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Abstract. In the debate on the origins of language “verbal” theories and
mathematical models have drawn most attention. In this essay, we argue
that A-life models add an important new perspective in this debate. We
discuss some shortcomings of existing theories, in particular the lack of
appreciation of the frequency dependency of language evolution and the
role of selforganization. We show that A-life models can help to evalu-
ate the validity of language evolution scenario’s, and help to adapt and
extend them by showing both restrictions and opportunities that are
deemed to be overlooked in both verbal and mathematical theorizing.
Unlike many accounts that put evolution and selforganization in opposi-
tion, we adopt the view of selforganization as the substrate of evolution.
We give an interpretation of an existing mathematical model that is in
accordance with this view, and consider several important extensions.
Because the extensions yield more complex behaviors, they are studied
in computational (A-life) models. These models show good examples of
the possible roles of selforganization in the origins of grammar.

1 Introduction

The debate on the origins of language has been dominated by “verbal” theories,
both in scientific publications (see e.g. [9]) and in popular, best-selling books
(e.g. [19,7]). Recently also mathematical models of the evolution of language,
especially those of Martin Nowak et al., have received much attention (e.g. [16,
17,15]). These models are sometimes seen as a validation of the earlier verbal
theories. Steven Pinker, e.g., writes in the accompagnying newsstory of [17] that
the paper shows “the evolvability of [one of] the most striking features of lan-
guage”, i.e. its compositionality.

Although we appreciate the major contributions in these books and papers,
we still observe many shortcomings in the proposed theories. Both the verbal



and the mathematical accounts tend to overlook many crucial details. Verbal
theories often underestimate the intricacies of the evolutionary dynamics and
take “evolution” too much as a general problem solver. The mathematical models
often make crucial simplifications that are linguistically poorly motivated.

In particular, both types of theories have shown little appreciation for the
importance of the frequency dependency of language evolution and the role of
selforganization there-in. “Frequency dependent selection” is the type of evo-
lutionary process where the fitness of a certain trait depends not only on its
intrinsic quality, but also on its relative frequency in the population. Language
evolution is necessarily frequency dependent because “it takes two to talk”. Self-
organization is here taken to be the phenomenon that complex patterns can
results from many simple interactions. We adopt a pragmatic approach and
speak of selforganization if a complex pattern arises that would not be directly
expected from the local interaction underlying it (i.e. there is no “blueprint”
that specifies all the details of the pattern).

A-life models have shed light on both the intricacies of the dynamics of lan-
guage evolution and the explanatory role of selforganization. In this paper we
will first discuss some of the exposed shortcomings of verbal and mathematical
theories. Next we will explore how the combination of a mathematical model
(from [15]) and A-life simulations can help to adapt and extend the existing
language evolution scenario’s. We believe that such an approach can eventually
both avoid the problematic simplifications of mathematical models, and the ad
hoc-ness that often surrounds A-life models. In some sense, this paper thus aims
to contribute to an emerging and needed “synthetic” methodology for under-
standing the origins of linguistic structure.

2 Linguistics & the origins of syntax

The origins of language are a heavily debated topic, with many rivaling theories.
For sake of clarity, we will restrict ourselves here to what is probably the most
well-known theory on the origins of human language: Steven Pinker’s book “The
language instinct” [19], based on an earlier paper by Pinker and Paul Bloom [20].

2.1 The language instinct

Pinker & Bloom’s work is based on the basic assumptions of generative lin-
guistics: (i) Syntax is independent of semantics, as one can observe in syntactic
correct but meaningless sentences; (ii) Underlying this syntax must be a pro-
ductive, formal system, to obtain the infiniteness of human language; (iii) This
system is acquired by infants so fast and with so little data, and all human
languages share so many characteristics, that there must be a shared, innate
component: the universal grammar.

Pinker & Bloom original contribution, is the claim that such a system can-
not arise spontaneously or as a side effect of other (cognitive) developments. For
that, language is too intricate and complex. Moreover, language clearly shows



signs of adaptiveness: it allows humans to communicate infinitely many mes-
sages, including messages that refer to events that happened at other times and
places than the present, messages that convey conditional and causal informa-
tion or complete narratives that allow one to draw lessons from someone else’s
experience.

