Neural representations for nested tree structures

Willem Zuidema
Institute for Logic, Language & Computation
University of Amsterdam

microscale

Zuidema (2013), reanalyzing Gentner et al. 2006

Common problem
- Many alternative hypotheses that we need to control for
- E.g., to distinguish $A^p B^q$ sequences from $(AB)^p$ sequences it suffices to look for:
 1. the lagun A^p (+)
 2. the lagun B^q (+)
 3. the lagun B^q (-)
 4. the start A^p (+)
 5. the end B^q (+)
 6. the start AB^q (-)
 7. the end AB^q (-)
 8. any sequence of A's followed by B's ($A^p B^q$)
 9. a mix of strategies 1-8
- Each of these alternative is plausible a priori, and none involves constraint-freeness (Zuidema, 2013, CogSci)

Figure 2: The d' statistic calculated for the $A^p B^q$ vs. $(AB)^p$ distinction (left) and for various controls (right). Blue: Gentner et al. Red: CPG, Yellow: MIX.
This morning

- Increased sophistication of the hypotheses
 - UG -> merge -> dendrophilia -> Language of Thought w/ chunking;
 - Unique human ability to represent - > to learn - > to learn quickly;
 - Unique human ability for compositionality - > for symbols as reversible signs.

- Great innovations in experimental paradigms:
 - 1.1 Tesla imaging
 - Finger tracking
 - Brain response
 - Letting subjects produce rather than passively receive
 - Touch screen interface (Jiang et al., 2018)

A different route: representation learning

- Neural language models have become amazingly good at learning subtleties of human language structure, including syntactic structure
- Internal states of the Neural language models give us the best available predictions of activation in the human brain
 - Although not as accurate as often claimed!
Conclusions

• There's a long history to determining the uniquely human ingredient that has given us language
• Proven to be a very difficult challenge
• Theoretical and experimental innovations very welcome!
• Modern AI offers successful "representation learning" approaches that can be co-opted as hypothesis-generators on neural representations
• Modern LLMs are too big

And too data-hungry!