. Note that
the forgetful functor AniPDPairk → Fun(∆1,CAlgan

k ) induces a functor

Crysconk → Fun(∆2,CAlgan
k )

sending ((A′ → A), (A→ R)) 7→ (A′ → A→ R).
{coprod_cryscon}

Lemma 3.15. The functor

Crysconk → Fun(∆2,CAlgan
k )

commutes with colimits.
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Proof. By [39, Lemma 5.4.5.5] it suffices to show the forgetful functor AniPDPairk →
Fun(∆1,CAlgan

k ) preserves colimits, which follows from Lemma A.15 and [41,
Proposition 3.34].

It is also shown in [41, p. 52] that we have a forgetful functor L : Fun(∆1,AniPDPairk)→
Crysconk informally given by

A′ A

R′ R

7→ A

R′ R

with right adjoint R : Crysconk → Fun(∆1,AniPDPairk) informally given by

A

R′ R

7→ A A

R′ R

The following might be somewhat surprising.
{lem_R_colim}

Lemma 3.16. The functor R : Crysconk → Fun(∆1,AniPDPairk) preserves small
colimits.

Proof. By Lemma 3.15 and [41, Proposition 3.34] it suffices to show the functor

Fun(∆2,CAlgan
k )→ Fun(∆1 ×∆1,CAlgan

k )

sending

(A→ B → C) 7→ C C

A B

commutes with colimits, which follows directly from [39, Proposition 5.1.2.3].

By the above lemma, the functor R also admits a right adjoint. We hope to
study this adjoint in future work, we believe it to be related to the functor G#

a

defined in [6, Definition 2.4.1].

Definition 3.17. Let k be a ring. We define the PD-adic filtered derived crystalline
cohomology functor Crys−/(−→−) : Cryscon→ CAlgfil(k) as

Crys−/(−→−) := FPD−adicdR(−→−)/(−→−) ◦R

We will write
Lp−/(−→−) : Cryscon→ D(k)

for the p-th suspension of the p-th graded piece.

By definition, for any (R→ A) ∈ Fun(∆1,CAlgan
k ) we have

CrysA/(R→R) = dRA/R

in CAlgfil(k).
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{lem_crys_colim}
Lemma 3.18. The functor

Crys−/(−→−) : Cryscon→ CAlgfil(k)

commutes with small colimits.

Proof. Combine Lemma 3.12 with Lemma 3.16.

The following proposition basically states that the crystalline cohomology of A
over (R′ → R) can be computed as the de Rham cohomology of a lift A′ over R′.

{prop_iso_crys}
Proposition 3.19. Let k be a ring, and (R′ → R)→ (A′ → A) ∈ Fun(∆1,AniPDPairk).
The unit of the adjunction L ⊣ R induces an equivalence

FPD−adicdR(A′→A)/(R′→R) → CrysA/(R′→R)

in CAlgfil(k).

Proof. See also [41, Proposition 4.16], we give some more details. Since all functors
involved commute with small colimits it suffices to show this for the four types of
compact projective generators of Fun(∆1,AniPDPairk) given by Lemma A.3, i.e.
we need to show the maps

FPD−adicdR(k⟨x⟩→k)/(k⟨x⟩→k) → FPD−adicdR(k→k)/(k⟨x⟩→k) (3.9) {eq_qiso_1}{eq_qiso_1}

FPD−adicdR(k⟨x⟩→k)/(k→k) → FPD−adicdR(k→k)/(k→k) (3.10) {eq_qiso_2}{eq_qiso_2}

FPD−adicdR(k[x]→k[x])/(k[x]→k[x]) → FPD−adicdR(k[x]→k[x])/(k[x]→k[x]) (3.11) {eq_qiso_3}{eq_qiso_3}

FPD−adicdR(k[x]→k[x])/(k→k) → FPD−adicdR(k[x]→k[x])/(k→k) (3.12) {eq_qiso_4}{eq_qiso_4}

are filtered quasi-isomorphisms. Now (3.11) and (3.12) are evidently quasi-isomorphisms,
and (3.10) is a quasi-isomorphism by Lemma 3.13. To compute the right hand side
of (3.9), we need to find a simplicial resolution of (k → k) over (k⟨x⟩ → k).
A construction analogous to [32, Construction 4.16] gives a simplicial resolution
C• → (k → k) over (k⟨x⟩ → k) with

Cn = (k⟨x, x1, . . . , xn⟩ → k)

If we write I = ker(k⟨x⟩ → k), then Lemma 3.13 tells us the natural map

FpPD−adicdRCn/(k⟨x⟩→k) → I [p]

is a quasi-isomorphism for all n, which shows (3.9) is a quasi-isomorphism, estab-
lishing the result.

3.3 Comparison with derived completions
{ss_comp_dr}

In this section we define for any surjection of rings A→ A/I the derived completion
Comp(A→ A/I) also known as the Adams completion, see [5]. If A is Noetherian
this completion agrees with the usual completion, however for general A it can be
different.
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Moreover, Bhatt [5, Remark 4.5] shows that for any surjection of Q-algebras
A→ A/I, there exists a canonical equivalence

Comp(A→ A/I) ∼= d̂R(A/I)/A

in CAlgfil(k).
Before we can begin we need a good source category for the derived completion

functor, which the definition below gives for p = 1. We will consider this in slightly
bigger generality and consider a composition of multiple surjective ring maps, as
we will need this later.

Definition 3.20. We denote with Fun(∆p,CAlgan
k )surj the full subcategory of

Fun(∆p,CAlgan
k ) consisting of objects A0 → · · · → Ap such that π0(A0)→ π0(Ai)

is surjective for all i.

By Corollary A.13, a set of compact projective generators can be described as
follows. For i ∈ {0, . . . , p}, let Fi : ∆p → CAlg♡

k be the unique functor satisfying

Fi(j) :=
{
k[x] j ≤ i
k j > i

where the maps k[x]→ k are given by x 7→ 0, and all other maps are the identity.
Then the set Sp := {F0, . . . , Fp} is a set of compact projective generators for
Fun(∆p,CAlgan

k )surj. For example, if p = 2 we have

S2 =

 k[x]→ k → k,
k[x]→ k[x]→ k,
k[x]→ k[x]→ k[x]


We shall write Fun(∆p,Polyk)surj,gen for the full subcategory spanned by coprod-
ucts of objects in Sp (see Definition A.14).

Following [41], we will denote with Pairk the 1-category of surjections R→ R′ of
(discrete) commutative k-algebras. We warn the reader that Pairk is not compact
1-projectively generated, however [41, Lemma 3.7] shows there does exist a fully
faithfull embedding Pairk ↪→ Fun(∆1,CAlgan

k )surj. We will often abuse notation by
writing (see also Definition A.10)

AniPairk := Fun(∆1,CAlgan
k )surj

there is no chance for confusion as the left hand side is a priori not well-defined.
Note that if F : Fun(∆1,CAlgan

k )→ D preserves (sifted) colimits, then so does
F : AniPairk → D, by Lemma A.15.

{aba}
Definition 3.21. We define the derived divided power envelope functor

(−)Lenv : AniPairk → AniPDPairk

as the left Kan extension of the composition

Pairk,gen
env−−→ PDPairk,gen ⊆ AniPDPairk
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where env is the functor sending the surjective ring map

k[x1, . . . , xn, y1, . . . , ym] ↠ k[x1, . . . , xn]

to the element k[x1, . . . , xn]⟨y1, . . . , ym⟩↠ k[x1, . . . , xn] in PDPairk,gen.
By [41, Corollary 2.2] the derived divided power envelope admits a right adjoint

AniPDPairk → PDPairk to which we will refer as the forgetful functor.
We now wish to discuss filtrations. {derived_fil_adic}

Definition 3.22. Let (A→ A/I) ∈ Pairk where A is a k-algebra and I is an ideal
of A. Then the rule n 7→ In[0] defines an object in (D(k)≥0)fil = Fun(Nop,D(k)≥0).
Using the multiplication on A this defines a functor

Fadic : Pairk → CAlgfil(k)≥0 (3.13) {eq_underived_fil}{eq_underived_fil}

(A→ A/I) 7→ {In}n
We define the derived adic filtration functor

LFadic : AniPairk → CAlgfil(k)≥0

as the left Kan extension of Fadic restricted to the subcategory Fun(∆1,Polyk)surj,gen.
We shall sometimes write

I(n) := LFnadic(A→ A/I)

and refer to it as the derived n-th power of I.
{lem_fil_colim}

Lemma 3.23. The functor

LFadic : AniPairk → CAlgfil(k)≥0

preserves small colimits.
Proof. By Proposition 2.12 it suffices to show the map

Fadic : Pairk,gen → CAlgfil(k)

commutes with coproducts. By an induction argument, we thus need to show that
for any t ∈ N and any (P → Q) ∈ Pairk,gen the natural maps

Ft(F•
adic(P → Q)⊗ F•

adic(k[z]→ k))→ Ftadic(P [z]→ Q)
Ft(F•

adic(P → Q)⊗ F•
adic(k[z]→ k[z]))→ Ftadic(P [z]→ Q[z])

are equivalences. We shall only give a proof for the first map, the second is similar
but easier. Write P = k[x1, . . . , xn, y1, . . . , ym] and Q = k[x1, . . . , xn] so that the
map P → Q is given by yi 7→ 0. By Lemma 2.3 it suffices to show

colim
p+q≥t

(y1, . . . , ym)p ⊗k (z)q → (y1, . . . , ym, z)t

is an equivalence in D(k). By a similar argument as in the proof of Lemma 3.12,
one may reduce this to showing that∑

p+q≥t

(y1, . . . , ym)p · (z)q = (y1, . . . , ym, z)t

as discrete ideals in P [z], which we leave for the reader to verify.
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Remark 3.24. Explicitly, using [39, Lemma 5.5.8.13] and Corollary A.13 one
can show that if k is a commutative Q-algebra, one may represent any object
(A→ A/I) ∈ AniPairk by a simplicial ring A∗ with a simplicial ideal I∗, such that
Ai is a polynomial algebra for all simplicial degrees i, and Ii ⊆ Ai is generated by a
subset of the generators of Ai. Then LFnadic(A→ A/I) is isomorphic to the image
of In∗ in D(k) under the Dold-Kan correspondence.

{cons_comp_map_adfil}
Construction 3.25. Denote with τ≤0 : CAlgfil(k) → CAlgfil(k) the truncation
map induced by the t-structure on D(k). Write τ≤0LFadic = τ≤0 ◦ LFadic. The
natural transformation id → τ≤0 of functors CAlgfil(k) → CAlgfil(k) induces a
natural transformation

LFadic → τ≤0LFadic

of functors AniPairk → CAlgfil(k). For any (A→ B) ∈ Pairk one has

τ≤0Fadic(A→ B) = Fadic(A→ B)

and thus we get canonical natural transformations

LFadic → τ≤0LFadic → Fadic

of functors Pairk → CAlgfil(k).
{example_derived_ideal_powers}

Example 3.26. We warn the reader that even in characteristic 0, for a gen-
eral surjective map A → A/I of discrete rings, it is not generally the case that
τ≤0LFadic = Fadic. For example, let k be a ring of characteristic 0, A = k[x]/(x2)
and I = (x). Applying the resolution from [32, Construction 4.16] to the regular
element (t − x2) ∈ k[t, x] one obtains a simplicial resolution for k[x]/(x2). Using
this resolution, one may show that τ≤0(LFnadic) ̸= 0 for all n ≥ 0, even though
In = 0 for n ≥ 2.

We now give a divided power analogue of Definition 3.22.
{derived_pdadic_fil}

Definition 3.27. Let A be a k-algebra, I an ideal of A, and γ a PD-structure
on I, so that (A → A/I) ∈ PDPairk. Then the rule n 7→ I [n][0] defines an object
in (D(k)≥0)fil = Fun(Nop,D(k)≥0). Using the multiplication on A this defines a
functor

FPD−adic : PDPairk → CAlgfil(k)≥0 (3.14) {eq_underived_pdfil}{eq_underived_pdfil}

(A→ A/I) 7→ {I [n]}n

We define the derived PD-adic filtration functor

LFPD−adic : AniPDPairk → CAlgfil(k)≥0

as the left Kan extension of FPD−adic restricted to the subcategory PDPairk,gen.
{lem_pdfil_colim}

Lemma 3.28. The functor

LFPD−adic : AniPDPairk → CAlgfil(k)≥0

preserves small colimits.
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Proof. Analogous to the proof of Lemma 3.12.

We shall sometimes abuse notation by writing LFadic : AniPDPairk → CAlgfil(k)
for the composition

AniPDPairk → AniPairk
LFadic−−−−→ CAlgfil(k)

Note that we have a natural transformation

LFadic → LFPD−adic (3.15) {abb}{abb}

of functors AniPDPairk → CAlgfil(k) induced by the inclusion Iℓ ⊆ I [ℓ] on PDPairk,gen.

Lemma 3.29. If k is a Q-algebra, the natural functor

LFadic → LFPD−adic

is an equivalence of functors AniPDPairk → CAlgfil(k).
Proof. It suffices to check this on PDPairk,gen where the statement is obvious.

Note that for (A→ A0) ∈ AniPairk, the unit of the adjunction (−)Lenv ⊢ forget
induces a canonical map LFadic(A→ A0)→ LFadic((A→ A0)Lenv).

{compare_01}
Lemma 3.30. Let k be a ring, and (A→ A0) ∈ AniPairk. Then the composition

LFadic(A→ A0)→ LFadic((A→ A0)Lenv)→ LFPD−adic((A→ A0)Lenv) (3.16) {abc}{abc}

induces an equivalence

Lgriadic(A→ A0) ∼−→ LgriPD−adic((A→ A0)Lenv)

for i = 0, 1.
Proof. Since all functors commute with colimits it suffices to check this for k[x]→
k[x] and k[x]→ k. The only nontrivial thing to check is that the map

(x)/(x2)→ gr1
PD−adic(k⟨x⟩ → k)

is an isomorphism in D(k)♡, which we leave for the reader to verify.
{construction_dr_adic_compare}

Construction 3.31. Let k be a ring. Let (A→ A0) ∈ AniPairk. Then the maps

(A→ A)→ (A→ A0)→ (A0 → A0)

in AniPairk induce maps

(A→ A)→ (A→ A0)Lenv → (A0 → A0)

in AniPDPairk. We thus get a diagram

dRA0/A
∼←− dR(A→A0)Lenv/(A→A) → dR(A→A0)Lenv/(A→A0)Lenv ∼= LFPD−adic((A→ A0)Lenv)

where the first arrow is an equivalence by Proposition 3.19. Inverting the first
arrow, we thus get a map

dRA0/A → LFPD−adic((A→ A0)Lenv) (3.17) {drpdcompare}{drpdcompare}

in CAlgfil(k), functorial in (A→ A0) ∈ AniPairk.
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{surj_dr_adfil}
Proposition 3.32. Let k be a ring. Then the map (3.17) induces an equivalence

dR−/−
∼−→ LFPD−adic((− → −)Lenv)

of functors AniPairk → CAlgfil(k).

Proof. See [41, Proposition 4.64].

Corollary 3.33. Let k be a ring, and (A → A0) ∈ AniPairk. The natural map
A→ dRA0/A induces an equivalence

A/LF2
adic(A→ A0)→ dRA0/A/F2

in CAlgfil(k).

Proof. Combine Proposition 3.32 and Lemma 3.30.

If k is a ring such that Q ⊆ k, the categories AniPDPairk and AniPairk are
canonically isomorphic, and we get the following result.

Corollary 3.34. Let k be a ring such that Q ⊆ k. Then the map (3.17) induces
an equivalence

dR−/−
∼−→ LFadic(− → −)

of functors AniPairk → CAlgfil(k).

Definition 3.35. We define the derived completion functor (see Remark 3.39)

Comp(− → −) : Fun(∆1,CAlgan
k )surj → CAlgfil(k)

as the composition

Fun(∆1,CAlgan
k )surj

LF•
adic−−−−→ CAlgfil(k) (̂−)−−→ CAlgfil(k)

We will refer to the filtration on Comp(A→ A/I) as the derived adic filtration.

One may think of Comp(A→ A/I) as the filtered E∞-algebra whose p-filtered
piece is given by

lim
n→∞

cofib
(
I(n) → I(p)

)
using the suggestive notation from Definition 3.22.

{rem_compute_derived_comp}
Remark 3.36. More explicitly, one may compute the derived completion Comp(A→
A/I) as follows. Start by taking a simplicial ring A∗ with a simplicial ideal I∗ such
that for all simplicial degrees i, Ai is a polynomial algebra, Ii ⊆ Ai is generated by
a subset of the generators of Ai, and

A→ (A/I) = colim
i∈∆op

Ai → Ai/Ii

in AniPairk.
Then

Comp(A→ A/I) = lim
n→∞

colim
i∈∆op

Ai/I
n
i

in CAlgan
k .
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Remark 3.37. Using Propositon 3.32 and [47, Proposition 8.5, Corollary 10.4(iii)]
one may in fact show that if k is of characteristic zero, A∗ is a simplicial ring and
I∗ is a (termwise) quasi-regular ideal, then the comparison map

Comp
(

colim
i∈∆op

Ai → Ai/Ii

)
→ lim

n→∞
colim
i∈∆op

Ai → Ai/I
n
i

is an equivalence in CAlgan
k . In particular, if A is a discrete ring and I ⊆ A is a

quasi-regular ideal, the derived completion agrees with the usual completion.
{surj_dr_comp}

Corollary 3.38. If Q ⊆ k, the natural transformation

d̂R−/− → Comp(− → −)

of functors
AniPairk → CAlgfil(k)

induced by Construction 3.31 is an equivalence.

Proof. Follows directly by applying Proposition 3.32.
{rem_derived_comp_bhatt}

Remark 3.39. Let k be a ring such that Q ⊆ k. Given (A → B) ∈ AniPairk,
using Lemma 3.10 and Corollary 3.38 we see that the natural map

Comp(A→ B)→ lim
∆

Comp(Cech(A→ B)→ B)

is an equivalence. Since π0(A)→ π0(B) is surjective we see that the map π0(B⊗An)→
π0(B) is an equivalence. Hence

Comp(Cech(A→ B)→ B) ∼= Cech(A→ B)

by Theorem 4.4. It follows that our definition of derived completion agrees with
the definition of the Adams completion given in [5].
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4 Improving Quillen’s convergence theorem
{sec_quillen_convergence}

In [47], Quillen introduced the notion of a quasi-regular ideal. We warn the reader
that is not equivalent to the definition in [48, 07CU].

Definition 4.1. Let A be a ring. We say an ideal I ⊆ A is quasi-regular if

1. I/I2 is a flat A/I-module.

2. The canonical map ∧q(I/I2) → TorAq (A/I,A/I) constructed in [47, Defini-
tion 8.4] is an isomorphism for all q ≥ 0.

Definition 4.2. Let A be a simplicial ring, and let I ⊆ A be a simplicial ideal.
We say that I is quasi-regular if In ⊆ An is a quasi-regular ideal for all n.

Then Quillen proved the following (see [47, Theorem 8.8]).

Theorem 4.3 (Quillen’s convergence theorem). Let A be a simplicial ring, and
I ⊆ A be a simplicial ideal. If I is quasi-regular and π0(I) = 0, then A is I-adically
complete, i.e. the natural map A→ R lim(A/In) is a weak equivalence of simplicial
rings.

The goal of this section is to show the assumption π0(I) = 0 in the theorem
above can be weakened to merely assuming the image of π0(I) in π0(A) is a nilpo-
tent ideal.

{thm_quillen_convergence_thm_improved}
Theorem 4.4 (Quillen’s convergence theorem, improved version). Let A be a
simplicial ring, and let I ⊆ A be a quasi-regular simplicial ideal. Suppose the image
of π0(I) in π0(A) is nilpotent. Then A is I-adically complete, i.e. the natural map
A→ R limA/In is a weak equivalence of simplicial rings.

Note that the assumptions of the theorem do not necessarily imply that π0(Ik) =
0 for some k > 0, in fact it could happen that π0(Ik) is always nontrivial.

4.1 Strict-essentially-zero systems
Before we can prove Theorem 4.4, we need an intermezzo on strict-essentially-zero
systems (or Artin-Rees-zero systems, see [24, exposé V, 2.2]), which will be our
main computational tool. Let A be an abelian category. Write C = Fun(Nop,A)
for the category of inverse systems in A.

Definition 4.5. A system {Kn}n ∈ C is strict-essentially-zero if there exists an
integer k > 0 such that all maps Kn → Km are zero for n−m ≥ k.

We write C0 for the full subcategory of C of strict-essentially-zero systems.
The key motivation for studying strict-essentially-zero systems is the following.

{lem_sez_rlim}
Lemma 4.6. Suppose {Kn}n ∈ C0. Then limKn = R1 limKn = 0.

Proof. The fact that limKn = 0 follows directly from the definition of the direct
limit. The condition that {Kn}n is strict-essentially-zero also implies that {Kn}n
satisfies the Mittag-Leffler condition, hence R1 limKn = 0.
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The following lemma is key in studying strict-essentially-zero systems. It implies
that C0 is a Serre subcategory, see [48, 02MN].

{lemma_strict-essentially-zero-triangle}
Lemma 4.7. Suppose we are given a diagram

An
fn−→ Bn

gn−→ Cn

in Fun(Nop,A) such that ker(gn) ⊆ im(fn) for all n. If {An}n and {Cn}n are
strict-essentially-zero, then so is {Bn}n.

Proof. Let k such that An → Am is the zero map for n−m ≥ k, and k′ such that
Cn → Cm is zero for n−m ≥ k′.

We claim that Bn → Bm is zero for n−m ≥ k + k′. Indeed, let n,m ∈ N such
that n−m ≥ k+ k′. Write ℓ = n− k′, so that n− ℓ = k′ and ℓ−m ≥ k. Consider
the diagram

An Bn Cn

Aℓ Bℓ Cℓ

Am Bm Cm

Since n−ℓ = k′ the map Cn → Cℓ is the zero map, hence im(Bn → Bℓ) ⊆ im(Aℓ →
Bℓ). But ℓ−m ≥ k, hence Aℓ → Am is the zero map, therefore im(Aℓ → Bℓ) maps
to 0 in Bm. It follows that Bn → Bm is the zero map.

Corollary 4.8. The category C0 is a Serre subcategory of C. There exists an abelian
category C/C0 and an exact functor

F : C → C/C0

which is essentially surjective and has kernel C0.

Proof. See [48, 02MS].

To end this section, we develop some machinery to detect when an element of
C actually lies in C0.

Definition 4.9. For {An}n ∈ C and c > 0, the shift map is the map {An+c}n →
{An}n in C given by the map An+c → An in each degree.

Definition 4.10. Let f : A → B be a morphism in C. Then f is said to be
strict-essentially-zero if F (f) = 0.

Lemma 4.11. For any {An}n ∈ C and c > 0, the shift map {An+c}n → {An}n
maps to an isomorphism in C/C0.

Proof. This follows since the objects {ker(An+c → An)}n and {coker(An+c →
An)}n lie in C0.

{corol_shift_sez}
Corollary 4.12. Let {An}n ∈ C and c > 0. If the shift map {An+c}n → {An}n is
strict-essentially-zero, then {An}n ∈ C0.
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4.2 Improving Quillen’s result
We now move on to proving Theorem 4.4. The basic strategy is to prove {πk(In)}n
is strict-essentially-zero by induction on k. We highly recommend the reader to
compare with the proof of [47, Theorem 8.8], in which it is shown that πk(Ik+1) = 0
by induction on k after assuming π0(I) = 0.

Write C = Fun(Nop,Ab) and let C0 be the full subcategory of strict-essentially-
zero systems. By Lemma 4.7, C0 is a Serre subcategory of C.

By Corollary 4.12, to show that {πk(In)}n ∈ C0, it suffices to show that the
shift map

{πk(In+c)}n → {πk(In)}n
is strict-essentially-zero, which motivates what follows.

The following is a slight improvement of [47, Proposition 8.5], and is the basis
for Theorem 4.4.

{lemma_discete_tor_sez}
Lemma 4.13. Let A be a ring and let I ⊆ A be a quasi-regular ideal. For fixed
q > 0 and k > 0, the system {TorAq (A/Ik, A/In)}n ∈ C0.

Proof. We give a proof by induction on k for fixed q > 0. The case k = 1 is
proven in [47, Proposition 8.5, Bq], in fact Quillen shows that Torq(A/I,A/In)→
Torq(A/I,A/In−1) is the zero map for all q and n.

Now suppose the statement holds for k − 1, we show it holds for k. Note that
by [47, Proposition 8.5, Ak] the A/I-module Ik−1/Ik is flat, hence

TorAq (Ik−1/Ik, A/In) ∼= Hq

(
Ik−1/Ik ⊗L

A A/I
n
)

∼= Hq

(
Ik−1/Ik ⊗L

A/I

(
A/I ⊗L

A A/I
n
))

∼= Ik−1/Ik ⊗A/I Hq

(
A/I ⊗L

A A/I
n
)

∼= Ik−1/Ik ⊗A/I TorAq (A/I,A/In)

is strict-essentially-zero (as an inverse system in n). The short exact sequence

0→ Ik−1/Ik → A/Ik → A/Ik−1 → 0

induces an exact sequence

Torq(Ik−1/Ik, A/In)→ Torq(A/Ik, A/In)→ Torq(A/Ik−1, A/In)

The result now follows from Lemma 4.7, as the rightmost term is strict-essentially-
zero by our induction hypotheses, and we already showed the leftmost term was
strict-essentially-zero.

{lem_pik_basic}
Lemma 4.14. Let A be a simplicial ring, and let I ⊆ A be a simplicial ideal.
Suppose the image of π0(I) in π0(A) is a nilpotent ideal. Then {π0(In)}n ∈ C0.

Proof. Let J be the image of π0(I) in π0(A), and let k > 0 be such that Jk = 0.
Note that for any n, the image of π0(In) in π0(A) is equal to Jn. In particular, it
follows that π0(Ik)→ π0(A) is the zero map.
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Since Ik0 ⊗A0 I
n
0 → In+k

0 is surjective for all n, the map π0(Ik)⊗π0(A) π0(In)→
π0(In) is surjective for all n. Now consider the commutative diagram

π0(Ik)⊗π0(A) π0(In) π0(In+k)

π0(A)⊗π0(A) π0(In) π0(In)

Since left vertical map is the zero map by assumption, and the top vertical map
is surjective, the right vertical map is the zero map as well. We conclude that
π0(In+k)→ π0(In) is the zero map for all n ≥ 0, which proves the lemma.

Note that for any simplicial ring A, we can consider the graded ring π∗(A).
Then π∗(In) is a graded module over this ring for all n, and in particular we get
graded groups

Torπ∗(A)
p (π∗(Ic), π∗(In))

for all p, n, c ∈ Z≥0. We will denote the ℓ-th graded piece by

Torπ∗(A)
p (π∗(Ic), π∗(In))ℓ

The following lemma is needed to analyze the spectral sequence from [46, II, §6,
Theorem 6].

