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Lipson, Pollack & Suh (2002) presented an elegant linear algebraic formalism to define

and study the evolution of modularity in an artificial evolving system.  They employed

simulation data to support their suggestion that modularity arises spontaneously in

temporally fluctuating systems in response to selection for enhanced evolvability.  We

show analytically and by simulation that their correlate of modularity is itself under

selection and so is not a reliable indicator of selection for modularity per se.  In

addition, we question the relation between modularity and evolvability in their

simulations, suggesting that this modularity cannot confer enhanced evolvability.
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Modularity is a major principle of design and abounds in nature.  Functional separation

of modules – from eukaryote organelles to Drosophila limbs to human cognitive

faculties – may give robustness to changing inputs and facilitate future improvement.

The question of the evolutionary origins of such modularity is important and the recent

simulation study of Lipson, Pollack & Suh (2002; hereafter ‘LPS’) is therefore a

welcome contribution.  LPS introduce a potentially extremely useful formalism that

allows one to quantify modularity and to study its evolutionary origins.  Environmental

variables are described by a vector E, and phenotypic traits by a vector P.  A matrix A,

which premultiplies E to give P, then describes the organismal process of transforming

environmental input into phenotypic output.

LPS argue that the ‘blockiness’ of A and its correlate, the number of zero elements, are

measures of modularity.  By assigning fitnesses to realised phenotypes depending on

their distance from an arbitrarily chosen optimum, LPS study the evolution of

modularity.  Their simulations show that the frequency of zero elements in the matrices

deviates from the expected value (1/3; the frequency of zero elements at initialisation

and among random mutations) when the environment changes rapidly.  LPS attribute

these results to a “second order (delayed) pressure for decomposition for adaptability”,

i.e. the uncoupling of traits in order to allow independent optimisation of each and

hence increased ability to adapt to new environments.  Enhanced evolvability is

concluded to be a cause, as well as a fortunate outcome, of the preponderance of zero-

element-rich matrices.  We disagree with this conclusion, and believe that an alternative



explanation exists.  In addition, we feel that modularity cannot influence evolvability in

their study.

In the simulations of LPS, the element values of E are restricted to –1 and +1 and the

element values of A are restricted to –1, 0 and +1.  The elements of the phenotype

vector P are therefore restricted to the range –n→n, where n is the number of

dimensions of the vectors (8 in the simulations of LPS).  LPS restrict the elements of F,

the arbitrary optimal phenotype, to –1 and +1.  The optimal phenotypes are therefore

restricted to a small subset of all possible phenotypes, centred on the origin.  We find

that matrices with many zeros elements tend to produce phenotypes that are closer to

the zero vector, and therefore on average closer to the optimal phenotypes

(mathematical details are given in the appendix).

Rather than appealing to enhanced evolvability, the preponderance of zero-rich matrices

can be explained by the advantage delivered to any A that can maintain a phenotype

close to the origin, despite environmental perturbation (i.e. canalization; Waddington,

1942).  In Figure 1 we give the probability distribution of the value of an element of P

as a function of ζ, the number of zero elements in the corresponding row of A.  As ζ

increases the value of the focal element of P is more tightly distributed about the origin.

Figure 2 reveals the relation between ζ and the mean scalar residual (negatively

correlated with LPS’s measure of fitness) in a focal dimension: increasing ζ reduces the

residual and thus increases fitness.  Conducting simulations of our own, we have been

able to demonstrate frequencies of zero elements significantly greater than 1/3 even



when mutation is suppressed, such that individual lineages may thrive or decline but

cannot evolve and therefore cannot be under selection for enhanced evolvability (see

Fig. 3 & Table 1).

Moreover, in the set-up of LPS, it is unclear why enhanced evolvability is expected to

play any role.  Each element of the vector P is the result of (dot-) multiplying a separate

row vector from A with E.  Contrary to the suggestions of LPS, manipulating the

elements of such a row vector has no effect on the value of other elements of P.  This

means that when evolving A in the context of a certain environment E and a certain

target phenotype F, every element of the actual phenotype P can be optimised

independently.  Interestingly, a different use of the same formalism was suggested by

LPS, and avoids this problem.  Under this alternative scheme vector E describes the

genotype and matrix A describes the genetic architecture of the phenotype (e.g.

pleiotropy); a framework similar to the multiple quantitative trait model proposed by

Taylor & Higgs (2000).  By allowing both E and A to evolve one can study the

evolution of modularity and evolvability under, for example, fluctuations in F.

