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23	� Vector-based and Neural Models 

of Semantics

WILLEM ZUIDEMA AND PHONG LE

it keeps” (Firth, 1957). It means that the meaning of a 
word is determined by (or at least is correlated with) 
the words that surround it, and word meanings can 
thus be computed by analyzing the distribution of words, 
their occurrence and co-occurrence frequencies, in 
large text corpora. We start our discussion of vectorial 
models of semantics by looking in some more detail at 
distributional methods; in section  1.3 we also briefly 
mention nondistributional ways to determine vectorial 
meaning representations.

1.1. An Example  To illustrate the key ideas behind 
distributional semantics, consider the following exam­
ple (used in from slides1 of S. Evert). Imagine that we 
are reading an English book and encounter the strange 
word bardiwac in some sentences:

•	 He handed her her glass of bardiwac.
•	 Beef dishes are made to complement the bardiwac.
•	 Nigel staggered to his feet, face flushed from too 

much bardiwac.
•	 Malbec, one of the lesser-known bardiwac grapes, 

responds well to Australia’s sunshine.
•	 I dined off bread and cheese and this excellent 

bardiwac.
•	 The drinks were delicious: blood-red bardiwac as 

well as light, sweet Rhenish.

Although we have no idea about the meaning of the 
word bardiwac, we can guess it using contexts. From the 
first sentence, we can guess that bardiwac is a kind of 
(drinkable) liquid. The second sentence suggests that it 
is drunk with beef dishes. With the third sentence, it 
seems that bardiwac can make us drunk. And so on. So 
finally, we can guess (with a very high confidence) that 
bardiwac is a kind of red strong wine.

Because we are human beings, we can guess the 
meaning of an unknown word easily. How can we simu­
late this process on a computer? The intuitions behind 
distributional semantics suggest a computational model 
can be based on counts of co-occurrences of words. In 
the following, we will work out a simple formalization 
of this intuition (before mentioning a number of recent 

There is a rich tradition in modeling the meanings of 
words, phrases, sentences, and discourse, going back, 
in some cases, thousands of years. For most of that long 
history, the dominant approach has been an approach 
based on some form of symbolic logic. This approach 
has been very successful, in many respects, but it has 
proven difficult to directly relate such models of seman­
tics to research in (experimental) psychology and cog­
nitive neuroscience. In this chapter, we discuss an 
alternative approach to modeling meaning based on 
numerical vectors, using tools from some other 
branches of mathematics: linear algebra and differen­
tial calculus. These models are very attractive from the 
neural perspective, because numerical vectors are the 
natural representation for patterns of neural activity, as 
well as from the learning perspective, because such vec­
tors are compatible with artificial neural network mod­
els, and, if certain conditions are met, rich sets of tools 
for optimization (learning) developed in this paradigm 
become available. We will get back to these attractive 
properties in section 1.4.

But are numerical vectors not too weak a representa­
tion to account for the intricacies of natural language 
semantics? Hasn’t the rich tradition in lexical and com­
positional semantics revealed the need to have non­
trivial, structured, symbolic models? The goal of this 
chapter is to show that we can have our cake and eat it: 
we can use vectorial representations that are compati­
ble with neuroscience and that are optimized using 
techniques from the neural network toolbox, while still 
being able to account for nontrivial semantic phenom­
ena. Vector-space models therefore form a class that is 
a key intermediary between neural and behavioral data 
and the rich modeling traditions in semantics (and are, 
we argue, complementary to symbolic approaches, 
rather than replacements for them).

1. Words: Vector-Space Models of Lexical Semantics

Many approaches that tackle the problem of how to 
represent word meaning by vectors, are based on the 
insight of Firth: “You shall know a word by the company 
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Intuitively, this means that rare words get higher 
weights than frequent words do. The embedding 

!
e(w) 

of word w (before dimensionality reduction) is then 
given as:

	
!
e(w)[u]= PMI(u,w)= log

(P(U )= u |W =w)
P(U = u)

⎛
⎝⎜

⎞
⎠⎟

	 (2)

In practice, the resulting vectors are high dimen­
sional (easily many thousands of dimensions or more). 
Therefore, a dimensionality reduction method such as 
principal component analysis or non-negative matrix 
factorization is often employed as a final step to com­
pute reduced embeddings ′e

!"
 (see Dinu & Lapata, 2010, 

for an example).
The model we just derived is a simple instance of a 

vector-space model, where every word is assigned a vector 
(based on co-occurrence statistics, or distributional 
information), and the set of vectors reflects similarities 
and differences in the contexts in which words find 
themselves. In distributional semantics this distribu­
tional similarity is, in turn, taken to correlate with 
semantic similarity (the distributional hypothesis).