Each of these features can be beneficial in itself, and thus be an intermediate
step in the evolution. Inevitably, Pinker & Bloom argue, one should conclude that
genetic evolution is the explanation for human’s remarkable linguistic talent. The
innate blueprint for an individual’s “internal language”, the universal grammar,
has been gradually updated to get from a non-grammatical protolanguage to
the grammatical complexity of present human language. They summarize their
argument as follows:

Our conclusion is based on two facts that we would think would be en-
tirely uncontroversial: language shows signs of complex design for the
communication of propositional structures, and the only explanation for
the origin of organs with complex design is the process of natural selec-
tion. [20]

The authors thus argue that language is adaptive and take as a fact that
evolution leads to such adaptive solutions. The work therefore fits in the tradition
of “adaptationism”, although they do consider in some detail the way early
language could have functioned and be advantageous, and although they discuss
some possible intermediate steps from an extensive “animal” communication
system, to the human linguistic abilities.

2.2 Why such accounts are unsatisfactory

There are many reasons why this type of explanations — extensive and well-
documented as they may be — should not stop A-life researchers to continue
modeling language origins. First of all, allthough these theories are based in part
on formal models of language competence, the scenario for language evolution
is purely verbal. A-life models can provide a more formal approach to the “evo-
lution” part of the theory. Second, the theories of language evolution leave little
room for selforganization as a component in the explanation. We believe that
selforganization — the phenomenon that “many simple interactions can lead to
complex patterns” (probably A-life’s best established wisdom) — is very likely
to play a role, because many different dynamical processes must have interacted
in the evolution of language.

A-life can thus help to evaluate the validity of language evolution scenario’s,
and help to adapt and extend it, both by showing restrictions (e.g. the fre-
quency dependency of language evolution) and by showing opportunities (e.g.
selforganization of linguistic structure) that are deemed to be overlooked in ver-
bal theorizing.



2.3 Novel restrictions

The main reason why “verbal” accounts of the origins of language tend to be
unsatisfactory is that they seem hardly restricted by empirical or theoretical
bounds. Computational modeling offers a novel approach to these issues, be-
cause such models are at least restricted by whether or not the combination of
assumptions implemented in the model yield the hypothesized outcome: syntac-
tic language. Scenario’s that seem perfectly plausible in words, often do not work
in simulations without some crucial modifications are additional assumptions.

In particular, “adaptationist” explanations have turned out to be not very
informative because evolution cannot be assumed to implement everything that
can be useful. Even when a global fitness criterion is assumed, evolutionary
dynamics can follow very different trajectories, which lead to very different,
more or less adequate solutions. Good explanations should therefore describe the
evolutionary dynamics in detail, and specify the genetic encoding, the selection
pressures and the sequence of mutations that brings the system from one state
to the other. Computational models — as anyone with some experience with
evolutionary algorithms can confirm — immediately show that evolution is not
a trivial route to the top; it is in stead an intricate and open-ended process.

Evolutionary explanations of the origins of language, however, face some par-
ticular other difficulties as well. Language has two aspects that are particularly
important: (i) language is transmitted, at least in part, culturally, and learned
by one individual from the other; (ii) language is a group phenomenon, that
occurs only between individuals and has no apparent value for an individual in
isolation. These aspects make that the fitness of individual is not a function of
its language acquisition system alone, but is dependent on the cultural dynamics
and the composition of the group it is in as well. In other words, the “language
instinct” did not evolve in isolation with respect to some objective quality mea-
sure, but instead co-evolved with changing language [7] and co-evolved with
the changing language systems of other individuals (“frequency dependent se-
lection”, as e.g. in [4]). The evolutionary dynamics in such a system might lead
to very different results than one would expect in an “adaptationist” scenario.
Figure 1 shows an example of the unexpected effects of frequency dependent
selection in a model of the evolution of syntax in groups of agents [25].

