Continuous fragment of the mu-calculus

Gaëlle Fontaine

Given a proposition letter p, we define the p-continuous fragment of the μ -calculus as the set of formulas of the μ -calculus which are Scott continuous with respect to p in the powerset algebra (with all other variables fixed). Equivalently, a formula φ is Scott continuous in p iff it is monotone and whenever the formula is true at a point in a model, we only need finitely many points where p is true in order to establish the truth of φ .

We provide a syntactic characterization of this fragment. More precisely, if P is a set of proposition letters, the set of formulas SC(P) is defined by induction in the following way:

$$\varphi ::= \top \mid p \mid \psi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \mu x.\chi,$$

where p belongs to P, no proposition letters of ψ belong to P and χ belongs to $SC(P \cup \{x\})$. We show that the set $SC(\{p\})$ is precisely the p-continuous fragment of the μ -calculus. This proves a conjecture by Johan van Benthem. The technique is similar to the one used by M. Hollenberg (see, e.g., [1]) to show that a formula distributes over arbitrary unions iff it is equivalent to some $\langle \pi \rangle p$, where π is a p-free μ -program. The idea is to identify automata corresponding to this fragment and next to show that these automata give us the announced characterization.

References

 M. Hollenberg. Safety for Bisimulation in Monadic Second-Order Logic. *Logic Group Preprint Series 170*, Dept. of Philosophy, Utrecht University, 1996.