1.2. A Variety of Methods in Distributional 
Semantics  Many variants of distributional semantics 
models exist (see Lowe, 2001, for an overview of the 
relevant dimensions at which they differ, and Erk, 
2012, for a review of the state of the art a decade later). 
In cognitive science, the still most well-known variant is 
Latent Semantic Analysis (Landauer & Dumais, 1997), 
which differs from the model sketched in section 1.1 in 

variants, including neural network approaches that pre-
dict rather than count).

For simplicity, we define a context of a target word in 
a sentence as the set of all words near the target word, 
that is, within a window of k words before or after the 
target word (if k = ∞, the context is the entire sentence.) 
Let ν be a vocabulary. A very simple method is to count 
how many times a word u ∈ ν co-occurs with the target 
word w ∈ ν in the k-sized window. This is equivalent to 
estimating the conditional distribution Pr(U = u|W = w) 
using maximum likelihood. An illustration is shown in 
figure 23.1. First, we collect sentences containing the 
target word w. We then for each word u count how 
many times u co-occurs with w within a defined window 
size k. Finally, we extract a vector containing all of 
those counts, which is used to represent the target word 
w. We estimate the conditional distribution simply with:

	 P(U = u|W =w)= #u  and  w  co -occur
#w

	 (1)

However, in order to come up with useful vectors, 
there are some details that should be considered. First, 
which u’s should be counted. It is clear that function 
words (e.g., a, an, how, what), which are extremely fre­
quent, carry little information about the meanings of 
target words. By contrast, rare words tend to contribute 
more important information. We thus need one more 
step called a weighting scheme. One of popular schemes 
is weighting with pointwise mutual information (PMI), 
which corresponds to weighting with the inverse of the 
probability that u appears in the corpus, P(U = u). 

edge of the sword each of this
Lets fall his sword before your Highness’

it me; my sword shall soon dispatch
Sooner this sword shall plough thy

claps me his sword upon the table
I see a sword out, my finger

What, the sword and the word!
Even with the sword that kill’d thee.

If to my sword his fate be
can shake my sword or hear the

He who the sword of heaven will
She takes a sword and runs at

I and my sword will earn our
It eats the sword it fights with.

But for thy sword and fortune, trod
For what the sword cuts down or

u #(u|w)
claps 1
cuts 1
dispatch 1
drink 0
down 1
earn 1
eats 1
fall 1
fate 1
fights 1
finger 1
fortune 1
hear 1
heaven 1
Highness 1
kill’d 1
plough 1
refuse 0
see 1
shake 1
shall 2
table 1
takes 1
trod 1

P (u|w)
0.002
0.002
0.002
0.0

0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.0

0.002
0.002
0.004
0.002
0.002
0.002

P (u|w)/P (u)
1.333
1.333
1.333
0.0

1.333
1.333
1.333
1.333
1.333
1.333
1.333
1.333
1.333
1.333
2.666
1.333
1.333
0.0

1.333
1.333
0.987
1.333
1.333
1.333




1.8
1.3
0.8
0.9
0.2
2.8
2.0
0.1
1.7
1.8
2.5
0.5
0.7




Figure 23.1  (Left) An example toy corpus (a random selection of word sequences containing the word sword in the Shake­
speare texts on Project Gutenberg, with a three-word context window). (Right) Co-occurrence frequencies with sword of 
various other words u in a window of size k = 3, conditional probabilities, hypothetical PMI values (illustrating that a high-
frequency function word such as shall is less informative than a low-frequency word such as Highness) and the resulting 
hypothetical word embedding vector (after dimensionality reduction).
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optimized to predict the target word given the con­
text word embeddings (the continuous bag of words 
model), or vice versa, to predict context words given the 
target word embedding (the skipgram model). Pen­
nington, Socher, and Manning (2014) presented a 
method called GloVe and showed that it performs on 
par with the word2vec method on many tasks. Interest­
ingly, Levy and Goldberg (2014) argued that prediction 
and count-based approaches might, mathematically, not 
be so different after all. They derive a count-based objec­
tive function that the word2vec-skipgram method is 
approximating.