{lemma_graded_tor_sez}
Lemma 4.15. Let A be a simplicial ring, and let I ⊆ A be a simplicial ideal. Let
k > 0. Suppose that {πj(In)}n ∈ C0 for all 0 ≤ j < k. Then{

Torπ∗(A)
p (π∗(Ic), π∗(In))k−p

}
n
∈ C0

for all p > 0 and c ≥ 0.

Proof. Let P∗,• → π∗(Ic) be a graded projective resolution of π∗(Ic) as a π∗(A)-
module. Then in each homological degree i, we have a surjection{

k−p⊕
a=0

Pa,i ⊗π0(A) πk−p−a(In)
}
n

↠
{(
P∗,i ⊗π∗(A) π∗(In)

)
k−p

}
n

in C. Since the left hand side is an element of C0, so is the right-hand side. Since
this holds for all i, it follows that{

Hp

((
P∗,• ⊗π∗(A) π∗(In)

)
k−p

)}
n

is an element of C0, which is what we needed to show.
{lemma_sez_derived_tensor_epi}

Lemma 4.16. Let A be a simplicial ring, and let I ⊆ A be a simplicial ideal. Let
k > 0. Suppose that {πi(In)}n ∈ C0 for all 0 ≤ i < k. Then for any c, the natural
map

{
(
π∗(Ic)⊗π∗(A) π∗(In)

)
k
}n → {πk(Ic ⊗L

A I
n)}n

is an epimorphism in C/C0.
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Proof. By [46, II, §6, Theorem 6] we have a spectral sequence

E2
p,q = {Torπ∗(A)

p (π∗(Ic), π∗(In))q}n =⇒ {πp+q(Ic ⊗L
A I

n)}n

in C. By Lemma 4.15 one has E2
p,k−p ∈ C0 for p > 0, hence E∞

p,k−p ∈ C0 for p > 0.
It follows that

E∞
0,k → {πk

(
Ic ⊗L

A I
n
)
}n

is an isomorphism in C/C0. The result now follows since E2
0,k → E∞

0,k is an epimor-
phism (already in C).

{lemma_sez_derived_tensor}
Lemma 4.17. Let A be a simplicial ring, and let I ⊆ A be a simplicial ideal. Let
k > 0. Suppose that {πi(In)}n ∈ C0 for all 0 ≤ i < k. Then there exists c > 0 for
which the natural map

{πk(Ic ⊗L
A I

n)}n → {πk(In)}n

is strict-essentially-zero.

Proof. Let c be such that π0(Ic) → π0(A) is the zero map. By Lemma 4.16, it
suffices to show the natural map

{
(
π∗(Ic)⊗π∗(A) π∗(In)

)
k
}n → {πk(In)}n

is strict-essentially-zero. Note that we have a diagram in C

{
⊕k

a=0 πa(Ic)⊗π0(A) πk−a(In)}n {
(
π∗(Ic)⊗π∗(A) π∗(In)

)
k
}n

{
⊕k

a=0 πa(A)⊗π0(A) πk−a(In)}n {πk(In)}n

in which the horizontal arrows are surjections. Since the left vertical map is strict-
essentially-zero (note {πk−a(In)}n ∈ C0 for a > 0), we get a diagram

{
⊕k

a=0 πa(Ic)⊗π0(A) πk−a(In)}n {
(
π∗(Ic)⊗π∗(A) π∗(In)

)
k
}n

{πk(In)}n

0

in C/C0. The result follows.

At first glance, the Lemma below might seem identical to the Lemma above,
however this is not quite the case as the derived tensor product has been replaced
by the underived version, and I is now assumed to be regular.

{lem_constant_tor_sez}
Lemma 4.18. Let A be a simplicial ring, and let I ⊆ A be a simplicial ideal. Let
k > 0. Suppose that I is quasi-regular, and {πi(In)}n ∈ C0 for all 0 ≤ i < k. Then
there exists c > 0 such that

{πk(Ic ⊗A In)}n → {πk(In)}n

is strict-essentially-zero.
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Proof. By Lemma 4.17, there exists c > 0 such that

{πk(Ic ⊗L
A I

n)}n → {πk(In)}n

is strict-essentially-zero. Now by [46, II, §6, Theorem 6], we have a spectral se-
quence in C

E2
pq = {πp(Torq(Ic, In))}n =⇒ {πp+q(Ic ⊗L

A I
n)}n

Note that for q > 0, one has Torq(Ic, In) = Torq+2(A/Ic, A/In). Hence by Lemma
4.13 one has E2

p,q ∈ C0 for all q > 0. It follows that {πk(Ic ⊗L
A I

n)}n → E2
k,0 is an

isomorphism in C/C0. We thus get a diagram in C/C0

{πk(Ic ⊗L
A I

n)}n {πk(Ic ⊗A In)}n

πk(In)

∼

0

The result follows.
{lem_pik_inductive}

Proposition 4.19. Let A be a simplicial ring, and let I ⊆ A be a simplicial
ideal. Let k > 0. Suppose that I is quasi-regular, and {π0(In)}n ∈ C0. Then
{πk(In)}n ∈ C0 for all k.

Proof. By induction on k, assume the statement holds for k′ < k. By Lemma 4.18,
there exists c > 0 such that {πk(Ic ⊗A In)} → {πk(In)}n is strict-essentially-zero.
Consider the short exact sequence

0 TorA1 (A/Ic, In) Ic ⊗A In In+c 0

of simplicial A-modules, inducing a short exact sequence

πk(Ic ⊗A In) πk(In+c) πk−1

(
TorA1 (A/Ic, In)

)
functorial in n. Note that

{πk−1

(
TorA1 (A/Ic, In)

)
}n = {πk−1

(
TorA2 (A/Ic, A/In)

)
}n ∈ C0

by Lemma 4.13. We thus get a diagram in C/C0

{πk(Ic ⊗A In)}n {πk(In+c)}n

{πk(In)}n

0

It follows that the shift map {πk(In+c)}n → {πk(In)}n is strict-essentially-zero, so
that we may conclude {πk(In)}n ∈ C0 by Corollary 4.12.
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Using the above proposition we now prove the promised theorem.

Proof of Theorem 4.4. By Lemma 4.14 and Proposition 4.19, we see that {πk(In)}n
is strict-essentially-zero for all k ≥ 0. From the short exact sequence of simplicial
A-modules

0→ In → A→ A/In → 0 (4.1) {eq_ses_ideal_powers}{eq_ses_ideal_powers}

we obtain exact sequences

πk(A)→ πk(A/In)→ πk−1(In)

functorial in n. Since {πk−1(In)}n is strict-essentially-zero, there exists c such that
πk−1(In)→ πk−1(Im) is the zero map for n−m ≥ c. For fixed m and n ≥ m+ c,
we have a commutative diagram

πk(A) πk(A/In) πk−1(In)

πk(A) πk(A/Im) πk−1(Im)

0

It follows that the image of πk(A/In) in πk(A/Im) is equal to the image of πk(A),
and in particular stabilizes. Thus {πk(A/In)} satisfies the Mittag-Leffler condition,
and R1 lim πk(A/In) = 0 for all k ≥ 0. Since {πk(In)}n is strict-essentially-zero,
by Lemma 4.6 we conclude that R lim πk(In) = 0 for all k ≥ 0. The long exact
sequence associated to (4.1) together with the fact that R lim is an exact functor
then shows that the natural map

πk(A) ∼−→ R lim πk(A/In)

is an isomorphism for all k.
Since we already showed that R1 lim πk(A/In) = 0, we conclude that the natural

map
πk(A) ∼−→ lim πk(A/In)

is an isomorphism for all k. Furthermore, the Milnor exact sequence

0→ R1 lim πk+1(A/In)→ πk(R limA/In)→ lim πk(A/In)→ 0

implies that the map πk(R limA/In) ∼−→ lim πk(A/In) is an isomorphism for all k.
It follows that the natural map

πk(A) ∼−→ πk(R limA/In)

is an isomorphism for all k, as desired.

4.3 Application: Nil-invariance for derived de Rham coho-
mology in characteristic zero

In [21, 22], Goodwillie showed that if k is a Q-algebra and A → B is a surjective
morphism of (simplicial) associative k-algebras with a nilpotent kernel, the natural
map

HP•(A/k)→ HP•(B/k)
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on periodic Hochschild homology gives a quasi-isomorphism of chain complexes.
Using the Hochschild-Kostant-Rosenberg isomorphism, one may transfer this result
to derived de Rham cohomology to show that for any surjective morphism A→ B
of commutative k-algebras with nilpotent kernel, the natural map

d̂RA/k → d̂RB/k

is a quasi-isomorphism, see also [45]. In this section we give a direct proof of this
result, without comparing to periodic Hochschild homology.

The idea of the proof is to apply the trick from [5, Proposition 4.16] twice to
reduce to the case that π0(k) → π0(A) is an isomorphism (where now k might no
longer be discrete). In this case the statement is obvious since both sides of (4.2)
are isomorphic to k by our improved version of Quillen’s convergence theorem.

{theorem_goodwillie_dr}
Theorem 4.20 (Nil-invariance of derived de Rham cohomology). Let k be a ring
such that Q ⊆ k, and let A→ B be a morphism in CAlgan

k such that π0(A)→ π0(B)
is surjective. If ker(π0(A)→ π0(B)) is a nilpotent ideal in π0(A), then the natural
map

d̂RA/k → d̂RB/k (4.2) {eq_goodwillie_dr}{eq_goodwillie_dr}

is an equivalence in CAlgk.

Note that although the map is a morphism of filtered E∞-algebras, it is not an
equivalence of filtered algebras, as the graded pieces need not be isomorphic.

Proof of Theorem 4.20. By Lemma 3.10 (descent on the base) and commuting lim-
its with limits we see that the natural map

d̂RZ/X → lim
∆

d̂RZ/Cech(X→Y )

is an equivalence for all (X → Y → Z) ∈ Fun(∆2,CAlgan
k ). Applying this to

k → A→ A and k → A→ B, we get a commutative diagram

d̂RA/k lim∆ d̂RA/Cech(k→A)

d̂RB/k lim∆ d̂RB/Cech(k→A)

∼

∼

Since π0(A⊗n) → π0(A) is surjective, it thus suffices to show that for any F ∈
CAlgan

k and any map F → A such that π0(F ) → π0(A) is surjective, the natural
map

d̂RA/F → d̂RB/F (4.3) {eq_goodwillie_dr2}{eq_goodwillie_dr2}

is an isomorphism.
Repeating this trick, we see it suffices to show (4.3) is an equivalence if π0(F )→

π0(A) is an isomorphism. Since π0(F )→ π0(A) is an isomorphism, it is surjective,
and hence by Corollary 3.38 we may identify the map (4.2) with

Comp(F → A)→ Comp(F → B) (4.4) {eq_comp_must_be_iso}{eq_comp_must_be_iso}
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Since π0(F )→ π0(A) is an isomorphism, we see that ker(π0(F )→ π0(B)) is nilpo-
tent. Hence by Theorem 4.4 (and Remark 3.36) both sides of (4.4) are equivalent
to F , hence in particular (4.4) is an equivalence.
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5 Chern classes in derived de Rham cohomology
Let k be a ring. Let X be a scheme over k with the resolution property ([48, 0F85]).
In this chapter, we define for any E ∈ Perf(X) and any i ≥ 0 a Chern class

ci(E) ∈ H2i(Fid̂RX/k)

Moreover, if i! is invertible in k, we will construct the ith part of the Chern character

chi(E) ∈ H2i(Fid̂RX/k)

Then we will show our construction is uniquely determined by additivity, functo-
riality and its value on line bundles, see Proposition 5.24.

We mostly follow the approach of Bhatt and Lurie from [7, §7, §9.2]. To avoid
needing to introduce syntomic cohomology, we adapt their construction of higher
Chern classes to the case of derived de Rham cohomology. The first three sections
merely provide results needed to make the machinery work, the entire construction
is contained in the last section. {sec_drc_stacks}

5.1 Relative derived de Rham cohomology
In this section, we define derived de Rham cohomology relative to an open subset,
and construct a cup product map for relative derived de Rham cohomology in a
very general way.
Definition 5.1. Let k be a ring, let X be an algebraic stack over k, and let U ⊆ X
be an open substack. Then we define the relative derived de Rham cohomology

d̂R(X,U)/k := fib(d̂RX/k → d̂RU/k)

in CAlgfil(k).
The limit exists by [38, Proposition 3.2.2.1] and can be computed in D(k)fil.

Note that since this is a filtered algebra, we immediately get a canonical map

Fpd̂R(X,U)/k ⊗k Fqd̂R(X,U)/k → Fp+qd̂R(X,U)/k

The remainder of this section is devoted to constructing a map

Fpd̂R(X,U)/k ⊗k Fqd̂R(X,V )/k → Fp+qd̂R(X,U∪V )/k

for different open substacks U, V ⊆ X. We start with a lemma.
{pushout}

Lemma 5.2. Let k be a ring. Let X be an algebraic stack over k, and let U, V ⊆
X be open substacks which cover X (i.e. the map U

∐
V → X is an effective

epimorphism in Stk). Then the diagram

U ×X V U

V X

is a pushout diagram in Stk.
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Proof. We thank Dhyan Aranha for teaching us the following argument. We prove
the following more general statement: For any relative n-strack X → Y and U, V ⊆
X open relative n-substacks which cover X, the diagram

U ×X V U

V X

is a pushout square.
If X is an algebraic space, then this follows from the analogous statement in the

category of sheaves of sets. Now suppose the statement is known for any relative
(n − 1)-stack, and pick a relative n-stack f : X → Y . Let U, V ⊆ X be relative
n-substacks which cover X. Let Z be defined by the pushout diagram

U ×X V U

V Z

It suffices to show the natural map Z → X is an open immersion. Let T → X be
a smooth cover of X which is a relative (n − 1)-stack. Since T → X is a smooth
cover, it suffices to show the map ZT → T is an open immersion. But ZT fits in a
pushout diagram

UT ×T VT UT

VT ZT

so the result follows by the induction hypothesis.
{prop_fib_stable_infty}

Proposition 5.3. Let C⊗ be a symmetric monoidal stable ∞-category. Let X be
any ∞-topos, and let F ,G be C-valued sheaves on X. Let U, V ∈ X, and define
U ∪ V as the unique object sitting in a pushout square

U ×X V U

V U ∪ V

in X. Write
F(X,U) := fib(F(X)→ F(U))

Then there exists a map

F(X,U)⊗ G(X,V )→ (F ⊗ G)(X,U ∪ V )

fitting in a commutative diagram

F(X,U)⊗ G(X,V ) (F ⊗ G)(X,U ∪ V )

F(X)⊗ G(X) (F ⊗ G)(X)
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in C.
Proof. Define T ∈ C as the unique object fitting in a cartesian diagram

T F(X)⊗ G(V )

F(U)⊗ G(X) F(U)⊗ G(V )

□

We then have a diagram

T F(V )⊗ G(V )

F(U)⊗ G(U) F(U ×X V )⊗ G(U ×X V )

(5.1) {diagramt}{diagramt}

By the sheaf property of F ⊗ G we have a pullback diagram

(F ⊗ G)(U ∪ V ) (F ⊗ G)(V )

(F ⊗ G)(U) (F ⊗ G)(U ×X V )

Thus the diagram (5.1) induces a map

T → (F ⊗ G)(U ∪ V )

fitting in a commutative diagram

F(X)⊗ G(X) T

(F ⊗ G)(X) (F ⊗ G)(U ∪ V )

By Lemma A.18 the canonical map

F(X,U)⊗ G(X,V )→ fib(F(X)⊗ G(X)→ T )

is an equivalence, the result follows.
{prop_relative_map}

Corollary 5.4. Let X be an algebraic stack, and let U, V ⊆ X be open substacks.
Then there exists a map

Fpd̂R(X,U)/k ⊗ Fqd̂R(X,V )/k → Fp+qd̂R(X,U∪V )/k

fitting in a commutative diagram

Fpd̂R(X,U)/k ⊗ Fqd̂R(X,V )/k Fp+qd̂R(X,U∪V )/k

Fpd̂RX/k ⊗ Fqd̂RX/k Fp+qd̂RX/k

in D(k).
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Proof. Since Fpd̂R is a sheaf for any p by Proposition 3.9, we may apply Lemma
5.2 and Proposition 5.3 to find a map

Fpd̂R(X,U)/k ⊗ Fqd̂R(X,V )/k →
(

Fpd̂R(X,U∪V )/k ⊗ Fqd̂R(X,U∪V )/k

)
the result follows by composing with the multiplication map.

5.2 The classifying stack of short exact sequences
{section_torsors}

For n ∈ N, denote with denote with GLn the group scheme of invertible matrices
over Spec(Z), that is

GLn := Spec
(
Z[xij | i, j ∈ {1, . . . , n}]det(xij)]

)
The following identifies BGLn as the classifying stack of vector bundles of rank n.

{prop_vectngln}
Lemma 5.5. Let k be a ring and let X be a stack over k. Then there exists an
equivalence of spaces

Vectn(X)≃ ≃ MapStk
(X,BGLn)

functorial in X.

Proof. Since both sides are sheaves on Stk (see Lemma 2.17), it suffices to construct
the equivalence of functors when restricted to (CAlg♡

k )op. In this case, both sides
are 1-groupoids, and the construction is classical (see e.g. [33, Example 4.32]).

We now wish to generalize the above to short exact sequences of vector bundles.
We start by introducing the corresponding group scheme. For m,n ∈ N, we denote
Pn,m the group scheme of upper triangular block matrices in GLn+m. Explicitly

Pn,m := Spec
(
Z[xij | i, j ∈ {1, . . . , n+m}]det(xij)]/In,m

)
where In,m is the ideal generated by all xij with i > n and j ≤ n.

For any stack X over k, we denote with ExtVectn,m(X) the category of exact
triangles

A→ B → C
+1−−→

in D(X) such that A ∈ Vectn(X), B ∈ Vectn+m(X) and C ∈ Vectm(X).
{sheaf_vects}

Lemma 5.6. The functor

ExtVectn,m(−)≃ : Stop
k → S

is a sheaf for the fppf topology.

Proof. For any k-stack X and any F ∈ Fun(∆1 × ∆1,D(X)), the condition that
F(i, j) is a vector bundle of a certain rank for some (i, j) ∈ {0, 1}2 is local for the
flat topology. Moreover, the condition that F is a pullback square is also local for
the flat topology. It follows that the functor

ExtVectn,m : Stop
k → Cat∞

is a sheaf for the fppf topology. The result follows after observing that (−)≃

preserves limits.
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{prop_bpnm}
Proposition 5.7. Let k be a ring and let X be a stack over k. Then there exists
an equivalence of spaces

ExtVectn,m(X)≃ ≃ MapStk
(X,BPn,m)

functorial in X.

Proof. Again, since both sides are sheaves on Stk by Lemma 5.6, it suffices to
construct the equivalence of functors when restricted to (CAlg♡

k )op, in which case
both sides are 1-groupoids. Consider the standard short exact sequence

S :=
[
0→ O⊕n

X → O⊕(n+m)
X → O⊕m

X → 0
]

on X. Since any short exact sequence T ∈ Vectn,m(X) is locally isomorphic to S,
and moreover Aut(S) ≃ Pn,m(OX), the result follows.

5.3 A result of Totaro
In this section, we slightly adapt a theorem on the de Rham cohomology classifying
spaces that is originally due to Totaro. The motivation for this excursion is to
provide a crucial ingredient for the Cartan formula for Chern classes in derived de
Rham cohomology in the next section. We start by recalling the result, see [50,
Theorem 6.1] for the proof.

{thm_totaro}
Theorem 5.8 (Totaro). Let k be a field, and let P be a parabolic subgroup of
a reductive group G over a field k. Let L be the Levi quotient of P. Then the
restriction

RΓ(BP,Ωj)→ RΓ(BL,Ωj)
is an equivalence for all j.

We now wish to extend this result slightly, and show k can be any ring.

Lemma 5.9. Let A ∈ D(Z). If A ⊗ Q ∼= 0 and A ⊗ (Z/pZ) ∼= 0 for all prime
numbers p, then A ∼= 0.

Proof. This is well known, we follow [40, Lemma E.9.3.1]. By induction on the
number of prime divisors of n, one may first show that A ⊗Z (Z/nZ) ∼= 0 for all
n ∈ N, by choosing a prime divisor p | n and tensoring the exact triangle

(Z/pZ)→ (Z/nZ)→ (Z/(n/p)Z) +1−−→

with A.
Next, note that we have

Q/Z = colim
N∈N

Z/NZ

in D(Z)♡. Since taking homology of chain complexes commutes with filtered col-
imits, it follows that the above equality also holds in D(Z). Commuting tensor
products with colimits it follows that

A⊗Z Q/Z ∼= 0
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in D(Z). The result now follows by tensoring the exact triangle

Z→ Q→ (Q/Z) +1−−→

with A.
{corol_qiso_z}

Corollary 5.10. If f : A → B is a morphism in D(Z) such that f ⊗ Q is an
equivalence, and f ⊗Z (Z/pZ) is an equivalence for all primes p, then f is an
equivalence.

Proof. Follows by applying the previous lemma to the cone of f .

With this, we can state and prove the version of Totaro’s theorem that we need.

{corol_totaro}
Proposition 5.11. Let k be a ring. Let m,n ∈ N. Write P = Pn,m, and L =
GLn ×GLm. Then for any p ≥ 0, the map

Fpd̂RBPk/k → Fpd̂RBLk/k

is an equivalence in D(k).

Proof. Note that BP and BL can be written as a limit of smooth affine stacks (over
a cosimplicial diagram), so by Lemma 3.3 it suffices to show that the natural map

RΓ(BPk,Ω≥p
−/k)→ RΓ(BLk,Ω≥p

−/k)

is a quasi-isomorphism. By the (convergent) spectral sequence for hypercohomol-
ogy it suffices to show that

RΓ(BPk,Ωi−/k)→ RΓ(BLk,Ωi−/k)

is a quasi-isomorphism for all i. Note that BP is perfect by [2, Corollary 3.22].
Moreover, BP is smooth over Spec(Z), hence BPk is the derived pullback BP×Spec(Z)
Spec(k) computed in StZ. Finally the sheaf Ωi−/Z on BP is flat since BP is smooth
over Z, hence the derived pullback is equal to Ωi−/k. Thus, by [2, Proposition 3.10]
the base change map

RΓ(BP,Ωi−/Z)⊗L
Z k → RΓ(BPk,Ωi−/k)

is an equivalence (similarly for BL), so it suffices to prove the result in the case
k = Z. This follows directly from Corollary 5.10 and Theorem 5.8.

5.4 Chern classes in derived de Rham cohomology
In this section we define Chern classes in Hodge-completed derived de Rham coho-
mology, and show that they satisfy the usual axioms. To avoid having to introduce
syntomic cohomology, we adapt the results from [7, §9, 2] from the syntomic case.
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Definition 5.12. Define the functor

Gm : CAlg♡
k → D(Z)♡ ⊆ D(Z)
R 7→ R×

By right Kan extension to Stk and sheafifcation, we get an induced functor

RΓ(−,Gm) ∈ Shvfppf(Stk,D(Z))

Since Gm is smooth, for any scheme X one has

RΓ(X,Gm) = RΓ(Xet,Gm)

where the right hand side denotes the cohomology of Gm on the étale site of X.
Moreover, one has a canonical isomorphism of spaces

Pic(X) ≃ τ≥0(RΓ(X,Gm)[1])

for any k-stack X (here we think of the right hand side of a space via the Dold-Kan
construction).

{gm_extend}
Lemma 5.13. The functor

Gm : CAlg♡
k → Ab ⊆ D(Z)
R 7→ R×

is the left Kan extension from its restriction to smooth k-algebras.

Proof. Since
Gm(R) = HomCAlg♡

k
(k[x, 1

x
], R)

this is a consequence of the following much more general statement: If C is any
category, C0 ⊆ C is a full subcategory and X ∈ C0, the left Kan extension of the
functor HomC0(X,−) along the inclusion is given by HomC(X,−).

Construction 5.14 (First Chern class for line bundles). Let k be a ring. For any
ring R which is smooth over k, we have a commutative diagram

R× 0 . . .

ΩR/k Ω2
R/k . . .

d log

defining a functor

CAlg♡
k → Fun(∆1,D(Z))
R 7→ (R×[−1]→ F1Ω•

R/k)

By Construction 3.2, we thus get for any smooth ring R over k a canonical map

Gm(R)[−1]→ F1d̂RR/k
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functorial in R. By Lemma 5.13 the functor Gm is the left Kan extension of
its restriction to smooth k-algebras. By [39, Proposition 4.3.2.17] we thus get a
canonical map

Gm(R)[−1]→ F1d̂RR/k

functorial in R ∈ CAlg♡
k .

By Proposition 3.9, the functor R 7→ F1d̂RR/k is a sheaf and thus we get a
natural map

cd̂R
1 : Γ(Spec(R),Gm[−1])→ F1d̂RR/k

for any R ∈ CAlg♡
k . By right Kan extension, this induces a functor Stk →

Fun(∆1,D(Z)) given on any k-stack X by the map

cd̂R
1 : Γ(X,Gm[−1])→ F1d̂RX/k (5.2) {chern_first_map}{chern_first_map}

in D(Z). We call this the first Chern class in derived de Rham cohomology.
{defc1dr}

Definition 5.15. Let k be a ring, let X be a stack over k, and let L be a line
bundle on X corresponding to an element [L] ∈ H1(RΓ(X,Gm)). We define its
first Chern class

cd̂R
1 (L) ∈ H2(F1d̂RX/k)

to be the image of [L].
{chern_pullback}

Remark 5.16. Since (5.2) is functorial in X, the construction of cd̂R
1 commutes

with pullbacks, i.e. for any morphism of stacks f : X → Y and L ∈ Pic(Y ) one has

f∗cd̂R
1 (L) = cd̂R

1 (f∗L)

Lemma 5.17 (Projective space bundle formula). Let k be a ring, let X be a stack
over k, and let E be a vector bundle on X of constant rank r. Set

t := −cd̂R
1 (O(1)) ∈ H2

(
F1d̂RP(E)/k

)
Then for all m, the map

r−1⊕
i=0

Fm−id̂RX/k[−2i] (1,t,...,tr−1)−−−−−−−−→ Fmd̂RP(E)/k (5.3) {eq_proj_bundle}{eq_proj_bundle}

is an equivalence in D(k).

Proof. Since we have a map, it suffices to give a proof locally on X, in which case
P(E) ∼= X ×Spec(k) Prk. By the Künneth formula (Corollary 3.6) one may reduce to
the case X = Spec(k), which is the statement of [48, 0FMJ].

In particular, setting m = 0 we get an equivalence
r−1⊕
i=0

d̂RX/k[−2i] (1,t,...,tr−1)−−−−−−−−→ d̂RP(E)/k

in D(k).
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Definition 5.18 (Higher Chern classes). Let k be a ring, let X be a stack over k,
and let E be a vector bundle on X of constant rank r. Write t = −cdR

1 (O(1)). We
define the i-th Chern class

cd̂R
i (E) ∈ H2i

(
Fid̂RX/k

)
as the (r−i)-th component of the image of −tr under the inverse of the isomorphism
(5.3).

