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Abstract memory and attentional abilities (Chomsky, 1980); most of
We devel h to automatically identify th . the knowledge of language is in place from birth, and only
e develop an approach to automatically identi e mos ; ot ;
probable multi-word constructions used in children’s mtte th_e'r parametrization needs to be Set b_y the ?_nwronmemal
ances, given syntactically annotated utterances fromtbeni8  triggers (Clahsen, 1996). Hence, in this tradition chifdre
corpus of CHILDES. The found constructions cover many in-  are assumed to have, at least in competence, the same syn-

teresting linguistic phenomena from the language acdprisit ; ; Cthic
literature, and show a progression from very concrete tdsvar taCt'(_: c:’_;ttegones and rules as_adults, this is referred theas
abstract constructions. We show quantitatively that foetal- continuity assumptiofe.g. Crain & Thornton, 2005).

the relative number of variable slots in the productive sioit

their grammar, increases globally with age. are, of course, best investigated empirically, on the baifsis
Keywords: First language acquisition; Usage Based Gram- actual language usage. Sev_eral !n—dep?th case-by-case anal
mar; Constructions; Data-oriented Parsing yses on the productive units in children’s corpora have been
reported. For instance, Hodges, Krugler, and Law (2004) ana
Introduction lyzed the item-based nature of the acquisition of the cormple

construction ‘I V (NP) to VP-INF’, as ihwant (you) to play

Many contemporary theories of language acquisition assumgieyen Behrens, Speares, and Tomasello (2003) traced back
that the basic units of language acquisitioneoastructions o sources of creativity of target utterances in the child’

associations between a semantic frame and a syntactic palseech. The target utterances were reconstructed (mgnuall
tern, for which the meaning or form is not strictly predid@b o 5 set of utterances used in the previous 6 weeks. They
from its component parts. Learning, in this framework, con~o 0 that 74% of all novel target utterances produced in one
sists of the gradual acquisition of a structured inventdry o day by a 2 year old child could be reduced to previously pro-
constructions, aonstructiconwhere the constructions are of duced utterances by using a single combinatorial operation
various sizes and varying degrees of complexity and alistraCrpeir finding supports the hypothesis that the smallessunit

ness (Goldberg, 2006; Tomasello, 2003). used in language production are often memorized multi-word
Empirical studies in this tradition (e.g., Peters, 1983;.,nstructions. rather than single words.

Tomasello, 2003) show that, first, the primary units of speec
of children in their first stage of language acquisition aoé n
words but complete utterances, lmwlophrases Second, in
the earliest stages the child’s language is item-basedimana
(Tomasello, 2000). Verb constructions are typically learn
case-by-case (so-calleg@rb island$, without reference to a
general verb-class. The scope of the syntactic rules isdimi
to specific constructions, and system-wide syntactic raies
categories are mostly lacking. Third, in subsequent sttges
child breaks down the item-based constructions, intradyci

variables, such as Where's the X1 wanna X etc. of acquisition. Note that we do not model the actual process

The acquisition of constructions with variable slots formsOf language acquisition or attempt to directly choose betwe

the beginning pf gbstraction and category formation, and ibsage-based and generative theories of language aaguisiti
marks the beginning of grammar. Sudsage Basedheo- Rather, we aim at providing a new way to evaluate predic-

ries of language acquisition assume a dynamically changing, s from theories of language performance in either tradi

grammar that follows a route from simple and concrete t%on about the productive units in child language
complex and abstract constructions. This view is in sharp '

contrast with the view on language acquisition taken in many
versions of generative grammar. Here, grammar rules and
categories are assumed to be universally and innately spebz this section, we develop a formal definition of the produc-
ified by a Universal Grammar. The reason that children ddive units of language and a probability model that defines th

not produce adult-like grammatical sentences is theitéichi likelihood of various hypotheses on the units used. The for-

