
Unsupervised Methods for Head Assignments

Federico Sangati, Willem Zuidema
Institute for Logic, Language and Computation

University of Amsterdam, the Netherlands
{f.sangati,zuidema}@uva.nl

Abstract
We present several algorithms for assign-
ing heads in phrase structure trees, based
on different linguistic intuitions on the role
of heads in natural language syntax. Start-
ing point of our approach is the obser-
vation that a head-annotated treebank de-
fines a unique lexicalized tree substitution
grammar. This allows us to go back and
forth between the two representations, and
define objective functions for the unsu-
pervised learning of head assignments in
terms of features of the implicit lexical-
ized tree grammars. We evaluate algo-
rithms based on the match with gold stan-
dard head-annotations, and the compar-
ative parsing accuracy of the lexicalized
grammars they give rise to. On the first
task, we approach the accuracy of hand-
designed heuristics for English and inter-
annotation-standard agreement for Ger-
man. On the second task, the implied lex-
icalized grammars score 4% points higher
on parsing accuracy than lexicalized gram-
mars derived by commonly used heuris-
tics.

1 Introduction

The head of a phrasal constituent is a central
concept in most current grammatical theories and
many syntax-based NLP techniques. The term is
used to mark, for any nonterminal node in a syn-
tactic tree, the specific daughter node that fulfills
a special role; however, theories and applications
differ widely in what that special role is supposed
to be. In descriptive grammatical theories, the
role of the head can range from the determinant of
agreement or the locus of inflections, to the gover-
nor that selects the morphological form of its sis-
ter nodes or the constituent that is distributionally
equivalent to its parent (Corbett et al., 2006).

In computational linguistics, heads mainly
serve to select the lexical content on which the
probability of a production should depend (Char-
niak, 1997; Collins, 1999). With the increased
popularity of dependency parsing, head annota-
tions have also become a crucial level of syntac-
tic information for transforming constituency tree-
banks to dependency structures (Nivre et al., 2007)
or richer syntactic representations (e.g., Hocken-
maier and Steedman, 2007).

For the WSJ-section of the Penn Treebank, a set
of heuristic rules for assigning heads has emerged
from the work of (Magerman, 1995) and (Collins,
1999) that has been employed in a wide variety of
studies and proven extremely useful, even in rather
different applications from what the rules were
originally intended for. However, the rules are
specific to English and the treebank’s syntactic an-
notation, and do not offer much insights into how
headedness can be learned in principle or in prac-
tice. Moreover, the rules are heuristic and might
still leave room for improvement with respect to
recovering linguistic head assignment even on the
Penn WSJ corpus; in fact, we find that the head-
assignments according to the Magerman-Collins
rules correspond only in 85% of the cases to de-
pendencies such as annotated in PARC 700 De-
pendency Bank (see section 5).

Automatic methods for identifying heads are
therefore of interest, both for practical and more
fundamental linguistic reasons. In this paper we
investigate possible ways of finding heads based
on lexicalized tree structures that can be extracted
from an available treebank. The starting point
of our approach is the observation that a head-
annotated treebank (obeying the constraint that ev-
ery nonterminal node has exactly one daughter
marked as head) defines a unique lexicalized tree
substitution grammar (obeying the constraint that
every elementary tree has exactly one lexical an-
chor). This allows us to go back and forth between

the two representations, and define objective func-
tions for the unsupervised learning of head assign-
ments in terms of features of the implicit Lexical-
ized Tree Substitution Grammars.

Using this grammar formalism (LTSGs) we will
investigate which objective functions we should
optimize for recovering heads. Should we try to
reduce uncertainty about the grammatical frames
that can be associated with a particular lexical
item? Or should we assume that linguistic head
assignments are based on the occurrence frequen-
cies of the productive units they imply?

We present two new algorithms for unsuper-
vised recovering of heads – entropy minimization
and a greedy technique we call “familiarity max-
imization” – that can be seen as ways to opera-
tionalize these last two linguistic intuitions. Both
algorithms are unsupervised, in the sense that they
are trained on data without head annotations, but
both take labeled phrase-structure trees as input.

Our work fits well with several recent ap-
proaches aimed at completely unsupervised learn-
ing of the key aspects of syntactic structure: lex-
ical categories (Schütze, 1993), phrase-structure
(Klein and Manning, 2002; Seginer, 2007),
phrasal categories (Borensztajn and Zuidema,
2007; Reichart and Rappoport, 2008) and depen-
dencies (Klein and Manning, 2004).