For a general vector bundle E ∈ Vect(X), we define the i-th Chern class by
decomposing X into components on which E has constant rank.

{thm_cartan}
Theorem 5.19 (Cartan formula). Let k be a ring, let X be a stack over k, and let

0→ E → F → G → 0

be a short exact sequence of vector bundles on X. Then

ci(F) =
i∑

j=0
cj(E)ci−j(G)

in H2i
(

Fid̂RX/k

)
.

Proof. After decomposing X into pieces where the vector bundles have constant
rank, by Proposition 5.7 we only need to verify this for X = BPn,m for all n,m ∈ N,
so in particular we may assume that X is an algebraic stack.

Base changing along the map BGLn × BGLm → BPn,m, by Totaro’s theorem
(Proposition 5.11) and Lemma 5.5 it suffices to show the equality holds for the
universal (split) short exact sequence on BGLn × BGLm. We may thus reduce to
the case where F ∼= E ⊕ G, where E and G are vector bundles of constant rank n
and m respectively.

Let π : P(F)→ X be the projection map, and let OP(F)(−1) be the tautological
subbundle of π∗(F), with Chern class t := c1(OP(F)(−1)). Let UE ⊆ P(F) be the
open subset of P(F) for which the composite

OP(F)(−1)→ π∗(F)→ π∗(E)

is the inclusion of a subbundle, and similarly for UG . Clearly UE ∪ UG = P(F).
Note that we have a commutative diagram

UE X

P(E)

pE

π

and moreover,
p∗

E(OP(E)(−1)) = OP(F)(−1)|UE

It follows that the element
n∑
i=0

π∗(ci(E))(−t)i ∈ H2n
(

Fnd̂RUE/k

)
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is equal to zero. Hence there exists an element η ∈ H2n(Fnd̂R(X,UE )/k) in the
relative cohomology group mapping to

n∑
i=0

π∗(ci(E))(−t)i ∈ H2n
(

Fnd̂RX/k

)
Similarly, we find the existence of an element η′ ∈ H2m(Fmd̂R(X,UG)/k) in the
relative cohomology group mapping to

m∑
i=0

π∗(ci(G))(−t)i ∈ H2m
(

Fmd̂RX/k

)
Using Corollary 5.4, we find the existence of an element η·η′ ∈ H2(n+m)(Fn+mdR(X,X)/k)
mapping to (

n∑
i=0

π∗(ci(E))(−t)i
)
·

(
m∑
i=0

π∗(ci(G))(−t)i
)

Since clearly Fn+mdR(X,X)/k = 0 we find that this last expression is zero, which
implies the theorem.

Corollary 5.20. Let k be a ring. The map ci defined above induces for any k-stack
X a unique map

ci : K0(Vect(X))→ H2i
(

Fid̂RX/k

)
satisfying ci(f∗E) = f∗ci(E).

{def_chern_character}
Definition 5.21 (Chern character). Let k be a ring such that i! is invertible in k.
Let X be a stack over k. For i > 0, let σi ∈ k[x1, . . . , xn] be the i-th symmetric
polynomial, and let θi ∈ k[σ1, . . . , σi] be the unique polynomial such that

θi(σ1, . . . , σi) = xi1 + · · ·+ xin

We define the i-th Chern character

chi : K0(X)→ H2i
(

Fid̂RX/k

)
by

chi(E) := θi(c1(E), . . . , ci(E))
i!

using the algebra structure on ⊕
j

H2j(Fj d̂RX/k)

induced by the filtered E∞-algebra structure on d̂RX/k.

We now wish to generalize to perfect complexes. Let X be a quasi-compact and
quasi-separated scheme over k which has the resolution property [48, 0F8D]. By
[48, 0F8E] any E ∈ Perf(X) can be represented by a bounded complex of vector
bundles, so that we may talk about its image [E ] ∈ K0(Vect(X)).
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Definition 5.22. Let k be a ring, and let X be a quasi-compact and quasi-
separated scheme over k which has the resolution property. For E ∈ Perf(X),
define the i-th Chern class

ci(E) ∈ H2i
(

Fid̂RX/k

)
as ci(E) := ci([E ]). If i! is invertible in k, we define chi(E) := chi([E ]) for any
E ∈ Perf(X).

Using the natural map Fid̂RX/k → LiX/k[−i], we also obtain Chern classes and
characters in Hi(LiX/k).

{prop_chern}
Proposition 5.23. Let k be a ring, and let i be a number such that i! is invertible
in k. The ith Chern character chi satisfies the following properties:

1. For any quasi-compact and quasi-separated scheme X over k with the resolu-
tion property and any exact triangle

E → F → G +1−−→

in Perf(X), one has
chi(F) = chi(E) + chi(G)

2. If X,Y are quasi-compact and quasi-separated schemes over k with the reso-
lution property and f : X → Y is a morphism of schemes over k, then

chi(f∗E) = f∗chi(E)

for all E ∈ Perf(X).

3. For any scheme X over k and any line bundle L on X one has

chi(L) = c1(L)i
i!

Proof. Statement (2) follows form Remark 5.16. Statement (1) and (3) follow
from elementary identities between symmetric polynomials combined with Theorem
5.19.

We now show these properties characterise the Chern character uniquely. As
we will later need this for Hodge cohomology, we formulate the statement for both
de Rham and Hodge cohomology.

{prop_chern_unique}
Proposition 5.24 (Uniqueness of Chern character). Let k be a ring such that i!
is invertible in k. Let Ai ∈ {Li−/k[−i],Fid̂R−/k}.

Suppose that for every quasi-compact and quasi-separated scheme X over k
which has the resolution property and any E ∈ Perf(X), we are given an element

c̃hi(E) ∈ H2i(AiX/k)

satisfying the properties from Proposition 5.23.
Then c̃hi(E) = chi(E) for all quasi-compact and quasi-separated schemes X over

k with the resolution property, and all E ∈ Perf(X).
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Proof. Let X be a quasi-compact and quasi-separated scheme over k with the
resolution property, and E ∈ Perf(X). We wish to show that c̃hi(E) = chi(E).
Since X has the resolution property we may represent E by a boundex complex of
locally free sheaves, hence using (1) we may reduce to the case where E is a locally
free sheaf on X. Since the pullback map

H2i(AiX/k)→ H2i(AiP(E)/k)

is injective for all i ≥ 0, we may reduce to the case where E has a filtration with
graded quotients given by line bundles. The result then follows by applying (1)
and (3).

5.5 Chern classes without Hodge completion
In this section we construct Chern classes in uncompleted derived de Rham co-
homology in the p-adic case. The following lemma is the main ingredient in the
construction.

{iso_bgln}
Lemma 5.25. Let p be a prime number, and let k be a ring over Z/pnZ for some
n ≥ 1. Let G be a smooth affine group scheme over k.

Then for any i ≥ 0, the map

H2i(FidRBG/k) ∼−→ H2i(Fid̂RBG/k)

is an isomorphism.

Proof. Since BG can be written as a colimit of smooth affine stacks over a simplicial
diagram and we defined de Rham cohomology of stacks by right Kan extension,
its de Rham cohomology can be computed by computing it for the affine schemes
and taking the limit over the cosimplicial diagram. Thus the result follows from
Lemma 3.3.

Construction 5.26. Let p be a prime number, and let k be a ring over Z/pnZ for
some n ≥ 1. Let Euniv be the universal rank r vector bundle on BGLr,k. Let

cuniv
i ∈ H2i(FidRBGLr,k

)

be the inverse image of cd̂R
i (Euniv) under the isomorphism

H2i(FidRBGLr,k
) ∼−→ H2i(Fid̂RBGLr,k

)

from Lemma 5.25.
For X any stack over k and E a vector bundle of rank r on X corresponding to

a map
fE : X → BGLr,k

(see Lemma 5.5), we define ci(E) := f∗
E (ci). For general E ∈ Vect(X) we define its

Chern class by decomposing X into pieces on which E has constant rank. If i! is
invertible in k, we define the i-th Chern character

chi(E) := θi(c1(E), . . . , ci(E))
i!
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When X is a quasi-compact and quasi-separated scheme over k which has the
resolution property, and E ∈ Perf(X), define the i-th Chern class as ci(E) := ci([E ]).
If i! is invertible in k, we define chi(E) := chi([E ]) for any E ∈ Perf(X).

We leave it to the reader to verify that the above definition is the (unique)
construction satisfying the properties from Proposition 5.23 (the only nontrivial
thing to check is the Cartan formula, which can be done by applying Lemma 5.25
to BPn,m,k).
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6 Kodaira–Spencer classes and variation of Hodge
structures

{sec_def_theory_hodge}
Let A be a local Artinian C-algebra and let X be a smooth and proper variety over
A. Let

X0 = X ×Spec(A) Spec(C)

By [19, Lemma 5.5.3] the maps

A→ Ω•
Xan/A

C→ Ω•
Xan

0 /C

are quasi-isomorphisms of complexes of sheaves on Xan. Combined with GAGA
we obtain isomorphisms

H∗(Xan, A) ∼= H∗(X,Ω•
X/A)

H∗(Xan
0 ,C) ∼= H∗(X0,Ω•

X0/C)

Denote with φ the composition

H∗(X0,Ω•
X0/C)⊗C A

∼−→ H∗(Xan
0 ,C)⊗C A ∼= H∗(Xan, A) ∼−→ H∗(X,Ω•

X/A) (6.1) {eq_stratifying_map}{eq_stratifying_map}

Given i ≥ 0 and an element

v ∈ Fi H2i(X0,Ω•
X0/C)

we want to determine whether or not φ(v) lies in the i-th part of the Hodge filtra-
tion.

Bloch [9] showed this can be studied using the Gauss–Manin connection, how-
ever his procedure only works with conditions on the base A. The goal of this
section is to generalize his method to general bases (and even to mixed character-
istic). The main idea is to replace the isomorphism φ with its algebraic analogue
(4.2), an idea originally due to Pridham [45]. This will allow us to generalize
Bloch’s algebraic computation to all A.

6.1 Hodge-theoretic obstructions for (derived) completed de
Rham cohomology

{sec_bloch_dr}
In this section, we rephrase Bloch’s problem by a more algebraic problem. We first
define an algebraic analogue of the map (6.1) for completed derived de Rham co-
homology, using nil-invariance. We then define an obstruction class that measures
whether or not a cohomology class that sits within the Hodge filtration over the
base remains within the Hodge filtration when that smaller base is enlarged by a
nilpotent thickening.

We start by introducing a more general notion of a local Artinian C-algebra.
Note that we will only be considering discrete thickenings.
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Definition 6.1. Let k be a ring. A nilpotent thickening of k is a commutative k-
algebra R and a nilpotent ideal I ⊆ R such that the composition k → R→ (R/I)
is an isomorphism. A morphism of nilpotent thickenings is a commutative diagram

k

R′ R

k

such that R′ → R is surjective. Finally, we say that a morphism of nilpotent
thickenings is square zero if J = ker(R′ → R) satisfies J2 = 0.

Example 6.2. Any local Artinian C-algebra is a nilpotent thickening of C.
{aak}

Remark 6.3. If k is any ring such that Q ⊆ k and R is a nilpotent thickening of
k, for any smooth scheme X over R with X0 := X ×Spec(R) Spec(k), the map

d̂RX/R → d̂RX0/R

is an equivalence in D(R) by globalizing Theorem 4.20 using (2.3).
{aal}

Definition 6.4. Let k be a ring such that Q ⊆ k, let R be a nilpotent thickening
of k, and let X be a smooth scheme over R. Let X0 = X ×Spec(R) Spec(k). Define
the stratifying map

φd̂R,X : d̂RX0/k ⊗k R→ d̂RX/R

as the composition

d̂RX0/k ⊗k R d̂RX0/R d̂RX/R∼

after inverting the right equivalence.

Before we continue, we verify that our stratifying map agrees with the map
(6.1), so that there can be no confusion about the map φX×Y in Theorem 1.5.

{lem_strat_agree}
Lemma 6.5. Let R be a local Artinian C-algebra, and let X be a smooth and
proper scheme over R. Denote with X0 := X ×Spec(R) Spec(C). Then the diagram

H∗(X0, d̂RX0/C)⊗C R H∗(X, d̂RX/R)

H∗(X0,Ω•
X0/C)⊗C R H∗(X,Ω•

X/R)

∼

φ
d̂R,X

∼

(6.1)

commutes.
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Proof. For Y → Spec(B) a morphism of schemes of finite type C such that Y can be
embedded in a smooth B-scheme, write H∗

Har(Y/B) for Harthshorne’s algebraic de
Rham cohomology [25, §II.1], and H∗

Har(Y an/Ban) for the holomorphic (analytic)
version [25, §IV.1]. The main properties we need of Harthshorne’s theory are the
following.

• The cohomology groups H∗
Har(Y/B) and H∗

Har(Y an/Ban) are functorial in the
pair (Y,B).

• Whenever Y → Spec(B) is smooth, there are functorial isomorphisms H∗
dR(Y/B) ∼=

H∗
Har(Y/B) and H∗

dR(Y an/Ban) ∼= H∗
Har(Y an/Ban).

We get a commutative diagram

H∗(d̂RX/R) H∗
Har(X/R) H∗

Har((X)an/(R)an) H∗(Xan, R)

H∗(d̂RX0/R) H∗
Har(X0/R) H∗

Har(Xan
0 /(R)an) H∗(Xan

0 , R)

H∗(d̂RX0/C) H∗
Har(X0/C) H∗

Har(Xan
0 /Can) H∗(Xan

0 ,C)

∼

∼

∼
∼

∼

∼ ∼
∼

∼ ∼
∼

By [5, Corollary 4.27] the left horizontal arrows are isomorphisms. Then note that
X0 → R is still proper, since it is the composition of the proper map X0 → Spec(C)
with the closed immersion Spec(C)→ Spec(R). Moreover Hi

Har(X0/R) is finite for
all i, for example by comparing with H∗

Har (X/R) via (4.2). Thus by [25, Proposition
4.1] the middle horizontal arrows are isomorphisms. Finally by [19, Lemma 5.5.3]
the right horizontal arrows are isomorphisms.

The top left vertical arrow is an isomorphism by (4.2). It follows that all
top vertical arrows are isomorphisms. The result now follows by carefully chasing
through the diagram after inverting all the relevant arrows: Going straight up from
the bottom left to the top left gives φd̂R,X , going all the way right-up-left gives
(6.1).

The following lemma is the algebraic version of the statement that Chern classes
are horizontal for the Gauss–Manin connection. {lem_chern_horizontal}
Lemma 6.6 (Horizontality of Chern classes). Let k be a ring and let R be a
nilpotent thickening of k. Let X be a smooth and proper scheme over R. Let
E ∈ Perf(X), and let E0 = E|Xk

. Then
φd̂R,X (chi(E0)⊗ 1) = chi(E)

in H2i(d̂RX/R).
Proof. Since the diagram

K0(Xk) K0(Xk) K0(X)

H2i(d̂RXk/k) H2i(d̂RXk/R) H2i(d̂RX/R)

chi chi chi
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commutes, this follows immediately by definition of the stratifying map.

We now finally give our definition of the algebraic obstruction class, as promised.

Definition 6.7. Let k be a ring and let R be a nilpotent thickening of k. Let X
be a smooth and proper scheme over R. Let v0 ∈ H2i(Fid̂RXk/k).

We define the obstruction class to v0 staying in the Hodge filtration

obd̂R
X/R(v0) ∈ H2i

(
d̂RX/R/Fi

)
as the image of v0 ⊗ 1 under the composition

H2i(d̂RXk/k)⊗k R
φ

d̂R,X−−−−→ H2i(d̂RX/R)→ H2i(d̂RX/R/Fi)

Almost by definition, we see that the obstruction class to v0 staying in the
Hodge filtration vanishes if and only if v0 lands in the i-th parth of the Hodge
filtration on H2i(d̂RX/R), which explains the terminology.

Remark 6.8. The following will not be needed for the rest of the text, but might
be of interested to readers familiar with more classical constructions.

Let k = C, and suppose R′ → R is a square zero morphism of nilpotent thicken-
ings with I = ker(R′ → R). Let X ′ f−→ Spec(R′) be a smooth and proper morphism,
and set

X := X ′ ×Spec(R′) Spec(R)
X0 := X ′ ×Spec(R′) Spec(C)

Suppose v0 ∈ H2i(d̂RX0/C) is such that

obd̂R
X/R(v0) ∈ H2i(d̂RX/R/Fi)

vanishes. In this case, Bloch [9] defined an obstruction class in

H2i
(

d̂RX/R/Fi
)
⊗R′ ΩR′/C

Note that the composition

I → R′ d−→ ΩR′/C

induces a map

H2i
(

d̂RX/R/Fi
)
⊗R′ I → H2i

(
d̂RX/R/Fi

)
⊗R′ ΩR′/C

One would expect the image of obd̂R
X′/R′(v0) to be Bloch’s obstruction class for the

horizontal section v0, however we do not see an easy argument for this, and since
we have no need for it we will not pursue this.
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6.2 Hodge-theoretic obstructions for (derived) crystalline co-
homology

In this section we give definitions analogous to those in Section 6.1. Note however
that here we are working with uncompleted theories, which are not well behaved
in characteristic zero.

Most of the constructions and results make sense for the completed theory,
however for everything to be well-behaved, one needs a divided-power analogue of
Theorem 4.4 to conclude that the natural map

R→ ĈrysR0/(R→R0)

is an equivalence for any (R → R0) ∈ PDPairk with I = ker(R → R0) such that
I [n] = 0 for some n > 0. Unfortunately it seems difficult to prove such a result
using the methods from the proof of Theorem 4.4, so we instead work around this
issue using uncompleted theories.

We start by giving the crystalline analogue of the map (6.1).
{abk}

Definition 6.9. Let k be a ring. Let (R→ R0) ∈ PDPairk and let X → Spec(R)
be a smooth scheme. Write X0 = X ×Spec(R) Spec(R0). We define the crystalline
stratification map

φCrys,X : dRX0/k → dRX/R

in D(k) as the map obtained by inverting the equivalences in the diagram

dRX0/k → CrysX0/(R→R0)
∼←− CrysX/(R→R) ⊗R CrysR0/(R→R0)

∼←− dRX/R

where the middle map is an equivalence by Lemma 3.18, and the last map is an
equivalence since

CrysR0/(R→R0)
∼= R

We will denote with

αCrys : CrysX0/(R→R0)
∼−→ dRX/R (6.2) {abh}{abh}

the map obtained by inverting the two equivalences in the diagram above.

Remark 6.10. By [4, Proposition 3.25] or [41, Proposition 4.66, 4.87, 4.90], if R
is a (Z/pnZ)-algebra we have a diagram

H∗(CrysX0/(R→R0)) H∗(dRX/R)

H∗
cris(X0/(R→ R0)) H∗

dR(X/R)

∼

αCrys

∼

∼

thus our construction agrees with more classical constructions.

Definition 6.11. Let k be a ring. Let (R → R0) ∈ PDPairk, and let X be
a smooth and proper scheme over R. Write X0 := X ×Spec(R) Spec(R0). Let
v0 ∈ H2i(FidRX0/k).
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We define the obstruction class to v0 staying in the Hodge filtration

obCrys
X/R(v0) ∈ H2i (dRX/R/Fi

)
as the image of v0 under the composition

H2i(FidRX0/k)→ H2i
(

CrysX0/(R→R0)

)
φCrys,X−−−−−→ H2i (dRX/R

)
→ H2i (dRX/R/Fi

)
6.3 The (derived) Kodaira–Spencer map
Let k be a commutative ring. In this section we define the derived analogue of
the Kodaira–Spencer map. That is, for any surjection of k-algebras A′ → A with
kernel I, we wish to construct a map

LA/k[−1]→ I/I2

in D(A). Moreover, this map should be functorial in the pair (A′ → A). In fact,
we believe this to be the map in [48, 0GPT], however we will not verify this. The
starting point is the following construction.

{cons_ks}
Construction 6.12. Let k be a ring. Combining Proposition 3.32 and Lemma
3.30, we get for any any (A′ → A) ∈ AniPairk an equivalence

dRA/A′/F2 ∼−→ A′/LF2
adic (6.3) {dr_filadic}{dr_filadic}

in CAlgfil(k). If we now assume A′ → A is a map of discrete k-algebras with kernel
I, we can consider the composition

dRA/A′/F2 ∼−→ A′/LF2
adic → A′/F2

adic (6.4) {aaa}{aaa}

in CAlgfil(k). Applying gr1(−) we get a map

κA/A′/k : LA/A′ [−1]→ I/I2

We will also denote the composition

LA/k[−1]→ LA/A′ [−1]→ gr1
adic(A′ → A) = I/I2

with κA/A′/k, and refer to it as the Kodaira–Spencer map.
{aai}

Remark 6.13. Note that we may have chosen k = A′ in the above construction,
so that we get a commutative diagram

A′ A′/F2
adic

dRA/A′ dRA/A′/F2

(6.4) (6.5)

in D(A′).
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We now wish to lift κA/A′/k to a map in D(A), functorial in A. For this, we
first need to construct a good target category.

Definition 6.14. We denote with CAlgMod♡
k the 1-category of pairs (A,M) where

A is a discrete commutative k-algebra and M is a discrete A module. A morphism
(A,M) → (B,N) is given by a map of k-algebras A → B (which gives N the
structure of an A-module), and a map of A-modules M → N .

A set of compact 1-projective generators for CAlgMod♡
k is given by S = {(k[x], 0), (k, k)}.

The full subcategory spanned by coproducts of elements in S is the 1-category of
pairs (A,M) such that A is a finitely generated polynomial algebra over k and M
is a finite free A-module.

Definition 6.15. We define CAlgModan
k := Ani(CAlgMod♡

k ).

One may show that for any A ∈ CAlg♡
k one has

CAlgModan
k ×CAlgan

k
{A} ∼= D(A)≥0

We denote with

p0 : CAlgModan
k → CAlgan

k

the functor informally given by (A,M) 7→ A, and with

p1 : CAlgModan
k → D(k)

the functor informally given by (A,M) 7→M (these functors are easily constructed
by animating). Write ev1 : AniPairk → CAlgan

k for the morphism informally given
by (A′ → A) 7→ A, and

const : AniPairk → Fun(∆1,AniPairk)

for the functor informally given by A 7→ (A id−→ A).
Informally, the following lemma shows there exists a functor sending an (ani-

mated) surjective ring map A′ ↠ A to a morphism in D(A)≥0 lifting the morphism

LA/A′ [−1]→ Lgr1
adic(A′ → A)

in D(k).
{lem_hard_lifting_ks_map}

Lemma 6.16. Let k be a ring. Denote with Θ: AniPairk → Fun(∆1,D(k)fil) the
functor sending an object (A′ → A) to the map (6.3).

There exists a unique colimit-preserving functor

ψ : AniPairk → Fun(∆1,CAlgModan
k )

such that p0◦ψ ≃ const◦ev1 as functors AniPairk → Fun(∆1,CAlgan
k ) and p1◦ψ ≃

gr1(Θ) as functors AniPairk → Fun(∆1,D(k)),
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Proof. Let

ϕ : Fun(∆1,CAlgan
k )surj → Fun(∆1,D(k))

be defined by ϕ := gr1 (Θ). Informally, ϕ is given by

(A′ → A) 7→
(
LA/A′ [−1] Θ−→ Lgr1

adic(A′ → A)
)

By [48, 08SI], we may restrict to get a functor

ϕ : Fun(∆1,Polyk)surj,gen → Fun(∆1,D(k)♡)

In particular, for any standard surjective ring map between polynomial algebras

k[x1, . . . , xn, y1, . . . , ym] xi 7→0−−−→ k[y1, . . . , ym]

from now on denoted P → Q with kernel I := (x1, . . . , xn), we obtain a map

LQ/P [−1]
ϕQ/P−−−→ I/I2 (6.6) {eq_comp_map_mod}{eq_comp_map_mod}

in D(k)♡, functorial in P → Q.
We claim that, for a fixed standard surjection of polynomial k-algebras P → Q,

the map (6.6) is a map of Q-modules. Indeed, the entire construction above is
functorial in k, and we can consider the surjection P → Q as a standard surjection
of polynomial Q-algebras, so we may simply have chosen k = Q at the beginning.

We thus have a unique lift

ψ̃ : Fun(∆1,Polyk)surj,gen → Fun(∆1,CAlgMod♡
k )

(Q→ P ) 7→
(

(Q,LQ/P )
ϕQ/P−−−→ (Q, I/I2)

)
By animating ψ̃, we obtain our desired functor

ψ : AniPairk → Fun(∆1,CAlgModan
k )

one easily checks it satisfies the compatibilities outlined in the statement. Unique-
ness is clear as the colimit-preserving property implies that ψ is determined by
ψ̃.

We now can construct our lifted Kodaira–Spencer map.
{ks_map_mod}

Construction 6.17. Let k be a ring. Using animation, one may construct a
functor given informally by

ψ0 : AniPairk → Fun(∆1,CAlgModan
k )

(A′ → A) 7→ ((A,LA/k)→ (A,LA/A′))
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Animating the functor

ψ̃1 : Pairk → CAlgMod♡
k

(A→ A/I) 7→ (A/I, I/I2)

we set ψ1 : Ani(ψ̃1) → ψ̃1 to be the canonical natural transformation. Thus ψ1 is
a functor

ψ1 : Pairk → Fun(∆1,CAlgModan
k )

(A→ A/I) 7→ ((A,Lgr1
adic(A→ A/I))→ (A, I/I2))

We define the functor

κ : Pairk → Fun(∆1,CAlgModan
k )

defined as the (pointwise) composition ψ1 ◦ ψ ◦ ψ0.
For R′ → R a surjective map of k-algebras with kernel I, we thus get a map

(p1 ◦ κ)(R′ → R) : LR/k[−1]→ I/I2

in D(R)≥0, which maps to κR/R′/k under the forgetful functor to D(k).
{c_k_compare}

Lemma 6.18. Let R′ → R be a surjective map with kernel I. Let cR/R′ : I[1] →
LR/R′ be the map induced on cofibers of the commutative square

R′ R

dRR/R′/F2 R

Then the composition

I[1]
cR/R′
−−−−→ LR/R′

κR/R′/k−−−−−→ I/I2[1]

in D(R′) is (the suspension of) the natural projection I → I/I2.

Proof. First observe that the composition

R′ → dRR/R′/F2 → R′/(LF2
adic(R′ → R))→ R′/I2

is the natural projection. The result follows by applying the functor cofib(− → R)
to the composition above.

{lem_kodaira_base_change}
Lemma 6.19. Let k be a ring, and let R′ → R be a surjective ring map of k-
algebras with kernel I. For A′ ∈ CAlgan

R′ , write J = A′ ⊗R′ I and A = A′ ⊗R′ R,
so that (A′ → A) ∈ AniPairk. There exists a commutative diagram

A⊗R LR/R′ [−1] LA/A′ [−1]

A⊗R I J

id ⊗κR/R′/R′

∼

κA/A′/R′

∼

in CAlgModan
R′ , functorial in A′ ∈ CAlgan

R′ .
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Proof. Follows since the equivalence in Proposition 3.32 commutes with coproducts.