To resolve the controversy, however, we believe it is essen-
tial to move beyond the typical handful of linguistic exaempl
that support one view over the other. In the current study, we
develop computational tools for automatically identifyithe
most likely primitive units that were used by the child to pro
duce the utterances in a given corpus. We apply these tools
to a well-known English-language corpus (the Brown corpus
in CHILDES) with longitudinal data from three children. We
then present a qualitative and quantitative analysis opthe
ductive units that these children employ in progressivgeta

Choosing the right representation



mal model of choice needs to have the flexibility to allow for a leaf node with a fragmerit, of which the rootr(t;) has
elementary syntactic units of variable size, form and I®fel the same label as the leaf node. Enriched with probabilities
abstraction. Moreover, the model should not assume a priFSGs becomerobabilistic tree substitution grammars
ori that the syntactic units the child uses coincide with the Several alternative methodsstimator$ for finding the
units used in adult language. The grammar framework shoul@robabilitiesP(t|r (t;)) of the fragments (the parameters of
therefore be data-oriented: potential syntactic uniteilkhbe  the DOP grammar) have been proposed. The earliest estima-
derived from the corpus itself. For instance, the consipact tor is known as DOP1 (Bod, 1998), and assigns probabili-
“l V to VP-INF” should be a possible building block, even ties based on relative frequencies. For the current work we
though it contains multiple words, separated by varialitssl adopted a recent estimator, “push-n-pull” (Zuidema, 2006,
(i.e., itisdiscontiguou} as well as “I going V NP-OBJ”, even  2007), which yields linguistically more plausible results
though it is agrammatical (it lacks the conjugated “am”). Formal details of push-n-pull fall outside the scope of this
A formalism with the required flexibility is that of Tree paper, but the basic idea is as follows. The algorithm uses th
Substitution Grammar (TSG), which forms a generalizationdiscrepancy between the observed frequency of the subtrees
over the well-known context-free grammars (CFG) and a subin the treebank and their expected frequency (as predigted b
class of the Tree Adjoining Grammars (Joshi, 2004). TSGshe current parameters of the grammar) to eifneshprob-
can model complex multi-word syntactic primitives as well ability mass from a subtree to the elementary trees involved
as single unit primitives (see Figure 1 for an illustratiohle  in its derivation, opull probability mass from the elementary
generative components of a TSG are tree fragments of arbjrees to the subtree. The algorithm includes a parameter tha
trary size and depth, which can be (partly) lexicalized or ab regulates the strength of a bias toward smaller subtrees. Th
stract. In the latter case the fragments contain variabks sl difference between observed and expected frequency is high
for syntactic categoriesipnterminaly, making them suitable  est for subtrees in the corpus that are most overrepresented
for representing abstract constructions or abstractrules  relative to what should be expected based on the frequencies
TSGs are used extensively in the framework of Data Oriof their components; many of these subtrees correspond to
ented Parsing (DOP) (Bod, 2003; Scha, Bod, & Sima'anjinguistically interesting constructions. By iteratirtwetpro-
1999), which provides the techniques to parse new sentencegss, probability mass is shifted between subtrees until ex
using fragments from sentences observed in a corpus. lgected frequencies approach observed frequencies.
DOP, the elementary tree fragments of the TSG can in prin-  Gjven a TSG as described above and a probability distribu-
ciple be any subtree occurring in an annotated corpus (thggn, P(ti|r(t;)) as found by push-n-pull, we can use standard
treebanl. Two elementary tree fragments can be combinedatistical parsing techniques to find the most probableater
by means of the substitution operatoif the left-most non-  jon of any sentence in a corpus. This yields a decomposition
terminal leaf node of the first fragment is identical to thetro of the sentence into those elementary tree fragments that to
node of the other fragment. A derivation of a sentence in DOPgether constitute a hypothesis on how the sentence was gen-

is a sequence of elementary tree fragmeénto...othsuch  erated. This way, we can use DOP as a statistical approach

resulting tree are terminals (see Figure 1). All the analyses reported here were conducted with the
push-n-pull algorithm, with the bias parameter setto 0.8. W
s o oBJ - s have also performed tests with different settings of the bia
o ues w PRO/\X and with the DOP1 estimator, and found the same, and some-
N PN .
| PART OBJ N:PROP N:PROP fly | times even more pronounced trends than are reported here.
making Mr Gr‘amt PA‘RT /Ol<
making
M W Method
N:PROP N:PROP fly .