In the mathematical models that we considered this fact is only partly ac-
knowledged. In [16,17,15] the fitness of individuals are frequently dependent;
however, for deriving the evolutionary dynamics only the average fitness in the
population is considered. This averaging completely obscures the real problem
of language evolution. The “difficulties in imagining how language could have
arisen by darwinian evolution”, that the Nowak et al. claim to solve, have mainly
to do with the problem of imagining how a syntactic individual can be successful
in a non-syntactic population.

2.4 Novel opportunities

Pinker & Bloom’s work is symptomatic for the popular conviction that one can
only choose between two types of explanations for the origins of human, gram-
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Fig. 1. Results from a model of the evolution of language in a population of agents,
based on [8]. Agents’ language capabilities are represented with context-free grammars.
Agents get scores for successfully communicating with each other. After some time the
population is replaced with mutants of the present generation, where successful agents
get more offspring than unsuccesfull ones. The frequency dependent selection restricts
the evolutionary dynamics in an unexpected manner. Frequently, agents with better
than average language capabilities can nevertheless not persist in the population. We
find that there exist distinct dynamical regimes, that lead to qualitatively different
grammars (labeled “indexical”’, “compositional” and “recursive”). The graph shows
trajectories through a phase space, with horizontally the size of the grammar and
vertically the number of distinct strings the grammars can parse. The three trajectories
are obtained with the same parameters and just differ in the “random seed”; the dashed
curves are theoretical predictions (see [23, 25]).

matical language. One refers to the powerful learning abilities of humans, and
assumes that a human child, born as a taebula rasae, rapidly learns the regular-
ities in its linguistic environment. Language specifics originate in the cultural
transmission of language knowledge from one individual to the other.

The other type of explanation assumes a large innate component, e.g. the
“universal grammar”, that specifies the principles of human languages. This in-
nate component reduces the load on learning to merely identifying the “parame-
ters” of a particular language’s grammar and building a lexicon of word—meaning
associations. The essential, universal aspects of language originate in the process
of natural selection: genetic evolution has updated our “language organ” to meet
our adaptive demands.

Both types of explanation of course acknowledge that there is something in-
nate and something learned about language: Chinese babies learn perfect English
when brought up in England, and chimpanzees never learn to speak a human
language fluently, no matter how carefully trained. However, they usually ignore
the fact that every biological trait arises from the interaction between genetic
coding and an environment. Discussions of linguistic “nurture & nature”, hinder



the understanding of such interactions by repeatedly suggesting that language
knowledge is either learned, or explicitly coded for in our innate material. For
instance:

Any aspect of language that the speaker knows must either be learnable
from positive evidence, that is to say, through exposure to sentences of
the language, or be part of the innate equipment of the human mind [5].

Underlying such reasoning is a strong intuition that the patterns observed in
human language are too complicated to arise “spontaneously”. However, an im-
pressive amount of examples — not in the last place from A-life research — show
that intuitions about the complexity of underlying mechanisms are often flawed.
These examples, ranging from Alan Turing work on pattern formation and mor-
phogenesis, to Chris Langton’s “Ant”, are usually described as selforganization.
Mechanisms of such spontaneous pattern formation in linguistics remain largely
unexplored, although some recent studies suggest that its impact can be large
and thus its misunderstanding unfortunate.

With “spontaneous” we do not mean “accidental”, though. Pinker & Bloom’s
metaphor, where they compare the “appearance of design” of language to that
of television sets, makes a valid point:

It would be vanishingly unlikely for something that was not designed as
a television set to display television programs; the engineering demands
are simply too complex. [20]

However, we believe that by putting selforganization and evolution in oppo-
sition as Pinker & Bloom do (but also proponents of selforganization [22]) they
exclude the most important type of explanation. Evolution needs a substrate to
operate on (i.e. the parameters that are under evolutionary control), and selfor-
ganization needs a mechanism to set the right parameters. Boerlijst & Hogeweg
[3] have therefore proposed to view selforganization as the substrate for evolution.
In such a view the “design” of language is neither accidental, nor hard-wired in
an innate blue-print: innate are only the parameters of a selforganizing process.
Note that such a view differs fundamentally from the simplistic “some parts are
innate, some parts learned” explanations: cultural dynamics and evolutionary
dynamics fundamentally interact.