Definition 6.20. Let k be a ring, R′ → R a surjective ring map with kernel
I and X ′ a smooth scheme over R′. Write X = X ′ ×Spec(R′) Spec(R). For any
smooth R′-algebra A′ and any map Spec(A′)→ X ′ the Kodaira–Spencer map from
Construction 6.17 defines a map

LA/k[−1]→ I/I2 ⊗R A

in D(A), where A := R′ ⊗R A, functorial in A′. Hence we obtain a map

LX/k[−1]→ I/I2 ⊗R OX

in D(X). We obtain a class

κX/X′/k ∈ Ext1
X(LX/k, I/I2 ⊗R OX)

which we call the Kodaira–Spencer class.

6.4 The computation for a square-zero extension
In this section we do the main computation relating the Kodaira–Spencer map with
an abstract stratifying map to handle both the characteristic zero and the p-adic
case at once. We start by introducing the latter, for this we need some setup.

{sit_sqzero}
Situation 6.21 (Square-zero deformation context). Let k be a ring, and let R′ →
R be a surjective map of k-algebras such that I = ker(R′ → R) satisfies I2 = 0.
Let

X ′ f−→ Spec(R′)
be a smooth morphism of schemes over k, and set

X := X ′ ×Spec(R′) Spec(R)

Finally write I := I ⊗R OX .

In this situation, the map

d̂RX′/R′ ⊗̂
R′

d̂RR/R′
∼−→ d̂RX/R′

is an equivalence in D(k)fil by Corollary 3.6. We will denote with

KX/R′ : d̂RX/R′
∼−→ d̂RX′/R′ ⊗̂

R′
d̂RR/R′ (6.7) {kunneth_sqz}{kunneth_sqz}

the inverse in D(k)fil.
{defalpha}

Definition 6.22. In Situation 6.21. Denote with α the composition

d̂RR/R′ → R′/F2
adic = R′

in D(k)fil, where the first map is (6.4), R′ is equipped with the adic filtration, and
the last identity holds since I2 = 0.
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By definition we may identify

gr0(α) ≃ (id : R→ R)
gr1(α) ≃ (κR/R′/k : LR/R′ [−1]→ I/I2) (6.8) {aab}{aab}

in D(k).
{acc}

Definition 6.23. In Situation 6.21. Define the square-zero stratification map

αsqz : d̂RX/R′ → d̂RX′/R′

in D(k)fil as the composition

d̂RX/R′
KX/R′
−−−−→ d̂RX′/R′ ⊗̂

R′
d̂RR/R′

id ⊗α−−−→ d̂RX′/R′ ⊗̂
R′
R′ → d̂RX′/R′

where R′ is equipped with the adic filtration.
{aam}

Lemma 6.24. Let k be a Q-algebra. Then αsqz is inverse to the isomorphism

d̂RX′/R′ → d̂RX/R′

in D(k) from Remark 6.3.

Proof. Identifying dRR′/R′ ≃ R′ and R′/F2
adic ≃ R′ (since I2 = 0), by Remark 6.13

we get a commutative diagram

dRR′/R′ R′

dRR/R′ dRR/R′/F2

(6.4)

Since the bottom map factors through d̂RR/R′ we get a commutative diagram

d̂RR′/R′ R′

d̂RR/R′ dRR/R′/F2

(6.4)

in D(k). It follows that the map α : d̂RR/R′ → R′ is inverse to the composition

R′ ≃ d̂RR′/R′ → d̂RR/R′

Now consider the commutative diagram

d̂RX′/R′ d̂RX/R′

d̂RX′/R′ ⊗̂
R′

d̂RR′/R′ d̂RX′/R′ ⊗̂
R′

d̂RR/R′
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in which all arrows are isomorphisms. Inverting the bottom and rightmost arrow,
and identifying d̂RR′/R′ ≃ R′ we get a commutative diagram

d̂RX′/R′ d̂RX/R′

d̂RX′/R′ ⊗̂
R′
R′ d̂RX′/R′ ⊗̂

R′
d̂RR/R′

KX/R′

id ⊗α

in which all arrows are isomorphisms. Since the composition down–left–up is αsqz
by definition, the result follows.

We now wish to relate the square–zero stratification map to the Kodaira–
Spencer map. We isolate an essential ingredient in the following lemma.

{abstract_sqzero}
Lemma 6.25. Let C⊗ be a symmetric monoidal stable ∞-category, and let A,B ∈
D(C)fil. Suppose that Fj(B) = 0 for all j ≥ 2.

Then for any i ∈ N, there exists a commutative diagram

Fi(A⊗B) F0A⊗ F0B gr[0,i)A⊗ F0B

gri(A⊗B) gri−1(A)⊗ gr1(B) gri−1(A)⊗ F0B
πgr

1 id ⊗σ

in C, where πgr
1 is defined in (2.1), gr[0,i) in (2.2), and σ denotes the composition

gr1(B) ≃ F1B → F0B

in C.

Proof. For any ℓ, j ∈ N with ℓ + j ≥ i + 1, one either has ℓ ≥ i or j ≥ 2. Thus
either ℓ ≥ i or Fj(B) = 0. It follows that the composition

Fℓ(A)⊗ Fj(B)→ F0A⊗ F0B → gr[0,i)A⊗ F0B

is zero. Since
Fi+1(A⊗B) = colim

ℓ+j≥i+1
Fℓ(A)⊗ Fj(B)

it follows that the composition

Fi+1(A⊗B)→ F0A⊗ F0B → gr[0,i)A⊗ F0B

is zero. We thus get a diagram

Fi(A⊗B) F0A⊗ F0B

gri(A⊗B) gr[0,i)A⊗ F0B

Since
gri(A⊗B) = (gri(A)⊗ gr0(B))⊕ (gri−1(A)⊗ gr1(B))

the result follows.
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The following lemma contains the essential computation, relating the square-
zero stratification map with the Kodaira–Spencer map.

{main_comput}
Lemma 6.26. In Situation 6.21. There exists a commutative diagram

Fi
(

d̂RX′/R′ ⊗̂
R′

d̂RR/R′

)
d̂RX′/R′ ⊗̂

R′
d̂RR/R′ d̂RX′/R′/Fi ⊗̂

R′
R′

gri
(

d̂RX′/R′ ⊗̂
R′

d̂RR/R′

)
Li−1
X′/R′ [1− i] ⊗

R′
LR/R′ [−1] Li−1

X′/R′ [1− i] ⊗
R′
I

qi⊗α

πgr
1 id ⊗κ

(6.9) {aac}{aac}
in D(k), where κ is shorthand for κR/R′/k, and qi is the quotient map.

Proof. Applying Lemma 6.25 to A = F•d̂RX′/R′ and B = F•
adicR

′ we obtain a
commutative diagram

Fi
(

d̂RX′/R′ ⊗̂
R′
R′
)

d̂RX′/R′ ⊗̂
R′
R′ d̂RX′/R′/Fi ⊗̂

R′
R′

gri
(

d̂RX′/R′ ⊗̂
R′
R′
)

Li−1
X′/R′ [1− i] ⊗

R′
I Li−1

X′/R′ [1− i] ⊗
R′
R′πgr

1

(6.10) {6231}{6231}
We thus see the existence of the following commutative diagram

Fi
(

d̂RX′/R′ ⊗̂
R′

d̂RR/R′

)
Fi
(

d̂RX′/R′ ⊗̂
R′
R′
)

d̂RX′/R′/Fi ⊗̂
R′
R′

gri
(

d̂RX′/R′ ⊗̂
R′

d̂RR/R′

)
gri
(

d̂RX′/R′ ⊗̂
R′
R′
)

Li−1
X′/R′ [1− i] ⊗

R′
R′

id ⊗α

(6.10)
id ⊗α πgr

1

(6.11) {aad}{aad}
By general properties of the tensor products of filtered objects, the composition
of the top horizontal arrows in (6.11) is equivalent to the composition of the top
horizontal arrows in (6.9). Since

πgr
1 ◦ (id⊗α) ≃ (id⊗gr1(α)) ◦ π1

gr ≃ (id⊗κR/R′/k) ◦ πgr
1

(the second equivalence follows from (6.8)), the result follows.

We now wish to slightly tweak the above result, to improve our understanding
of the map πgr

1 . We start by defining the antisymmetrization map

∆i−1 :
i∧
M →

(
i−1∧

M

)
⊗M

for any (animated) ring A and any connective A-module M .
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{def_delta}
Definition 6.27. Let k be a ring. Define the antisymmetrization map functor

Fun(∆1,CAlgModan
k )→ Fun(∆1,CAlgModan

k )

as the left Kan extension of the functor

Fun(∆1,CAlgMod♡
k )gen → Fun(∆1,CAlgMod♡

k )

(A,M) 7→
(
A,

i∧
(M)→

i−1∧
(M)⊗M

)

where ∆i−1 is given by

m1 ∧ · · · ∧mi 7→
i∑

k=1
(−1)km1 ∧ · · · ∧ m̂k ∧ · · · ∧mi ⊗mk

where by m̂k we mean that mk does not appear in the wedge product.

For any fixed ring R′, by right Kan extension we obtain for any stack X over k
a map

∆i−1 : LiX/R′ → Li−1
X/R′ ⊗

OX

LX/R′

in D(X).

Definition 6.28. Let k be a ring. For any two objects A,B ∈ CAlgan
k , write

C = A⊗k B and denote with β the composition

LiA/k ⊗
k
LB/k

∼−→ (Li−1
A/k ⊗

A
C)⊗

C
(C ⊗

B
LB/k) ∼−→ Li−1

C/B ⊗
C
LC/A

clearly β is an isomorphism. Define the map

βC/k : Li−1
C/k ⊗

C
LC/k → Li−1

A/k ⊗
k
LB/k

as the unique map fitting in a commutative diagram

Li−1
C/k ⊗

C
LC/k Li−1

A/k ⊗
k
LB/k

Li−1
C/B ⊗

C
LC/A

βC/k

β

∼ (6.12) {aaf}{aaf}

in D(k).

If A = k[x1, . . . , xn] and B = k[xn+1, . . . , xn+m] are polynomial algebras over
k, then a k-basis for the module LiC/k ⊗ LC/k can be given by the set{(

n+m∏
k=1

xak

k

)
· dxv1 ∧ · · · ∧ dxvi

⊗ dxℓ
∣∣∣∣ ai≥0
0≤v1<···<vi≤n+m

0≤ℓ≤n+m

}
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One may check the map βC/k is the unique k-linear map sending(
n+m∏
k=1

xak

k

)
·dxv1∧· · ·∧dxvi

⊗dxℓ 7→
((

n∏
k=1

xak

k

)
· dxv1 ∧ · · · ∧ dxvi

)
⊗

((
n+m∏
k=n+1

xak

k

)
dxℓ

)
if vk ≤ n for all k ∈ {1, . . . , n} and ℓ ≥ n+ 1, and sending everything else to 0.

By right Kan extending from (6.12) and using (2.4), we obtain for k-algebra R
and any smooth scheme X over k a diagram

Li−1
XR/k

⊗
OXR

LXR/k Li−1
X/k ⊗

k
LR/k

Li−1
XR/R

⊗
OXR

LXR/X

βXR/k

β

∼

in D(k). In particular, in Situation 6.21 we obtain a diagram

Li−1
X/R′ [1− i] ⊗

OX

LX/R′ [−1] Li−1
X′/R′ [1− i] ⊗

R′
LR/R′ [−1]

Li−1
X/R[1− i] ⊗

OX

LX/X′ [−1]

βX/R′

β

∼ (6.13) {aag}{aag}

in D(k).
{beta_lemma}

Lemma 6.29. In Situation 6.21. There exists a commutative diagram

LiX/R′ [−i] gri
(

d̂RX′/R′ ⊗̂
R′

d̂RR/R′

)

Li−1
X/R′ [1− i] ⊗

OX

LX/R′ [−1] Li−1
X′/R′ [1− i] ⊗

R′
LR/R′ [−1]

∆i−1

∼
γ

πgr
1

βX/R′

in D(k), where γ := gri(KX/R′) is the i-th graded piece of the Künneth isomorphism
(6.7).
Proof. Since all corners of the square define D(R′)-valued sheaves on StR′ it suffices
to construct the diagram in the case X = Spec(A′) for some smooth R′-algebra A′,
functorially in A′.

It thus suffices to construct a functor
Fun(Λ2

0,CAlgan
k )→ Fun(∆1 ×∆1,D(k))

given on (A′ ← R′ → R) ∈ Fun(Λ2
0,CAlgan

k ) by

LiA/R′

⊕p
k=0 L

i−k
A′/R′ ⊗

R′
LkR/R′

Li−1
A/R′ ⊗

A
LA/R′ Li−1

A′/R′ ⊗R′ LR/R′

∆i−1

∼

πgr
1

βA/R′
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where we write A = A′ ⊗R′ R.
We leave it to the reader to verify that for any

(A′ ← R′ → R) ∈ Fun(∆1,Polyk)gen ×Polyk
Fun(∆1,Polyk)gen

the diagram
ΩiA/R′

⊕i
k=0 Ωi−kA′/R′ ⊗

R′
ΩkR/R′

Ωi−1
A/R′ ⊗

A
ΩA/R′ Ωi−1

A′/R′ ⊗R′ ΩR/R′

∆i−1

∼

πgr
1

βA/R′

in D(k)♡ commutes, where again A = A′ ⊗R′ R. The desired functor is then
obtained by left Kan extension.

{kappa_comp_sqz}
Proposition 6.30. In Situation 6.21. There exists a commutative diagram

Fid̂RX/R′ d̂RX/R′ d̂RX′/R′ d̂RX′/R′/Fi

LiX/R′ [−i] Li−1
X/R[1− i] ⊗

OX

LX/X′ [−1] Li−1
X/R[1− i] ⊗

OX

I Li−1
X/R[1− i]⊗

R
I

αsqz

∆i−1 id ⊗κ ∼

in D(k), where κ = κX/X′/k.

Proof. Globalizing Lemma 6.19 and combining it with Lemma 6.29 and (6.13), we
obtain a commutative diagram

LiX/R′ gri
(

d̂RX′/R′ ⊗̂
R′

d̂RR/R′

)

Li−1
X/R′ [1− i] ⊗

OX

LX/R′ [−1] Li−1
X′/R′ [1− i] ⊗

R′
LR/R′ [−1]

Li−1
X/R[1− i] ⊗

OX

LX/X′ [−1]

Li−1
X/R[1− i] ⊗

OX

I Li−1
X/R[1− i]⊗

R
I

Lemma 6.29∆i−1

∼

πgr
1

βX/R′

β

∼

id ⊗κR/R′/k

Lemma 6.19id ⊗κX/X′/k

∼

(6.14) {aah}{aah}

in D(k). Combining the above diagram with Lemma 6.26, we obtain a commutative
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diagram

Fid̂RX/R′ Fi
(

d̂RX′/R′ ⊗̂
R′

d̂RR/R′

)
d̂RX′/R′ ⊗̂

R′
d̂RR/R′ d̂RX′/R′/Fi ⊗̂

R′
R′

LiX/R′ [−i] gri
(

d̂RX′/R′ ⊗̂
R′

d̂RR/R′

)
Li−1
X′/R′ [1− i] ⊗

R′
LR/R′ [−1] Li−1

X′/R′ [1− i] ⊗
R′
I

LiX/R′ [−i] Li−1
X/R[1− i] ⊗

OX

LX/X′ [−1] Li−1
X/R[1− i] ⊗

OX

I Li−1
X/R[1− i]⊗

R
I

KX/R′

Lemma 6.26

qi⊗α

KX/R′

(6.14)

πgr
1 id ⊗κ

∆i−1 id ⊗κ ∼

in D(k). The result follows by definition of αsqz.

6.5 The obstruction class as a cup product with the Kodaira–
Spencer class in characteristic zero

{sec_compute_char}
In this section we refine Bloch’s computation, expressing the Hodge-theoretic ob-
struction class as a cup product with a (derived) Kodaira–Spencer class.

{label_chern_result}
Proposition 6.31. Let k be a ring with Q ⊆ k, and suppose R′ → R is a square
zero morphism of nilpotent thickenings with I = ker(R′ → R). Let X ′ f−→ Spec(R′)
be a smooth and proper morphism, and set

X := X ′ ×Spec(R′) Spec(R)
X0 := X ′ ×Spec(R′) Spec(k)

Write I := I⊗ROX . Let v ∈ H2i(Fid̂RX/k). Let v0 ∈ H2i(Fid̂RX0/k) be the image
of v0.

Then the composition

H2i
(

Fid̂RX/k

)
→ Hi

(
LiX/k

)
→ Hi

(
LiX/R′

)
∆i−1−−−→ Hi

(
Li−1
X/R′ ⊗

OX

LX/R′

)
→ Hi

(
Ωi−1
X/R ⊗OX

LX/X′

)
id ⊗κX/X′/R′
−−−−−−−−−→ Hi+1

(
Ωi−1
X/R ⊗OX

I
)

→ H2i
(

d̂RX′/R′/Fi
)
⊗
R′
I

maps v to obd̂R
X′/R′(v0).
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The reader should keep the following example in mind (which will be the only
application for us): E is a vector bundle on X with Chern character v = chi(E), so
that v0 = chi(E|X0).

Proof of Proposition 6.31. Consider the commutative diagram

d̂RX/R′ d̂RX0/R′

d̂RX′/R′

∼

∼∼

where all arrows are seen to be isomorphisms by Remark 6.3. Inverting the two
vertical arrows (using Lemma 6.24), we obtain a commutative diagram

Fid̂RX/R′ d̂RX/R′ d̂RX0/R′ dRX0/k ⊗k R′

d̂RX′/R′

∼
αsqz

∼

∼

∼

φ
d̂R,X′

where the right triangle exists by definition of φd̂R,X′ (see Definition 6.4).

Applying H2i(−) and chasing v through the diagram we see that obd̂R
X′/R′(v0) is

equal to the image of v under the composition

H2i(Fid̂RX/R′)→ H2i(d̂RX/R′) αsqz−−−→ H2i(d̂RX′/R′)→ H2i(d̂RX′/R′/Fi)

Thus the result follows from Proposition 6.30.

6.6 The obstruction class as a cup product with the Kodaira–
Spencer class in the p-adic case

In this section we state the analogue of the result in Section 6.5 for the p-adic case.

{label_chern_result_pd}
Proposition 6.32. Let k be a ring over Z/pnZ for some n ≥ 1, and let R0 be a
k-algebra. Let

(R′ → R0, γ
′)→ (R→ R0, γ)

be a morphism in PDPairk such that R′ → R is a surjection with kernel I and
I [2] = 0.

Let X ′ f−→ Spec(R′) be a smooth and proper morphism, and set

X := X ′ ×Spec(R′) Spec(R)
X0 := X ′ ×Spec(R′) Spec(R0)

Write I := I ⊗R OX . Let v ∈ H2i(FidRX/k), write v0 ∈ H2i(FidRX0/k) for the
image of v0.
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Then the composition

H2i (FidRX/k

)
→ Hi

(
LiX/k

)
→ Hi

(
LiX/R′

)
∆i−1−−−→ Hi

(
Li−1
X/R′ ⊗

OX

LX/R′

)
→ Hi

(
Ωi−1
X/R ⊗OX

LX/X′

)
id ⊗κX/X′/R′
−−−−−−−−−→ Hi+1

(
Ωi−1
X/R ⊗ I

)
→ H2i

(
d̂RX′/R′/Fi ⊗ I

)
maps v to obCrys

X′/R′(v0).

Proof. Recall that the derived divided power envelope functor (see Definition 3.21)

(−)Lenv : AniPairk → AniPDPairk
admits a right adjoint

forget : AniPDPairk → AniPairk
We will denote the unit for this adjunction with η and the counit with ϵ.

We may consider (R′ → R) as an object in PDPairk ⊆ AniPDPairk by giving
it the trivial PD–structure (since I [2] = 0). Write

(T ′ → R) := (forget(R′ → R))Lenv

which lives in AniPDPairk.
By the triangle identity for an adjunction, the composition of the counit and

unit
forget(R′ → R) η−→ forget(T ′ → R) ϵ−→ forget(R′ → R)

is equivalent to the identity in AniPairk, so that the composition

LFadic(R′ → R) η−→ LFadic(T ′ → R) ϵ−→ LFadic(R′ → R)

is equivalent to the identity in CAlgfil(k). We thus get a commutative diagram

LFPD−adic(T ′ → R) LFadic(T ′ → R) LFadic(R′ → R)

LFPD−adic(R′ → R) LFadic(R′ → R)

ϵ

(3.15)

ϵ

η

id
(3.15)

in CAlgfil(k), inducing a commutative diagram

Lgr[0,2)
PD−adic(T ′ → R) Lgr[0,2)

adic (R′ → R)

Lgr[0,2)
PD−adic(R′ → R)

ϵ

∼
(3.16)

(3.15)
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in D(k), where the horizontal map is an equivalence by Lemma 3.30. We thus get
a commutative diagram

dRR/R′/F2 Lgr[0,2)
PD−adic(T ′ → R) Lgr[0,2)

adic (R′ → R)

Lgr[0,2)
PD−adic(R′ → R)

(6.3)

(3.17)
∼

ϵ

∼
(3.16)

(3.15)
(6.15) {abe}{abe}

in D(k).
On the other hand, the commutative diagram

dRR/R′ dR(T ′→R)/(R′→R′) dR(T ′→R)/(T ′→R) LFPD−adic(T ′ → R)

CrysR/(R′→R) CrysR/(R′→R) CrysR/(T ′→R) LFPD−adic(T ′ → R)

∼ ∼

id

id η ∼

induces a commutative diagram

dRR/R′ LFPD−adic(T ′ → R)

CrysR/(R′→R) LFPD−adic(T ′ → R)

(3.17)

id

η

and hence a commutative diagram

dRR/R′ LFPD−adic(T ′ → R)

CrysR/(R′→R) LFPD−adic(R′ → R)

(3.17)

ϵ

∼

(6.16) {abf}{abf}

in CAlgfil(k). Applying gr[0,2)(−) to the diagram (6.16) and combining it with the
diagram (6.15), we get a commutative diagram

dRR/R′/F2 Lgr[0,2)
adic (R′ → R)

CrysR/(R′→R)/F2 Lgr[0,2)
PD−adic(R′ → R)

(6.3)

(3.15)

∼

(6.17)

in D(k), and hence a commutative diagram

dRR/R′/F2 gr[0,2)
adic (R′ → R)

CrysR/(R′→R)/F2 gr[0,2)
PD−adic(R′ → R)

(6.4)

∼

(6.18) {abg}{abg}
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in D(k). Using that I [2] = 0, we may identify

gr[0,2)
adic (R′ → R) ≃ gr[0,2)

PD−adic(R′ → R) ≃ R′

so that by moving around the arrows in (6.18) we obtain a commutative diagram

dRR/R′/F2 CrysR/(R′→R)/F2

R′

(6.4) ∼

in D(k). Denote with α also the composition

dRR/R′ → d̂RR/R′
α−→ R′

so that by definition of α (Definition 6.22) we obtain a commutative diagram

dRR/R′ CrysR/(R′→R)

R′

α ∼ (6.19) {abm}{abm}

in D(k). Applying dRX′/R′ ⊗
R′

(−) to the diagram (6.19), we obtain a diagram

dRX′/R′ ⊗ dRR/R′ dRX′/R′ ⊗
R′

CrysR/(R′→R) CrysX/(R′→R)

dRX′/R′ ⊗
R′
R′

id ⊗α ∼

∼

αCrys

(6.20) {abo}{abo}
in D(k), where the right triangle comes by definition of αCrys, see (6.2).

Define αX as the unique map fitting in a commutative diagram

dRX′/R′ ⊗ dRR/R′ dRX′/R′ ⊗R′

dRX/R′ dRX′/R′

(3.4)∼

id ⊗α

∼

αX

(6.21) {abl}{abl}

in D(k). By definition of αsqz (see Definition 6.23), we have a commutative diagram

dRX/R′ dRX′/R′

d̂RX/R′ d̂RX′/R′

αX

αsqz

(6.22) {acb}{acb}

in D(k).
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Combining (6.20) and (6.21) we get a diagram

dRX/R′ CrysX/(R′→R)

dRX′/R′

αX
αCrys (6.23) {abj}{abj}

in D(k).
On the other hand, the commutative diagram

CrysR/(R′→R) CrysR0/(R′→R0)

dRR′/R′ ‘

∼

∼ ∼

in D(k) induces a commutative diagram

CrysX/(R′→R) CrysX0/(R′→R0)

dRX′/R

αCrys

∼

αCrys

in D(k). Combining the above diagram with the diagram (6.23), we get a commu-
tative diagram

dRX/R′ CrysX0/(R′→R0)

dRX′/R′

αX
αCrys∼

in D(k). By definition of φCrys,X′ (see Definition 6.9), we thus get a commutative
diagram

dRX/k dRX0/k

dRX/R′ CrysX0/(R′→R0)

dRX′/R′

φCrys,X′

αX

αCrys
∼

(6.24) {aca}{aca}

in D(k). We thus get a commutative diagram

H2i(FidRX/k) H2i(dRX/k) H2i(dRX0/k)

H2i(FidRX/R′) H2i(dRX/R′) H2i(dRX′/R′)

H2i(Fid̂RX/R′) H2i(d̂RX/R′) H2i(d̂RX′/R′) H2i(d̂RX′/R′/Fi)

(6.24) φCrys,X′

(6.22)

αX

αsqz
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Tracing v around the edges of the diagram above, it follows that obCrys
X′/R′(v0) is

equal to the image of v under the composition

H2i(FidRX/k)→ H2i(Fid̂RX/R′)→ H2i(d̂RX/R′) αsqz−−−→ H2i(d̂RX′/R′)→ H2i(d̂RX′/R′/Fi)

The result then follows from Proposition 6.30.
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7 Obstruction Theory for complexes
{sec_obs_theory_complex}

The goal of this section is to study the obstruction class to deforming a complex,
and relate it to the Hodge-theoretic obstruction class of its Chern class.

In section 7.1, we study square zero extensions of rings, expressing them as a
pullback square involving the Kodaira–Spencer class and the de Rham differential.
In section 7.2 we study the derived category of modules over a split square zero
extension of rings. These two sections are rather technical and only needed for the
proofs in section 7.4.

In section 7.3, we define the Atiyah class and show that its trace equals the
Chern character from Definition 5.21. Then in section 7.4 we define the obstruction
class to deforming a complex along a square zero extension, and express it as a
product of the Kodaira–Spencer class with the Atiyah class. Finally in section 7.6
we relate with the Hodge-theoretic obstruction class of its Chern class, by means
of the semiregularity map.

7.1 The universal derivation and square zero extensions
{sec_univ_der}

The main purpose of this technical section is the proof of Proposition 7.4, relating
square zero extensions of rings with the Kodaira–Spencer class and the de Rham
differential.

{def_univ_der}
Definition 7.1. Let k be a ring. We define the universal derivation

δ : Fun(∆1,CAlgan
k )→ Fun(∆1,CAlgan

k )

as the left derived functor of the functor

Fun(∆1,Polyk)gen → Fun(∆1,CAlg♡
k )

(P → Q) 7→
(
Q

(id,d)−−−→ Q⊕ ΩQ/P
)

where the multiplication on Q⊕ ΩQ/P is given by

(x, ω) · (y, η) := (xy, xη + yω)

By right Kan extension, we obtain for any stack X over k a map

OX
δ−→ OX ⊕ LX/k

in ShvCAlgk
(X).