For the specific task addressed in this paper –
assigning heads in treebanks – we only know of
one earlier paper: Chiang and Bikel (2002). These
authors investigated a technique for identifying
heads in constituency trees based on maximiz-
ing likelihood, using EM, under a Tree Insertion
Grammar (TIG)model1. In this approach, headed-
ness in some sense becomes a state-split, allowing
for grammars that more closely match empirical
distributions over trees. The authors report some-
what disappointing results, however: the automat-
ically induced head-annotations do not lead to sig-
nificantly more accurate parsers than simple left-
most or rightmost head assignment schemes2.

In section 2 we define the grammar model we
will use. In section 3 we describe the head-
assignment algorithms. In section 4, 5 and 6 we

1The space over the possible head assignments that these
authors consider – essentially regular expressions over CFG
rules – is more restricted than in the current work where we
consider a larger “domain of locality”.

2However, the authors’ approach of using EM for induc-
ing latent information in treebanks has led to extremely ac-
curate constituency parsers, that neither make use of nor pro-
duce headedness information; see (Petrov et al., 2006)

then describe our evaluations of these algorithms.

2 Lexicalized Tree Grammars

In this section we define Lexicalised Tree Substi-
tution Grammars (LTSGs) and show how they can
be read off unambiguously from a head-annotated
treebank. LTSGs are best defined as a restriction
of the more general Probabilistic Tree Substitution
Grammars, which we describe first.

2.1 Tree Substitution Grammars

A tree substitution grammar (TSG) is a 4-tuple
〈Vn, Vt, S, T 〉 where Vn is the set of nonterminals;
Vt is the set of of terminals; S ∈ Vn is the start
symbol; and T is the set of elementary trees, hav-
ing root and internal nodes in Vn and leaf nodes in
Vn∪Vt. Two elementary trees α and β can be com-
bined by means of the substitution operation α ◦β
to produce a new tree, only if the root of β has the
same label of the leftmost nonterminal leaf of α.
The combined tree corresponds to α with the left-
most nonterminal leaf replaced with β. When the
tree resulting from a series of substitution opera-
tions is a complete parse tree, i.e. the root is the
start symbol and all leaf nodes are terminals, we
define the sequence of the elementary trees used
as a complete derivation.

A probabilistic TSG defines a probabilistic
space over the set of elementary trees: for every
τ ∈ T , P (τ) ∈ [0, 1] and

∑
τ ′:r(τ ′)=r(τ) P (τ ′) =

1, where r(τ) returns the root node of τ . Assum-
ing subsequent substitutions are stochastically in-
dependent, we define the probability of a deriva-
tion as the product of the probability of its elemen-
tary trees. If a derivation d consists of n elemen-
tary trees τ1 ◦ τ2 ◦ . . . ◦ τn, we have:

P (d) =
n∏
i=1

P (τi) (1)

Depending on the set T of elementary trees, we
might have different derivations producing the
same parse tree. For any given parse tree t, we
define δ(t) as the set of its derivations licensed by
the grammar. Since any derivation d ∈ δ(t) is a
possible way to construct the parse tree, we will
compute the probability of a parse tree as the sum
of the probabilities of its derivations:

P (t) =
∑
d∈δ(t)

∏
τ∈d

P (τ) (2)

Lexicalized Tree Substitution Grammars are de-
fined as TSGs with the following contraint on the
set of elementary trees T : every τ in T must have
at least one terminal (the lexical anchor) among
its leaf nodes. In this paper, we are only con-
cerned with single-anchored LTSGs, in which all
elementary trees have exactly one lexical anchor.
Like TSGs, LTSGs have a weak generative ca-
pacity that is context-free; but whereas PTSGs are
both probabilistically and in terms of strong gen-
erative capacity richer than PCFGs (Bod, 1998),
LTSG are more restricted (Joshi and Schabes,
1991). This limits the usefulness of LTSGs for
modeling the full complexity of natural language
syntax; however, computationally, LTSGs have
many advantages over richer formalisms and for
the current purposes represent a useful compro-
mise between linguistic adequacy and computa-
tional complexity.

