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Abstract

We study the interaction between between evolutionary dynamics and group dynamics in a com-
putational model of the evolution of syntax. We find that social patterns can guide the evolution in
unexpected directions, and can both facilitate and hinder the development of compositionality and
recursion. We believe these results in some sense challenge the traditional picture of the transition

towards syntactical language.

1 Introduction

The transition from short, finite communication
systems found in many animal species, to the
open ended language system of humans, is con-
sidered to be one of the major transitions in evo-
lution (Maynard-Smith & Szathmary, 1995). There
is large agreement that the main qualitative differ-
ence is the syntax of human language: the compo-
sitional and recursive nature allows for a systemat-
ic production and interpretation of a tremendous
amount of different messages. Syntax therefore rec-
onciles the need for a large expressiveness with the
limitations in learning and memory. This is, ac-
cording to speculations about the origin of human
language, what makes syntax selectively advanta-
geous, and caused the transition from an exten-
sive non-syntactical “protolanguage” to a more effi-
cient, syntactical language system (Pinker & Bloom,
1990, Nowak & Krakauer, 1999).

However, empirical evidence on e.g. animal com-
munication, innateness and language universals,
remains controversial and inconclusive. An in-
triguing alternative approach has emerged: math-
ematical and computational modeling of language
origins (Hurford, 1989, Steels, 1997, Hashimoto &
Ikegami, 1996, Nowak & Krakauer, 1999). In this
line of research an effort is made to understand the
dynamics of language evolution by studying sim-
ple models (“minimal models”) of communicating
agents. These models help to generate new hy-
potheses, to evaluate how generic certain proper-
ties are, to tackle the supposed self-evidence of ar-
guments and to find a minimal set of assumptions
sufficient to explain a phenomenon. Their main
contribution so far is, that they have shown the
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plausibility of cultural evolution as a mechanism
in the development of more complex languages
(Steels, 1997, De Jong, 1998, De Boer & Vogt, 1999,
Batali, 1997, Kirby, 1999a,b).

Fewer studies exist that model genetic transmis-
sion of language capabilities. Following Hashimo-
to & Ikegami (1996), the model reported in this pa-
per studies the dynamics of genetic transmission
of language. It takes an extreme position, as it
ignores learning mechanisms and semantics, and
models genetic adaptation of particular grammars.
Language capabilities are described with “context
free grammars”, that make compositional and re-
cursive structures very easy to obtain. However, un-
like some other studies of genetic transmission (e.g.
Batali, 1994, Nowak & Krakauer, 1999), no static fit-
ness function is defined; the grammars of all indi-
viduals in a group determine the environment in
which an agent must survive.

Under these simplified conditions, the interac-
tion between evolutionary dynamics and group dy-
namics is studied. We will show that even without
learning and cultural transmission, social patterns
can influence the evolutionary dynamics. We ob-
serve that a social embedding can yield powerful,
recursive grammars, but it can also prevent a popu-
lation from obtaining them. Interestingly, because
of these group effects, rules in one agent’s gram-
mar can influence the persistence of rules in other
grammars, even though the mechanism of cultural
evolution is excluded. We will show, that the results
in some sense challenge the traditional picture of
the transition towards syntactical language.

2 Model description

The model consists of a small set of agents that
play a language game. They communicate in a lan-



guage of short sequences (maz; = 6) of 0’s and 1.
Agents speak (“derive”) and understand (“parse”)
these strings using a Chomskyan rewriting gram-
mar, which they inherited — with some random
mutations — from their parent. In each language
game, all agents can speak once and try to under-
stand each of the spoken strings. Agents receive
scores depending on their success in speaking, un-
derstanding and (not) being understood. After a
number of language games, scores are evaluated
and offspring is produced. Successful agents have
a higher chance of survival and reproduction.

The grammars of the agents are context free
grammars, with a small terminal (V;. = {0,1}) and
non-terminal alphabet (V,,; = {S,A,B}). As an
extra restriction, the start symbol is not allowed
on the right-hand side of rules. At the start of
most simulations, grammars are randomly initial-
ized with either S — 1or S — 0.

Derivation always starts with the start symbol,
and applies iteratively random fitting rules for
some maximum number of steps (mazq = 60; fail-
ure), until no fitting rule exists (failure), or until
a string of only terminal symbols is reached (suc-
cess). In parsing rules are tried in the order they are
stored, and fitting rules are applied recursively un-
til the maximum number of steps (maz, = 500) is
reached (failure), no other fitting rules exist to any
intermediate string (failure), or the start symbol is
reached (success).