In particular, for any map of (animated) rings A→ B, we obtain a map δ : B →
B ⊕ LB/A in CAlgan

k , which is informally given by sending b 7→ (b,db).
{lem_com_square_der}
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Lemma 7.2. Let k be a ring. There exists a commutative diagram of functors
Fun(∆1,CAlgan

k )→ CAlgan
k , given on (A→ B) ∈ Fun(∆1,CAlgan

k ) by

A B

B B ⊕ LB/A

B

δ id

id

(id,0)

Proof. For any morphism P → Q of polynomial algebras, the diagram

P Q

Q Q⊕ ΩQ/P

Q

δ id

id

(id,0)

commutes, hence the diagram in the lemma is obtained by extending by sifted
colimits.

{lem_dr_diff}
Lemma 7.3. Let k be a ring, and (A→ B) ∈ CAlgan

k . The composition

B
δ−→ B ⊕ LB/A

π−→ LB/A
in D(k) agrees with the map B → LB/A coming from the fiber sequence

LB/A[−1]→ dRB/A/F2 → B

Proof. Since both constructions of the map commute with sifted colimits, it suffices
to show this in the case that B is a polynomial A-algebra, in which case this follows
from the construction of the boundary map in the long exact sequence.

{prop_pb_ani_ring}
Proposition 7.4. Let k be a ring, and let A → B be a surjective ring map with
kernel I such that I2 = 0. There exists a pullback diagram

A B

B B ⊕ I[1]

η

(id,0)

in CAlgan
k . Moreover, the composition

B
η−→ B ⊕ I[1]→ I[1]

agrees with the composition

B → LB/A
κB/A/k−−−−−→ I[1]

in D(k) (see Definition 6.12).
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Proof. Shifting the Kodaira–Spencer map, we obtain a map

κ(A→ B) : LB/A → I[1]

in D(B)≥0. We thus get a map

B ⊕ LB/A → B ⊕ I[1]

in CAlgan
k . Thus by Lemma 7.2 we get the desired commutative diagram

A B

B B ⊕ I[1]

η

(id,0)
(7.1) {show_pullback}{show_pullback}

Remains to show this is a pullback square in CAlgan
k . Let A′ = B×B⊕I[1]B be the

actual pullback, so that we have a commutative diagram

A

A′ B

B B ⊕ I[1]

η

(id,0)

We wish to show the map A→ A′ is an isomorphism. The commutative square

A B

A′ B

induces a morphism of fiber sequences

A B I[1]

A′ B I[1]

ϵ

πI ◦η

It suffices to verify that ϵ is an isomorphism. But since A′ = fib(B → I[1]) and
dRB/A = fib(B → LB/A), we may factor as

A B I[1]

dRB/A/F2 B LB/A

A′ B I[1]

ϵ
d

κ

πI ◦η

By Lemma 6.18, the map ϵ is induced by the projection I → I/I2, hence it is an
isomorphism since we assumed I2 = 0.
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7.2 Modules over split square zero extensions
{sec_mod_sq_zero}

In this section, we venture slightly into the world of derived algebraic geometry.
The goal is to eventually construct an obstruction class to deforming complexes
along a square zero extension in Section 7.4. We shall use the notion of a spectral
scheme as in Lurie [40, Definition 1.1.2.8].

Although we could theoretically use the notion of a derived scheme for all of the
constructions we need, the main reason for choosing to work with spectral schemes
is that the theory is substantially better developed, so that we can bootstrap the
results we need from [40].

For any spectral scheme X, we shall denote by D(X) the category of quasi-
coherent sheaves on X (see [40, Definition 2.2.2.1]).

Let X be a scheme, and let M ∈ D(X)≥0. Let XM be the spectral scheme
(X,OX⊕M). The goal of this section is to give an explicit description of D(XM )≥0.
In fact, we will construct another ∞-category DX,M in terms of D(X)≥0 and M ,
and show that it is equivalent to D(XM )≥0.

To this end, let π : XM → X be the morphism of spectral schemes induced by
the morphism of sheaves of E∞-rings informally given by (id, 0) : OX → OX ⊕M ,
and let ι : X → XM be the morphism of spectrally ringed spaces induced by the
projection OX ⊕M → OX . We then have a fiber sequence

ι∗M → OX ⊕M → ι∗OX

in D(XM )≥0, inducing a map

α : ι∗OX → ι∗M [1]

in D(XM )≥0. Note that π∗α ≃ 0 in D(X)≥0, since OX ⊕M is split as an OX -
module (but not as an (OX ⊕M)-module).

We define the ∞-category

DX,M := Fun(∆1,D(X)≥0) ×
Fun({0,1},D(X)≥0

D(X)≥0

where the functor

Fun(∆1,D(X)≥0)→ Fun({0, 1},D(X)≥0)

is induced by the inclusion of simplicial sets {0, 1} → ∆1, and the functor

D(X)≥0 → Fun({0, 1},D(X)≥0) ∼= D(X)≥0 ×D(X)≥0

is given by (id, (−)⊗OX
M [1]).

By [39, Corollary 2.3.2.5, Corollary 2.4.6.5] the restriction map

Fun(∆1,D(X)≥0)→ Fun({0, 1},D(X)≥0)

is a categorical fibration. It follows by [39, Remark A.2.4.5] that the homotopy
fiber product defining DX,M can be computed as the fiber product of simplicial
sets. In particular, an object in DX,M can be described by an object F ∈ D(X)≥0
and a morphism η : F → F ⊗OX

M [1] in D(X)≥0.
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We now construct an equivalence of categories D(XM )≥0
∼−→ DX,M . Denote

with φ the composition

D(XM )≥0
(−)⊗α−−−−→ Fun(∆1,D(XM )≥0) π∗−→ Fun(∆1,D(X)≥0)

By the projection formula ([40, Remark 3.4.2.6]) one may identify

π∗(F ⊗ ι∗OX) ∼= ι∗F
π∗(F ⊗ ι∗M [1]) ∼= ι∗F ⊗OX

M [1]

functorially in F ∈ D(XM )≥0. One thus has a commutative diagram

D(XM )≥0 Fun(∆1,D(X)≥0)

D(X)≥0 Fun({0, 1},D(X)≥0)
ι∗

φ

(id,(−)⊗OX
M [1])

inducing a functor Φ: D(XM )≥0 → DX,M .
{lem_cat_square_zero}

Lemma 7.5. The functor Φ: D(XM )≥0 → DX,M is an equivalence of categories.

Proof. First note that φ and ι∗ commute with all colimits, hence Φ commutes with
all colimits by [39, Proposition 5.5.3.12].

We then show that Φ is fully faithful. Observe that for two objects (F , ηF ), (G, ηG) ∈
DX,M , one has

MapDX,M
((F , ηF ), (G, ηG)) = τ≥0(fib(RHomX(F ,G)→ RHomX(F ,G ⊗OX

M [1])))

where the map

RHomX(F ,G)→ RHomX(F ,G ⊗OX
M [1])

is given by f 7→ (ηG ◦ f − (f ⊗ idM [1]) ◦ ηF ).
Now let F ′,G′ ∈ D(XM )≥0, and let (F , ηF ) = Φ(F ′), (G, ηG) = Φ(G′). It

suffices to show that the natural map

τ≥0RHomXM (F ′,G′)→ τ≥0 fib(RHomX(F ,G)→ RHomX(F ,G ⊗OX
M [1]))

is a weak equivalence. Since Φ commutes with colimits we may reduce to the case
F ′ = OX ⊕M . Then ηF = 0, so it suffices to show

π∗G′ → fib(G ηG−→ G ⊗OX
M [1])

is an equivalence in D(X), which is immediate by definition ηG (since π∗ is exact).
Remains to show that Φ is essentially surjective. First note that by [39, Propo-

sition 5.5.3.6, Proposition 5.5.3.12] one may show DX,M is presentable. Since Φ
commutes with colimits it follows by the adjoint functor theorem ([39, Corollary
5.5.2.9]) that Φ admits a right adjoint Ψ. Thus, to show that Φ is essentially sur-
jective, it suffices to show that the canonical map Φ ◦Ψ(A)→ A is an equivalence
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for all A ∈ DX,M . Let (P, p) = fib(Ψ◦Φ(A)→ A) in DX,M , it suffices to show that
P ∼= 0.

Note that Ψ commutes with limits, so Ψ(P ) ∼= 0 (as Ψ ◦ Φ ◦ Ψ(A) → Ψ(A) is
an equivalence by general nonsense), and thus

MapDX,M
(Φ(OXM ), P ) = MapQCoh(XM )≥0

(OX,M ,Ψ(P )) ∼= 0

But clearly

πi(MapDX,M
(Φ(OXM ), P )) = Ext−i

X (OX ,fib(P p−→ P ⊗OX
M [1]))

An induction argument (using that P is connective) shows that H−i RΓ(X,P ) = 0
for all i ≥ 0, hence P ∼= 0 as required.

{lem_sheafs_triv_sqzero}
Corollary 7.6. Let X be a scheme, let M ∈ D(X)≥0, and let E ∈ D(X)≥0. Let

α : ι∗OX → ι∗M [1]

be the unique map in D(XM ) whose fiber is isomorphic to OX ⊕M .
Then the functor Q 7→ π∗(Q⊗ α) induces a bijection

Φ:
(
D(XM )≥0 ×

D(X)≥0

{E}

)≃

≃ MapD(X)(E , E ⊗OX
M [1]) (7.2) {bca}{bca}

of pointed sets.
{bcf}

Lemma 7.7. Let R be a discrete ring, and let M be a discrete R-module. Then
the composition

AutD(R⊕M)(R⊕M) ×
AutD(R)(R)

{idR}
Φ−→ π1 MapD(R)(R,M [1]) ∼−→ HomR(R,M)

(7.3) {bcd}{bcd}
is given by φ 7→ πM ◦ φ ◦ ιR, where

ιR : R→ R⊕M
πM : R⊕M →M

are the inclusion and projection maps.

Proof. Write
AR := AutD(R⊕M)(R⊕M) ×

AutD(R)(R)
{idR}

Note that π∗ : D(R ⊕ M) → D(R) is just forgetful functor induced by the zero
section R → R ⊕M . Recall that we have a fiber functor [38, Definition 1.1.1.6,
Remark 1.1.1.7]

fib: Fun(∆1,D(R))→ D(R)

Hence by definition of Φ we see that for any φ ∈ AR one has

fib(Φ(φ)) = fib(π∗(φ⊗ α))
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as maps R⊕M → R⊕M .
Thus by Lemma A.17 the map (7.3) is given by

φ 7→ πM ◦ fib(π∗(φ⊗ α)) ◦ ιR

Since π∗ and (−) ⊗ α are exact functors, we see that the map (7.3) can also be
described as

φ 7→ πM ◦ π∗(φ⊗ fib(α)) ◦ ιR
But by definition, one has fib(α) = R⊕M , so the functor

(−)⊗ fib(α) : D(R⊕M)→ D(R⊕M)

is equivalent to the identity. The result follows.

7.3 Atiyah classes and Chern characters
{sec_atiyah}

Let k be a ring, and let X be a scheme over k which has the resolution property
[48, 0F85]. The goal of this section is to construct, for any E ∈ Perf(X), an Atiyah
class

AtX/k(E) ∈ Ext1
X(E , E ⊗ LX/k)

Moreover, we will introduce a notion of a trace map

ExtpX(E , E ⊗ LpX/k) tr−→ Hp(LpX/k)

and show that if p! is invertible k then

tr
( (AtX/k(E))p

p!

)
∈ Hp(LpX/k) (7.4) {eq_trace_exp_at}{eq_trace_exp_at}

agrees with the image of chp(P ) (see Definition 5.21) under the natural map
Fpd̂RX/k → LpX/k[−p]. The expression (7.4) was taken as the definition for Chern
classes in the affine case by Illusie in [30]. In the classical (smooth) case this result
is well known, see for example [27, Section 10.1]. However we are not aware of the
result for derived de Rham cohomology appearing anywhere in the literature.

Before giving the definition of the Atiyah class, observe that for any scheme X
over a ring k there exists a spectral scheme XL := (X,OX ⊕ LX/k), together with
maps of spectral schemes

ι : (X,OX)→ (X,OX ⊕ LX/k)
π0, πδ : (X,OX ⊕ LX/k)→ (X,OX)

which are given by the identity maps on topological spaces, and where the mor-
phisms of sheaves of E∞-rings are as follows:

π#
0 := (id, 0) : OX → OX ⊕ LX/k
π#
δ := δ : OX → OX ⊕ LX/k (see Definition 7.1)
ι# := πOX

: OX ⊕ LX/k → OX (projection to OX)
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Thus clearly π0 ◦ ι = πδ ◦ ι = idX . Moreover this construction is functorial in X,
that is a map f : X → Y induces a map f : XL → Y L for which the natural squares
with π0, πδ and ι commute.

We now wish to define the Atiyah class. Inspired by the philosophy of [29], we
first define the universal Atiyah class.

{aea}
Definition 7.8. Let k be a ring, and let X be a scheme over k. We define the
universal Atiyah class to be the unique element

αX ∈ Ext1
XL(ι∗OX/k, ι∗LX/k)

as the boundary map induced by the fiber sequence

ι∗LX/k → OX ⊕ LX/k
ηι−→ ι∗OX

in D(XL) (here ηι is the unit of the adjunction ι∗ ⊣ ι∗).
{aeb}

Definition 7.9 (Atiyah class). Let k be a ring, and let X be a scheme over k. Let
E ∈ Perf(X). We define the Atiyah class of E

AtX/k(E) ∈ Ext1
X(E , E ⊗ LX/k)

as
AtX/k(E) := (π0)∗(π∗

δ (E)⊗ αX)
We denote with

AtX/k(E)p ∈ ExtpX(E , E ⊗ LpX/k)
the composition

E
AtX/k(E)
−−−−−−→ E⊗LX/k[1]

AtX/k(E)⊗LX/k[1]
−−−−−−−−−−−−→ . . .

AtX/k(E)⊗L⊗(p−1)
X/k

[p−1]
−−−−−−−−−−−−−−−−→ E⊗L⊗p

X/k[p]→ E⊗LpX/k[p]

which we call the p-th power of the Atiyah class.

Note that the first power AtX/k(E)1 is simply AtX/k(E).
{lem_atiyah_two}

Lemma 7.10. Let k be a ring, and let f : X → Y be a morphism of schemes over
k. Let n ∈ Z. Denote with

ϕ : f∗LY/k → LX/k
the canonical map induced by f .

Then the equality

AtX/k(f∗E) = (idE ⊗ ϕ) ◦ f∗AtY (E)

holds in Ext1
Y (E , E ⊗ LY/k) for all E ∈ Perf(Y ).

Proof. Denote both maps X → XL and Y → Y L by ι, similarly for πδ, π0. Tensor-
ing the commutative diagram

f∗ι∗LY/k f∗ι∗OY [1]

ι∗LX/k ι∗OX [1]

ι∗ϕ◦(base change)

f∗αY

base change

αX
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in D(XL) with f∗π∗
δE , we obtain a commutative diagram

f∗ι∗(E ⊗ LY/k) f∗ι∗(E ⊗ OY [1])

ι∗(f∗E ⊗ LX/k) ι∗(f∗E ⊗ OX [1])

f∗(π∗
δ E⊗αY )

(π∗
δf

∗E)⊗αX

in D(XL). Applying (π0)∗ we obtain the lower square in the following commutative
diagram

f∗(E ⊗ LY/k) f∗(E ⊗ OY [1])

(π0)∗f
∗ι∗(E ⊗ LY/k) (π0)∗f

∗ι∗(E ⊗ OY [1])

f∗E ⊗ LX/k f∗E ⊗ OX [1]

f∗AtY (E)

(π0)∗f
∗(π∗

δ E⊗αY )

AtX/k(f∗E)

where the upper square is obtained via the base change map f∗(π0)∗ → (π0)∗f
∗.

The composition down–down–right is equal to AtX/k(f∗E) and the composition
right–down–down is equal to the composition (idE ⊗ ϕ) ◦ f∗AtY (E), so the result
follows.

{haa}
Definition 7.11 (Dualizable object). Let C⊗ be a symmetric monoidal∞-category
with unit object O, and let E ∈ C. We say that E is dualizable if there exists an
object E∨ ∈ C and maps

ev : E ⊗ E∨ → O
coev : O → E∨ ⊗ E

such that the compositions

E∨ ≃ O ⊗ E∨ coev⊗id−−−−−→ E∨ ⊗ E ⊗ E∨ id ⊗ev−−−−→ E∨ ⊗O ≃ E∨

E ≃ E ⊗O id ⊗coev−−−−−→ E ⊗ E∨ ⊗ E ev⊗id−−−−→ O ⊗ E ≃ E

are homotopic to the identity.

It is well known that for any scheme X, an object E ∈ Perf(X) is dualizable.
For any dualizable object, we may define a trace map.

{def_trace_map}
Definition 7.12 (Trace map). Let C⊗ be a symmetric monoidal ∞-category, and
let E ∈ C be a dualizable object. For two objects M,N ∈ C and a map

α : E ⊗M → E ⊗N

in C, we define
trE(α) : M → N
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as the composition

M
coev⊗M−−−−−→ E∨ ⊗ E ⊗M E∨⊗α−−−−→ E∨ ⊗ E ⊗N σ12−−→ E ⊗ E∨ ⊗N ev⊗N−−−−→ N

in C.
{lem_atiyah_one}

Lemma 7.13. Let k be a ring, and let X be a scheme over k. Fix n ∈ Z, and let

E → F → G +1−−→

be an exact triangle of objects in Perf(X). Then

tr
(
AtX/k(F)p

)
= tr

(
AtX/k(E)p

)
+ tr

(
AtX/k(G)p

)
for all p ≥ 0.

Proof. We have a commutative diagram

E F G

E ⊗ LpX/k F ⊗ LpX/k G ⊗ LpX/k

AtX/k(E)p AtX/k(F)p AtX/k(G)p

+1

+1

in D(X), in which the rows are exact triangles. Thus this follows from a well-known
result on traces, see Proposition A.24.

Next, observe that any element f ∈ Ext1
X(L,L⊗ LX/k) can be considered as a

map
f : L → L⊗ LX/k[1]

in D(X). In particular, we may consider trL(f), which is a map

OX → LX/k[1]

We thus get a natural trace map trL : Ext1
X(L,L ⊗ LX/k) → H1(LX/k). Our goal

now is to show this map sends the Atiyah class to the first Chern class (see Corollary
7.17).

Construction 7.14. Let k be a ring, let X be a scheme over k, and let L ∈ Pic(X).
Then we have canonical equivalences

ι∗(π∗
δL ⊗ π∗

0L∨) ≃ L⊗ L∨ ≃ OX

We thus obtain a map

v : Pic(X)→ Pic(XL)×Pic(X) {OX}
L 7→ π∗

δL ⊗ π∗
0L∨

in D(Z)≥0.
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{bcc}
Lemma 7.15. The composition

Pic(X) v−→ Pic(XL)×Pic(X) {OX}
Φ−→ H1(X,LX/k)

of maps of abelian groups sends L ∈ Pic(X) to trL(AtX/k(L)), where Φ is the map
(7.2).

Proof. By definition, for any L ∈ Pic(X), we have

(Φ ◦ v)(L) = π0,∗(π∗
δL ⊗ π∗

0L∨ ⊗ αX)
= π0,∗(π∗

δL ⊗ αX)⊗ L∨

= AtX/k(L)⊗ L∨

= trL(AtX/k(L))

Here the first equality follows by definition of Φ, the second is the projection for-
mula, the third equality follows by definition of the Atiyah class (see Definition
7.9), and the last equality follows by observing that the trace map

trL : Ext1
X(L,L ⊗ LX/k)→ H1(X,LX/k)

is simply given by (−)⊗ L∨ (since L is a line bundle).
{bcb}

Lemma 7.16. Let k be a ring, and let X be a scheme over k. Then there exists a
commutative diagram

Pic(X) τ≥0RΓ(X,Gm[1])

Pic(XL)×Pic(X) {OX} MapD(X)(OX ,LX/k[1]) τ≥0RΓ(X,LX/k[1])

v

∼

d log

Φ
∼ ∼

in D(Z)≥0.

Proof. Since all terms appearing in the diagram are fppf-sheaves, it suffices to
construct a diagram

Pic(R) τ≥0RΓ(Spec(R),Gm[1])

Pic(R⊕ LR/k)×Pic(R) {R} MapD(R)(R,LR/k[1]) τ≥0RHomD(R)(R,LR/k[1])

v

∼

d log

Φ
∼ ∼

functorial in R ∈ CAlg♡
k . Recall that we denote with Gm(−) the functor

CAlg♡
k → D(Z)♡

R 7→ R×

Thus if we denote with BGm(R) the associated functor taking values in 1-groupoids
(with a Z–action), we see that the functor

CAlg♡
k → D(Z)≥0

R 7→ RΓ(Spec(R),Gm[1])
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can be identified with the sheafification of the functor R 7→ BGm(R). By the uni-
versal property of sheafification it thus suffices to construct a commutative diagram

Pic(R) BGm(R)

Pic(R⊕ LR/k)×Pic(R) {R} MapD(R)(R,LR/k[1]) τ≥0RHom(R,LR/k[1])

v d log

Φ
∼ ∼

in D(Z)≥0, functorial in R ∈ CAlg♡
k . By Lemma 5.13 and the universal property

of left Kan extension [39, Proposition 4.3.2.17] we may assume R is smooth over
k, so that LR/k ≃ ΩR/k is an abelian group.

Since the unique point in BGm(R) maps to zero under both compositions, it
suffices to show the diagram of abelian groups

AutD(R)(R) Gm(R)

AutD(R⊕ΩR/k)(R⊕ ΩR/k)×AutD(R)(R) {idR} π1 MapD(R)(R,ΩR/k[1]) Hom(R,ΩR/k)

v d log

Φ
∼ ∼

commutes. By definition of v, the composition left–down sends r ∈ R× to the
automorphism given by multiplication with the element

(r, dr) · (r−1, 0) = (1, 1
r

dr)

It thus follows from Lemma 7.7 that the composition left–down–right sends r ∈ R×

to the map s 7→ s · 1
rdr, which completes the proof.

{corol_atiyah_threeb}
Corollary 7.17. Let k be a ring, and let X be a scheme over k. Let L be a line
bundle on X. Then the trace map

trL : Ext1
X(L,L ⊗ LX/k)→ H1(LX/k)

sends AtX/k(L) to the image of cd̂R
1 (L) under the natural map

H2(F1d̂RX/k)→ H1(LX/k)

Proof. By Lemma 7.16 we obtain a commutative diagram

Pic(X) H1(X,Gm)

Pic(XL)×Pic(X) {OX} H1(X,LX/k)

v

∼

d log

Φ

of abelian groups. By definition of cd̂R
1 (see Definition 5.15) the composition right–

down sends L 7→ cd̂R
1 (L). Hence the result follows from Lemma 7.15.
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{prop_compare_chern}
Proposition 7.18. Let i ∈ N, and let k be a ring such that i! is invertible in k. Let
X be a quasi-compact and quasi-separated scheme over k which has the resolution
property. Then for all E ∈ Perf(X), the equality

chi(E) =
trE(AtX/k(E)i)

i!

holds in Hi
(
LiX/k

)
.

Proof. Write

c̃hi(E) :=
trE(AtX/k(E)i)

i!
we verify axioms (1) – (3) of Proposition 5.24, this will imply the result. Clearly (1)
is a direct consequence of Lemma 7.13, and (2) is a direct consequence of Lemma
7.10. Finally (3) is implied by the combination of Lemma A.23 and Corollary 7.17
which completes the proof.

7.4 Obstruction classes for complexes
{sec_ob_complex}

In this section we provide a result constructing an obstruction class to deforming
complexes, and show that it can be written as the product of the Atiyah class
with the Kodaira–Spencer class. This result is quite well-known, and already goes
back to [30]. Our approach is to bootstrap from [40, Theorem 16.2.0.1]. A direct
construction of the obstruction class (originally due to Gabber) in a similar setting
can be found in [36]. For a proof of the same result in a different language using
the truncated cotangent complex, see [29].

The precise result we will need is the following.
{prop_obstruction_class}

Proposition 7.19. Let k be a ring, and let R′ → R be a surjective ring map
with kernel I such that I2 = 0. Let X ′ be a smooth and proper scheme over R′,
and let X = X ′ ×Spec(R′) Spec(R) be the base change, and let I = I ⊗R OX . Let
E ∈ Perf(X). Then there exists a complex E ′ ∈ Perf(X ′) such that E ′|X ∼= E if and
only if the obstruction class

ob(E , X,X ′) := (E ⊗ κX/X′/k) ◦AtX/k(E) ∈ Ext2
X(E , E ⊗OX

I)

is equal to zero.

Proof. By shifting we may assume E is connective. Let X ,X ′ be the associated
spectral schemes (see [40, Remark 1.1.8.5]), and let X,X′ be the associated spectral
Deligne-Mumford stacks (see [40, 1.6.6, Remark 1.6.6.5]). By Proposition 7.4 and
[40, Prop 16.1.3.1], we get a pushout diagram

Spét(R⊕ I[1]) Spét(R)

Spét(R) Spét(R′)

η
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in the ∞-category SpDM of spectral Deligne-Mumford stacks. Write

XI := X′ ×Spét(R′) Spét(R⊕ I[1])

so that by [40, Prop 16.3.1.1], we get a pushout diagram

XI X′ ×Spét(R′) Spét(R)

X′ ×Spét(R′) Spét(R) X′

η

in the ∞-category SpDM of spectral Deligne-Mumford stacks. By [40, Corollary
1.6.7.5], the fiber product X′×Spét(R′) Spét(R) may be computed as the fiber prod-
uct X ′×Spec(R′) Spec(R) in the∞-category SpSch of (connective) spectral schemes.
By (the proof of) [39, Corollary 4.3.1.11] one may show that this fiber product is
the spectrally ringed space

(X ′,OX′ ⊗R′ R)

where the tensor product is computed in the ∞-category ShvCAlg(D(k))(X ′). Now
since X ′ is smooth over R′, the map R′ → OX′ is flat, so we conclude the fiber
product X′ ×Spét(R′) Spét(R) is simply X. We thus get a pushout diagram

XI X

X X′

η

in SpDM. By [40, Theorem 16.2.0.1], we get a pullback diagram

QCoh(X′)cn QCoh(X)cn

QCoh(X)cn QCoh (XI)cn

η

η0

of ∞-categories. By [40, Corollary 2.2.6.2] we may identify QCoh(X) with D(X)
(and similarly for X ′). We conclude that E ′ exists if and only if there exists an
equivalence η∗(E) ≃ (η0)∗(E) in QCoh

(
XI
)
. By Lemma 7.6, this is the case if and

only if the class
[η∗(E)] ∈ Ext1

OX
(OX ,OX ⊕ I[1])

is equal to 0 (the zero object is the class of [(η0)∗(E)]). The result now follows
directly by noting that the map η factors as

OX
δ−→ OX ⊕ LX/k

κX/X′/k−−−−−→ I ⊗R OX

(which follows essentially from Corollary 6.19).
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7.5 Computing signs for (shifted) permutation actions
In this section we gather some technical computations in order to streamline the
proofs of Section 7.6.