2.2 Extracting LTSGs from a head-annotated
corpus

In this section we will describe a method for as-
signing to each word token that occurs in the cor-
pus a unique elementary tree. This method de-
pends on the annotation of heads in the treebank,
such as for instance provided for the Penn Tree-
bank by the Magerman-Collins head-percolation
rules. We adopt the same constraint as used in this
scheme, that each nonterminal node in every parse
tree must have exactly one of its children anno-
tated as head. Our method is similar to (Chiang,
2000), but is even simpler in ignoring the distinc-
tion between arguments and adjuncts (and thus the
sister-adjunction operation). Figure 1 shows an
example parse tree enriched with head-annotation:
the suffix -H indicates that the specific node is the
head of the production above it.

S

NP

NNP

Ms.

NNP-H

Haag

VP-H

V-H

plays

NP

NNP-H

Elianti

Figure 1: Parse tree of the sentence “Ms. Haag
plays Elianti” annotated with head markers.

Once a parse tree is annotated with head mark-
ers in such a manner, we will be able to extract
for every leaf its spine. Starting from each lexical
production we need to move upwards towards the
root on a path of head-marked nodes until we find
the first internal node which is not marked as head
or until we reach the root of the tree. In the ex-
ample above, the verb of the sentence “plays” is
connected through head-marked nodes to the root
of the tree. In this way we can extract the 4 spines
from the parse tree in figure 1, as shown in fig-
ure 2.

NNP

Ms.

NP

NNP-H

Haag

S-H

VP-H

V-H

plays

NP

NNP-H

Elianti

Figure 2: The lexical spines of the tree in fig. 1.

It is easy to show that this procedure yields a
unique spine for each of its leaves, when applied
to a parse tree where all nonterminals have a single
head-daughter and all terminals are generated by a
unary production. Having identified the spines, we
convert them to elementary trees, by completing
every internal node with the other daughter nodes
not on the spine. In this way we have defined a
way to obtain a derivation of any parse tree com-
posed of lexical elementary trees. The 4 elemen-
tary trees completed from the previous paths are in
figure 3 with the substitution sites marked with ⇓.

NNP

Ms.

NP

NNP⇓ NNP-H

Haag

S-H

NP⇓ VP-H

V-H

plays

NP⇓

NP

NNP-H

Elianti

Figure 3: The extracted elementary trees.

3 Head Assignment Algorithms

We investigate two novel approaches to automat-
ically assign head dependencies to a training cor-
pus where the heads are not annotated: entropy
minimization and familiarity maximization. The
baselines for our experiments will be given by the
Magerman and Collins scheme together with the
random, the leftmost daughter, and the rightmost
daughter-based assignments.

3.1 Baselines
The Magerman-Collins scheme, and very similar
versions, are well-known and described in detail
elsewhere (Magerman, 1995; Collins, 1999; Ya-
mada and Matsumoto, 2003); here we just men-
tion that it is based on a number of heuristic rules
that only use the labels of nonterminal nodes and
the ordering of daughter nodes. For instance if the
root label of a parse tree is S, the head-percolation
scheme will choose to assign the head marker to
the first daughter from the left, labeled with TO.
If no such label is present, it will look for the first
IN. If no IN is found, it will look for the first VP,
and so on. We used the freely available software
“Treep” (Chiang and Bikel, 2002) to annotate the
Penn WSJ treebank with heads.

We consider three other baselines, that are ap-
plicable to other treebanks and other languages as
well: RANDOM, where, for every node in the tree-
bank, we choose a random daughter to be marked
as head; LEFT, where the leftmost daughter is
marked; and RIGHT, where the rightmost daughter
is marked.

3.2 Minimizing Entropy
In this section we will describe an entropy based
algorithm, which aims at learning the simplest
grammar fitting the data. Specifically, we take a
“supertagging” perspective (Bangalore and Joshi,
1999) and aim at reducing the uncertainty about
which elementary tree (supertag) to assign to a
given lexical item. We achieve this by minimizing
an objective function based on the general defini-
tion of entropy in information theory.