M Grant The studies were conducted on the Brown corpus (Brown,

1973) from the CHILDES database (MacWhinney, 2000).
Figure 1: Derivation for ‘| making Mr Grant fly’ (Adam, This corpus contains transcribed longitudinal recordiafjs
3;3.04). The substitution site is marked with three children, Adam, Eve and Sarah. We split each of these
subcorpora into three parts of roughly equal size, reptesen
In the DOP-framework, several probability models haveing three consecutive time periods (see Table 1). We removed
been worked out. In the simplest set-up, it is assumed thadhe parental speech and any annotation or comments. We also
the probability of any substitution is independent of the-<co removed from the child’s speech incomplete and interrupted
text; the probability of a derivation is therefore the protiof ~ sentences (‘+../, +/! and ‘+/), and sentences contagni

probabilities of the fragments used: pauses (‘#'). These account for approximately 20% of the
sentences. Furthermore, we discarded the final punctuation
Pltiotzo...oth) = |_| P(tilr(t)) In splitting the data, we did not attempt to match children

|

on either age, Mean Length of Utterance (MLU) or tradi-
whereP(ti|r(ti) is the probability of a single substitution of tional “stages” of language development (Brown, 1973); we



Table 1: Statistics of input (P1=Period 1; MLU= range Table 2: Frequent PoS tags and Grammatical Relations.
of numbers of morphemes per utterance, averaged per file;
a.s.l.= number of words per utterance, averaged per period

_ . e 'Parts of Speech Category
v0(_:ab.— number of distinct words; t/t = type/token frequenc N. N:-PROP Noun, Proper Noun
ratio of words). V, V:AUX Verb, Auxiliary verb, including modals
DET, DET:NUM Determinerthe, d, Number
files agerange #sent. MLU a.s.l. vocab. t/t ADJ, ADV Adjective, Adverb . .
Adam PRO, PRO:DEM, Pronoun, Demonstrative Pronounhi§,
Pl 1-16  2:3-2:11 11184 1.83-290 223 1407 .0s6 PRO:WH tha), Interrogative Pronoumtho, what)
P2 17-32 2:11-3:6 11578 2.44-406 3.29 2010 .053 CONJ Conjunction
P3 33-48 3:6-4:5 9071 3.63-4.97 4.0 2006 .055 INF Infinitive marker o)
Eve PREP Preposition
P1 1-7 1:6-1:9 3485 1.53-2.28 1.88 669 102  Gramm. Relation Category

P2 8-14 1:9-2:0 3395 2.51-3.22 280 785 .083 "ROOT

Special relation for the top node
P3 15-20 2:1-2:3 3535 2.60-3.41 3.13 958 .087

Sarah SUBJ, OBJ Subject, Object
PRED Predicative (I am naure)
P1 1-45  2:3-32 11693 1.48-2.70 1.87 1389 .063 - .
P> 4690 32-41 8384 223370 271 1706 o075 COMP,XCOMP Clausal complgments, finite (I thlhl_;a_w
P3  91-135 4:1-5:0 8525 298486 32 1944 071 Paul) and non-finite (you haveo putitin
your truck
JCT Adjunct (optional modifier of verb)
& COORD Coordination, dependents of the conjunc-
- A il tion (goandget if)
- perod2 AUX, NEG Auxiliary and negation
7 \ ——eesr LOC Locative arguments of verbim(your truck
g 2500 . < \
™ . ){\ that of (Xia & Palmer, 2001). From Table 3 it can be seen,
BN that at times the conversion introduced a dummy node (la-
= \ beledX), to fill up a gap in the (binary) parse tree, where the
\\;\\. dependency annotation did not provide this.
sentence length R esu |ts