We start by introducing some notation. For any n ≥ 0, we denote with Sn the
symmetric group on n elements. For any symmetric monoidal ∞-category C, any
object X ∈ C and any σ ∈ Sn, the symmetric monoidal structure provides a map

σ(X) : X⊗n → X⊗n

If C is also stable, then C comes with a shift (suspension) functor [1] : C → C. These
constructions are related in the following way.

{sign1}
Lemma 7.20. - Let C be a presentable stable symmetric monoidal ∞-category for
which the tensor product preserves finite limits in each variable. For any σ ∈ Sn

and X ∈ C, there exists a commutative diagram

X⊗n[n] X⊗n[n]

(X[1])⊗n (X[1])⊗n

∼

σ(X)[n]

∼

s

(7.5) {tensor_sign}{tensor_sign}

in C, where s = sgn(σ) · σ(X[1]).
Proof. By decomposing σ into cycles of length 2, we may reduce to the case where
n = 2 and σ is the only nontrivial element of S2. Denote with S the sphere
spectrum in the stable ∞-category of spectra Sp. By an explicit computation, one
may verify that the composition

S[2] ∼−→ S[1]⊗
S
S[1] σ(S[1])−−−−→ S[1]⊗

S
S[1] ∼−→ S[2]

is equivalent to − idS[2]. Let O ∈ C be the unit for the symmetric monoidal
structure, so that we have an essentially unique symmetric monoidal functor Sp→
C sending S 7→ O (see [38, Corollary 4.8.2.19]). Then by functoriality we see that
the composition

O[2] ∼−→ O[1]⊗
O
O[1] σ(O[1])−−−−−→ O[1]⊗

O
O[1] ∼−→ O[2]

is equivalent to − idO[2]. For arbitrary X ∈ C, we get a commutative diagram

(X ⊗X)[2] (X ⊗X)[2] (X ⊗X)[2]

X ⊗ (O[1]⊗O[1])⊗X X ⊗ (O[1]⊗O[1])⊗X X ⊗ (O[1]⊗O[1])⊗X

X[1]⊗X[1] X[1]⊗X[1]

− id σ12

σ23 σ14

σ12

where we denote with σij the morphism given by the symmetric monoidal structure
on C swapping factors i and j in a tensor product. The outer square now gives the
desired diagram.
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For any n ∈ N, we shall denote by σi,n the unique permutation sending i 7→ n
and keeping all other elements in order. Explicitly, σi,n is given by

σi,n(j) :=


j j < i

n j = i

j − 1 j > i

for j ∈ {1, . . . , n}.
For C any stable symmetric monoidal ∞-category and X ∈ C we define

Σ+,n
X :=

n∑
i=1

σi,nX Σ−,n
X :=

n∑
i=1

(−1)n−iσi,nX

as maps X⊗n → X⊗n.
{sign2}

Lemma 7.21. Let k be a ring and let X be a stack over k. Write

Σ− := Σ−,i
LX/k

Then there exists a commutative diagram

L⊗i
X/k LiX/k

L⊗i
X/k Li−1

X/k ⊗OX

LX/k

Σ− ∆i−1

in D(X), where ∆i−1 is the map from Definition 6.27.

Proof. Unwinding the definitions, we may reduce to the case where X is the spec-
trum of a finitely generated polynomial algebra over k, and the result follows by
definition of ∆i−1.

{corolsigma}
Corollary 7.22. Let k be a ring and let X be a stack over k. Write

Σ+ := Σ+,i
LX/k[1]

Then there exists a commutative diagram

L⊗i
X/k[i] LiX/k[i]

L⊗i
X/k[i] Li−1

X/k[i− 1] ⊗
OX

LX/k[1]

Σ+ ∆i−1

in D(X).

Proof. Combine Lemma 7.20 and Lemma 7.21.
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7.6 Relating the obstruction classes
{sec_relate}

In this section we relate the obstruction class to deforming a perfect complex with
the Hodge-theoretic obstruction classes of its Chern character staying in the Hodge
filtration along the deformation. The short slogan is that there exists a semiregu-
larity map between the two obstruction spaces, mapping the former to the latter.
This is essentially a result from Buchweitz and Flenner, see [13, Proposition 4.2],
however they only defined the Hodge-theoretic obstruction in a restricted charac-
teristic zero setting, using Bloch’s technique.

We start by defining the map that will relate the obstruction classes.
{def_semiregularity}

Definition 7.23. Let i, j ∈ Z≥0. Let k be a ring such that i! is invertible in k.
Let X be a scheme over k, let E ∈ Perf(X). We define the semiregularity map

σX,i : ExtjX(E , E)→ Hi+j(LiX/k)

as the composition

ExtjX(E , E)
Ati

X/k
(E)

i!−−−−−−→ Exti+jX (E , E ⊗ LiX/k) trE−−→ Hi+j(LiX/k)

where the first map is induced by postcomposing with Ati
X/k(E)
i! .

If X is smooth over k of dimension d such that d! is invertible in k, we write

σX : ExtjX(E , E)→
d⊕
i=0

Hi+j(ΩiX/k)

for the total semiregularity map given componentwise by σX,i.

The following result contains the essential computation, expressing the image
of the obstruction class under the semiregularity map in terms of the Atiyah class.

{tr_e}
Lemma 7.24. Let k be a ring such that i! is invertible in k, and let R′ → R be
a surjective ring map with kernel I such that I2 = 0. Let X ′ be a smooth and
proper scheme over R′, let X = X ′ ×Spec(R′) Spec(R) and let I = I ⊗R OX . Let
E ∈ Perf(X) and let E0 := E|X0 .

If α denotes the composition

E E ⊗ LiX/k[i]

E ⊗ Li−1
X/k[i− 1]⊗ LX/k[1]

E ⊗ Li−1
X/k[i− 1]⊗ I[2]

AtX/k(E)i

E⊗∆i−1[i−1]

E⊗Li−1
X/k

[i−1]⊗κX/X′/k[1]

then
trE(α) = i! · σX,i−1(ob(E , X,X ′))

in Hi+1(Li−1
X/k ⊗ I)
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Proof. By Corollary 7.22, we obtain a commutative diagram

E E ⊗ LiX/k

E ⊗ (LX/k[1])⊗i E ⊗ Li−1
X/k ⊗ LX/k

AtX/k(E)i

AtX/k(E)i

∆i−1

Σ+

By symmetry of the trace map, it follows that

trE((E ⊗∆i−1) ◦AtX/k(E)i) = trE
(
(E ⊗ Σ+) ◦AtX/k(E)i

)
=

i∑
j=1

σj,iLX/k
◦ trE(AtX/k(E)i)

= i · trE(AtX/k(E)i)

in Hi(Li−1
X/k ⊗ LX/k). Thus

trE(α) = i · trE((id⊗κX/X′/k[1]) ◦AtX/k(E)i)

in Hi(Li−1
X/k)⊗R I. By Proposition 7.19, we obtain

trE(α) = i · trE(AtX/k(E)i−1 ◦ ob(E , X,X ′))

which proves the result.

The following result compares the obstruction classes of a complex and it’s
Chern character in characteristic zero.

{thm_compare_obs_char0}
Theorem 7.25. Let k be a ring with Q ⊆ k, and suppose R′ → R is a square zero
morphism of nilpotent thickenings with I = ker(R′ → R). Let X ′ f−→ Spec(R′) be a
smooth and proper morphism, and set

X := X ′ ×Spec(R′) Spec(R)
X0 := X ′ ×Spec(R′) Spec(k)

Write I := I ⊗R OX . Let E ∈ Perf(X) and let E0 := E|X0 .
Then for all i ≥ 1, the semiregularity map

σX,p : Ext2
X(E , E ⊗ I)→ Hi+1(Ωi−1

X/R ⊗ I)

sends ob(E , X,X ′) to obd̂R
X′/R′(chi(E0)).

Proof. By Proposition 7.18 we have trE(AtX/k(E)i) = i! · chi(E). Thus by Lemma
7.24

σX,i−1(ob(E , X,X ′)) = 1
i! trE(α) = (κX/X′/k ◦∆i−1)(chi(E))
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in Hi+1(Li−1
X/k). Since the diagram

Hi(LiX/k) Hi(Li−1
X/k ⊗ LX/k) Hi+1(Li−1

X/k) Hi+1(Li−1
X/R)

Hi(LiX/R′) Hi(Li−1
X/R′ ⊗ LX/R′) Hi+1(Li−1

X/R′) Hi+1(Li−1
X/R)

∆i−1 κX/X′/k

∆i−1 κX/X′/R′

commutes, the result follows from Lemma 6.6 and Proposition 6.31.

And we have the following result in mixed characteristic.
{thm_compare_obs_p}

Theorem 7.26. Let k be a ring over Z/pnZ for some n ≥ 1, and let R0 be a
k-algebra. Let

(R′ → R0, γ
′)→ (R→ R0, γ)

be a morphism in PDPairk such that R′ → R is a surjection with kernel I and
I [2] = 0.

Let X ′ f−→ Spec(R′) be a smooth and proper morphism, and set

X := X ′ ×Spec(R′) Spec(R)
X0 := X ′ ×Spec(R′) Spec(k)

Write I := I ⊗R OX . Suppose that i! is invertible in k. Let E ∈ Perf(X) and let
E0 := E|X0 .

Then the semiregularity map

σX,i−1 : Ext2
X(E , E ⊗ I)→ Hi+1(Ωi−1

X/R ⊗ I)

sends ob(E , X,X ′) to obCrys
X′/R′(chi(E0)).

Proof. Again, using that i! is invertible, by Proposition 7.18 and Lemma 7.24 we
have

σX,i−1(ob(E , X,X ′)) = (κX/X′/k ◦∆i−1)(chi(E))

in Hi+1(Li−1
X/k). Thus the result follows from Lemma 6.6 and Proposition 6.32.
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8 Hochschild (co)homology and the semiregular-
ity map

In this section, we relate the semiregularity map from Definition 7.23 with Hochschild–
theoretic constructions. There are two main results we need. The first is in section
8.2, where we relate the semiregularity map with a Hochschild–theoretic semiregu-
larity map (Definition 8.13 and Proposition 8.15). The second is Corollary 8.26, re-
lating the Hochschild–theoretic semiregularity map with the action from Hochschild
cohomology on Hochschild homology. Later, in section 9.1 these results will com-
bine to show the semiregularity map is injective in specific cases. {sec_hochschild_semiregular}

8.1 Fourier–Mukai transforms, duality and Hochschild (co)homology
If X and Y are smooth and proper schemes over a ring k, then any E ∈ Perf(X×Y )
induces a functor

ΦE : Perf(X)→ Perf(Y )
F 7→ πY,∗(π∗

X(F)⊗ E)

We shall refer to ΦE as the Fourier-Mukai transform associated to E , and to E as
the kernel associated to ΦE .

For any three smooth and proper schemes X,Y and Z over a field k we have a
projection map

πXY : X × Y × Z → X × Y

Similarly we have projections πXZ and πY Z . For any two objects E ∈ Perf(X ×Y )
and F ∈ Perf(Y × Z), we shall write

F ⋆ E := πXZ,∗(π∗
XY E ⊗ π∗

Y ZF) ∈ Perf(X × Z) (8.1) {faa}{faa}

One may show that ΦF ◦ ΦE ≃ ΦF⋆E as functors Perf(X)→ Perf(Z), see e.g. [26,
Proposition 5.10].

From now on, we restrict our attention to the case where k is a field. Since we
will use many techniques from [15, 16], in this case we adapt to match Căldăraru’s
notation. In particular, for any smooth and proper scheme X over a field k we shall
write Db(X) := Perf(X) to match the notation of Căldăraru. For X a smooth and
proper scheme over a field k of dimension d we denote with ∆: X → X × X the
diagonal embedding. We will write O∆X

:= ∆∗OX ∈ Db(X × X). We will write
SX = ΩdX [d] ∈ Db(X), and we will sometimes denote with SX(−) the functor

SX ⊗ (−) : Db(X)→ Db(X)

The starting point for most of the constructions is the following classical theorem.

{gvs}
Theorem 8.1 (Grothendieck–Verdier–Serre duality). Let X be a smooth and proper
scheme over a field k. There exists a map

trX : HomX(OX , SX)→ k
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such that for any E ,F ∈ Perf(X) the pairing

Ext−∗(E , SXF)⊗k Ext∗(F , E)→ k

f ⊗ g 7→ ⟨f, g⟩ := trX(trF (f ◦ g))

is a perfect pairing (see Definition 7.12 for the definition of trF ).

Proof. The existence of a perfect pairing is well known, see for example [26, The-
orem 3.12]. This explicit description of the pairing is given by Căldăraru, see [15,
§2.2]. The proof identifying Căldăraru’s construction with more classical construc-
tions can be found in [17, Theorem 17].

We will often write TrX(f) := trXtrF (f) for f ∈ HomX(F ,F ⊗ SX).
{beb}

Definition 8.2. Let k be a field and let X,Y be smooth and proper schemes over
k. Let E ,F ∈ Perf(X) and let E ′,F ′ ∈ Perf(Y ). Then any map

Φ: Ext∗
X(F , E)→ Ext∗

Y (F ′, E ′)

has a unique left adjoint for the pairing from Theorem 8.1. That is, there exists a
unique map

Ψ: Ext∗
Y (F ′, E ′)∨ → Ext∗

X(F , E)∨

such that for any f ∈ Ext∗
Y (F ′, E ′)∨ ∼= Ext−∗

Y (E ′, SY F ′) and g ∈ Ext∗
X(F , E) one

has ⟨f,Φ(g)⟩ = ⟨Ψ(f), g⟩. We will refer to Ψ as the Serre left adjoint of Φ, and to
Φ as the Serre right adjoint of Ψ.

For X a smooth and proper scheme over a ring k, we write ∆! : Db(X) →
Db(X ×X) for the left adjoint of ∆∗. Explicitly, ∆! is given by

F 7→ S−1
X×X ⊗∆∗(SX ⊗F) (8.2) {bga}{bga}

for F ∈ Db(X).

Definition 8.3. Let k be a field, and let X be a smooth and projective scheme
over k. We define the Hochschild homology of X as

HH∗(X) := Ext−∗
X×X(∆!OX ,∆∗OX)

where ∆! is the left adjoint of ∆∗.

Definition 8.4. Let k be a field, and let X be a smooth and projective scheme
over k. We define the Hochschild cohomology of X as

HH∗(X) := Ext∗
X×X(∆∗OX ,∆∗OX)

Note that by Serre duality one has

HH∗(X)∨ = Ext∗
X×X(∆∗OX ,∆∗SX)

HH∗(X)∨ = Ext∗
X×X(∆∗OX ,∆∗OX ⊗ SX×X)

since ∆!OX = S−1
X×X∆∗SX .
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8.2 The Hochschild–theoretic semiregularity map
{hochschild_semi}

Let X be a smooth and proper scheme over a field k. In this section, we define the
Hochschild–theoretic semiregularity map

σHH∗
E : Ext∗(E , E)→ HH−∗(X)

for any E ∈ Db(X), which is essentially due to [14]. Moreover, we show the this
map corresponds to the semiregularity map(s) defined in Definition 7.23 under the
Hochschild-Kostant-Rosenberg isomorphism.

Definition 8.5. We define the universal Hochschild–Atiyah character

AtHH
X ∈ HomD(X×X)(O∆X

,∆∗∆∗O∆X
)

to be the unit of the adjunction ∆∗ ⊣ ∆∗.
{agb}

Construction 8.6. Let k be a ring, and let X,Y be smooth and proper schemes
over k. Let

α : F → G

be a morphism in D(X × Y ). Then α induces a natural transformation

Φα(−) : ΦF (−)→ ΦG(−)

of functors D(X)→ D(Y ), sending E ∈ D(X) to the morphism

Φα(E) := π2∗(π∗
1E ⊗ α)

in D(Y ).

In particular for any E ∈ D(X), we get a map

AtHH
X (E) := ΦAtHH

X
(E) : E → E ⊗∆∗O∆X

(8.3) {bed}{bed}

in D(X).
We now wish to relate AtHH

X with the universal Atiyah class (see Definition 7.8),
by means of the Hochschild–Kostant–Rosenberg isomorphism. For this, we need
some setup first.

Let k be a ring and let X be a smooth and proper scheme over k. If J∆ ⊆ OX×X

is the ideal sheaf of the diagonal, we let ∆(2)
X ⊆ X ×X be the nilpotent thickening

of ∆X corresponding to the ideal J2
∆.

Lemma 8.7. There exists an an isomorphism

φ∆ : OX ⊕ ΩX/k
∼−→ O∆(2)

X

(8.4) {baa}{baa}

of sheaves of rings on X, given locally by (f, gdx) 7→ 1⊗ f + x⊗ g − 1⊗ gx.
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Proof. We first verify that φ∆ is a well–defined map of sheaves of abelian groups.
Since it is clearly linear, we only need to check compatibility with the Leibniz rule.
Indeed, one sees that

φ((0,dxy)− (0, xdy)− (0, ydx)) = xy ⊗ 1− 1⊗ xy − (y ⊗ x− 1⊗ xy)− (x⊗ y − 1⊗ xy)
= xy ⊗ 1 + 1⊗ xy − y ⊗ x− x⊗ y
= (x⊗ 1− 1⊗ x) · (y ⊗ 1− 1⊗ y)

lies in J2
∆. To check that it is a ring map, we compute

φ((f1,g1dx1)) · φ((f2, g2dx2))
= (1⊗ f1 + (1⊗ g1) · (x1 ⊗ 1− 1⊗ x1)) · (1⊗ f2 + (1⊗ g2) · (x2 ⊗ 1− 1⊗ x2))
≡ 1⊗ f1f2 + (1⊗ f1g2) · (x2 ⊗ 1− 1⊗ x2) + (1⊗ f2g1) · (x1 ⊗ 1− 1⊗ x1) (mod J2

∆)
= φ((f1f2, f1g2dx2 + f2g1dx1))
= φ((f1, g1dx1) · (f2, g2dx2))

as desired. We leave it to the reader to verify that the map is an isomorphism.

Write XΩ = SpecX(OX ⊕ ΩX/k), so that φ∆ induces an isomorphism

∆(2)
X

∼−→ XΩ (8.5) {bab}{bab}

of schemes over k.
{bac}

Lemma 8.8. The map (8.5) fits in a commutative diagram

X

XΩ ∆(2)
X

X

πδ

π0

∼

π1

π2

Proof. By the definition of πδ and π0 (Section 7.3) it suffices to show the diagram

OX

OX ⊕ ΩX/k ∆(2)
X

X

(id,d)
π#

1

φ∆

(id,0)
π#

2

commutes. For f a local section of OX , we compute

φ∆ ◦ (id, d)(f) = φ∆((f, df)) = 1⊗ f + f ⊗ 1− 1⊗ f = f ⊗ 1 = π#
1 (f)

φ∆ ◦ (id, 0)(f) = φ∆((f, 0)) = 1⊗ f = π#
2 (f)

as required.
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Definition 8.9. The universal Atiyah class αX (see Definition 7.8) can be repre-
sented by a map

OX → ΩX/k[1]

in D(XΩ). Under the isomorphism (8.5), this induces a map

O∆X
→ ∆∗ΩX/k[1]

in D(∆(2)
X ). Pushing forward along the closed immersion ∆(2)

X ⊆ X ×X, we get a
map

O∆X
→ ∆∗ΩX/k[1]

in D(X × X). We define α̃X ∈ Ext1
X×X(O∆X

,∆∗ΩX/k) to be the element corre-
sponding to this map.

Explicitly, α̃X is given by the extension

0→ ∆∗Ω1
X/k → O∆(2)

X

→ O∆X
→ 0

where the first map is locally given by sending gdx 7→ x⊗ g − 1⊗ gx. We denote
with

exp(α̃X) : O∆X
→

d⊕
i=0

∆∗ΩiX [i]

the map whose i-th component is the composition of the maps

O∆X

α̃X−−→ ∆∗ΩX/k[1]
α̃X ⊗∆∗ΩX/k[1]
−−−−−−−−−−→ . . .

α̃X ⊗∆∗Ω⊗(i−1)
X/k

[i−1]
−−−−−−−−−−−−−→ ∆∗Ω⊗i

X/k[i] ∆∗ϵ−−→ ∆∗ΩiX/k[i]

where ϵ is locally given by v1 ⊗ · · · ⊗ vi 7→ 1
i!v1 ∧ · · · ∧ vi.

{afd}
Lemma 8.10. Let k be a field and let X be a smooth and proper scheme over
k of dimension d, such that d! is invertible in k. Let E ∈ Db(X). Then the i-th
component of the map (see Construction 8.6)

Φexp(α̃X )(E) : E →
d⊕
i=0
E ⊗ ΩiX [i]

is given by 1
i! AtiX(E).

Proof. Denote with α̃iX ∈ ExtiX×X(O∆X
,∆∗ΩpX/k) the composiition

O∆X

α̃X−−→ ∆∗ΩX/k[1]
α̃X ⊗∆∗ΩX/k[1]
−−−−−−−−−−→ . . .

α̃X ⊗∆∗Ω⊗(i−1)
X/k

[i−1]
−−−−−−−−−−−−−→ ∆∗Ω⊗i

X/k[i] ∆∗ϵ−−→ ∆∗ΩiX/k[i]

and with αiX ∈ ExtiXΩ(OX ,ΩiX/k) the composition

OX
αX−−→ ΩX/k[1]

αX ⊗ΩX/k[1]
−−−−−−−−→ . . .

αX ⊗Ω⊗(i−1)
X/k

[i−1]
−−−−−−−−−−−→ Ω⊗i

X/k[i] ϵ−→ ΩiX/k[i]
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Lemma 8.8 then implies that

Φexp(α̃i
X

)(E) = π0,∗(π∗
δ (E)⊗ αiX) (8.6) {eaa}{eaa}

in ExtiX(E , E ⊗ ΩiX/k). The result follows as by definition of the Atiyah class
(Definition 7.9), the right hand side of (8.6) is equal to 1

i! AtiX/k(E).

{thm_hkr}
Theorem 8.11 (Hochshild–Kostant–Rosenberg, [52], [16]). Let k be a field and let
X be a smooth and proper scheme over k of dimension d, such that d! is invertible
in k. Then there exists an isomorphism

I : ∆∗O∆X

∼−→
d⊕
i=0

ΩiX [i] (8.7) {afc}{afc}

in D(X), such that there exists a commutative diagram

O∆X

∆∗∆∗O∆X

⊕d
i=0 ∆∗ΩiX [i]

AtHH
X exp(α̃X )

∆∗(I)

(8.8) {bea}{bea}

in D(X ×X).

Proof. Yekutili [52] originally showed the existence of an isomorphism I. It was
shown by Căldăraru [16, §4] that I can be chosen such that a diagram (8.8) exists
(technically speaking Căldăraru assumes k = C, but if one reads §4 of [16] carefully
one sees that he only uses that d! is invertible in k).

Construction 8.12 (Of the map I
HHj

HKR). Let j ∈ Z≥0. Let k be a field and let X
be a smooth and proper scheme over k of dimension d, such that d! is invertible in
k. Then the composition

HHj(X) = Ext−j
X×X(∆!OX ,∆∗OX)

∼= Ext−j
X (OX ,∆∗∆∗OX) (∆! ⊣ ∆∗)

∼=
d⊕
i=0

Ext−j
X (OX ,ΩiX [i]) (8.7)

defines an isomorphism

I
HHj

HKR : HHj(X)→
d⊕
i=0

Hi−j(X,ΩiX/k)

{def_hocshchild_semiregular}
Definition 8.13. Let k be a field, and let X be a smooth and proper scheme over
k. For P ∈ Db(X), define the Hochschild–theoretic semiregularity map

σHH∗
P : Ext∗

X(P, P )→ HH−∗(X)

103



as the composition

Ext∗
X(P, P ) AtHH

X (P )◦(−)−−−−−−−−−→ Ext∗
X(P, P⊗∆∗∆∗OX) trP−−→ Ext∗

X(OX ,∆∗∆∗OX) ∼−→ HH−∗(X)

where the last isomorphism is given by the adjunction ∆! ⊣ ∆∗.
Remark 8.14. Although useful for relating it to the classical Chern character, in
practice the above definition is rather hard to work with. Instead we will often
work with its Serre left adjoint, which can be shown to be “evaluation at P”, see
Lemma 8.19 for a precise statement.

{prop_semireg_compare}
Proposition 8.15. Let k be a field and let X be a smooth and proper scheme over
k of dimension d, such that d! is invertible in k. Let i ∈ Z. The diagram

ExtiX(P, P )

HH−i(X)
⊕d

j=0 Hi+j(X,ΩjX/k)

σ
HHi
P σX

∼

I
HH−i
HKR

commutes, where σX is the map given componentwise by the semiregularity maps
defined in Definition 7.23.
Proof. Let f ∈ Exti(P, P ). By definition one has

σjX(f) = trP (AtjX(P ) ◦ f)

so that using Lemma 8.10 we obtain

σX(f) = trP (π2,∗(π∗
1P ⊗ exp(α̃X)) ◦ f)

Using the diagram (8.8) we may rewrite this as

σX(f) = trP (π2,∗(π∗
1P ⊗ (∆∗I ◦AtHH

X )) ◦ f)
= I ◦ trP (π2,∗(π∗

1P ⊗AtHH
X ) ◦ f)

= I ◦ trP (AtHH
X (P ) ◦ f)

= I ◦ σHHi

P (f)

where the second equality follows from the projection formula, the third by defini-
tion of AtHH

X and the last by definition of σHHi . The result follows.

8.3 Functoriality for Fourier–Mukai transforms
Let X and Y be smooth and proper schemes over a field k. In this section, we define
for any Fourier–Mukai transform ΦP : Db(X) → Db(Y ) a map ΦHH∗

P : HH∗(X) →
HH∗(Y ). Moreover, we show that this map is compatible with the Hochschild–
theoretic semiregularity maps defined in Definition 8.13 (see Proposition 8.20 below
for a precise statement).

Although it is possible to define the map ΦHH∗
P without referring to Serre duality

explicitly (see [1, §6.2]), for some reason it appears to be quite difficult to prove
Proposition 8.20 in this way directly. Instead, we follow the proof of [15, Theorem
7.1], which is basically a slightly less general statement then Proposition 8.20.
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Definition 8.16. Let X and Y be smooth and proper schemes over a field k. For
P ∈ Db(X × Y ) we define

PL := P∨ ⊗ π∗
Y SY

PR := P∨ ⊗ π∗
XSX

in Db(X × Y ).

It is well known that ΦPL
= ΦP∨ ◦SY and ΦPR

= SX ◦ΦP∨ are left, resp. right
adjoint to ΦP . By abstract nonsense (see [15, Proposition 5.1]) there exist maps

ηP : O∆X
→ PR ⋆ P

ϵP : PL ⋆ P → O∆Y

in D(X ×X) corresponding to the unit, resp. counit of the adjunctions ΦP ⊣ ΦPR

and ΦPL
⊣ ΦP .