The entropy measure that we are going to de-
scribe is calculated from the bag of lexicalized el-
ementary trees T extracted from a given training
corpus of head annotated parse trees. We define
Tl as a discrete stochastic variable, taking as val-
ues the elements from the set of all the elementary
trees having l as lexical anchor {τl1 , τl2 , . . . , τln}.
Tl thus takes n possible values with specific prob-
abilities; its entropy is then defined as:

H(Tl) = −
n∑
i=1

p(τli) log2 p(τli) (3)

The most intuitive way to assign probabilities to
each elementary tree is considering its relative fre-
quency in T . If f(τ) is the frequency of the frag-
ment τ and f(l) is the total frequency of fragments
with l as anchor we will have:

p(τlj) =
f(τlj)

f(lex(τlj))
=

f(τlj)
n∑
i=1

f(τli))

(4)

We will then calculate the entropy H(T) of our
bag of elementary trees by summing the entropy of
each single discrete stochastic variable Tl for each
choice of l:

H(T) =
|L |∑
l=1

H(Tl) (5)

In order to minimize the entropy, we apply a
hill-climbing strategy. The algorithm starts from
an already annotated tree-bank (for instance using
the RANDOM annotator) and iteratively tries out
a random change in the annotation of each parse
tree. Only if the change reduces the entropy of the
entire grammar it is kept. These steps are repeated
until no further modification which could reduce
the entropy is possible. Since the entropy measure
is defined as the sum of the function p(τ) log2 p(τ)
of each fragment τ , we do not need to re-calculate
the entropy of the entire grammar, when modify-
ing the annotation of a single parse tree. In fact:

H(T) = −
|L |∑
l=1

n∑
i=1

p(τli) log2 p(τli)

= −
|T |∑
j=1

p(τj) log2 p(τj)

(6)

For each input parse tree under consideration,
the algorithm selects a non-terminal node and tries
to change the head annotation from its current
head-daughter to a different one. As an example,
considering the parse tree of figure 1 and the inter-
nal node NP (the leftmost one), we try to annotate
its leftmost daughter as the new head. When con-
sidering the changes that this modification brings
on the set of the elementary trees T , we understand
that there are only 4 elementary trees affected, as
shown in figure 4.

After making the change in the head annotation,
we just need to decrease the frequencies of the old
trees by one unit, and increase the ones of the new
trees by one unit. The change in the entropy of our
grammar can therefore be computed by calculat-
ing the change in the partial entropy of these four

NP

NNP NNP

Haag

NNP

Ms.

NP

NNP

Ms.

NNP

NNP

Haag

τh τd τ ′h τ ′d

Figure 4: Lexical trees considered in the EN-
TROPY algorithm when changing the head ass-
ingnment from the second NNP to the first NNP
of the leftmost NP node of figure 1. τh is the old
head tree; τd the old dependent tree; τ ′d the new
dependent tree; τ ′h the new head tree.

elementary trees before and after the change. If
such change results in a lower entropy of the gram-
mar, the new annotation is kept, otherwise we go
back to the previous annotation. Although there is
no guarantee our algorithm finds the global min-
imum, it is very efficient and succeeds in drasti-
cally minimize the entropy from a random anno-
tated corpus.

3.3 Maximizing Familiarity
The main intuition behind our second method is
that we like to assign heads to a tree t in such
a way that the elementary trees that we can ex-
tract from t are frequently observed in other trees
as well. That is, we like to use elementary trees
which are general enough to occur in many possi-
ble constructions.

We start with building the bag of all one-anchor
lexicalized elementary trees from the training cor-
pus, consistent with any annotation of the heads.
This operation is reminiscent of the extraction of
all subtrees in Data-Oriented Parsing (Bod, 1998).
Fortunately, and unlike DOP, the number of possi-
ble lexicalised elementary trees is not exponential
in sentence length n, but polynomial: it is always
smaller than n2 if the tree is binary branching.

Next, for each node in the treebank, we need
to select a specific lexical anchor, among the ones
it dominates, and annotate the nodes in the spine
with head annotations. Our algorithm selects the
lexical anchor which maximizes the frequency of
the implied elementary tree in the bag of elemen-
tary trees. In figure 5, algorithm 1 (right) gives the
pseudo-code for the algorithm, and the tree (left)
shows an example of its usage.

3.4 Spine and POS-tag reductions
The two algorithms described in the previous two
sections are also evaluated when performing two

possible generalization operations on the elemen-
tary trees, which can be applied both alone or in
combination:

• in the spine reduction, lexicalized trees are
transformed to their respective spines. This
allows to merge elementary trees that are
slightly differing in argument structures.
• in the POStag reduction, every lexical item

of every elementary tree is replaced by its
POStag category. This allows for merging el-
ementary trees with the same internal struc-
ture but differing in lexical production.