1.3. Successes: Proximity and Cognitive Semantic 
Similarity  The most natural property of continuous 
vector spaces is that they immediately let us think about 
sets of words in terms of their mutual distances: for 
every two points in a vector space, we can compute the 
distance, and, inversely, proximity, using standard dis­
tance metrics from algebra and geometry. In vector-
space models of semantics, we want proximity in that 
space to reflect semantic similarity. A popular distance 
metric is cosine, which equals 1 if two vectors are point­
ing in exactly the same direction and 0 if the two vec­
tors are orthogonal. The cosine of two vectors w and v 
can be computed as the sum of products of the corre­
sponding elements scaled by the vector lengths:

cos(
!
w,
!
v)= i=1

n∑ wivi

" !w " i " !v "

With a method for computing embeddings (say: 
word2vec–continuous bag of words), a corpus (say: 
English Wikipedia) and a distance metric (say: cosine) 
in place, we can start to investigate whether the proxim­
ity of the resulting vectors indeed corresponds to seman­
tic similarity. In figure 23.2, we give a few examples of 
the nearest neighbors in such a word vector model of 
an arbitrary noun, verb, and adjective. These tables 
illustrate that words find themselves in the neighbor­
hood of other words with, intuitively, strong semantic 
similarity.

And indeed, a large literature, from the 1990s onward, 
has demonstrated that word vectors from distributional 
semantics can (with the right setting of the parameters) 
strongly correlate with human similarity and typicality 
judgments and can be strongly predictive of semantic 
priming effects. Recent large-scale comparisons (Baroni 
& Lenci, 2010, Pereira, Gerhsman, Ritter, & Botvinick, 
2016) confirm this point and moreover show that the 
GloVE and word2vec methods now so popular in natu­
ral language processing (NLP), correlate even better 
with human data of various sorts than classical meth­
ods such as Latent Semantic Analysis. (More recently, 

that it counts how often a word is used in each of very 
many documents (i.e., a word–document matrix rather 
than a word–word matrix is computed; additionally tf/
idf rather than PMI is the weight function, and singu­
lar value decomposition is used for dimensionality 
reduction).

Depending on how distributional context is defined 
(e.g., sentence context or document context) and on 
how different aspects of the context are weighted (e.g., 
with distance, or with position to the left or right of the 
target word), the configurations differ (as do their 
applicabilities in specific tasks).

In recent years, a class of alternative models has 
become popular where the key idea is that embeddings 
are optimized such that they allow prediction of miss­
ing or next words (e.g., Collobert et al., 2011, Mikolov, 
Sutskever, Chen, Corrado, & Dean, 2013). This 
approach can be illustrated with “filling in blanks” 
questions in Test of English as a Foreign Language and 
International English Language Testing System tests, 
as in the following example:

__________ is the study of numbers, equations,  
functions, and geometric shapes and their 
relationships.

a.	 Physics
b.	 Mathematics
c.	 Geography
d.	 Theology

To arrive at the correct answer in such a task (here: 
“mathematics”), a model needs (a) to summarize the 
relevant aspects of meaning of all the words in the 
given sentence and the way they are put together, (b) 
have a representation for each of the candidate answers, 
and (c) have a way to evaluate how well (b) matches (a). 
Success at this task thus implies knowledge of the mean­
ing of all the words; in a vector-space model optimized 
for this task, vectors for words should thus reflect their 
meanings.

More formally: let us assume that each word v ∈ ν is 
represented by a vector v ∈ ℝd and there is a mecha­
nism for computing the probability P(W = w|U = (u1, 
u2, … , ul)) of the event that a target word w appears 
in a context (u1, u2, … , ul). We are going to find a vec­
tor v for each word v such that those probabilities are 
as high as possible for each w and its context (u1, 
u2, … , ul).

Bengio, Ducharme, Vincent, and Janvin (2003) pro­
vided, to our knowledge, the very first approach in this 
class. Mikolov, Karafiát, Burget, Černocký, and Khu­
danpur (2010) employed (simple) recurrent network 
networks. The very popular word2vec models, intro­
duced by Mikolov, Chen, Corrado, & Dean (2013), are 
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distributional semantics have made possible. Recent 
progress in vectorial models of vision and object recog­
nition, however, provides a possible resource to fill this 
gap (see Baroni, 2016, for a recent review of the rele­
vant literature in this area).

1.4. Theoretical Advantages of Vectorial Repre­
sentations  Vector representations of meaning are 
not only successfully used in practice for a variety of 
tasks, they are also attractive from a theoretical per­
spective as an intermediary among linguistic, cognitive 
science, and neuroscientific notions of meaning. This 
is first and foremost because numerical vectors are 
widely used to describe the activity of a layer of neu­
rons, where the value of an element in the vector is 
representing the firing rate of a single neuron. But vec­
tor representations are not limited to such one-to-one 
mappings and to rate-coding. We can also think of an 
element in the vector as representing one of the other 
parameters of a neuron besides firing rate: oscillation 
phase, depletion of chemicals, changes in synaptic 
strength, and so on. Each neuron is then represented 
by multiple elements in the vector. Alternatively, one 
element might represent the average activity of a (large) 
group of neurons (e.g., a voxel in fMRI data) or of some 
other aggregate variable representing (part of) the 
information a group of neurons codes for. Interest­
ingly, choosing between different neural interpreta­
tions is not always necessary (although it becomes very 
relevant when relating vectors to empirical neural data 
or trying to use neurobiological findings to constrain 
the model space; for example, when selecting an appro­
priate similarity metric or learning procedure).