{def_hochschild_homology_functor}
Definition 8.17 (Functoriality for Hochschild homology). Let X and Y be smooth
and proper schemes over a field k. For P ∈ Db(X × Y ) we define

Φ̃P : Ext∗
Y×Y (∆∗OY ,∆∗SY )→ Ext∗

X×X(∆∗OX ,∆∗SX)

by sending a map ν : ∆∗OY → ∆∗SY [i] in D(Y × Y ) to the composition

∆∗OX
ηP−−→ PR ⋆ P ≃ PR ⋆O∆Y

⋆ P
PR⋆ν⋆P−−−−−→ PR ⋆ SY ⋆ P ≃ SX ⋆ PL ⋆ P

ηP−−→ O∆X

in Db(X ×X). We define

ΦHH∗
P : HH∗(X)→ HH∗(Y )

as the Serre left adjoint of the map Φ̃P (see Definition 8.2).
{bec}

Definition 8.18. Let k be a field, and let X be a smooth and proper scheme over
k. For E ∈ Db(X), define the evaluation map

evE : ExtiX×X(∆∗OX ,∆∗SX)→ ExtiX(E , E ⊗ SX)
η 7→ Φη(E)

see Construction 8.6.
{lem_semiregular_adjoint}

Lemma 8.19. The map evE is the Serre left adjoint of σHH∗
E , that is for any

µ ∈ ExtiX×X(∆∗OX ,∆∗SX) and α ∈ Ext−i
X (E , E) one has

⟨evE(µ), α⟩ = ⟨µ, σHH∗
E (α)⟩

in k (see Theorem 8.1 for the definition of the pairing).

Proof. Essentially the same argument as in [16, Theorem 4.5]. Let µ′ ∈ ExtiX(∆∗∆∗OX , SX)
be the image of µ under the adjunction ∆∗ ⊣ ∆∗, so that µ = ∆∗µ

′ ◦AtHH
X .

105



We have

⟨evE(µ), α⟩ = TrX (evE(µ) ◦ α)
= TrX (Φµ(E) ◦ α) (Definition 8.18)
= TrX (π2,∗(π∗

1E ⊗ µ) ◦ α) (Construction 8.6)

= TrX
(
π2,∗(π∗

1E ⊗ (∆∗µ
′ ◦AtHH

X )) ◦ α
)

(µ = ∆∗µ
′ ◦AtHH

X )

= TrX
(
π2,∗(∆∗(E ⊗ µ′) ◦ π∗

1E ⊗AtHH
X ) ◦ α

)
(projection formula)

= TrX
(

(E ⊗ µ′) ◦ π2,∗(π∗
1E ⊗AtHH

X ) ◦ α
)

= trX
(
µ′ ◦ trE(AtHH

X (E) ◦ α)
)

(8.3)

The adjunctions ∆! ⊣ ∆∗ and ∆∗ ⊣ ∆∗ give equivalences

φ1 : Ext∗
X(OX ,∆∗∆∗OX) ∼−→ Ext∗

X×X(∆!OX ,∆∗OX)
φ2 : Ext∗

X(∆∗∆∗OX , SX) ∼−→ Ext∗
X×X(∆∗OX ,∆!OX ⊗ SX×X)

Here for the second equivalence, we used that ∆!OX ⊗ SX×X ≃ ∆∗SX , see (8.2).
One may show these are compatible with the Serre trace, that is

TrX(g ◦ f) = TrX×X(φ2(g) ◦ φ1(f))

for f ∈ Ext∗
X(OX ,∆∗∆∗OX) and g ∈ Ext∗

X(∆∗∆∗OX , SX). It follows that

⟨evE(µ), α⟩ = trX
(
µ′ ◦ trE(AtHH

X (E) ◦ α)
)

= trX×X

(
tr∆!OX

(µ ◦ σHH∗
E (α))

)
= ⟨µ, σHH∗

E (α)⟩

as required.
{prop_functorial_semiregular}

Proposition 8.20. Let X and Y be smooth and proper schemes over a field k.
For P ∈ Db(X × Y ) and E ∈ Db(X), the diagram

ExtiX(E , E) ExtiY (ΦP (E),ΦP (E))

HHi(X) HH−i(Y )

σ
HHi
E

ΦP

σ
HHi
ΦP (E)

Φ
HH−i
P

commutes.

Proof. Let

Φ†
P : ExtiY (ΦP (E),ΦP (E)⊗ SY )→ ExtiX(E , E ⊗ SX)

be the map sending ν : ΦP (E)→ ΦP (E)⊗ SY to the composition

E ηP−−→ ΦPR
◦ ΦP (E)

ΦPR
(ν)

−−−−−→ ΦPR
◦ SY ◦ ΦP (E) ∼= SX ◦ ΦPL

◦ ΦP (E) SX (ϵP )−−−−−→ SXE
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By [15, Proposition 3.1], the map Φ†
P is a Serre left adjoint for ΦP . Using Lemma

8.19 and Definition 8.17 to identify the other Serre left adjoints of the diagram, we
see it suffices to show the diagram

Ext∗
Y×Y (∆∗OY ,∆∗SY ) Ext∗

X×X(∆∗OX ,∆∗SX)

ExtiY (ΦP (E),ΦP (E)⊗ SY ) ExtiX(E , E ⊗ SX)

evΦP (E)

Φ̃P

evE

Φ†
P

commutes (by uniqueness of adjoints for a perfect pairing), which is obvious from
the definitions.

8.4 The action of Hochschild cohomology and the semireg-
ularity map

Let X be a smooth and proper scheme over a field k. The Hochschild-theoretic
semiregularity map (Definition 8.13) defines a map

σHH∗
O∆

: HH∗(X)→ HH−∗(X ×X)
(see Definition 8.13). In this section, we will construct a Künneth isomorphism

K : HH−∗(X ×X)→
⊕
i

HH−i(X)⊗HHi−∗(X)

and an isomorphism ψ : HH−i(X) ≃ HHi(X)∨. Moreover, we will show that the
composition

HH∗(X)
σHH∗

O∆−−−→ HH−∗(X×X) (ψ⊗id)◦K−−−−−−→
⊕
i

HHi(X)∨⊗HHi−∗(X) ≃ Homk(HHi(X),HHi−∗(X))

can be identified with the natural action of Hochschild cohomology on Hochschild
homology (see Corollary 8.26 below for a precise statement). Again, for some
reason this seems to be difficult to prove directly, but by passing to the Serre duals
it is possible to establish a comparison result.

We start off by introducing the natural action.
Definition 8.21. Let k be a field, and let X be a smooth and proper scheme over
k. We define the action map

HH∗(X) a−→
⊕
i

Hom(HHi(X),HHi−∗(X))

f 7→ ((xi)i 7→ (f ◦ xi)i)

where xi ∈ HHi(X) = Ext−i(∆!OX ,∆∗OX).
Remark 8.22. Since for any two finite dimensional vector spaces V,W we have a
canonical isomorphism Hom(V,W ) ∼= V ∨ ⊗W , we may also think of the action as
a map

HH∗(X)→
⊕
i

HHi(X)∨ ⊗HHi−∗(X)

which we will also denote with a.
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{lem_dual_action}
Lemma 8.23. Let k be a field, and let X be a smooth and proper scheme over k.
The Serre left adjoint of the action map is given by the map

a† :
⊕
i

HHi(X)⊗HHi−∗(X)∨ → Ext−∗
X×X(∆∗OX ,∆∗OX ⊗ SX×X)

αi ⊗ βi 7→ (SX×X(αi) ◦ βi)

for αi ∈ Ext−i
X×X(∆!OX ,∆∗OX) and βi ∈ Exti−∗

X×X(∆∗OX ,∆∗SX).
Proof. Fix

αi ∈ HHi(X) = Ext−i
X×X(∆!OX ,∆∗OX)

βi ∈ HHi−∗(X)∨ = Exti−∗
X×X(∆∗OX ,∆∗SX)

Let {vj}j∈J be a basis of HHi(X), and let {v∨
j }j∈J be the dual basis of ExtiX×X(∆∗OX ,∆∗SX).

Then by definition the action map is given by

a(f) =
∑
j∈J

v∨
j ⊗ (f ◦ vj)

It follows that

⟨αi ⊗ βi, a(f)⟩ =
∑
j∈J
⟨αi ⊗ βi, v∨

j ⊗ (f ◦ vj)⟩

=
∑
j∈J
⟨αi, v∨

j ⟩ · ⟨βi, f ◦ vj⟩

= ⟨βi, f ◦

∑
j∈J
⟨v∨
j , αi⟩ · vj

⟩
= ⟨βi, f ◦ αi⟩

By [15, Lemma 2.2] it follows that

⟨αi ⊗ βi, a(f)⟩ = TrX×X(βi ◦ f ◦ αi)
= TrX×X(SX×X(αi) ◦ βi ◦ f)
= ⟨SX×X(αi) ◦ βi, f⟩

as required.

Note that if X and Y are two smooth and proper schemes over a field k, one
has a Künneth isomorphism

KX,Y :
⊕
i

HHi(X)⊗k HH∗−i(Y ) ∼−→ HH∗(X × Y )

given by sending α ∈ Ext−i
X×X(∆!OX ,∆∗OX) and β ∈ Exti−∗(∆!OY ,∆∗OY ) to

the element

π∗
13(α)⊗ π∗

24(β) ∈ Ext−∗
X×Y×X×Y (∆!OX×Y ,∆∗OX×Y )

(note ∆∗OX×Y = π∗
13∆∗OX ⊗ π∗

24∆∗OY , and similarly for ∆!).
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Definition 8.24. Let X be a smooth and proper scheme over a field k. Define the
map

φ : ExtiX×X(∆∗OX ,∆∗SX)→ Ext−i
X×X(∆!OX ,∆∗OX)

η 7→ (σX)∗(η ⊗ π∗
2S

−1
X )

where σX is the map X ×X → X ×X swapping the two factors
{prop_compare_action}

Proposition 8.25. Let X be a smooth and proper scheme over a field k. Then
the diagram

Ext−∗
X×X(∆∗OX ,∆∗OX ⊗ SX×X) Ext−∗

X×X×X×X(∆∗OX×X ,∆∗SX×X)

⊕
i HHi(X)⊗HHi−∗(X)∨ ⊕

i HH−i(X)∨ ⊗HHi−∗(X)∨

evO∆

a†

φ⊗id

(K−1
X,X

)∨

commutes.

Proof. Let

α ∈ HHi(X)∨ = ExtiX×X(∆∗OX ,∆∗SX)
β ∈ HH∗−i(X)∨ = Ext∗−i

X×X(∆∗OX ,∆∗SX)

and consider evO∆ ◦ (K−1
X,X)∨(α⊗ β). Then

evO∆ ◦ (K−1
X,X)∨(α⊗ β) = π34∗(π∗

12(O∆)⊗ π∗
13α⊗ π∗

24β)
= π34∗((∆X × idX × idX)∗(OX×X×X)⊗ π∗

13α⊗ π∗
24β)

= π34∗(∆X × idX × idX)∗(π∗
12α⊗ π∗

13β)
= π23∗(π∗

12α⊗ π∗
13β)

where in the second equality we used that π∗
12(O∆) = (∆X×idX × idX)∗(OX×X×X)

(which follows by base change), and the rest follows from the projection formula.
Now let

∆̃ : X ×X → X ×X ×X
be the map informally given by (x, y) → (x, y, x), so that we have the equality
π∗

13∆∗ = ∆̃∗π
∗
1 induced by the pullback square

X ×X X

X ×X ×X X ×X
∆̃

π1

∆
π13

Similarly, we have π∗
12∆∗ = (∆X × idX)∗π

∗
1 . Thus

π23∗(π∗
12α⊗ π∗

13β) = π23∗

(
(π∗

12α ◦ id(∆X ×idX )∗OX×X
)⊗ (id∆̃∗π∗

1SX
◦π∗

13β)
)

= π23∗(π∗
12α⊗ ∆̃∗π

∗
1SX) ◦ π23∗((∆X × idX)∗OX×X ⊗ π∗

13β)
= (π23 ◦ ∆̃)∗(α⊗ π∗

1SX) ◦ (π23 ◦∆X × idX)∗(β)
= σX∗(α⊗ π∗

1SX) ◦ β
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On the other hand one has

(α† ◦ (φ⊗ id))(α⊗ β) = SX×X(σX∗(α⊗ π∗
2S

−1
X )) ◦ β = σX∗(α⊗ π∗

1SX) ◦ β

which completes the proof.
{corol_actions}

Corollary 8.26. Let k be a field, and let X be a smooth and proper scheme over
k. Then the diagram

HH∗(X) HH−∗(X ×X)

⊕
i HHi(X)∨ ⊗HHi−∗(X)

⊕
i HH−i(X)⊗HHi−∗(X)

a

σHH∗
O∆

K−1
X,X

(φ∨)−1⊗id

commutes.

Proof. This follows directly from Proposition 8.25 after identifying a with the Serre
right adjoint of a† and σHH∗

O∆
with the Serre right adjoint of evO∆ using Lemma

8.23 and Lemma 8.19.
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9 Deformations of Fourier–Mukai transforms be-
tween Calabi–Yau varieties

{sec_deform}
In this section we restrict our attention to so–called Calabi–Yau varieties.

Definition 9.1. Let X be a smooth and proper scheme over a field k. We say
that X is Calabi–Yau if X is equidimensional and Ωdim(X)

X/k
∼= OX .

We combine everything to prove Theorem 1.5 and Theorem 1.6. In section 9.1
we show the semiregularity map is injective for Calabi–Yau varieties. Then in the
following sections we prove our main results.

9.1 Injectivity of the semiregularity map
{sec_injective}

Recall (Definition 7.23) that for any scheme X and E ∈ Perf(X), we have a semireg-
ularity map

σX : ExtiX(E , E)→
⊕
p

Hp+i(LpX/k)

By the results in Section 7.6, the p-th component σX,p maps obstructions to defor-
mations of E to obstruction classes to chp(E) staying within the Hodge filtration.

In this section we show that if X = Y ×Z where Y is Calabi–Yau and E is the
kernel of a fully faithful Fourier–Mukai transform D(Y ) → D(Z), then the total
map σX map is always injective. Informally speaking, this says that one can read
of whether or not E will deform by checking whether or not chp(E) remains within
the Hodge filtration for all p ≥ 0.

Our strategy is essentially due to [49]: The fact that E is fully faithful implies
that the transform E ⋆ (−) : D(X ×X)→ D(X × Y ) has a left inverse, which will
allow us to reduce to the case where X = Y and E = ∆∗OX . Thus the following
lemma is all we will need.

{lem_diagonal_inj}
Lemma 9.2. Let k be a field and let X be a smooth and proper scheme over k. If
X is Calabi–Yau, then the semiregularity map

σHHi

O∆X
: HHi(X)→ HH−i(X ×X)

is injective for all i.

Proof. By Corollary 8.26, it suffices to show the map

a :
⊕
j

HHj(X)→
⊕
i,j

Hom(HHi(X),HHi−j(X)) (9.1) {eq_need_inj}{eq_need_inj}

is injective. Since X is Calabi–Yau, we have SX = OX [d] where d = dim(X). Thus

HHi(X) = Ext−i
X×X(O∆X

[d],O∆X
) = Extd−i

X×X(O∆X
,O∆X

) = HHd−i(X)

Under this identification, the map

a : HHj(X)→ Hom(HHd(X),HHd−j(X))
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corresponds to the map

HHj(X)→ Hom(HH0(X),HHj(X))

given by composition (i.e. the natural ring multiplication on Hochschild cohomol-
ogy). But this last map is clearly injective (since we can evaluate at idO∆X

). We
conclude that (9.1) is injective as desired.

The following observation is probably well known and used in the footnote in
[1, page 19, footnote 6] to construct a left inverse to E ⋆ (−), however we could not
find it anywhere in the literature so we give a direct proof.

{lem_right_adjoint_fourier}
Lemma 9.3. Let k be a field, and let X and Y be smooth and proper schemes over
k. Let E ∈ D(X × Y ) be the kernel of a Fourier–Mukai transform ΦE : D(X) →
D(Y ). Let

ER = E∨ ⊗ π∗
XSX

be the kernel of the right adjoint. Then the convolution functor ER ⋆ (−) : D(X ×
Y )→ D(X ×X) (see (8.1)) is right adjoint to E ⋆ (−) : D(X ×X)→ D(X × Y ).
Proof. Denote with ∆̃ : X ×X → X ×X ×X the map sending (x, y) 7→ (x, y, x).
Let A ∈ D(X ×X). Then

E ⋆ A : = π13∗(π∗
12A⊗ π∗

23E)
= π34∗((∆̃× idY )∗(π∗

12A⊗ π∗
23E))

= π34∗((∆̃× idY )∗(OX×X×Y )⊗ π∗
12A⊗ π∗

24E)
= π34∗(π∗

12A⊗ (π∗
24E ⊗ π∗

13∆∗OX))

Thus π∗
24E ⊗π∗

13∆∗OX ∈ D(X×X×X×Y ) is the kernel corresponding to E ⋆ (−).
It follows that the kernel corresponding to the right adjoint of E ⋆ (−) is given by

(π∗
24E ⊗ π∗

13∆∗OX)∨ ⊗ π∗
12SX×X = (π∗

24E∨π∗
2 ⊗ SX)⊗ π∗

13((∆∗OX)∨ ⊗ π∗
1SX)

= (π∗
24(E∨ ⊗ π∗

1SX))⊗ π∗
13(∆∗OX)

= (π∗
24(ER)⊗ π∗

13(∆∗OX)

where in the second equality we have used (∆∗OX)∨⊗π∗
1SX = ∆∗OX (this follows

from the fact that O∆X
is the kernel of the identity functor, hence the kernel of its

right adjoint is equal to itself).
By the exact same argument as above, this last expression is the kernel corre-

sponding to ER ⋆ (−), which completes the proof.

We now have everything we need to conclude the injectivity we need.
{thm_semireg_inj}

Theorem 9.4. Let k be a field, and let X and Y be smooth and proper schemes
over k. Let E ∈ D(X × Y ) be the kernel of a Fourier–Mukai transform

ΦE : D(X)→ D(Y )

If ΦE is fully faithful and X is Calabi–Yau, then the semiregularity map

σHHi

E : ExtiX×Y (E , E)→ HH−i(X × Y )

is injective for all i.
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Proof. Let ER := E∨ ⊗ π∗
XSX ∈ D(Y ×X) be the kernel of the right adjoint

ΦER
: D(Y )→ D(X)

to ΦE . Since ΦE is fully faithful, its right adjoint ΦER
is a left inverse by abstract

nonsense. We thus have ER ⋆ E ≃ O∆X
. Write Ê ∈ D(X × X × X × Y ) and

ÊR ∈ D(X × Y × X × X) for the kernels of the functors E ⋆ (−) and ER ⋆ (−)
respectively.

By Proposition 8.20 we have a commutative diagram

Ext∗
X×X(O∆X

,O∆X
) Ext∗

X×Y (E , E)

HH−∗(X ×X) HH−∗(X × Y )

σHH∗
O∆X

Φ
Ê

σHH∗
EΦ

HH−∗

Ê

Since ER ⋆ E ≃ O∆X
, it follows from Lemma 9.3 that the map

Ext∗
X×X(O∆X

,O∆X
)

Φ
Ê−−→ Ext∗

X×Y (E , E)

is an isomorphism. Since ΦÊR
is a right inverse to ΦÊ , by Proposition 8.20 the map

ΦHH∗

Ê
: HH∗(X ×X)→ HH∗(X × Y )

admits a left inverse (given by ΦHH∗

ÊR

), thus in particular is injective. Finally by
Lemma 9.2 the map σHH∗

O∆X
is injective, the result follows.

Finally, we state the analogous result for Hodge cohomology under the Hochschild-
Kostant-Rosenberg isomorphism.

{corol_semireg_inj}
Corollary 9.5. Let k be a field and let X and Y be smooth and proper equidimen-
sional schemes over k. Suppose that d = dim(X × Y ) is such that d! is invertible
in k. Let E ∈ D(X × Y ) be the kernel of a Fourier–Mukai transform

ΦE : D(X)→ D(Y )

If ΦE is fully faithful and X is Calabi–Yau, then for all j the (total) semiregularity
map

σX : ExtjX×Y (E , E)→
dim(X)+dim(Y )⊕

i=0
Hi+j(X × Y,ΩiX×Y/k)

is injective.

Proof. Combine Proposition 8.15 and Theorem 9.4.
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9.2 Deformations in the characteristic zero case
We combine all the previous results in the characteristic zero case to prove Theorem
1.5 at the end of this section. We isolate the statement of the inductive step in the
following proposition.

{prop_induction_char0}
Proposition 9.6. Let k be a field with Q ⊆ k, and let R′ → R be a surjective ring
map of local Artinian k-algebras with kernel I such that I2 = 0 and mR′ · I = 0.
Let X ′, Y ′ be smooth and proper schemes over R′, and let

X := X ′ ×Spec(R′) Spec(R)
X0 := X ′ ×Spec(R′) Spec(k)

and similarly for Y, Y0. Let E ∈ Perf(X × Y ) be the kernel of a fully faithful
Fourier–Mukai transform ΦE : Perf(X) → Perf(Y ). Let E0 := E|X0×Y0 . If X0 is
Calabi–Yau, then the following are equivalent.

1. There exists a kernel E ′ ∈ Perf(X ′ × Y ′) of a fully faithful Fourier–Mukai
transform ΦE′ : Perf(X ′)→ Perf(Y ′) such that E ′|X×Y ≃ E.

2. The image of chi(E0)⊗ 1 under the stratifying map (Definition 6.4)

φd̂R,X′×Y ′ : H2i(d̂RX0×Y0/k)⊗k R′ → H2i(d̂RX′×Y ′/R′)

lands in Fi H2i(d̂RX′×Y ′/R′) for all i ≥ 0.

If these hold then ΦE′ is an equivalence if and only if ΦE is.

Proof. Note that by definition of the obstruction class, we have

φd̂R,X′×Y ′(chi(E0)⊗ 1) ∈ Fi H2i(d̂RX′×Y ′/R′)

if and only if obd̂R
X′×Y ′/R′(chi(E0)) = 0. Since mR′ · I = 0, the semiregularity map

σX×Y,i : Ext2
X×Y (E , E ⊗ I)→

⊕
i

Hi+2(LiX×Y/R ⊗ I)

is just the map

σX0×Y0 : Ext2
X0×Y0

(X0 × Y0, E0, E0)⊗k I →
⊕
i

Hi+2(X0 × Y0,ΩiX0×Y0/k
)⊗k I

hence injective by Corollary 9.5. Thus obd̂R
X′×Y ′/R′(chi(E0)) = 0 for all p if and only

if ob(E , X × Y,X ′ × Y ′) = 0 by Theorem 7.25.
By Proposition 7.19 it follows that there exists E ′ ∈ Perf(X ′×Y ′) deforming E

if and only if we have obd̂R
X′×Y ′/R′(chi(E0)) = 0 for all i. By [42, Proposition 2.15]

we see that ΦE′ is always fully faithful, and an equivalence if and only if ΦE is an
equivalence, which proves the result.

Proof of Theorem 1.5. By induction on the size of A, using Proposition 9.6.
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9.3 Deformations in mixed characteristic
In this section we combine all the previous results in the p-adic case, to prove
Theorem 1.6. The following proposition gives the essential ingredient, allowing us
to lift the transform to a slightly smaller extension. The proposition is very general,
we urge the reader to keep in mind the following example: k a field of characteristic
p > 2, W = W (k) the ring of Witt vectors of k, R′ = Wm+1 = W/pm+1, R = Wm

and I = (pm) ⊆Wm+1.
{prop_mixed_def}

Proposition 9.7. Let W be a ring. Let k be a field with a map W → k. Let

(R′ → k, γ′)→ (R→ k, γ)

be a morphism of divided power W -algebras such that R′ → R is a surjection with
kernel I, such that γ′

n(x) = 0 for all x ∈ I and all n ≥ 2, and such that mR′ ·I = 0.
Let X ′, Y ′ be smooth and proper schemes over R′, and let

X := X ′ ×Spec(R′) Spec(R)
X0 := X ′ ×Spec(R′) Spec(k)

and similarly for Y, Y0. Let E ∈ Perf(X × Y ) be the kernel of a fully-faithful
Fourier–Mukai transform ΦE : Perf(X) → Perf(Y ). Let E0 := E|X0×Y0 . If X0 is
Calabi–Yau, Y0 is equidimensional and d := dim(X0) + dim(Y0) is such that d! is
invertible in W , then the following are equivalent.

1. There exists a kernel E ′ ∈ Perf(X ′ × Y ′) of a fully faithful Fourier–Mukai
transform ΦE′ : Perf(X ′)→ Perf(Y ′) such that E ′|X×Y ≃ E.

2. The image of chi(E0)⊗ 1 under the stratifying map (Definition 6.9)

φCrys,X′×Y ′ : H2i(dRX0×Y0/k)⊗k R′ → H2i(dRX′×Y ′/R′)

lands in Fi H2i(dRX′×Y ′/R′) for all i ≥ 0.

If either of the equivalent conditions holds then ΦE′ is an equivalence if and only if
ΦE is.

Proof. Similar to the proof of Proposition 9.6, we only give details where the proof
differs. Note that by definition of the obstruction class, we have

φCrys,X′×Y ′(chi(E0)⊗ 1) ∈ Fi H2i(dRX′×Y ′/R′)

if and only if obCrys
X′×Y ′/R′(chi(E0)) = 0. Again, by Corollary 9.5 the semiregularity

map is injective, thus obCrys
X′×Y ′/R′(chi(E0)) = 0 for all i if and only if ob(E , X ×

Y,X ′×Y ′) = 0 by Theorem 7.26. We may again conclude by Proposition 7.19 and
[42, Proposition 2.15].

{gae}
Definition 9.8. Let (A, I, γ) be a divided power ring, and let n ∈ N. Define
γ0
n(I) := I and inductively define the ideals

γkn(I) := ⟨γn(x) | x ∈ γk−1
n (I)⟩

for k ≥ 1. We say that γn acts nilpotently on I if γkn(I) = 0 for some k ∈ N.
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We now wish to show that this condition on γp implies that we can find a
suitable sequence of ideals to apply Proposition 9.7 to.

{gaa}
Lemma 9.9. Let p be a prime, let A be a Z(p)-algebra and let I ⊆ A be an ideal
with a divided power structure γ. Then any x ∈ I [2] \ I2 can be written as

x = a+ c1 · γp(b1) + · · ·+ cmγp(bm)

for some a ∈ I2, m ∈ N, c1, . . . , cm ∈ A and b1, . . . , bm ∈ I \ I2.