4 Implementation details

4.1 Using CFGs for TSG parsing

When evaluating parsing accuracy of a given
LTSG, we use a CKY PCFG parser. We will
briefly describe how to set up an LTSG parser us-
ing the CFG formalism. Every elementary tree
in the LTSG should be treated by our parser as
a unique block which cannot be further decom-
posed. But to feed it to a CFG-parser, we need
to break it down into trees of depth 1. In order to
keep the integrity of every elementary tree we will
assign to its internal node a unique label. We will
achieve this by adding “@i” to each i-th internal
node encountered in T .

Finally, we read off a PCFG from the elemen-
tary trees, assigning to each PCFG rule a weight
proportional to the weight of the elementary tree it
is extracted from. In this way the PCFG is equiv-
alent to the original LTSG: it will produce exactly
the same derivation trees with the same probabil-
ities, although we would have to sum over (expo-
nentially) many derivations to obtain the correct
probabilities of a parse tree (derived tree). We ap-
proximate parse probability by computing the n-
best derivations and summing over the ones that
yield the same parse tree (by removing the “@i”-
labels). We then take the parse tree with highest
probability as best parse of the input sentence.

4.2 Unknown words and smoothing

We use a simple strategy to deal with unknown
words occurring in the test set. We replace all the
words in the training corpus occurring once, and
all the unknown words in the test set, with a spe-
cial *UNKNOWN* tag. Moreover we replace all
the numbers in the training and test set with a spe-
cial *NUMBER* tag.

Algorithm 1: MaximizeFamiliarity(N)

Input: a non-terminal node N of a parsetree.
begin
L = null; MAX = −1;
foreach leaf l underN do
τN

l = lex. tree rooted in N and anchored in l;
F = frequency of τN

l ;
if F > MAX then
L = l; MAX = F ;

Mark all nodes in the path from N to L with heads;
foreach substitution siteNi of τN

L do
MaximizeFamiliarity(Ni);

end

Figure 5: Left: example of a parse tree in an instantiation of the “Familiarity” algorithm. Each arrow,
connecting a word to an internal node, represents the elementary tree anchored in that word and rooted
in that internal node. Numbers in parentheses give the frequencies of these trees in the bag of subtrees
collected from WSJ20. The number below each leaf gives the total frequency of the elementary trees
anchored in that lexical item. Right: pseudo-code of the “Familiarity” algorithm.

Even with unknown words treated in this way,
the lexicalized elementary trees that are extracted
from the training data are often too specific to
parse all sentences in the test set. A simple strat-
egy to ensure full coverage is to smooth with the
treebank PCFG. Specifically, we add to our gram-
mars all CFG rules that can be extracted from the
training corpus and give them a small weight pro-
portional to their frequency3. This in general will
ensure coverage, i.e. that all the sentences in the
test set can be successfully parsed, but still priori-
tizing lexicalized trees over CFG rules4.

4.3 Corpora

The evaluations of the different models were car-
ried out on the Penn Wall Street Journal corpus
(Marcus et al., 1993) for English, and the Tiger
treebank (Brants et al., 2002) for German. As gold
standard head annotations corpora, we used the
Parc 700 Dependency Bank (King et al., 2003) and
the Tiger Dependency Bank (Forst et al., 2004),
which contain independent reannotations of ex-
tracts of the WSJ and Tiger treebanks.

5 Results

We evaluate the head annotations our algorithms
find in two ways. First, we compare the head
annotations to gold standard manual annotations

3In our implementation, each CFG rule frequency is di-
vided by a factor 100.

4In this paper, we prefer these simple heuristics over more
elaborate techniques, as our goal is to compare the merits of
the different head-assignment algorithms.

of heads. Second, we evaluate constituency pars-
ing performance using an LTSG parser (trained
on the various LTSGs), and a state-of-the-art
parser (Bikel, 2004).

5.1 Gold standard head annotations
Table 1 reports the performance of different al-
gorithms against gold standard head annotations
of the WSJ and the Tiger treebank. These an-
notations were obtained by converting the depen-
dency structures of the PARC corpus (700 sen-
tences from section 23) and the Tiger Dependency
Bank (2000 sentences), into head annotations5.
Since the algorithm doesn’t guarantee that the re-
covered head annotations always follow the one-
head-per-node constraint, when evaluating the ac-
curacy of head annotations of different algorithms,
we exclude the cases in which in the gold cor-
pus no head or multiple heads are assigned to the
daughters of an internal node6, as well as cases in
which an internal node has a single daughter.