For learning, numerical vectors are an attractive 
representation as they allow optimization using stan­
dard tools from machine learning. And, indeed, in 
recent deep learning work, many successful applications 

they have also been successfully employed in other 
areas of linguistics, including historical linguistics (e.g., 
Frermann & Lapata, 2016; Hamilton, Leskovec, & 
Jurafsky, 2016).

Mitchell et al. (2008) pioneered the use of distribu­
tional methods in analyzing neuroimaging data and 
showed that they can be used to predict, with some suc­
cess, BOLD-responses of subjects exposed to word-
picture pairs of concrete nouns such as celery or airplane. 
In the original study, a very simple distributional model 
was used, where the nouns used as stimuli are repre­
sented with a vector recording co-occurrence frequen­
cies with 25 hand-picked verbs (such as swallow and 
fly). Later work (Murphy, Talukdar, & Mitchell, 2012) 
showed that more advanced techniques give even bet­
ter results, with the best results for a model that makes 
use of the grammatical structure of sentences in which 
words find themselves (modeled using labeled depen­
dency parses). These studies use a leave-2-out para­
digm, where a model is evaluated on its ability to decide, 
based on the functional MRI (fMRI) data, which of two 
words were presented to the subject, given labeled 
fMRI data for all remaining words. The baseline per­
formance for random guessing is 50%; the best models 
score around 83%.

Most successful demonstrations of vector-space mod­
els are thus based on distributional semantics, using 
language-internal statistics about words co-occurring 
with other words. However, it is clear that the meaning 
of words must also somehow be grounded in the senses 
and the world. Vector-space models are not restricted 
to distributional information. Vectors can also encode 
other types of information and are compatible with 
approaches based on embodiment and/or conceptual 
spaces, although it has been difficult to define this 
type of information at similar scales and levels of pre­
cision as the automatic, corpus-based methods for 

dizziness 0.85
nausea 0.81

drowsiness 0.81
convulsions 0.78

vomiting 0.78
spasms 0.77

constipation 0.77
migraine 0.77
cramps 0.77

duodenal 0.76
A  NNs of "headache"

write 0.77
learn 0.47

literacy 0.45
print 0.40

writing 0.39
text 0.39
edit 0.38
how 0.38

readers 0.37
find 0.37

B  NNs of "read"

blue 0.76
white 0.70
yellow 0.69

red 0.65
purple 0.62
orange 0.60
pink 0.56

magenta 0.54
dark 0.52

multicoloured 0.52
C  NNs of "green"

Figure 23.2  Nearest neighbors (NNs) of three words with cosine similarities, using embeddings obtained by applying 
word2vec on the English Wikipedia corpus. This figure was created using data from the “Word2vec playground” (http://
deeplearner​.fz​-qqq​.net​/) in June 1997 (site no longer available; a similar service is available at, e.g., https://rare​-technologies​
.com​/word2vec​-tutorial​/).
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shifts) in the vector space. Mikolov, Yih, and Zweig’s by 
now most famous example is the demonstration that 
the linear shift in vector space to go from king to queen 
is very similar to the linear shift to go from man to 
woman, such that we can predict the vector for queen 
using addition and subtraction:

king
! "!!!

−man
! "!!!

+woman
! "!!!!!!

= queen
! "!!!!

In figures 23.4 and 23.5, we show a number of similar 
predictions, using again the word2vec model. These 
examples try to capture several part-whole relations, 
the comparative transform, the past tense and present 
participle morphology, antonymy relations, and the 
regular plural morphology in English. These examples 
do not prove that the mentioned relations are consis­
tently corresponding to linear shifts in vector space, 
but they do illustrate that the assignment of vectors to 
words is quite structured and that the high-dimensional 
vector space allows for many relations to be captured in 
this way.

Much more sophisticated analysis of these relation 
can be found in, for instance, Henderson and Popa 
(2016), who showed that word2vec is closely related to 
models that optimize for lexical entailment and 
Cotterell, Schutze, and Eisner (2016), who extended 
distributional methods to account for word 
morphology.