The model is similar to the model introduced by
Hashimoto & Ikegami (1996). They use a very spe-
cific scoring scheme, where not being recognized
is rewarded and scores depend on population size,
the length of a string, and a string’s novelty in the
population. Section 3.1 shows new results obtained
with similar parameters. Section 3.3 shows results
obtained with much simpler scoring schemes.

Hashimoto & lkegami discuss their results in
terms of the Chomsky hierarchy of grammars and
languages. In a domain of changing grammars and
finite languages, we believe it is much more con-
venient to use a classification in terms of “routes”.
A route is a sequence of rewriting steps that con-
nects the start symbol S to a string of terminal sym-
bols. Routes can be categorized as indexical (direct-
ly from S to a terminal string), compositional (via
non-terminal symbols from S to a terminal string)
or recursive (leading from a non-terminal symbol
via one or more rewriting steps to the same non-
terminal symbol). The number of routes, can be
divided in three components R;, R, Rg, that de-
pend on each of these categories of routes. Similar-
ly, expressiveness (the number of distinct strings a
grammar can parse) can be divided in E;, E¢, Erg.
routes. Grammars can be characterized by these
values, and classified according to the largest com-
ponent (Zuidema, 1999).

3 Results

3.1 three types of behavior

To evaluate some general properties of the mod-
el, we studied the behavior with the parameter set-
tings of Hashimoto & Tkegami (1996), and a num-
ber of variations. Similar to their results, we find
that evolution can quickly lead to grammars that
can parse a large fraction of the 126 possible strings.
However, under slightly different parameter set-
tings we also find quite different results. We observe
three types of behavior:

i The most frequent behavior is a quick growth
of expressiveness, from 1 at initialization, to
over 100 after about a 1000 generations. In the
first stage the expressiveness depends only on
indexical routes. Soon, however, composition-
al routes and recursive routes become more
important. Eventually, recursive routes domi-
nate the grammar’s expressiveness.

ii Sometimes, it takes much longer to reach the
high level of expressiveness, ranging from 2000
to many thousands of generations. In these
type of runs, compositional routes quickly be-
come important, but recursive routes are infre-
quent.

iii Least frequent are runs that show very little
growth in expressiveness. After 3000 genera-
tions, only around 20 words can be parsed. In
these runs, expressiveness depends almost ex-
clusively on indexical routes.
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Figure 1: Three runs, typical for the indexical, com-
positional and recursive regimes, and some example
grammars.

These types of behavior also differ in their
robustness against mutations and generalization
abilities. With some particular parameter settings,
each of the three types of behavior can occur, sole-



ly depending on the “seed” for the random genera-
tor. At different generations we restarted runs with
original grammars but a different random seed. In
early generations, a change of type of behavior oc-
curs frequently. However, in restarts from later gen-
erations, the type of behavior seems fixed and a
change of type becomes increasingly improbable.
The types of behavior thus form self-enforcing, dy-
namical regimes.

3.2 context and group effects

These results crucially depend on the fact that the
fitness of an agent is evaluated with respect to its
performance in the group, rather than with re-
spect to some static fitness function. In a random
population, agents with more expressive grammars
speak more novel strings, understand more strings
and are less likely to be understood, and thus
should receive higher scores. The existence of the
dynamical regimes, in a non-random population,
can be explained by two mechanisms: a context ef-
fect (rules are generally most successful in a context
of similar rules) and a group effect (agents are most
successful in a group of similar agents).

The derive-languages of individuals, jointly con-
stitute a group language, that in turn determines
the success of agents in parsing. This indirect feed-
back can best be described as a social pattern that
emerges from individual behaviors, and in turn re-
stricts individual success. Initial similarities (in
terms of our classification) are enforced by these
social patterns.

Apparently, the larger an indexical grammar is,
the less likely it is that evolution can lead to com-
positional and recursive grammars. This in some
sense contradicts the traditional picture of the evo-
lution of syntax, that states that only when indexi-
cal grammars became too large, syntax emerged.

A simple analysis can lead to some qualitative
predictions on how, given the existence of these
regimes, different variables in the model should re-
late. One can show, that the number of routes grows
linearly with grammar size in the indexical regime.
In a compositional regime it grows faster, and in a
recursive regime extremely fast!. A rough estimate
of how expressiveness? depends on R, gives a qual-
itative explanation for the trajectories in the phase
space in figure 2. If a linear growth of grammar size
over time is assumed, the shape of the curves in fig-
ure 1 can also be explained.