, o Qualitative analysis
Figure 2: Sentence length distribution for Adam. ) ) )
In the current setup, the syntactic categories (nontergjina

are pregiven; our method only determines the size of the pro-
can thus only compare grammatical development within eachuctive units involved in the generation of each sentenae. W
child, and not between them. Table 1 summarizes the inplare interested in those cases where larger fragments s@em ne
used for our studies, after all preprocessing steps. Nate th essary than implicit in the existing corpus annotations; fo
unsurprisingly, average sentence lengths increase mgrkedour analysis, we therefore focus on elementary trees ohdept
in each child; in Figure 2 we plot the number of sentences ofarger than 1 and will refer to these as tmnstructions
each length for each of the three parts of the Adam corpus.  Our method found linguistically very informative construc
Push-n-pull was trained on syntactically annotated sentions in all children. In Table 3 we give Adam’s 15 most
tences from each of the subcorpora. Recently the Browirequently used constructions of each period, as well as the
corpus has been augmented with syntactic dependency ah5 most frequent discontiguous ones. In the figure, part of
notations by Sagae, Davis, Lavie, MacWhinney, and Wint-Speech tags are indicated in capitals, and grammatical rela
ner (2007). The authors labeled the dependencies using 3iPns appear in bold capitals. Explanations of the labedsrar
distinct grammatical relations (details of the procedurd a Table 2. A few things may be noted from Table 3:
a complete list of the labels can be found in (Sagae et al.,
2007)). Their parser uses the parts of speech from the MOR® Whereas in Period 1 most constructions are very concrete,
tagger, described in (MacWhinney, 2000). In Table 2 we list starting from Period 2 constructions become abstract (as
the most frequent grammatical relations and PoS tags. can be seen from the increased number of substitution
We converted the dependency annotation and labels of sites). We further support this observation by quantieativ
Sagae et al. (2007) to a constituency annotation for further results in the next section.
processing The conversion heuristic we used is similar to due to a dependency having more than a single root, or thegost

- (MOR) and syntax (XSYN) sequence being of unequal length.
LApproximately 10% of the sentences failed to convert, nyostl 2Details at http://staff.science.uva-lfideon/cogsci/



Table 3: Adam’s most frequent multi-word construction{gh are only the leaf nodes). To facilitate reading, we hageared
some of the lexical items from the MOR tagger with their amgiform. For instance, we replaceeé-3sby is, go-progby
going go-pastby went and zero-forms, such asit-zeroby put

# Period 1 # Period 2 # Period 3 # Period 1 # Period 2 # Period 3
88 right there 82 whatis this 127 1donotknow | 33 where N go 9 youVit 10 youVit
48 where go 80 PRO:WH is PRO:DEM 69 whatis this 11 1Vit 8 1 doNEG want INFX 5 youX and PROX
45 why not 74 do you want PROOMP 51 PRO:WHisthat | 6 whatthatNdoing 7 |VitICT 5 willyouVit
42  whereis 53 1do not know 46 | goilCOMP 5 take N off 6 youVit 4 can PRO pit
36 play toy 52 doyouwarX 44 itisPRED 4  who N that 6 where PRO went 4 aADJone
33 whereNgo 41 1 goinkCOMP 33 lwantINFX 4 doNEG Vit 6 letmeVit 4 doNEG know PRO:WH PRO V
30 what happen 36 openit 27 itk 4 haveNon 5 IlcalNEG Vit 4 doNEG know PRO:WH PRO:DEM V
28 read that 32 PRO:WHisit 27 lamgoing INE| 4 vyouVit 5 goingINFmake DETN 4 and PRO:WH is that
24 nineteentwelve 30 itiBRED 27 whatisit 3 what N doing 5 letus play DET game 4 can PRO@®&J LOC
21 Ngo 28 youwant INKX 23 Ithink I X 3 putNon 5 whatkind N that 4 whatis PRO:DEM for
20 busy bulldozer 26 1going OBJ 22 lcannot 3 putOBJon 4 going puDBJinit 4 lcannotVit
19 inthere 25 what you want 22  thatRRED 3 donotVme 4 aN cake 3 hoAUX you V PRO:DEM
19 PRO:DEMaN 24 letmEOMP 21 hereisSUBJ 3 takeOBJ off 4 |V him 3  maybe PRO iX
19 thatN 23 how do you know 20 isaN 3 where NN go 4 in DET kitchen 3 youV this ADV
18 thatis right 22 AUXNEG X 20 Vit 3 |Vsome 4 youV m&€OMP 3 lgoingX off
Most frequent constructions Most frequent discontiguous constructions
. - - . - - TOP TOP
e The lists cover many linguistically interesting construc- Py /\
1 i HH 1 PRED X
tions, sugh as t_he progressive, use of gumhanes, clausal L A p Siloc
constructions wittwantandthink, and particle verbg#ke PROWRC ML T T V/}m down
. . . wi i th
OBJ off, going putOBJ in it). hose howse 5 Tt M o e
. . . .. : !
e Constructions including non-finite clausal complements e i
(XCOMP) start to appear in Period 2, but become more TOP TOP
frequent in Period 3 (sometimes annotalfgé X) . m/\x A
e Thereis a tendency to progressively use verb constructions,, /\ X ADV
in combination with variable pronomina, as is particularly v /X\ v Sal alone
notable from the increased use of pronominal tags among  ** 08) A lesve oroFoen .
discontiguous constructions. PROFOSS N, WP gy PAF{’\NL
. . . . |
e The use of do-support in questions and negations starts in your  animals [
A A X packing things
the P2 and becomes more abstract in the top discontiguous
constructions of P3howAUX you V PRO:DEM. Figure 3: Examples of derivation trees as found by our