2. Sentences: Vector-Space Models of Compositional 
Semantics

Perhaps the biggest challenge for vector-space models 
of semantics is how to compute meaning representation 
for sentences and multiword phrases. In theory, the 
distributional statistics used for computing word repre­
sentations can be applied to larger items such as phrases 

of this toolbox to questions relating to natural lan­
guage meaning are reported, often exploiting the huge 
amount of texts available on the Internet.

1.5. Limitations of Similarity Models  So far we 
have discussed successes in distributional semantics 
based on measuring proximity between word vectors, 
mostly treating semantic similarity as a scalar property, 
that is, as something that can be described with a single 
number. However, semantics, even at the word level, 
involves much more than similarity. Symbolic models 
of lexical semantics also try to account for phenomena 
such as the fact that one word might have multiple 
meanings (polysemy) and that the meanings of words 
have systematic relations with each other such as hyper­
nymy (subset-superset relations, such as the relation 
between animal and dog), antonymy (being each other’s 
opposite, such as large vs. small), and differing in 
degrees (such as in comparatives, small, smaller, small-
est). Moreover, symbolic models of the lexicon also 
carry information about the role that a word plays in a 
sentence, such as its syntactic category (part-of-speech 
tag) and morphological information. Figure 23.3 illus­
trates some of the information about a word like mouse 
that a symbolic lexicon would specify.

1.6. Lexical Relations in Vector-Space Mod­
els  Much current work is devoted to working out how 
such phenomena can be accounted for in vector-space 
models. An important reason for optimism in the field 
about the ability of vector-space models to account for 
such aspects of meaning, is the discovery of Mikolov 
and colleagues (Mikolov, Yih, & Zweig, 2013) that many 
of the mentioned relations between words, including 
the morphosyntactic relations between words, seem to 
be reflected by geometric relations (mostly linear 

Figure 23.3  Examples of the typical information included in symbolic lexicons about words: (A) words might be polyse­
mous, motivating multiple entries in a lexicon. Each entry can be placed in an ontology, detailing superset and subset or 
other relations it has with other entries. (B) The meaning of words can often be broken down into smaller meaning 
components/semantic primitives, allowing similarity relations between meanings to be made explicit. (C) The lexical entry 
often also contains syntactic information about the word form, regulating its behavior in when combined with other words to 
form sentences.

entity

animal

rodent

mouse1

house mouse

device

computer peripherals

mouse2

mouse1
ANIMATE

FOUR-LEGGED
WITH-TAIL

SMALL
WILD

GRAIN-EATING
GREY/BROWN

mouse1
NOUN

SINGULAR
ANIMATE

COUNTABLE
PLURAL: �→mice

A B C
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The solution that formal semantics research found is 
to rely on the principle of compositionality, which says 
that “The meaning of a whole is a function of the mean­
ings of the parts and of the way they are syntactically 
combined” (Partee, 1995). With the lambda calculus, 
composition turns out to be very elegant: lambda func­
tion application and reduction. For instance,

Lola:		  lola
runs:		 λx.run(x)
Lola runs:	 (λx.run(x))(lola) = run(lola)

and sentences as well. However, in practice, even in very 
large corpora, any particular sentence is extremely 
unlikely to occur multiple times. For words, phrases, or 
sentences occurring only once, we only have one chance 
to collect statistics on the items they co-occur with or 
that they can be predicted from, which is, in general, not 
enough to build useful semantic representations. Lack 
of data is therefore a serious problem for approaches 
that simply transfer the word-based techniques to mul­
tiword phrases and sentences.

Figure 23.4  Nearest neighbors from the predicted vector in four analogy tasks. In the analogy A is to B as C is to D, a simple 
prediction for the vector for D is given by C + B − A = −(A − B) + C. The used embeddings are obtained by applying word2vec on 
the English Wikipedia corpus. This figure was created using data from the “Word2vec playground” (http://deeplearner​.fz​
-qqq​.net​/) in June 1997 (site no longer available; a similar service is available at, e.g., https://rare​-technologies​.com​
/word2vec​-tutorial​/).

berlin 0.64
munich 0.59
leipzig 0.58
vienna 0.55
dresden 0.53
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frankfurt 0.50
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fossa 0.49
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heel 0.51
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meters 0.55

tall 0.53
weighs 0.53
weigh 0.52

backboard 0.50
metres 0.50
octaves 0.50

centimetres 0.49
millimeter 0.49

D  hands:fingers::feet:?

nicer 0.69
nice 0.67

happier 0.61
better 0.58

smarter 0.55
easier 0.53
harder 0.52
prettier 0.52
bigger 0.51
heck 0.50

A  smart:smarter::nice:?

