Neural representations for nested tree structures

Willem Zuidema
Institute for Logic, Language \& Computation
University of Amsterdam

This morning

- Increased sophistication of the hypotheses
- UG -> merge -> dendrophilia ->

Language of Thought w/ chunking;
Unique human ability to represent > to learn -> to learn quickly;

- Unique human ability for compositionality -> for symbols as reversible signs.

This morning

- Great innovations in experimental paradigms:
- 11 Tesla imaging
- finger tracking
- brain response
- letting subjects produce rather than passively receive
- touch screen interface (Jiang et al., 2018)

A different route: representation learning

- Neural language models have become amazingly good at learning subtleties of human language structure, including syntactic structure
- Internal states of the Neural language models give us the best
available predictions of activation in the human brain
- Although not as accurate as often claimed!

Sinclair et al (2022, TACL, forthcoming)

- Dative alternation:
- gave the dog a bone vs. gave a bone to the dog
- Transitive alternation:
- the actor followed the student vs. the student was followed by the actor

Conclusions

- There's a long history to determining the uniquely human ingredient that has given us language
- Proven to be a very difficult challenge
- Theoretical and experimental innovations very welcome!
- Modern Al offers successful "representation learning" approaches
that can be co-opted as hypothesis-generators on neural
representations
- Modern LLMs are to big

And too data-hungry!

