The Fundamental Group of Abelian Varieties

Renjie Lyu

Contents

1 Tate Modules \hfill 1
2 The Fundamental Group of An Abelian Variety \hfill 2
3 Application \hfill 4

1 Tate Modules

Let \(A \) be a \(g \)-dimensional abelian variety over a field \(k \). Let \(\ell \) be a prime number different from \(\text{char}(k) \). Denote by \(k_s \) the separable closure of the field \(k \). For any nonnegative integer \(n \), we set a group

\[
A[\ell^n](k_s) := \text{Hom}(\mathbb{Z}/\ell^n\mathbb{Z}, A(k_s)).
\]

equipped with a natural Galois action by the absolute Galois group \(\text{Gal}(k_s/k) \). Hence, \(A[\ell^n](k_s) \) is the group of the \(\ell^n \)-torsion points in the group \(A(k_s) \) of \(k_s \)-points of \(A \). The multiplication by \(\ell \) morphism on \(A \) induces a homomorphism of groups

\[
\ell : A[\ell^{n+1}](k_s) \to A[\ell^n](k_s)
\]

which is \(\text{Gal}(k_s/k) \)-equivariant. Note that with these homomorphisms the collection \(\{A[\ell^n](k_s)\} \) forms a projective system of abelian groups with \(\text{Gal}(k_s/k) \)-action.

Definition 1.1. Let \(A \) be a \(g \)-dimensional abelian variety over a field \(k \), let \(k \subset k_s \) be a separable closure of the field \(k \), and let \(\ell \) be a prime number different from \(\text{char}(k) \). We define the Tate module \(T_\ell A \) of \(A \) to be

\[
T_\ell A = \varprojlim_{n \in \mathbb{Z}_{\geq 0}} \{A[\ell^n](k_s)\}.
\]

If \(\text{char}(k) = p > 0 \) then we define the Tate-\(p \)-module \(T_{p,\text{ét}} A \) to be

\[
T_{p,\text{ét}} A := \varprojlim_{n \in \mathbb{Z}_{\geq 0}} \{A[p^n](\bar{k})\}
\]

where the homomorphisms are multiplication by \(p \) and \(\bar{k} \) is the algebraic closure of the field \(k \).
2 The Fundamental Group of An Abelian Variety

Theorem 2.1 (Lang-Serre). Let X be an abelian variety over a field k with an identity $e_X \in X(k)$. Assume that Y is a complete variety over the field k with a k-point $e_Y \in Y(k)$. If $f : Y \to X$ is an étale covering with $f(e_Y) = e_X$ then Y has the structure of an abelian variety such that the morphism f is a separable isogeny.

In order to prove this theorem we need the following two lemmas.

Lemma 2.2. Let X be a complete variety over a field k. Suppose given a k-point $e \in X(k)$ and a k-morphism $m : X \times X \to X$ such that $m(x, e) = x = m(e, x)$ for all $x \in X$. Then X is an abelian variety with group law m and the identity point e.

Proof. See [EvdGM, Chapter X, Proposition 10.34].

Lemma 2.3. Let Z be a k-variety, let Y be an integral k-scheme of finite type, and let $f : Y \to Z$ be a smooth proper morphism of k-schemes. If there exists a section $s : Z \to Y$ of the morphism f then all fibres of f are irreducible.

Proof. See [EvdGM, Chapter X, Lemma 10.35]

Proof of Theorem 2.1. By the Lemma 2.2, it suffices to construct a group law $m_Y : Y \times Y \to Y$. Let $\Gamma_X \subset X \times X \times X$ be the graph of the multiplication $m_X : X \times X \to X$, and let Γ'_Y be the pullback of Γ_X via the morphism $f \times f : Y \times Y \times Y \to X \times X \times X$.

We write $\Gamma_Y \subset \Gamma'_Y$ for the connected component containing the point (e_Y, e_Y, e_Y). In the following, we show that the projection $q_{12} : \Gamma_Y \to Y \times Y$ from Γ_Y to the first two factors is an isomorphism. In particular, we can define the desired group law by taking $m_Y := q_3 \circ q_{12}^{-1}$, where q_3 is the projection to the third factor.

There is a natural commutative diagram

\[
\begin{array}{ccc}
\Gamma_Y & \xrightarrow{q_{12}} & Y \times Y \\
\downarrow & & \downarrow f \times f \\
\Gamma_X & \xrightarrow{p_{12}} & X \times X.
\end{array}
\]

Recall that the graph Γ'_Y is étale over Γ_X and the connected component Γ_Y is an open subset of Γ_Y, which implies that the left hand arrow is étale. Further, it follows that the morphism q_{12} is étale since the bottom arrow is an isomorphism and $f \times f$ is étale. We claim that the finite étale morphism q_{12} is an isomorphism. In fact, let $q_2 : \Gamma_Y \to Y$ be the composition of q_{12} and the projection $p_2 : Y \times Y \to Y$ to the second factor. We have a section of the morphism q_2 induced by the identification $e_Y \times Y \sim Y \times Y$.