talk 0.74
talked 0.71
talking 0.63
spoke 0.60

spoken 0.50
discussing 0.48
approached 0.47
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chatting 0.44
B  walk:walked::talk:?

talk 0.77
talking 0.76
talked 0.61

discussing 0.59
chatting 0.55
telling 0.46
spoke 0.45
joking 0.45
chatter 0.45
spoken 0.44

good 0.61
black 0.52
great 0.48

decent 0.47
bad 0.47

terrific 0.44
poor 0.43
nice 0.43

terrible 0.43
excellent 0.43

D  green:black::good:?

good 0.85
bad 0.62

great 0.62
decent 0.58
terrific 0.55
tough 0.53
nice 0.52

terrible 0.52
excellent 0.52
fantastic 0.51

E  white:black::good:?   F  message:messages::headache:?

0.80
0.74
0.47
0.42
0.41
0.38
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0.35
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headache
headaches
nightmares
problems
nightmare

pain
anxiety

distraction
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cough 0.35

Figure 23.5  Nearest neighbors from the predicted vector in four analogy tasks. In the analogy A is to B as C is to D, a simple 
prediction for the vector for D is given by C + B − A = −(A − B) + C. Retrieved from Liu (2016)
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and then go higher up in the hierarchy to compute a 
vector for the whole sentence

I like it
! "!!!!!!

= f (
!
I , like it
" !""""

, S → NP VP)

Approaches in this class mainly differ by the compo­
sition functions they make use of. Next, we will discuss 
three approaches.

2.1.1. Approach 1: Additive and multiplicative composi-
tion  The simplest approach is to use vector element-
wise operations such as addition and multiplication 
(Mitchell & Lapata, 2008)

•	 Additive: p = x + y
•	 Multiplicative: p = x ʘ y (i.e., pi = xi × yi)

where p = xy is formed by combined x and y.
Despite its simplicity, this approach works surpris­

ingly well in composing noun-noun and adjective-noun 
phrases (Blacoe & Lapata, 2012). However, from the 
theoretical point of view, this approach is unsatisfac­
tory. Because those operations are commutative, word 
order and hierarchical structure of a sentence become 
irrelevant, that is,

man bit dog
! "!!!!!!!!!!!

= dog bit man
! "!!!!!!!!!!!

A more sophisticated way is to linearly combine those 
two operations:

p = αx + βy + γ xi ʘ y

2.1.2. Approach 2: Tensor-product–based composition  
The idea is to resemble composition in formal seman­
tics. In formal semantics, words such as adjectives 
and  verbs are functors that are to modify arguments 
representing other words such as nouns, and compo­
sition is simply function application. Based on this, 
with the slogan “composition is largely a matter of 
function application” Baroni, Bernardi, and Zam­
parelli (2013) proposed using tensors2 to represent 
words:

Many variants of formal semantics have been worked 
out, generally relying on a hierarchical, syntactic analy­
sis of a sentence and an expressive logic to describe 
sentence meaning (including devices to represent tem­
poral information and to represent thoughts or state­
ments about thoughts or statements). In this approach, 
words get assigned potentially rather complex lambda 
expressions that are needed to compute meaning repre­
sentations of sentences from those of words. For instance, 
a ditransitive verb give will get assigned an expression 
that regulates that the three arguments, giver, givee, 
and gift, will be labeled with the right variables, as well 
as with the information that the verb is in present tense. 
A word like some (in a sentence like Some mammals swim) 
will be assigned an expression that regulates that the 
sentence meaning will contain an existential quantifier 
(∃) and that the properties from its first argument 
(mammals) and from the second argument (swim) end 
up in the right place in that expression. On the other 
hand, the lexical meaning of content words typically 
remains unanalyzed, that is, it is assumed to be atomic. 
For instance, the word mouse just means MOUSE.

Vectorial lexical semantics, as reviewed in section 1, 
holds the promise of providing a more satisfactory 
account of the lexical semantics, but how to combine 
the strength of distributional and formal semantics is 
far from trivial. But since 2008 a number of promising 
approaches have been worked out to also compute use­
ful vector representations for sentences. We will briefly 
review four approaches, of which the first three, like 
formal semantics take the hierarchical structure of a sen­
tence as given. The fourth approach, in contrast, treats 
sentences as sequences of words.

2.1. Hierarchical Approaches  We take as given 
that x and y are vectors representing two items x and y, 
respectively, and that x and y are to be combined accord­
ing to the assumed hierarchical analysis of the sentence. 
The central task of vector-space models for phrases and 
sentences is then to find a composition function f so 
that the output is a vector representing constituent 
p = xy:

	 p = f (x, y, R, K)	 (3)

where R is the syntactic rule that combines x and y, 
and K is background knowledge (Mitchell & Lapata, 
2008).