) ) method. Substitution sites are in bold and marked With
Another way of looking at the output of our method is by

going through individual sentences from each of the corpora

and checking how sentences get decomposed into their hy- of variable slots in linguistic constructions, which can be
pothesized building blocks. Figure 3 gives some typical ex- Operationalized as the ratio between the number of substi-
amples of derivations, but note that there are also examples  tution sites (non-terminals) and the number of lexical gem

linguistically less plausible decompositions. The decosip (terminals) in the elementary trees of each derivation.

tions of the entire Brown-corpus are available as supplemer? Are all elementary trees contiguous? The occurrence of

tary material to this article (see footnote 2). discontiguous constructions, where a substitution site is
o ) preceded and followed by a lexical item would help explain

Quantitative analysis long distance dependencies (such as agreement of number

Once we have determined the most probable derivations of a and tense) between the lexical items.
child’s utterances as recorded in a corpus, it becomes-possi ' . . .
. . _p, POS A first observation from Table 4 is that constructions
ble to quantify the properties of the child’s grammar at vari T .
. . become ubiquitous with age (see the column #construc-
ous stages in terms of properties of the used elementas; tre(-:i. . ) S
ons/sentence). For all children there is a sharp increase

such as node count and depth. This, in turn, allows us to sta{he number of constructions between P1-P2. and for all ex-

answering questions fike: cept Eve also between P2-P3. The overall averages of most

e What is the size of the primitive building blocks used? of the relevant quantities show an increase with age for all

e Does the size of the building blocks decrease with age, ashildren (for instance for the number of nodes, nonternsinal
would be expected if constructions are broken down intaerminals, depth, discontiguity: see Table 4). Howevet, be
their parts? To operationalize size, we simply counted thdore drawing conclusions about changes of the nature of con-
number of nodes in the elementary trees. structions with time, it is important to rule out the poskfpi

¢ Do the productive units of the grammar become more abthat the effects are only due to sentence length distribstio
stract with age? Abstraction correlates with the numbemvhich are shifting toward longer sentences for the later per



Table 4: Overall averages of the most important measuresmstructions.

