The Variable Hierarchy for the Games μ -Calculus (abstract)

Walid Belkhir and Luigi Santocanale

Laboratoire d'Informatoque Fondamentale de Marseille.

An extended version of this abstract is the reference [2].

Parity games are combinatorial representations of closed Boolean μ -terms. By adding to them draw position (or free variables), A.Arnold and L. Santocanale [1] have structured parity games into the games μ -calculus. In other words, the authors defined substitution, least and greatest fixed-point operators, as usual for μ -calculi. The canonical interpretation of this μ -calculus is over the class of all complete lattices. As done by Berwanger et al.[3] for the propositional μ -calculus it is possible to classify parity games into *levels of a hierarchy* according to the number of fixed point variables. We ask whether this hierarchy collapses w.r.t the canonical interpretation. We answer this question negatively, that is the Theorem bellow.

A preorder on the collection of labeled parity games, noted hereby \mathcal{G} , is described by means of Mediator-Opponent game $\langle G, H \rangle$. We declare that $G \leq H$ iff Mediator has a winning strategy in $\langle G, H \rangle$ – and write $G \sim H$ if $G \leq H$ and $H \leq G$. The relation \leq has been proved sound and complete w.r.t the canonical interpretation in any complete lattice [5]. The main tools used to capture the combinatorial essence of the variable hierarchy are two graph metrics: the *feedback* and the *entanglement*. Asking whether a parity game G is semantically equivalent to a μ -term with at most n-variables amounts to asking whether G belongs to the level \mathcal{L}_n defined as follows: $\mathcal{L}_n = \{ G \in \mathcal{G} \mid G \sim H \text{ for some } H \in \mathcal{G} \text{ s.t. } \mathcal{E}(H) \leq n \},$ where $\mathcal{E}(H)$ denotes the entanglement of the underlying graph of H. The variable hierarchy being made up of the levels \mathcal{L}_n , the hierarchy problem can be formalized as follows: is there a constant $k \geq 0$ such that for all $n \ge k$, we have $\mathcal{L}_k = \mathcal{L}_n$? We answer this question negatively by constructing, for each $n \ge 1$, a parity game G_n with these properties: (i) G_n unravels to a tree with back-edges (i.e. μ -term) of feedback n, showing that $G_n \in \mathcal{L}_n$, (ii) G_n is semantically equivalent to no game in \mathcal{L}_{n-3} . Therefore, we prove that the inclusions $\mathcal{L}_{n-3} \subseteq \mathcal{L}_n$, $n \geq 3$, are strict. The games G_n strengthen the notion of synchronizing games from [4] to the context of the variable hierarchy. We prove that the syntactical structure of a game H, which is semantically equivalent to G_n , resembles that of G_n : every move (edge) in G_n can be simulated by a non empty finite sequence of moves (a path) of H; if two paths simulating distinct edges do intersect, then the edges do intersect as well. We formalize such situation within the notion of \star -weak simulation. The main first result is that if there is a weak simulation of G by H, then $\mathcal{E}(G) \leq \mathcal{E}(H) + 2$, and moreover if G is a strongly synchronizing game, and if $H \in \mathcal{G}$ is such that $G \leq H \leq G$, then there is a \star -weak simulation of G by H. Summing up these observations we obtain our main theorem.

Theorem 1. For $n \ge 3$, the inclusions $\mathcal{L}_{n-3} \subseteq \mathcal{L}_n$ are strict. Therefore the variable hierarchy for the games μ -calculus is infinite.

A relevant question is about interpreting a μ -calculus into an other one, this should be a bridge relating results obtained in different μ -calculi and eventually relating the results on the μ -calculus of parity games and those of the μ -calculus of modal logics.

References

- André Arnold and Luigi Santocanale. Ambiguous classes in the games μ-calculus hierarchy. In FOSSACS 2003, volume 2620 of Lecture Notes in Comput. Sci., pages 70–86. Springer, Berlin, 2003.
- 2. Walid Belkhir and Luigi Santocanale. The variable hierarchy for the games μ -calculus. Submitted to the conference LICS 2008, http://hal.archives-ouvertes.fr/hal-00178806/, October 2007.
- Dietmar Berwanger and Giacomo Lenzi. The variable hierarchy of the μ-calculus is strict. In STACS 2005, volume 3404 of LNCS, pages 97–109. Springer-Verlag, 2005.
- 4. Luigi Santocanale. The alternation hierarchy for the theory of μ-lattices. *Theory and Applications of Categories*, 9:166–197, January 2002.
- 5. Luigi Santocanale. Free µ-lattices. Journal of Pure and Applied Algebra, 168(2-3):227–264, March 2002.