Computing a vector for a sentence is thus, like in for­
mal semantics, carried out in a bottom-up manner on a 
given parse tree. An illustration is given in figure 23.6. 
Assuming that there are vectors representing words, we 
first compute a vector for the verb phrase:

like it
! "!!!!

= f (like
! "!!

, it
!"
,VP → ADJ PRP)

I like it

VP

S

Figure 23.6  Compute sentence vector in a bottom-up 
manner. First, we compute a vector for the verb phrase (VP) 
and then compute a vector for the subject (S).
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parameters). Besides, we need to collect context distri­
butions of phrases like old dog as in the preceding 
example. This becomes problematic when phrases are 
rare, and phrases tend to get very rare rapidly if they 
are composed of more than two words.

The most successful application of this idea, accord­
ing to Baroni, is to composition in morphology (Marelli 
& Baroni, 2015). Marelli and Baroni found, for instance, 
that the composition of representations for column and 
–ist predicts that it’s similar to journalist and thus cor­
rectly picks out the relevant sense (as column is similar 
to pillar).

2.1.3. Approach 3: Recursive neural networks  Because 
two-layer feedforward neural networks are universal 
approximators (Cybenko, 1989), they can theoretically 
approximate true composition functions (if they exist 
and are measurable). Therefore, it is natural to think of 
using a feedforward neural net as a composition func­
tion. This leads to a model called Recursive neural 
network (RxNN). This idea was first proposed by Pol­
lack (1990) and Goller and Küchler (1996). It then 
became popular in NLP thanks to the work series of 
Socher and colleagues (Socher, Manning, & Ng, 2010; 
Socher, Pennington, Huang, Ng, & Manning, 2011; 
Socher, Huval, Manning, & Ng, 2012).

A composition function for this model is a network 
consisting of two layers (figure 23.8A): an input layer 
with 2n nodes for pairs of two children and an output 
layer with n nodes for parents. Technically speaking, 
given a production p → x y, the computation is given by

	 p = a(W1x + W2y + b)	 (5)

where x, y, p ∈ ℝn are vectors representing x, y, p; W1, 
W2 ∈ ℝn×n, b ∈ ℝn are weight matrices; and bias vector a 
is an activation function (e.g., tanh). The RxNN model 
differs from approaches 1 and 2 in that it is nonlinear 
(if the activation function a in equation 5 is nonlinear, 
e.g., sigmoid, tanh).

Although it is not clear whether the true composition 
functions are linear or nonlinear, the nonlinearity obvi­
ously makes the RxNN model more expressive and a 
wide range of choices for a make it more flexible. 
Although the RxNN model is simple, its elegance in 
terms of modeling and training makes it popular in the 
NLP community. A bundle of its extensions have been 
proposed, mainly along two directions: (i) proposing 
more expressive composition functions (e.g., Le & 
Zuidema, 2015a; Socher et al., 2012; Socher et al., 2013; 
Tai, Socher, & Manning, 2015) and (ii) extending the 
topology (Irsoy & Cardie, 2013, Le & Zuidema, 2014, 
2015b).

•	 first-order tensors (i.e., vectors ∈ ℝn) are to repre­
sent nouns,

•	 second-order tensors (i.e., matrices ∈ ℝn×m) are to 
represent adjectives, intransitive verbs,

•	 third-order tensors (i.e., ∈ ℝn×m×k) are for transitive 
verbs, and so on.

Composition is carried out through tensor production. 
For example, composing an adjective and a noun is a 
matrix-vector multiplication like:

	 old dog
! "!!!!!!

=  fold(dog
! "!!

)=OLD × dog
! "!!

	 (4)

Training this model corresponds to finding proper 
tensors for words. Given the fact that approaches for 
word vectors are not applicable to second- and higher-
order tensors, Baroni et  al. (2013) and Grefenstette, 
Dinu, Zhang, Sadrzadeh, and Baroni (2013) employed 
linear regression with co-occurrence counts as train­
ing signals. First, co-occurrence count is used to find 
vectors for nouns like dog, vectors for noun phrases old 
X such as old dog, old cat. From those vectors represent­
ing old X and X, linear regression is used to estimate a 
matrix for old (see figure 23.7). Higher-order tensors 
are estimated with the same mechanism but with a 
technique called multistep linear regression.