In the evaluation against gold standard de-
pendencies for the PARC and Tiger dependency
banks, we find that the FAMILIARITY algorithm
when run with POStags and Spine conversion ob-
tains around 74% recall for English and 69% for
German. The different scores of the RANDOM as-
signment for the two languages can be explained

5This procedure is not reported here for reasons of space,
but it is available for other researchers (together with the ex-
tracted head assignments) at http://staff.science.
uva.nl/˜fsangati.

6After the conversion, the percentage of incorrect heads
in PARC 700 is around 9%; in Tiger DB it is around 43%.

by their different branching factors: trees in the
German treebank are typically more flat than those
in the English WSJ corpus. However, note that
other settings of our two annotation algorithms do
not always obtain better results than random.

When focusing on the Tiger results, we ob-
serve that the RIGHT head assignment recall is
much better than the LEFT one. This result is in
line with a classification of German as a predomi-
nantly head-final language (in contrast to English).
More surprisingly, we find a relatively low recall
of the head annotation in the Tiger treebank, when
compared to a gold standard of dependencies for
the same sentences as given by the Tiger depen-
dency bank. Detailed analysis of the differences
in head assigments between the two approaches
is left for future work; for now, we note that our
best performing algorithm approaches the inter-
annotation-scheme agreement within only 10 per-
centage points7.

5.2 Constituency Parsing results

Table 2 reports the parsing performances of our
LTSG parser on different LTSGs extracted from
the WSJ treebank, using our two heuristics to-
gether with the 4 baseline strategies (plus the re-
sult of a standard treebank PCFG). The parsing re-
sults are computed on WSJ20 (WSJ sentences up
to length 20), using sections 02-21 for training and
section 22 for testing.

We find that all but one of the head-assignment
algorithms lead to LTSGs that without any fine-
tuning perform better than the treebank PCFG. On
this metric, our best performing algorithm scores
4 percentage points higher than the Magerman-
Collins annotation scheme (a 19% error reduc-
tion). The poor results with the RIGHT assign-
ment, in contrast with the good results with the
LEFT baseline (performing even better than the
Magerman-Collins assignments), are in line with
the linguistic tradition of listing English as a pre-
dominantly head-initial language. A surprising
result is that the RANDOM-assignment gives the

7We have also used the various head-assignments to con-
vert the treebank trees to dependency structures, and used
these in turn to train a dependency parser (Nivre et al., 2005).
Results from these experiments confirm the ordering of the
various unsupervised head-assignment algorithms. Our best
results, with the FAMILIARITY algorithm, give us an Unla-
beled Attachment Score (UAS) of slightly over 50% against
a gold standard obtained by applying the Collins-Magerman
rules to the test set. This is much higher than the three base-
lines, but still considerably worse than results based on su-
pervised head-assignments.

best performing LTSG among the baselines. Note,
however, that this strategy leads to much wield-
ier grammars; with many more elementary trees
than for instance the left-head assignment, the
RANDOM strategy is apparently better equipped
to parse novel sentences. Both the FAMILIAR-
ITY and the ENTROPY strategy are at the level of
the random-head assignment, but do in fact lead to
much more compact grammars.

We have also used the same head-enriched tree-
bank as input to a state-of-the-art constituency
parser8 (Bikel, 2004), using the same training and
test set. Results, shown in table 3, confirm that
the differences in parsing success due to differ-
ent head-assignments are relatively minor, and that
even RANDOM performs well. Surprisingly, our
best FAMILIARITY algorithm performs as well as
the Collins-Magerman scheme.

LFS UFS |T|
PCFG 78.23 82.12 -
RANDOM 82.70 85.54 64k
LEFT 80.05 83.21 46k
Magerman-Collins 79.01 82.67 54k
RIGHT 73.04 77.90 49k
FAMILIARITY 84.44 87.22 42k
ENTROPY-POStags 82.81 85.80 64k
FAMILIARITY-Spine 82.67 85.35 47k
ENTROPY-POStags-Spine 82.64 85.55 64k

Table 2: Parsing accuracy on WSJ20 of the LTSGs
extracted from various head assignments, when
computing the most probable derivations for ev-
ery sentence in the test set. The Labeled F-Score
(LFS) and unlabeled F-Score (UFS) results are re-
ported. The final column gives the total number of
extracted elementary trees (in thousands).