Applying this view to language, offers a fresh perspective on some of the
recurring problems in linguistics (see e.g. [13,14]). It might very well be that
children use grammatical rules in their speech without ever having encountered
them. But such rules don’t need to be hard-wired in an infant’s genome, if
they are a consequence of the interaction between the infant’s brain structures,
its perceptual and motoric machinery, and its physical and cultural environ-
ment. Consequences of such interactions are often trivial under the simplifica-
tions of mathematical analysis, but counterintuitive in more complex computa-
tional models. A-life models have e.g. shown — contrary to conventional wisdom
— that language universals concerning vowel systems or syntactic parameters
emerge from articulatory and acoustic constraints [6] and processing constraints
[13] respectively.



3 A-life & the origins of language

Recent work that studied the evolution of language in computational models has
explored both the dynamics of language evolution and the selforganization of lin-
guistic patterns, and has produced a wealth of new hypotheses and insights. Such
models are relatively precise implementations of the underlying set of assump-
tions, and allow one to evaluate the internal coherence of such a set. Moreover,
they are productive, in the sense that they often show unexpected behaviors that
help to generate new hypotheses and concepts. And although they are necessar-
ily simplified representations, the fact that their behavior can be experimentally
evaluated makes it possible to study more complex phenomena than with ana-
lytical methods alone. Computational models therefore pre-eminently can make
tractable systems with many variables and interactions.

Of course, we cannot expect these models to be informative about specifics
of natural syntax, such as the position of auxilliary verbs in an English sen-
tence. Rather, these models can give insights in the origins of some general but
fundamental aspects of natural language. E.g., the facts that human language is
(infinitely) expressive; for a large part specific [10, 21, 18] and distinctive [6]; com-
positional [1, 16,2, 12]; recursive [8, 11, 25]; diverse on a global scale, but uniform
on a local scale; dynamic, constantly subject to innovations. And that languages
share universal tendencies [13, 6], and are used for very diverse purposes, includ-
ing information exchange (communication), but also expression, manipulation,
intimidation and social cohesion [25].

How can we best appreciate the contributions that each of these models
bring to our understanding of the origins of complex language? Here we see an
important role for formalization. In the following we present a mathematical
model to describe language evolution, and shortly consider how some of the
mentioned models fit in.

3.1 A mathematical framework

Nowak et al. use in [15] an elegant formalism' to describe both the cultural dy-
namics of language, and the evolutionary dynamics that operate on the parame-
ters of the cultural process. If the cultural process would exhibit selforganization
(which it can, with the extensions discussed below) this model thus implements
the “selforganization as a substrate for evolution” approach that we outlined
above. We will discuss here only the model for cultural dynamics; the analysis
of the evolutionary dynamics in [15] is less convincing, as it fails — among other
things — to make explicit which is the unit of selection.

Cultural dynamics Assume that there is a finite number of states (grammar
types) that an individual can be in. Further, assume that newcomers (infants)
learn their grammar from the population, where more successful grammars have

! Nowak et al. adapted this formalism in turn from Eigen & Schuster’s quasi-species
theory



a higher probability to be learned and mistakes are made in learning. The system
can now be described in terms of the relative frequency of each grammar type in
the population. The change of relative frequencies is a function of the frequencies,
the success-measure of each grammar and the mistakes in learning:

N
B =Y ;f;Qji — pui (1)
J

The components of this equation have the following interpretation:

— x; is the fraction of individuals in the population that have a grammar of
type i. ¢ and j are indices that range from 1 to N, the number of different
grammar types. Z; describes the rate of change (the derivative) of z;. The
equation thus is an ordinary differential equation.

— fi is the relative fitness (quality) of grammars of type i and equals f; =
>_; ¢jFij, where Fj; is the expected communicative success from an interac-
tion between an individual of type ¢ and an individual of type j. The relative
fitness f of a grammar thus depends on the frequencies of all grammar types,
hence it is frequency dependent. The proper way to choose F' depends on the
characteristics of language use (production and interpretation).