2
and the section \(s_1(e_Y, y) = (e_Y, y, y) \) of \(q_{12} \) over \(e_Y \times Y \) (Note that \(s_1 \) is a section that maps into \(\Gamma'_Y \) and the image \(s_1(e_Y \times Y) \cap \Gamma_Y \neq \emptyset \). Thus it is contained in \(\Gamma_Y \)). It follows from the Lemma 2.3 that any fiber of the morphism \(q_{12} \) is irreducible. We define \(Z := q_{12}^{-1}(e_Y) = q_{12}^{-1}(Y \times e_Y) \) the irreducible fiber of \(q_{12} \) over the origin \(e_Y \). Then it induces the pullback \(r : Z \rightarrow Y \times e_Y \) of the morphism \(q_{12} \), which is an finite etale morphism with the same degree of \(q_{12} \). On the other hand, we have a section \(s_2(y, e_Y) = (y, e_Y, y) \) of the morphism \(r \). It follows that \(r \) is an isomorphism and we conclude that \(q_{12} \) is an isomorphism too.

Definition 2.4. (Grothendieck) Let \(X \) be a scheme. Fix an algebraically closed field \(\Omega \) and a geometric point \(\bar{x} \). We define a functor

\[
F_{\bar{x}} : \text{F}_{\text{Et}/X} \rightarrow \text{Sets}
\]

from the category of finite étale morphisms over \(X \) to the category of sets by giving

\[
F_{\bar{x}}(f : Y \rightarrow X) = \{ y \in Y(\Omega) \mid f(y) = \bar{x} \}.
\]

In particular, assume that \(X \) is a connected locally noetherian scheme with a geometric point \(\bar{x} \). Then the étale fundamental group \(\pi_1^{\text{ét}}(X, \bar{x}) \) is defined to be the automorphism group of the functor \(F_{\bar{x}} \).

Theorem 2.5. (Grothendieck) Assume that \(X \) is a connected locally noetherian scheme with a geometric point \(\bar{x} \). Then \(\pi_1 := \pi_1^{\text{ét}}(X, \bar{x}) \) is a pro-finite group, and the functor \(F_{\bar{x}} \) induces an equivalence of categories

\[
\text{F}_{\text{Et}/X} \overset{\text{eq}}{\longrightarrow} \left(\text{finite } \pi_1 - \text{sets} \right)
\]

Corollary 2.6. Let \(A \) be an abelian variety over the field \(k \) with the origin \(e \in A(k) \), and let \(k_s \) be a separable closure of the field \(k \). Regard \(e \) as a geometric point, i.e., there is an algebraically closed field \(\Omega \) including \(k \). Then we have the canonical isomorphisms

\[
\pi_1^{\text{ét}}(A_{k_s}, e) \simeq \left\{ \begin{array}{ll}
\prod_{\ell} T_{\ell}A & \text{if } \text{char}(k) = 0, \\
T_{p,\text{ét}}A \times \prod_{\ell \neq p} T_{\ell}A & \text{if } \text{char}(k) = p > 0,
\end{array} \right.
\]

where the projective limit run over all maps \(A[nm](k_s) \rightarrow A[n](k_s) \) given by multiplication by \(m \), and where \(\ell \) runs over the prime numbers. Further, there exists a canonical isomorphism

\[
\pi_1^{\text{ét}}(A, e) \simeq \pi_1^{\text{ét}}(A_{k_s}, e) \rtimes \text{Gal}(k_s/k),
\]

where the Galois group acts on \(\pi_1^{\text{ét}}(A_{k_s}, e) \) through the action on the projective system \(\{ A[n](k_s) \}_{n \in \mathbb{Z}} \).

Proof. For simplicity, we denote by \(\pi = \pi_1^{\text{ét}}(X, \bar{x}) \) the étale fundamental group for any scheme \(X \) with a geometric point \(\bar{x} \). By the Theorem 2.5, we have

\[
\pi_1^{\text{ét}}(A_{k_s}, e) = \lim_{\text{proj}}(\pi/H)
\]
for all open subgroups, i.e., closed subgroups with finite index. It follows from the equivalence of categories in the Theorem 2.5 that each open subgroup \(H \) associates to an \(\acute{e}tale \) covering \(f_H : Y_H \to X \). By the Theorem of Lang-Serre, the \(k \)-variety \(Y_H \) is an abelian variety and \(f_H \) is a separable isogeny. Therefore, by [EvdGM, Proposition 5.6], it follows that the kernel \(\text{Ker}(f_H) \) is an \(\acute{e}tale \) \(k \)-group scheme and

\[
Y_H / \text{Ker}(f_H) \cong X.
\]