Quantity Adam Eve Sarah
Period1 Period2 PeriodBPeriod1l Period2 Period3Period1l Period2 Period3

average #nodes in cxs 7.36 8.80 9.20 7.14 8.32 8.76 7.64 8.65 8.86
#terminals 2.22 2.46 2.47 2.21 2.50 2.45 2.30 2.35 2.34
#non-terminals 5.14 6.35 6.73 4.93 5.83 6.32 5.34 6.3 6.52
#leaf non-terminals 0.41 0.93 1.16 0.32 0.59 0.93 0.45 0.98 1.15
ratio leaf-non-terminals/leaf-nodes0.13 0.25 0.30 0.11 0.18 0.26 0.14 0.27 0.31
average depth 4.44 4.74 4.79 4.35 4.61 4.74 4.52 4.75 4.78
#constructions/sentence 0.39 0.59 0.67 0.25 0.46 0.41 0.24 0.39 0.50
#discont. cxs/sentence 0.050 0.085 0.093 | 0.020 0.051 0.106 | 0.041 0.064 0.071
construction coverage 0.33 0.40 0.37 0.26 0.35 0.28 0.29 0.32 0.35
#construction types 1409 2658 2543 324 665 685 967 1294 1732

ods. This is a major methodological challenge, because mosbnstructions decreases. In Table 6 we show the time de-
of the quantities of interest, such as size and depth, depend velopment of the average ‘abstraction’ of the construgjon
the length of the sentence in which the construction appearswvhich is defined as the ratio between leaf non-terminals and
Therefore, in all the following studies, we neutralized theleaf nodes in a construction. It can be seen, that abstractio
MLU factor by comparing sentences across periods accordsf the constructions increases with age for all childrene Th
ing to their length. We computed the average quantity (e.gbig variance is due to sentence length 2 (“holophrases¥), fo
depth, #nodes) for (constructions belonging to) diffessmt-  which the constructions remain very concrete in all stages;
tence lengths separately. Averages were computed over Htwe leave these out, abstraction still increases sigmifiga
least 30 constructions or discarded otherwise. We then conwith age. Note that there is no simple explanation for in-
puted, still for each sentence length separately, growifsra creasing abstraction in terms of the type/token frequericy o
of those quantities. These were averaged, to obtain an athe vocabulary, since these quantities are neither pebitiv
erage growth rate for the quantity between any two periodsior negatively correlated (see Table 1).
(note that average growth rate is different from the growth
rate of the average, as computable from Table 4).

. Table 6: Growth rates of abstraction of constructions.
After sentence length has been factored out, there is hardly

any effect left of age on construction size (the total number P1—-P2 P2-P3 PL-P3

of nodes in a construction). As can be seen in Table 5, most Adam 1.15(.20) 1.06(.17) 1.32(.39)
growth rates are just above one, so the size of the consiructi Eve 1.41(.37) 1.30(.14) 1.68(.39)
within sentences of a certain length remains close to cohsta Sarah 1.33(.35) 1.01(.22) 1.25(.19)

(the variance is written within the parentheses). The same i
true for construction depth, which (unsurprisingly) céates

) : ! In Figure 4 we plot the average abstraction per sentence
well with construction size.

length for Sarah; results for Adam and Eve are similar.

Table 5: Growth rates of construction size and depth. Showr - e
are averages of the growth rates per sentence length. B Period 21

T  Period 3
04

03 —

P1-P2 P2-P3 PL-P3

Construction size

Adam 1.019(.042) 1.002(.016) 1.024 (.054)
Eve 1.020(.045) 1.002(.042) 1.013(.052)
Sarah 0.998 (.033) 1.006 (.029) 0.992 (.023)
Construction depth B
Adam 1.016(.019) 1.001(.009) 1.022(.021)

Eve 1.047 (.029) 1.033(.033) 1.059(.037)

Sarah 0.988(.015) 1.008(.009) 0.996 (.009) 2 e ‘ 5 . 7 s .

sentence length

03

0.5 1

abstraction of cxs

Whereas the number of nodes of the constructions remairfsigure 4: Abstraction (ratio leaf non-terminals/leaf nsie
constant with age, the number of nonterminals increasés witconstructions) against sentence length for Sarah.

age for all sentence lengths independently; the number of
nonterminals in the leaves of constructions increases even This result is striking, because when we look at the parse
more quickly. At the same time, the number of terminals intrees in their entirety, the ratio between non-terminatstan
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Table 7: Growth rates of abstraction of depth one subtrees
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