1 Take for example the simple case of grammars with V,,; =
{S, A}, and at most one non-terminal and at least one terminal
symbol at all right-hand sides of rules. Estimates of R in each of

the regimes are: R; ~ N, R¢ ~ (%N)Z, Rr ~ (%N)mamcu,

where maz. is the maximum number of cycles.
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Figure 2: Trajectories of the same three runs in a
phase space of functional grammar size (the number
of rules that are actually used in communication) vs.
expressiveness

3.3 selective advantages

With the scope of possible behaviors sketched, we
can now turn to the question under what selec-
tion pressures the different dynamical behaviors
are likely to arise. To study this, we designed sev-
eral simple scoring schemes. These include: (i)
communication, where both speaker and receiver
benefit from exchanging information; and (ii) per-
ception, where only the recognizing agent benefits
from the information it receives.

Although recursive structures are always only a
few mutations away, the development of recursive
and expressive grammars is not trivial at all. With
the default initial grammar (randomly S +— 1 or
S ~ 0), the communication scheme shows no in-
crease in expressiveness, unless an explicit pres-
sure is put on innovation. In that case sometimes
recursive structures develop, but slowly and to a
limited extent. If grammars are initialized with a
longer indexical grammar, even this explicit inno-
vation pressure can not force the simulation out of
the indexical regime.

In contrast, the perception scheme leads to re-
cursive grammars under all circumstances consid-
ered. However, when the population has been at a
high level of expressiveness for some time, agents
start to develop grammars that are just as expres-
sive, but have a high probability of failing in deriva-
tion. The asymmetry in parsing and derivation,
makes this possible.

These results yield an interesting paradox. Un-
der the parameter settings that lead to expressive
grammars, the willingness to speak is absent, while
in cases where communication is mutually benefi-
cial, no increase in expressiveness occurs.



3.4 expressiveness

Intuitively, we expect expressive grammars to be
generally selectively advantageous. However, the
model points at the need for a more differentiated
analysis. The explicit role of expressiveness, is that
(i) scores (can) depend on the novelty of a strings.
Therefore, in general, more expressive grammars
generate higher scores.

Implicitly, expressiveness also influences the
scores in other ways. (ii) Expressive speakers are
more likely notto be understood, while (iii) expres-
sive listeners are more likely to understand. In the
case of perception highly expressive grammars are
beneficial, because they yield higher recognizing
scores and fewer opportunities to gather scores for
an agent’s competitors. In the case of communica-
tion, recognition benefits from high expressiveness,
but being recognized suffers from it (competition
effects can be ignored).

If the net-effect of the three roles of expressive-
ness is positive, we expect, in a random population,
recursive grammars to arise. This explains the path
to recursive grammars with “perception” and, con-
versely, the minimal level of expressiveness in the
case of “communication” without a novelty pres-
sure.

However, as argued in section 3.2, social patterns
sometimes guide the dynamics in different direc-
tions than expected from such fixed-fitness approx-
imations. The difference in behavior between sim-
ulations with small and large initial indexical gram-
mars can not be explained with the analysis of the
roles of expressiveness alone.

4 Conclusions

This study concerns the interaction between group
dynamics and evolutionary dynamics. We have
seen that social patterns influence the course of
evolution. Under some conditions powerful, re-
cursive grammars develop (Hashimoto & Ikegami,
1996). Obtaining this type of grammars is in fact a
hard problem; the fact that we nevertheless find re-
cursive grammars, appears to be due to the social
embedding that yields a dynamical fitness land-
scape. This relates to work showing the benefits
of cultural transmission (Batali, 1997, Kirby, 1999a),
“starting small” (Elman, 1991) and sparse fitness
evaluation (Pagie & Hogeweg, 1997).

However, in other circumstances social patterns
hinder the development of such grammars. These
results are particularly interesting, as these specif-
ic circumstances in some sense resemble the sit-
uation that is thought to precede the emergence
of syntax: large indexical grammars and mutually
beneficial communication. In the model we arrive

at a paradox, where those selection pressures that
lead to syntactical languages, also lead to unwill-
ingness to speak. Preliminary results indicate, that
this paradox can be solved if a spatial distribution
of agents and local communication is assumed.
Relaxing the idea of explicit selection pressures
for syntax, an observation in section 3.2 points at an
alternative mechanism for the development of re-
cursion. The fact that recursive expressiveness (Eg)
grows very fast with the number of rules (V), shows
that the larger N (i.e. the “storage capacity”), the
larger the expected relative fraction of recursive ex-
pressiveness. Whereas the traditional view empha-
sizes that cognitive limitations create the need for
syntax, this observation indicates that larger cogni-
tive abilities in fact make recursive expressiveness
more likely to dominate. This might explain the ap-
parent paradox, that the species with the most ex-
tended cognitive abilities, is the only species that
developed “efficient”, recursive communication.
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