From a theoretical point of view, the function-
application–based approach is a beautiful model, which 
could be considered as inheriting the philosophy of 
formal semantics. However, learning tensors for lexical 
items is its most serious weakness. This is because the 
model requires a very large number of parameters (a 
single transitive verb needs n3, i.e., 1M if n = 100, 

old dog old dog

old cat old cat

...

extract 
from 

corpus

extract 
from 

corpus

linear 
regression

Figure 23.7  Learning a matrix for an adjective using 
linear regression.
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ht = g(Wxxt + Whht − 1 + b)

where Wx ∈Rn ×dim(xt ),Wh ∈Rn ×n , b∈Rn  are weight 
matrices and bias vector g is an activation function. 
This network model thus, in theory, can be used 
to  estimate conditional probabilities with long 
histories.

Because the SRN can handle sequences with differ­
ent lengths, we can use it to process sentences. For 
instance, figure 23.9B shows how we can use the SRN 
model for language modeling: the idea is to try to pre­
dict which word will come next. In this way, when we 
reach the end of a sentence, the hidden layer activa­
tion captures the whole sentence. In other words, we 
can use the activation of the hidden layer at that time 
point to represent the whole sentence. Figure  23.9B 
also shows that the SRN model is in fact a special case 

2.2. Sequential Models of Sentence Semantics
2.2.1. Approach 4: Recurrent neural networks  A fourth 
approach tries to compute vectors for sentences with­
out (explicitly) using syntactic structures as glue to 
combine subcomponents. Successful versions of this 
approach are recurrent network and convolutional net­
works (which we will not discuss here, but see Collobert 
et  al., 2011; Kalchbrenner, Grefenstette, & Blunsom, 
2014; Kim, 2014).

A neural network is recurrent if it has at least one 
directed ring in its structure. In the simple recurrent 
neural network (SRN) model proposed by Elman (1990) 
(see figure 23.9A), an input xt is fed to the network at 
each time t. The hidden layer h, which has activation 
ht − 1 right before xt comes in, plays a role as a memory 
capturing the whole history (x0, …, xt − 1). When xt comes 
in, the hidden layer updates its activation by:

x

p = f(W1x + W2y+b)

y

W1 W2

A

I like it

xvp = f(W1xlike + W2xit)

xs = f(W1xl + W2xvp)

softmax

B

Figure 23.8  (A) A feedforward neural network as a composition function. (B) RxNN for sentence classification.

ht

xt

yt

W

Wh

Wx

A

h1

Barcelona

Wh
Wx

h0

y2

h2

is

W

Wh
Wx

   …   ...   ...
cat       ugly     beautiful

Wh

h3

beautiful

W

Wx

   …   ...   ...
.       and     but

y3

sentence 
vector

W

   …   ...   ...
eat       is      has

softmax y1

B

Figure 23.9  SRN (A) and the SRN when we unfold it (B). Notice that h0 can be simply 
!
0.
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of the RxNN model: the input tree is always left- 
branching.

The network is efficiently trained using the back­
propagation through time algorithm (Werbos, 1990). 
Although in theory recurrent neural networks are, at 
least, as expressiveness as Turing machines (Hyötyni­
emi, 1996), and training them is difficult because of 
the vanishing gradient problem and the problem of 
how to capture long-range dependencies (Hochreiter, 
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tives, which have become popular recently, are the Long 
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3. Conclusion

How can we represent the meaning of words and sen­
tences in a computational model? In this chapter we 
have discussed foundational work in distributional 
semantics, where word meanings are represented with 
(high-dimensional) numerical vectors, and recent exten­
sions of this approach that generalize the vector repre­
sentations to also apply to sentences. We have briefly 
contrasted these approaches to alternative modeling 
traditions. We have shown that vectorial models are 
surprisingly versatile and account for a wide variety of 
semantic phenomena often claimed to necessitate sym­
bolic formalisms, while offering the additional benefits 
of being much more compatible with both neurobio­
logical modeling and existing machine learning 
frameworks.

NOTES

	 1.	 See, for instance, http://esslli2016​.unibz​.it​/​?page​_id​
=242.

	 2.	 Tensors describe linear relations among vectors, scalars, 
and other tensors. An n-dim vector is a first-order 
n-shape tensor, and an n × m matrix is a second-order 
n × m -shape tensor. A third-order (n × m) × k–shape ten­
sor T describes a linear map from a k -dim vector v to an 
n × m matrix M

M = T × v

		  where

Mm ,n = ∑kTm ,n ,kvk

		  Generally, a (I1 ×…×Im) × (J1 ×…×Jn)–shape tensor T 
describes a linear map from a J1 ×…×Jn-shape tensor V to 
an I1 × … × Im -shape tensor M by

Mi1,… , im =
j1,… , jn

∑ Ti1,… ,im , j1,… , jn  V j1,… , jn
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