In particular, a separable isogeny is a Galois covering [EvdGM, Galois Covering 10.33]. Denote by \(I \) the set of isomorphism classes of separable isogenies \(f : Y \to X \) over \(X \). Two isogenies \(f : Y \to X \) and \(f' : Y' \to X \) are isomorphic if there exists an isomorphism of abelian varieties \(\alpha : Y \to Y' \) such that \(f' \circ \alpha = f \). We give a partial order on \(I \) by dominance. We say \(f \) dominates \(f' \), denote by \(f \geq f' \) if there exists a homomorphism of abelian varieties \(h : Y \to Y' \) such that \(f' \circ h = f \). In particular, the induced homomorphism of group schemes \(\text{Ker}(f) \to \text{Ker}(f') \) gives a projective system \(\{ \text{Ker}(f)(k_s) \}_{f \in I} \). It follows that

\[
\pi \simeq \lim_{\leftarrow \atop {f \in I}} \{ \text{Ker}(f)(k_s) \}.
\]

If \(n \) is a positive integer then \([n]_X : X \to X \) factors as

\[
X \xrightarrow{f} X/[n]_{\text{loc}} \xrightarrow{g} X
\]

where \(f \) is purely inseparable and \(g \) is separable. Here, the local group scheme \(X[n]_{\text{loc}} \) is the identity component of kernel \(X[n] \), which fits into a short exact sequence of group schemes

\[
1 \to X[n]_{\text{loc}} \to X[n] \to X[n]_{\text{et}} \to 1
\]

see [EvdGM, Proposition 4.45]. If \(\text{char}(k) = 0 \) or \(\text{char}(k) = p > 0 \) and \(p \nmid n \) then \(X[n]_{\text{loc}} = \{ \text{id} \} \) and \([n]_X \) is separable. For the rest of the proof, we write \(g = [n]_{\text{sep}} \). Let \(I' \subset I \) be the subsets of isogenies \([n]_{\text{sep}}\) for \(n \in \mathbb{Z}_{\geq 1} \). Then \(I' \) is cofinal in \(I \), in fact, if \(f : Y \to X \) is a separable isogeny of degree \(d \), then there exist an isogeny \(g : X \to Y \) such that \(f \circ g = [d]_X \). It follows from [EvdGM, Corollary 5.8] that \([d]_{\text{sep}}\) dominates \(f \). Therefore, we have

\[
\pi \simeq \lim_{\rightarrow \atop {f \in I'}} \{ \text{Ker}(f)(k_s) \} = \lim_{\leftarrow \atop {n}} X[n](k_s).
\]

\[\square\]

3 Application

In this section, we show a fundamental relation between the \(\ell \)-adic cohomology of an abelian variety \(A \) and its Tate module \(T_\ell A \).

Proposition 3.1. Let \(A \) be an abelian variety over a field \(k \), and let \(k \subset k_s \) be a separable algebraic closure. Assume that \(\ell \) is a prime number with \(\ell \neq \text{char}(k) \). Then we have

\[
H^1(A_{k_s}, \mathbb{Z}_\ell) \simeq \text{Hom}(T_\ell A, \mathbb{Z}_\ell)
\]

4
as \mathbb{Z}_ℓ-modules with continuous action of $\text{Gal}(k_s/k)$.

Proof. In general, if X is a complete variety over the k with a geometric point \bar{x}, then there is an isomorphism

$$H^1(X_{k_s}, \mathbb{Z}_\ell) \cong \text{Hom}_{\text{cont}}(\pi_1^{\text{et}}(X_{k_s}, \bar{x}), \mathbb{Z}_\ell)$$

where $\text{Hom}_{\text{cont}}(,)$ means the continuous group homomorphisms. For the details, see Milne’s online notes [Mil80, Example 11.4]. Then the homomorphism

$$\text{Gal}(k_s/k) \to \text{Out}(\pi_1^{\text{et}}(X_{k_s}, \bar{x}))$$

induces a homomorphism

$$\text{Gal}(k_s/k) \to \text{Aut}(\pi_1^{\text{et}}(X_{k_s}, \bar{x})^{\text{ab}}).$$

It gives a continuous Galois action on $\text{Hom}_{\text{cont}}(\pi_1^{\text{et}}(X_{k_s}, \bar{x})^{\text{ab}}, \mathbb{Z}_\ell)$. In our case, it follows that

$$H^1(A_{k_s}, \mathbb{Z}_\ell) \cong \text{Hom}_{\text{cont}}(\pi_1^{\text{et}}(A_{k_s}, e)^{\text{ab}}, \mathbb{Z}_\ell) = \text{Hom}(\prod_\ell T_\ell A, \mathbb{Z}_\ell) = \text{Hom}(T_\ell A, \mathbb{Z}_\ell)$$

since the étale fundamental group $\pi_1^{\text{et}}(A_{k_s}, e) = \prod_\ell T_\ell A$ is abelian and a group homomorphism $\mathbb{Z}_{\ell'} \to \mathbb{Z}_\ell$ is trivial if $\ell' \neq \ell$. \qed

References