LFS UFS
Magerman-Collins 86.20 88.35
RANDOM 84.58 86.97
RIGHT 81.62 84.41
LEFT 81.13 83.95
FAMILIARITY-POStags 86.27 88.32
FAMILIARITY-POStags-Spine 85.45 87.71
FAMILIARITY-Spine 84.41 86.83
FAMILIARITY 84.28 86.53

Table 3: Evaluation on WSJ20 of various head as-
signments on Bikel’s parser.

8Although we had to change a small part of the code,
since the parser was not able to extract heads from an en-
riched treebank, but it was only compatible with rule-based
assignments. For this reason, results are reported only as a
base of comparison.

Gold = PARC 700 % correct
Magerman-Collins 84.51
LEFT 47.63
RANDOM 43.96
RIGHT 40.70
FAMILIARITY-POStags-Spine 74.05
FAMILIARITY-POStags 51.10
ENTROPY-POStags-Spine 43.23
FAMILIARITY-Spine 39.68
FAMILIARITY 37.40

Gold = Tiger DB % correct
Tiger TB Head Assignment† 77.39
RIGHT 52.59
RANDOM 38.66
LEFT 18.64
FAMILIARITY-POStags-Spine 68.88
FAMILIARITY-POStags 41.74
ENTROPY-POStags-Spine 37.99
FAMILIARITY 26.08
FAMILIARITY-Spine 22.21

Table 1: Percentage of correct head assignments against gold standard in Penn WSJ and Tiger.
† The Tiger treebank already comes with built-in head labels, but not for all categories. In this case the
score is computed only for the internal nodes that conform to the one head per node constraint.

6 Conclusions

In this paper we have described an empirical inves-
tigation into possible ways of enriching corpora
with head information, based on different linguis-
tic intuitions about the role of heads in natural lan-
guage syntax. We have described two novel algo-
rithms, based on entropy minimization and famil-
iarity maximization, and several variants of these
algorithms including POS-tag and spine reduction.

Evaluation of head assignments is difficult, as
no widely agreed upon gold standard annotations
exist. This is illustrated by the disparities between
the (widely used) Magerman-Collins scheme and
the Tiger-corpus head annotations on the one
hand, and the “gold standard” dependencies ac-
cording to the corresponding Dependency Banks
on the other. We have therefore not only evalu-
ated our algorithms against such gold standards,
but also tested the parsing accuracies of the im-
plicit lexicalized grammars (using three different
parsers). Although the ordering of the algorithms
on performance on these various evaluations is dif-
ferent, we find that the best performing strategies
in all cases and for two different languages are
with variants of the “familiarity” algorithm.

Interestingly, we find that the parsing results are
consistently better for the algorithms that keep the
full lexicalized elementary trees, whereas the best
matches with gold standard annotations are ob-
tained by versions that apply the POStag and spine
reductions. Given the uncertainty about the gold
standards, the possibility remains that this reflects
biases towards the most general headedness-rules
in the annotation practice rather than a linguisti-
cally real phenomenon.

Unsupervised head assignment algorithms can
be used for the many applications in NLP where

information on headedness is needed to convert
constituency trees into dependency trees, or to
extract head-lexicalised grammars from a con-
stituency treebank. Of course, it remains to be
seen which algorithm performs best in any of these
specific applications. Nevertheless, we conclude
that among currently available approaches, i.e.,
our two algorithms and the EM-based approach of
(Chiang and Bikel, 2002), “familiarity maximiza-
tion” is the most promising approach for automatic
assignments of heads in treebanks.

From a linguistic point of view, our work can
be seen as investigating ways in which distribu-
tional information can be used to determine head-
edness in phrase-structure trees. We have shown
that lexicalized tree grammars provide a promis-
ing methodology for linking alternative head as-
signments to alternative dependency structures
(needed for deeper grammatical structure, includ-
ing e.g., argument structure), as well as to alterna-
tive derivations of the same sentences (i.e. the set
of lexicalized elementary trees need to derive the
given parse tree). In future work, we aim to extend
these results by moving to more expressive gram-
matical formalisms (e.g., tree adjoining grammar)
and by distinguishing adjuncts from arguments.

Acknowledgments We gratefully acknowledge
funding by the Netherlands Organization for Sci-
entific Research (NWO): FS is funded through
a Vici-grant “Integrating Cognition” (277.70.006)
to Rens Bod and WZ through a Veni-grant “Dis-
covering Grammar” (639.021.612). We thank
Rens Bod, Yoav Seginer, Reut Tsarfaty and
three anonymous reviewers for helpful comments,
Thomas By for providing us with his dependency
bank and Joakim Nivre and Dan Bikel for help in
adapting their parsers to work with our data.