— @yj is the probability that a child learning from a parent of type ¢, will end
up with grammar of type j. The probability that the child ends up with
the same grammar, Q;;, is defined as ¢, the copying fidelity. The proper way
to choose @ depends on the characteristics of language acquisition (learning
and development).

— ¢ is the average fitness in the population and equals ¢ = ), x; f;. This term
is needed to keep the sum of all fractions at 1.

The main result that Nowak et al. obtain is a “coherence threshold”: they
show mathematically that there is a minimum value for ¢ to keep coherence
in the population. If ¢ is lower than this value, all possible grammar types are
equally frequent in the population and the communicative success in minimal. If
g is higher than this value, one grammar type is dominant; the communicative
success is much higher than before and reaches 100% if ¢ = 1. This result is
repeated in figure 2 (right panel).

3.2 Extensions

In order to make mathematical analysis possible, Nowak et al. make several cru-
cial simplifications. Most importantly, they assume that all grammars have the
same distance from each other. Consequently, the characteristics of language use
are such that the communicative success between two agents is either maximal
or minimal. The characteristics of language acquisition are such that an agent
has either learned the right grammar or learned a random grammar. There is
no information on wether an agent has moved closer to the target grammar;
Nowak et al. have thus assumed the worst case scenario for language use and
acquisition.



This assumption is clearly wrong: one only has to consider the fact that the
grammatical similarity between English, German and Dutch is much stronger
than between English and French or Japanese. Although a similarity metric
remains difficult, the existence of some sort of a “grammar space” (and not
random distances, such as they used later in the paper) is uncontroversial.
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Fig. 2.

We studied and are studying several variants of the basic model, and many of
the existing A-life models can be considered variants of it as well. Although these
models do not always follow the same “silent” assumption of the mathematical
model discussed here (e.g. that time is continuous and population size infinite),
the main differences are in the characteristics of language use and language
acquisition.

Language use (F) Nowak et al. assume that all grammars are equally expres-
sive, and are all equally similar to each other. We considered several alternatives.
First, we considered the other extreme case, where grammars vary only on one
axis and where the similarity between grammars is determined by the distance
on that axis. Under these circumstances, there is still a “coherence threshold”
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but the dynamics show quite different characteristics. Some results are shown in
the left panel of figure 2.

In models such as [12, 25] also the expressiveness of the grammar types differs.
The language ability in these models is represented with context-free grammars,
which can both implement non-syntactic idiosyncratic languages, and syntactic,
compositional languages. These models shed light on the emergence of compo-
sitionality in the population.

Language acquisition (Q) Nowak et al. consider two extreme possibilities for
the learning algorithm, and thus derive a lower and a upper bound on the num-
ber of training samples that a learning algorithm needs to reach the coherence
threshold. However, for these results they have not taken into account that the
choice of the grammar that a child has to learn is biased by how well previous
generations have been able to learn and maintain it. We can now show that the
lower bound that Nowak et al. derive is in fact not valid if one does take this
into account [24].

The learning algorithms implemented in e.g. [2,12] show interesting alterna-
tives to the values for () that Nowak et al. consider. Batali’s model [2] shows
a true example of selforganization: here both the linguistic abilities of the indi-
vidual and the language of the population emerge from many interacting com-
ponents and are not “blueprinted” in the linguistic representation or learning
algorithm used.

4 Conclusions

We have reviewed critically some existing verbal and mathematical accounts of
the origins of complex language. Using insights from A-life models, we have in-
dentified some novel restrictions for plausible scenario’s that have to do with
specifying the evolutionary dynamics, the units of selection and dealing with
frequency dependent selection and the interaction with cultural dynamics. A-life
models have also identified some opportunities: they have shown the selforgani-
sation of sharedness, specificty and distinctiveness in a population, and the com-
positionality and recursion of grammars. We interpret these models as support
for the view of selforganization as a substrate for evolution. We conclude that
A-life models help in evaluating and extending language evolution scenario’s.
Finally, we conclude that mathematical formalisms can help to put results from
many A-life models into a coherent perspective.

Notes and Comments. This paper is based in part on [23], written under super-
vision of Paulien Hogeweg and strongly influenced by her work & ideas.
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