This is not to say that modularity is not under selection.  It is possible that modularity

confers robustness of fitness in response to the form of environmental change

investigated by LPS.  When matrices are highly modular, such that there is a one-to-one

correspondence between environmental characteristic and phenotypic trait, alteration of

only one aspect of the environment will perturb the phenotype in one dimension only.

Matrices which are less modular have environmental components each affecting more



than one trait, and more than one trait being affected by several environmental

components; they are therefore perturbed in multiple dimensions whenever a single

aspect of the environment is altered.  Since LPS change the sign of only one element of

E at each environmental alteration, it is conceivable that selection for fitness robustness

has given rise to an increase in modularity in their simulations.  However, this is quite a

different pressure than the supposed selection for enhanced evolvability.

In summary, LPS have presented an exciting and novel formalism which may yield

quantitative as well as qualitative insights into the evolution of evolvability and other

problems.  However, in their application of the model they have (1) failed to

demonstrate selection for modularity per se, and (2) not clearly established a link

between modularity and evolvability.  We suggest that enhanced evolvability can be

neither a cause nor an outcome of the increase in their correlate of modularity.
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APPENDIX

The distribution of Pκ

A is a nxn ternary matrix (element values are –1, 0, +1) and E is a n-element column

vector with element values +1 and –1.  The product of the premultiplication of E by A

gives the phenotype vector P.  The κ th  element of P is given by Pκκκκ = Aκκκκ.E = ∑i Aκ i.Ei =

ζ.0 + m.(+1) + (n - ζ - m).(-1) where ζ is the number of zero elements in Aκ and m ~

Bin(n - ζ ,1/2) is the number of same-sign pairs of Aκ i and Ei (i.e. those pairs of

elements multiplying to give +1).  Rearranging, the probability distribution of Pκ is

found to be
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For n = 8, the distribution of Pκ as a function of ζ is shown in Figure 1.

E[rκ] as a function of ζ

LPS define fitness as a decreasing function of the (scalar) distance between realised

phenotype P and an arbitrary optimum F.  The residual in the κ th dimension is rκ = |Fκ -

Pκ| where Fκ takes value +1 or –1 with equal probability.  The probability density

function of rκ is then
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Since Pκ is symmetrical about the origin, P[Pκ = z] = P[Pκ = -z] and so for z > 0, P[|Pκ| =

z] = 2 P[Pκ = z], i.e. for y > 1
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For y ≤ 1,
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Since rκ = Pκ +/- 1, and Pκ is restricted to values of the same parity as n - ζ, rκ is only

evaluated for those integers with parity opposite to n - ζ.  For n = 8, the mean of rκ is

revealed as a function of ζ in figure 2.

FIGURE LEGENDS

Figure 1.  The probability distribution of the value of Pκ as a function of the number of

zero elements in the κ th row of the 8x8 ternary matrix A, ζ.  As n ( = 8) and every value

of ζ ( = 0, 2, 4, 6, 8) are even, the values of Pκ are restricted here to the set of even

integers.

Figure 2.  The expectation of the residual rκ as a function of ζ, for an 8x8 ternary matrix.

By ensuring that phenotype vectors are more tightly distributed around the origin, and

hence closer to the optimum, matrix rows with more zero elements achieve reduced

residual, on average.

Figure 3.  The frequency of zero elements, averaged over 400 replicates, after 20

generations of evolution for a population of 50 8x8 matrices over a range of rates of

environmental change dt/dE.  The broken line indicates the null prediction 1/3.



Simulations were devoid of mutation, but otherwise the evolutionary algorithm

remained the same as that of LPS.



TABLE

Table 1.  Simulation data and the one-tailed sign test for significant departure from null

prediction “frequency of zero elements = 1/3”.

dt/dE

Mean frequency of zero

elements (from 400

replicates)

No. of replicates (out of

400) with frequency of

zero elements > 1/3

p

1 0.359 268 4.700x10-12

2 0.353 243 9.979x10-6

3 0.349 233 5.639x10-4

4 0.353 250 3.266x10-7

5 0.350 228 2.946x10-3
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