References
S. Bangalore and A.K. Joshi. 1999. Supertagging: An

approach to almost parsing. Computational Linguis-
tics, 25(2):237–265.

D.M. Bikel. 2004. Intricacies of Collins’ Parsing
Model. Computational Linguistics, 30(4):479–511.

R. Bod. 1998. Beyond Grammar: An experience-
based theory of language. CSLI, Stanford, CA.

G. Borensztajn, and W. Zuidema. 2007. Bayesian
Model Merging for Unsupervised Constituent La-
beling and Grammar Induction. Technical Report,
ILLC.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and
G. Smith. 2002. The TIGER treebank. In Proceed-
ings of the Workshop on Treebanks and Linguistic
Theories, Sozopol.

T. By. 2007. Some notes on the PARC 700 dependency
bank. Natural Language Engineering, 13(3):261–
282.

E. Charniak. 1997. Statistical parsing with a context-
free grammar and word statistics. In Proceedings of
the fourteenth national conference on artificial intel-
ligence, Menlo Park. AAAI Press/MIT Press.

D. Chiang and D.M. Bikel. 2002. Recovering
latent information in treebanks. Proceedings of
the 19th international conference on Computational
linguistics-Volume 1, pages 1–7.

D. Chiang. 2000. Statistical parsing with an
automatically-extracted tree adjoining grammar. In
Proceedings of the 38th Annual Meeting of the ACL.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

G. Corbett, N. Fraser, and S. McGlashan, editors.
2006. Heads in Grammatical Theory. Cambridge
University Press.

M. Forst, N. Bertomeu, B. Crysmann, F. Fouvry,
S. Hansen-Schirra, and V. Kordoni. 2004. To-
wards a dependency-based gold standard for Ger-
man parsers.

J. Hockenmaier and M. Steedman. 2007. CCGbank:
A corpus of ccg derivations and dependency struc-
tures extracted from the penn treebank. Comput.
Linguist., 33(3):355–396.

A.K. Joshi and Y. Schabes. 1991. Tree-adjoining
grammars and lexicalized grammars. Technical re-
port, Department of Computer & Information Sci-
ence, University of Pennsylvania.

T. King, R. Crouch, S. Riezler, M. Dalrymple, and
R. Kaplan. 2003. The PARC 700 dependency bank.

D. Klein and C.D. Manning. 2002. A generative
constituent-context model for improved grammar in-
duction. In Proceedings of the 40th Annual Meeting
of the ACL.

D. Klein and C.D. Manning. 2004. Corpus-based
induction of syntactic structure: models of depen-
dency and constituency. In Proceedings of the 42nd
Annual Meeting of the ACL.

D.M. Magerman. 1995. Statistical decision-tree mod-
els for parsing. In Proceedings of the 33rd Annual
Meeting of the ACL.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2).

J. Nivre and J. Hall. 2005. MaltParser: A Language-
Independent System for Data-Driven Dependency
Parsing. In Proceedings of the Fourth Workshop
on Treebanks and Linguistic Theories (TLT2005),
pages 137–148.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son,S. Riedel, and D. Yuret. 2007. The conll 2007
shared task on dependency parsing. In Proc. of the
CoNLL 2007 Shared Task., June.

J. Nivre. 2007. Inductive Dependency Parsing. Com-
putational Linguistics, 33(2).

S. Petrov, L. Barrett, R. Thibaux, and D. Klein.
2006. Learning accurate, compact, and interpretable
tree annotation. In Proceedings ACL-COLING’06,
pages 443–440.

R. Reichart and A. Rappoport. 2008. Unsupervised
Induction of Labeled Parse Trees by Clustering with
Syntactic Features. In Proceedings Coling.

H. Schütze. 1993. Part-of-speech induction from
scratch. In Proceedings of the 31st annual meeting
of the ACL.

Y. Seginer 2007. Learning Syntactic Structure. Ph.D.
thesis, University of Amsterdam.

H. Yamada, and Y. Matsumoto. 2003. Statistical De-
pendency Analysis with Support Vector Machines.
In Proceedings of the Eighth International Work-
shop on Parsing Technologies. Nancy, France.