Proof. Since x ∈ I [2], there exists m ∈ N, a ∈ I2 and c1, . . . , cm ∈ A, b1, . . . , bm ∈ I
and n1, . . . , nm ∈ N≥2 such that

x = a+
m∑
i=1

ciγni
(bi)

Choose such a representation such that

N =
m∑
i=1

ni

is minimal. Note N ≥ 1 since x ̸∈ I2.
Note that if some ni were not divisible by p, we could write ni = pk + ℓ with

ℓ ∈ {1, . . . , p− 1}. Hence

Cni := (pk + ℓ)!
(pk)!ℓ!

is not divisible by p, and thus invertible in A. It follows that

γni(x) = C−1
ni
· γpk(x) · γℓ(x)

lies in I2, contradicting minimality of N (note k = 0 implies ℓ ≥ 2). Thus all ni
are divisible by p.

Next, suppose there exists i such that ni = pb for some b ≥ 2. A calculation
with valuations shows that the integer

Cp,b := (pb)!
(p!)bb!

is not divisible by p, and hence a unit in A. It follows that γni
(x) = C−1

p,b ·γb(γp(x)).
Since b ≥ 2, this again contradicts minimality of N . We conclude that ni = p for
all i.

Finally if bi ∈ I2 for some i, then γp(bi) ∈ I2, which again contradicts minimal-
ity of N . The result follows.

{gad}
Corollary 9.10. Let (A, I, γ) be a divided power ring, and let p be a prime number.
If A is a local Artinian Z(p)-algebra, 0 ⊊ I ⊆ mA and γp acts nilpotently on I, then
I [2] ⊊ I.
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Proof. Since A is Artinian we see that mA is nilpotent, therefore I is nilpotent. In
particular I2 ̸= I since I ̸= 0. Thus after replacing A by A/I2 one still has I ̸= 0.
We may thus assume without loss of generality that I2 = 0.

Suppose that I [2] = I, we show this leads to a contradiction. Since I ̸= 0 there
exists x ∈ I such that x ̸= 0. Since we assumed I [2] = I, we have x ∈ I [2] \ I, so
that by Lemma 9.9 we may write

x = c1 · γp(b1) + · · ·+ cmγp(bm) (9.2) {gab}{gab}

for some m ∈ N, ci ∈ A and bi ∈ I nonzero. Hence x ∈ γ1
p(I). Again using that

I [2] = I, we may represent each bi as

bi = ci1γp(bi1) + · · ·+ cimγp(bimi) (9.3) {gac}{gac}

for some mi ∈ N, cij ∈ A and bij ∈ I nonzero. Combining (9.2) and (9.3) it follows
that x ∈ γ2

p(I). Continuing like this, we may show that x ∈ γkp (I) for all k ≥ 0.
Thus x = 0 since γp acts nilpotently on I, which is a contradiction.

{gag}
Proposition 9.11. Let (A, I, γ) be a divided power ring, and let p be a prime
number. If A is a local Artinian Z(p)-algebra and γp acts nilpotently on mA, then
there exists a finite chain of ideals

mA = I1 ⊋ I2 ⊋ · · · ⊋ Ik = 0

such that I [2]
i ⊆ Ii+1.

Proof. One simply defines I1 := mA and Ii+1 := I
[2]
i . Then Ii+1 ⊊ Ii as long as

Ii ̸= 0 by Corollary 9.10, and this sequence terminates since A is Artinian.

Proof of Theorem 1.6. Combine Proposition 9.11 and Proposition 9.7.

Proof of Corollary 1.7. For n > 0, let Xn := X×Spec(W )Spec(Wn) and similarly for
Yn. By induction on n and Theorem 1.6, we may find a compatible system of lifts
En ∈ D(Xn×Yn). Thus there exists a lift Ẽ ∈ Db(X ×Y) by [35, Proposition 3.6.1].
The induced transform is fully faithful (or an equivalence) by [42, Proposition
2.15].
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Summary
This thesis contributes to the field of algebraic geometry, which in essence is the
study of geometric objects coming from algebraic equations. For example, the
equation

x2
0 + x2

1 + x2
2 + x2

3 = 0

defines a 2-dimensional surface in the 3-dimensional projective space P3. In fact,
the above equation is known to define a particularly nice surface: It has trivial
canonical bundle, and therefore is a K3 surface. Another example is the equation

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0

which defines a 4-dimensional object in P5. Since the object is 4-dimensional and
the equation is of degree 3, the corresponding geometric object is called a cubic
fourfold. The geometric object induced by algebraic equations is called an algebraic
variety. Thus, a K3 surface or a cubic fourfold are an example of an algebraic vari-
ety. Another interesting example are Calabi-Yau varieties (also known as varieties
with trivial canonical bundle). A K3 surface is an example of a Calabi-Yau variety,
but not every Calabi-Yau variety is a K3 surface. Another example of a Calabi-Yau
variety is an abelian variety, for example an elliptic curve.

Any algebraic variety X defines a derived category D(X). The derived category
of an algebraic variety is an important invariant containing a lot of information
about the geometry of X, and has many applications in mathematical physics. For
a Calabi-Yau variety X, the derived category of X is known to be particularly
interesting.
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A Appendix

A.1 Compact projective generators
Let R be a ring and k ∈ N. The main goal of this section is to construct the
compact projectively generated categories Fun(∆k,CAlgan

R )surj. The case k = 0
and k = 1 were done by Mao, see [41, Theorem 3.23]. We try and clean up the
argument slightly in the process.

Throughout this section, n can be any integer greater than or equal to 1, or the
symbol ∞. The key ingredient to finding sets of compact projective generators is
the following result from Lurie.

{prop_generators_from_adjunction}

Proposition A.1. Suppose given a pair of adjoint functors C D.
F

G
between

n-categories. Assume that:

1. The n-category D admits filtered colimits and geometric realizations, and G
preserves filtered colimits and geometric realizations.

2. The n-category C is compact n-projectively generated.

3. The functor G is conservative.

Then:

1. The n-category D is compact n-projectively generated.

2. An object D ∈ D is compact and n-projective if and only if there exists a
compact n-projective object C ∈ C such that D is a retract of F (C).

3. The functor G preserves all sifted colimits.

4. If S is a set of compact n-projective generators for C, then F (S) is a set of
compact n-projective generators for D.

Proof. See [38, Corollary 4.7.3.18]. Note that 4. isn’t stated but follows from the
proof as well.

The following lemma will be very useful along the way.
{fun_adjoint}

Lemma A.2. Suppose given a pair of adjoint functors between n-categories C D
F

G
.

Let K be a simplicial set. Then there exists an induced pair

Fun(K, C) Fun(K,D)
F◦−

G◦−

of adjoint functors.

Proof. Apply [39, Proposition 5.2.2.8] twice.

We now wish to study Fun(∆k,Ani(C)).
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{lem_fun_proj_gen}
Lemma A.3. Let C be a compact n-projectively generated n-category. Then Fun(∆k, C)
is compact n-projectively generated. Moreover, if S is a set of compact n-projective
generators for C, then the set

{insi(X) | i ∈ {0, . . . , k}, X ∈ S}

where
insi(X) := 0→ · · · → 0︸ ︷︷ ︸

i times

→ X → · · · → X︸ ︷︷ ︸
(k−i+1) times

is a set of compact n-projective generators for Fun(∆k, C).

Proof. Since C is cocomplete, it follows that Fun(∆k, C) is cocomplete by [39, Corol-
lary 5.1.2.3]. The forgetful functor

Fun(∆k, C)→ Fun(sk0(∆k), C) (A.1) {eq_forgetfull_adjoint}{eq_forgetfull_adjoint}

is conservative, commutes with colimits by [39, Corollary 5.1.2.3] and admits a left
adjoint explicitly given by

(X0, . . . , Xk) 7→ (X0 → X0 ⨿X1 → · · · → X0 ⨿ · · · ⨿Xk)

The result now follows by applying Proposition A.1 to the set of compact n-
projective generators for Fun(sk0(∆k), C) given in [41, Lemma 2.7].

{def_gen_fun}
Definition A.4. Let C be a compact n-projectively generated n-category and
let S be a set of compact n-projective generators. We write Fun(∆k, C)gen for
the full subcategory of Fun(∆k, C) spanned by coproducts of objects in the set
{insi(X) | X ∈ S, i ∈ {0, . . . , k}}.

{corol_ani_commutes_fun}
Corollary A.5. Let C be a compact n-projectively generated n-category. Then the
map

Ani(Fun(∆k, C)) ∼−→ Fun(∆k,Ani(C))

is an equivalence of categories.

Proof. Let S be a set of compact n-projective generators for C, and let j : C →
Ani(C) be the Yoneda embedding. Then j(S) is a set of compact projective gener-
ators for Ani(C), so by Lemma A.3 we see that

{insi(j(X)) | i ∈ {0, . . . , k}, X ∈ S}

gives a set of compact projective generators for Fun(∆k,Ani(C)). Let C0 ⊆ Fun(∆k, C)
be the full subcategory spanned by finite coproducts of objects in the set

{insi(X) | i ∈ {0, . . . , k}, X ∈ S}

Since j is fully faithful one then has Ani(C0) = Fun(∆k,Ani(C)). However, applying
Lemma A.3 again we see that C0 is a set of compact n-projective generators for the
n-category Fun(∆k, C). The result follows.
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By Lemma A.2, we see that the (pointwise) Yoneda embedding Fun(∆k, C) →
Fun(∆k,Ani(C)) admits a left adjoint π0 : Fun(∆k,Ani(C))→ Fun(∆k, C) given by
applying the left adjoint Ani(C)→ C pointwise.

For the rest of this section, we restrict our attention to the∞-categories D(R)≥0
and CAlgan

R , where R is a discrete commutative ring.
{gens_mod}

Lemma A.6. Let R be a ring and k ∈ N. The ∞-category Fun(∆k,D(R)♡) is
compact 1-projectively generated. A set of generators is given by {insi(R) | i ∈
{0, . . . , k}}.

Proof. By Lemma A.3 it suffices to give a proof for k = 0. Then this is a classical
result about the category of discrete R-modules, we give a short sketch. Since
any R-module can be written as a colimit of free modules, it suffices to show
the functor HomD(R)♡(R,−) : D(R)♡ → Set commutes with filtered colimits and
geometric realizations.

Note that HomD(R)♡(R,−) is just the forgetful functor D(R)♡ → Set, hence it
commutes with filtered colimits (for example by [12, Proposition 2.13.5]). By [41,
Remark A.21], to show it commutes with geometric realizations it suffices to show
it commutes with colimits over ∆op

≤1, which we leave for the reader to verify.
{gens_animod}

Corollary A.7. Let R be a ring and k ∈ N. The ∞-category Fun(∆k,D(R)≥0) is
compact projectively generated. Moreover, a set of generators is given by {insi(R) |
i ∈ {0, . . . , k}}.

Proof. By [38, Corollary 7.1.4.15] and [38, Theorem 7.1.2.13] we have a canonical
equivalence Ani(D(R)♡) ∼= D(R)≥0. By Corollary A.5, it thus suffices to show
Ani(Fun(∆k,D(R)♡)) is compact projectively generated by the mentioned set of
generators. This follows by combining Lemma A.6 and Lemma 2.10.

{ani_adjoint_symmod}
Lemma A.8. Let R be a ring. There exists an adjunction

Fun(∆k,D(R)≥0) Fun(∆k,CAlgan
R )

SymR

forget

Moreover, forget is conservative, forget preserves sifted colimits, and the canonical
map π0 ◦ forget→ forget ◦ π0 is an equivalence.

Proof. We have an adjunction

D(R)♡ CAlg♡
R

SymR

forget

Since CAlg♡
R is cocomplete, the forgetful functor commutes with filtered colimits

and geometric realizations, D(R)♡ is 1-projectively generated (by Lemma A.6) and
forget is conservative, by [41, Corollary 2.3] there exists an adjunction

D(R)≥0 CAlgan
R

SymR

forget

for which forget is conservative, forget preserves filtered colimits and geometric
realizations, and the canonical map π0 ◦ forget→ forget ◦ π0 is an equivalence. By
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Lemma A.2 we obtain the desired adjunction (use [39, Corollary 5.1.2.3] to show
that the induced map forget again preserves sifted colimits).

{corol_comp_proj_gen_ani_ring}{corol_comp_proj_gen_ani_algr}
Corollary A.9. Let R be a ring and k ∈ N. The ∞-category Fun(∆k,CAlgan

R ) is
projectively generated. A set of generators is given by {insi(R[x]) | i ∈ {0, . . . , k}}.

Proof. We verify the conditions of Proposition A.1 for the adjunction given by
Lemma A.8 Note that CAlgan

R is cocomplete by definition, hence Fun(∆k,CAlgan
R )

is cocomplete by [39, Corollary 5.1.2.3]. Moreover, forget preserves filtered colimits
and geometric realizations by Lemma A.8, so condition 1 holds. By Corollary A.7
condition 2 hods, and by Lemma A.8 condition 3 holds. Thus all conditions are
satisfied and we may conclude by applying Proposition A.1.

{def_anipair}
Definition A.10. Let R be a ring and k ∈ N. Let C ∈ {D(R)♡,CAlg♡

R}. Define
Fun(∆k, C)surj ⊆ Fun(∆k, C) to be the full subcategory of all objects

(X0 → · · · → Xk) ∈ Fun(∆k, C)

for which the composition X0 → Xi is a surjective map in C for all i ∈ {0, . . . , k}.
We set

Fun(∆k,Ani(C))surj := Fun(∆k,Ani(C))×Fun(∆k,C) Fun(∆k, C)surj

Following [41], we write AniPairR := Fun(∆1,Ani(CAlg♡
R))surj.

Thus, an object of Fun(∆k,Ani(C))surj is specified by a diagram

X0 → X1 → · · · → Xk

of objects in Ani(C) such that π0(X0)→ π0(Xi) is surjective for all i. In particular,
an element of AniPairR is a morphism of animated rings A→ B such that π0(A)→
π0(B) is a surjective ring map.

We now want to find a set of compact projective generators for Fun(∆k,CAlgan
R )surj.

Definition A.11. Let C be an n-category, and let k ∈ N and i ∈ {0, . . . , k}. Define
the functor

coinsi : Fun(∆1, C)→ Fun(∆k, C)

(X → Y ) 7→

X → · · · → X︸ ︷︷ ︸
i+1 times

→ Y → · · · → Y︸ ︷︷ ︸
(k−i−1) times


{lem_comp_proj_gen_ab_surj}

Lemma A.12. Let R be a ring and k ∈ N. The ∞-category Fun(∆k,D(R)≥0)surj
is compact projectively generated. Moreover, a set of compact projective generators
is given by

{coinsi(R→ 0) | i ∈ {0, . . . , k}}
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Proof. One may construct an equivalence of categories

Fun(∆k,D(R)≥0) Fun(∆k,D(R)≥0)surj

(X0 → X1 → · · · → Xk) (Xk → (Xk/X0)→ . . . (Xk/Xk−1))

(fib(Y0 → Y1)→ · · · → fib(Y0 → Yk)→ Y0) (Y0 → · · · → Yk)

fibk

cofibk

It follows that {fibk(insi(0 → R)) | i ∈ {0, . . . , k}} is a set of compact pro-
jective generators for the category Fun(∆k,D(R)≥0)surj. The result follows as
fibk(insi(0→ R)) = coinsi(R→ 0).

{corol_gen_surj}
Corollary A.13. For R be a ring and k ∈ N, the ∞-category Fun(∆k,CAlgan

R )surj
is compact projectively generated. Moreover, a set of compact projective generators
is given by

{coinsi(R[x]→ R) | i ∈ {0, . . . , k}}
Proof. Restricting the adjunction in Lemma A.8, we obtain an adjunction

Fun(∆k,D(R)≥0)surj Fun(∆k,CAlgan
R )surj

SymR

forget

where forget is conservative and preserves filtered colimits and geometric realiza-
tions. Moreover, the subcategory Fun(∆k,CAlgan

R )surj ⊆ Fun(∆k,CAlgan
R ) is closed

under colimits (since π0 preserves colimits), hence Fun(∆k,CAlgan
R )surj is cocom-

plete. Finally Fun(∆k,D(R)≥0)surj is compact projectively generated by Lemma
A.12. The result follows by applying Proposition A.1.

{def_gen_surj}
Definition A.14. For R be a ring, we let Fun(∆k,PolyR)surj,gen be spanned by
coproducts of objects in the set

{coinsi(R[x]→ R) | i ∈ {0, . . . , k}}
as a full subcategory of the 1-category Fun(∆k,CAlg♡

R)surj.
{forget_colim}

Lemma A.15. Let R be a ring. The natural map

Fun(∆k,CAlgan
R )surj → Fun(∆k,CAlgan

R )
commutes with colimits.
Proof. Since the left hand side is a full subcategory of the right hand side, it suf-
fices to show it is closed under colimits. Since the functor π0 : Fun(∆k,CAlgan

R )→
Fun(∆k,CAlg♡

R) preserves colimits, it suffices to show Fun(∆k,CAlg♡
R)surj ⊆ Fun(∆k,CAlg♡

R)
is closed under colimits.

To see that it is closed under sifted colimits, note that the natural map CAlg♡
R →

D(R)♡ commutes with sifted colimits, hence it suffices to show Fun(∆k,D(R)♡)surj ⊆
Fun(∆k,D(R)♡) is closed under sifted colimits. This follows since it is closed under
all colimits, as the cofiber functor is a colimit, and hence commute with colimits.

Thus remains to show Fun(∆k,CAlg♡
R)surj ⊆ Fun(∆k,CAlg♡

R) is closed under
coproducts. To this end, we need to show that if A′ → A and B′ → B are surjective
maps, then the map A′⊗RB′ → A⊗RB is surjective. This follows since the tensor
product is right exact by [48, 00DF].
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A.2 Homological algebra in stable ∞-categories
Construction A.16. Let C be a stable ∞-category. Let A,B ∈ C. Then the fiber
functor [38, Definition 1.1.1.6, Remark 1.1.1.7]

fib: Fun(∆1, C)→ C

sends
(A 0−→ B[1]) 7→ A⊕B

We thus get a map

fib: π1(MapC(A,B[1]), 0)→ π0 MapC(A,B)

We will denote with θA,B the composition

π1(MapC(A,B[1]), 0) fib−→ π0 MapC(A⊕B,A⊕B) πB◦−◦ιA−−−−−−→ π0 MapC(A⊕B)

where ιA : A → A ⊕ B and πB : A ⊕ B → B are the canonical inclusion and
projection maps.

{bce}
Lemma A.17. Let C be a stable ∞-category, and let A,B ∈ C. Then the map

π1(MapC(A,B[1]), 0)→ π0 MapC(A⊕B)

induced by the equivalences

Ω MapC(A,B[1]), 0) ≃ MapC(A,ΩB[1])) ≃ MapC(A⊕B)

agrees with the map θA,B.

Proof. Denote with D the ∞-category Fun(∆1, C). Let x ∈ D be the element
corresponding to the map 0: A → B[1] in C. The natural morphism of simplicial
sets ∆1 → S1 induces a canonical map

s : Ω MapC(A,B[1])→ MapD(x, x)

Let a ∈ D be the element (A→ 0), and denote with b ∈ D the element (0→ B[1]).
Denote with f ∈ MapD(a, x) the element corresponding to the commutative square

A 0

A B[1]
id

0

and with g ∈ MapD(x, b) the element corresponding to the commutative square

A B[1]

0 B[1]

0

id
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We then get a natural map MapD(x, x)→ MapD(a, b), given by precomposing with
f and postcomposing with g. The universal property of the pullback square

B 0

0 B[1]

in C induces a canonical equivalence MapD(a, b) ≃ MapC(A,B). It is not too hard
to see that the composition

π1 MapC(A,B[1]) s−→ π0 MapD(x, x) g◦−◦f−−−−→ π0 MapD(a, b) ≃ MapC(A,B)

is equal to the composition

π1 MapC(A,B[1]), 0) ≃ π0 MapC(A,ΩB[1])) ≃ π0 MapC(A,B)

Since the fiber functor fib: D → C sends f 7→ ιA and g 7→ πB , the result follows.

A.3 Homological algebra in symmetric monoidal stable ∞-
categories

In this section we record some results on tensor products of fiber sequences in
stable ∞-categories. These result are well-known in the triangulated setting, see
for example [43].

{lem_fib_stable_infty}
Lemma A.18. Let C⊗ be a symmetric monoidal stable ∞-category for which the
tensor product preserves finite limits in each variable. Let

A1 → A2 → A3

B1 → B2 → B3

be fiber sequences in C. Write Eij := Ai ⊗Bj. Then the canonical map

E11 → fib(E22 → (E23 ×E33 E32))

is an equivalence.

Proof. Consider the diagram

E22 E23

E32 E33

E32 E32

Since limits commute with limits, we may identify the fiber of the vertical pullbacks
with the vertical pullback of the fibers of the horzontal arrows. As the first is equal
to E11 and the second to fib(E22→ E23 ×E33 E32), the result follows.
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Similarly, we have the dual statement.
{lem_fib_stable_infty_dual}

Lemma A.19. Let C⊗ be a symmetric monoidal stable ∞-category, and let

A1 → A2 → A3

B1 → B2 → B3

be fiber sequences in C. Write Eij := Ai ⊗Bj. Then the canonical map

cofib(E12 ∪E11 E21 → E22)→ E11

is an equivalence.

Proof. Dual to Lemma A.18.

The following result essentially summarizes all of the homological algebra con-
structions in [43].

{lem_complicated_square}
Lemma A.20. Let C⊗ be a symmetric monoidal stable ∞-category for which the
tensor product preserves finite limits in each variable. Let

A1 → A2 → A3

B1 → B2 → B3

be fiber sequences in C. Write Eij := Ai ⊗ Bj. Then there exists a commutative
diagram

E11 E21

E12 E12 ∪E11 E21 E22

E13 E13 ⊕ E31 E23 ×E33 E32 E23

0 E31 E32 E33

in which all squares are pullback (thus pushout) squares, and all maps are the
canonical ones.

Proof. Taking the coproduct of the squares

E11 E21 0 0

0 E31 E13 E31

we obtain the pullback (thus pushout) square

E11 E21

E13 E13 ⊕ E31
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and thus by functiorality of pushouts a commutative diagram

E11 E21

E12 E12 ∪E11 E21

E13 E13 ⊕ E31

By Lemma A.18 there exists a pullback (thus pushout) square

E12 E22

E13 E23 ×E33 E32

hence again by functoriality of pushouts we get an induced diagram

E11 E21

E12 E12 ∪E11 E21 E22

E13 E13 ⊕ E31 E23 ×E33 E32

The two bottom-right pullback (thus pushout) squares of the final diagram are con-
structed dually to the construction of the two upper-right pullback (thus pushout)
squares, the final square is then obvious.

{lem_homotopy_pushout_123}
Lemma A.21. Let C⊗ be a symmetric monoidal stable ∞-category for which the
tensor product preserves finite limits in each variable. Let

A1 → A2 → A3

B1 → B2 → B3

be fiber sequences in C. Write Eij := Ai ⊗ Bj. Suppose T ∈ C is any object, and
we are given a diagram

E11 E12

E21 E22

E31 T
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in C. Then there exists an extension to a commutative diagram

E21 E22

E31 E31 ×E33 E32

T

in C.

Proof. Consider the diagram

E11 E21 E22

0 E31 E31 ×E33 E32

T

Clearly the left square is a pullback (thus pushout) square, and the rectangle is a
pullback (thus pushout) square by Lemma A.18. Thus the right square is a pushout
square, which yields the result.

A.4 Notes on trace maps
{haa}

Definition A.22 (Dualizable object). Let C⊗ be a symmetric monoidal∞-category
with unit object O, and let E ∈ C. We say that E is dualizable if there exists an
object E∨ ∈ C and maps

ev : E ⊗ E∨ → O
coev : O → E∨ ⊗ E

such that the compositions

E∨ ≃ O ⊗ E∨ coev⊗id−−−−−→ E∨ ⊗ E ⊗ E∨ id ⊗ev−−−−→ E∨ ⊗O ≃ E∨

E ≃ E ⊗O id ⊗coev−−−−−→ E ⊗ E∨ ⊗ E ev⊗id−−−−→ O ⊗ E ≃ E

are homotopic to the identity. A dualizable object is said to be invertible if the
evaluation and coevaulation maps are isomorphisms.

For any dualizable object E and any map E ⊗M → E ⊗N we may consider its
trace M → N , see Definition 7.12. We give some general properties of this trace
map.
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{lem_atiyah_threea}
Lemma A.23. Let C⊗ be a symmetric monoidal ∞-category with unit object O,
and let L be an invertible object of C. For any three objects M,N,K ∈ C and any
two maps

α : L ⊗O M → L⊗O N

β : L ⊗O N → L⊗O K

we have tr(β ◦ α) = tr(β) ◦ tr(α).
Proof. Since L is invertible, the composition

L∨ ⊗ L ev−→ O coev−−−→ L∨ ⊗ L

is the identity map. Thus

tr(β) ◦ tr(α) = (ev⊗K) ◦ (L∨ ⊗ β) ◦ (coev⊗N) ◦ (ev⊗N) ◦ (L∨ ⊗ α) ◦ (coev⊗M)
= (ev⊗K) ◦ (L∨ ⊗ β) ◦ (L∨ ⊗ α) ◦ (coev⊗M)
= tr(β ◦ α)

as required.
{prop_add_traces}

Proposition A.24 (Additivity of traces). Let C⊗ be a symmetric monoidal stable
∞-category. Suppose

X Y Z
+1

is a fiber sequence in C of dualizable objects. Given a commutative diagram

M ⊗X M ⊗ Y M ⊗ Z

N ⊗X N ⊗ Y N ⊗ Z

f g

+1

h

+1

in which the lower and upper fiber sequence are obtained by tensoring the original
fiber sequence, one has

trX(f) + trZ(h) = trY (g)
in π0HomC(M,N).
Proof. Essentially due to [43]. Write

V := (X ⊗ Y ∨) ∪(X⊗Z∨) Y ⊗ Z∨

W := (Z ⊗ Y ∨)×(Z⊗X∨) X ⊗ Z∨

Some calculations with adjoints yields a commutative diagram

X ⊗ Z∨ X ⊗ Y ∨ X ⊗X∨

Y ⊗ Z∨ Y ⊗ Y ∨

Z ⊗ Z∨
1

ev

ev

ev

129



so by applying Lemma A.21 and its symmetric twin we obtain a commutative
diagram

Y ⊗ Y ∨ X ⊗X∨

Z ⊗ Z∨ W

1

ev

ev

such that the composition
Y ⊗ Y ∨ →W → 1

is homotopic to the evaluation map. Tensoring this diagram with N and the dual
of this diagram (involving coevaluations) with M , using the construction of the
middle square from Lemma A.20 and functoriality of pushouts (twice), we obtain
a commutative diagram

M

(M ⊗X ⊗X∨)⊕ (M ⊗ Z ⊗ Z∨) M ⊗ V M ⊗ (Y ⊗ Y ∨)

M ⊗W

(N ⊗X ⊗X∨)⊕ (M ⊗ Z ⊗ Z∨) N ⊗W N ⊗ (Y ⊗ Y ∨)

N

(M⊗coev,M⊗coev) M⊗coev

(f⊗X∨,h⊗Z∨) g⊗Y ∨

(N⊗ev,N⊗ev) N⊗ev

The result follows by comparing the outer compositions.
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