The Variable Hierarchy for the Games μ-Calculus (abstract)

Walid Belkhir and Luigi Santocanale

Laboratoire d’Informatique Fondamentale de Marseille.

An extended version of this abstract is the reference [2].

Parity games are combinatorial representations of closed Boolean μ-terms. By adding to them draw position (or free variables), A.Arnold and L. Santocanale [1] have structured parity games into the games μ-calculus. In other words, the authors defined substitution, least and greatest fixed-point operators, as usual for μ-calculi. The canonical interpretation of this μ-calculus is over the class of all complete lattices.

As done by Berwanger et al.[3] for the propositional μ-calculus it is possible to classify parity games into levels of a hierarchy according to the number of fixed point variables. We ask whether this hierarchy collapses w.r.t the canonical interpretation. We answer this question negatively by constructing, for each $n \geq k$, a parity game G_n which is semantically equivalent to no game in L_n. Therefore, we prove that the inclusions $L_{n-3} \subseteq L_n$, $n \geq 3$, are strict. The games G_n strengthen the notion of synchronizing games from [4] to the context of the variable hierarchy. We prove that the syntactical structure of a game H, which is semantically equivalent to G_n, resembles that of G_n: every move (edge) in G_n can be simulated by a non empty finite sequence of moves (a path) of H; if two paths simulating distinct edges do intersect, then the edges do intersect as well. We formalize such situation within the notion of $*$-weak simulation. The main first result is that if there is a weak simulation of G by H, then $\mathcal{E}(G) \leq \mathcal{E}(H) + 2$, and moreover if G is a strongly synchronizing game, and if $H \in \mathcal{G}$ is such that $G \leq H \leq G$, then there is a $*$-weak simulation of G by H. Summing up these observations we obtain our main theorem.

Theorem 1. For $n \geq 3$, the inclusions $L_{n-3} \subseteq L_n$ are strict. Therefore the variable hierarchy for the games μ-calculus is infinite.

A relevant question is about interpreting a μ-calculus into an other one, this should be a bridge relating results obtained in different μ-calculi and eventually relating the results on the μ-calculus of parity games and those of the μ-calculus of modal logics.

References