ICPDL with fixed points and nominals

Stefan Göller and Markus Lohrey

Institute for Computer Science University of Leipzig, Germany

We introduce the logic μ -ICPDL_{Nom} which subsumes the modal μ -calculus and PDL with intersection and converse of programs (ICPDL) and allows the usage of nominals. Let \mathbb{P} be a countable set of *atomic* propositions, let \mathbb{A} be a countable set of *atomic programs*. Moreover, let \mathbb{X} denote a countable set of *fixed* point variables and Nom a countable set of nominals. The set of formulas Φ and the set of programs Π of μ -ICPDL_{Nom} are the smallest sets such that: (i) $\mathbb{P} \cup \mathbb{X} \cup \text{Nom} \subseteq \Phi$, (ii) if $\varphi \in \Phi$, then $\neg \varphi \in \Phi$, (iii) if $\pi \in \Pi$ and $\varphi \in \Phi$, then $\langle \pi \rangle \varphi \in \Phi$, (iv) if $X \in \mathbb{X}$, $\varphi \in \Phi$, and every free occurrence of X in φ is within an even number of negations, then $\mu X.\varphi \in \Phi$, (v) if $p \in Nom$ and $\varphi \in \Phi$, then $@_p\varphi \in \Phi$, (vi) $\mathbb{A} \cup \{\overline{a} \mid a \in \mathbb{A}\} \subseteq \Pi$, (vii) $\{\varphi? \mid \varphi \in \Phi\} \subseteq \Pi$, (viii) if $\pi_1, \pi_2 \in \Pi$, then $\pi_1^* \in \Pi$ and π_1 op π_2 for each op $\in \{\cup, \cap, \circ\}$. A Kripke structure with respect to a finite set of nominals $N \subseteq$ Nom is a tuple $K = (W, \{ \rightarrow_a \mid a \in \mathbb{A}\}, \{W_p \mid p \in \mathbb{P} \cup N\}, \rho)$, where (i) W is a set of worlds, (ii) $\rightarrow_a \subseteq W \times W$ is a binary relation for each $a \in A$, (iii) $W_p \subseteq W$ for each $p \in \mathbb{P} \cup N$ and $|W_p| = 1$ for each $p \in N$, and (iv) $\rho: \mathbb{X} \to 2^W$ is an *evaluation* (of fixed point variables). For a subset $V \subseteq W$, a fixed point variable $X \in \mathbb{X}$ and an evaluation ρ , we denote by $\rho[X \to V]$ the evaluation that is defined as $\rho[X \to V](Y) = V$ if Y = X and $\rho(Y)$ else. Extending the latter notation to Kripke structures, we define $K[X \to V] =$ $(W, \{ \rightarrow_a \mid a \in \mathbb{A} \}, \{ W_p \mid p \in \mathbb{P} \cup N \}, \rho[X \rightarrow V]).$ Making use of the Knaster-Tarksi fixed point theorem, we can define the semantics of μ -ICPDL_{Nom}. Let $K = (W, \{ \rightarrow_a | a \in \mathbb{A} \}, \{ W_p \mid p \in \mathbb{P} \cup N \}, \rho)$ be a Kripke structure. Assuming that only nominals from N are used, we define for each $\varphi \in \Phi$ a subset $[\![\varphi]\!]_K \subseteq W$ and for each $\pi \in \Pi$ a binary relation $[\![\pi]\!]_K \subseteq W \times W$ as follows:

$$\begin{split} \llbracket p \rrbracket_{K} &= W_{p} \quad \text{for } p \in \mathbb{P} \cup N & \llbracket a \rrbracket_{K} &= \rightarrow_{a} \quad \text{for } a \in \mathbb{A} \\ \llbracket X \rrbracket_{K} &= \rho(X) \quad \text{for } X \in \mathbb{X} & \llbracket \overline{a} \rrbracket_{K} &= \{(y, x) \mid x \rightarrow_{a} y\} \quad \text{for } a \in \mathbb{A} \\ \llbracket \neg \varphi \rrbracket_{K} &= W \setminus \llbracket \varphi_{K} \rrbracket & \llbracket \varphi R \rrbracket & \llbracket \varphi R \rrbracket_{K} &= \{(w, w) \mid w \in \llbracket \varphi \rrbracket_{K}\} \\ \llbracket \langle \pi \rangle \varphi \rrbracket_{K} &= \{x \mid \exists y : (x, y) \in \llbracket \pi \rrbracket_{K} \land y \in \llbracket \varphi \rrbracket_{K}\} & \llbracket \pi^{*} \rrbracket_{K} &= \llbracket \pi \rrbracket_{K}^{*} \\ \llbracket \mu X. \varphi \rrbracket_{K} &= \mathbf{lfp}(U \mapsto \llbracket \varphi \rrbracket_{K[X \rightarrow U]}) & \llbracket \pi_{1} \text{ op } \pi_{2} \rrbracket_{K} &= \llbracket \pi_{1} \rrbracket_{K} \text{ op } \llbracket \pi_{2} \rrbracket_{K}, \text{ op } \in \{\cup, \cap, \circ\} \\ \llbracket \varphi \varphi \rrbracket_{K} &= \begin{cases} W \quad \text{if } W_{p} \subseteq \llbracket \varphi \rrbracket_{K} \\ \emptyset \quad \text{else} \end{cases} \quad \text{for } p \in N \end{split}$$

where $\mathbf{lfp}(U \mapsto \llbracket \varphi \rrbracket_{K[X \to U]})$ denotes the least fixed point of the monotone function $U \mapsto \llbracket \varphi \rrbracket_{K[X \to U]}$. A Kripke structure K is a model for a formula φ if for some world w of K we have $w \in \llbracket \varphi \rrbracket_K$. A formula φ is *satisfiable* if it has a model. The following two results extend corresponding theorems from [1].

Theorem 1. Let $N \subseteq Nom$ be a finite set of nominals. Every satisfiable μ -ICPDL_{Nom} formula that uses only nominals from N has a countable model of tree width at most |N| + 2.

Combining this model theoretic result with automata theoretic techniques (translation into two-way alternating tree automata with a parity acceptance condition), we can show the following theorem.

Theorem 2. Satisfiability in μ -ICPDL_{Nom} is 2EXPTIME-complete.

References

Stefan Göller, Markus Lohrey, and Casten Lutz. PDL with Intersection and Converse Is 2 EXP-Complete. In Proceedings of the 10th International Conference on Foundations of Software Science and Computational Structures (FoSSaCS 2007), number 4423 in Lecture Notes in Computer Science, pages 198–212. Springer, 2007.