Axiomatizations for modal fixpoint connectives

Luigi Santocanale^{*} Yde Venema[†]

Given a set Γ of modal formulas of the form $\gamma(x, \vec{p})$, where x occurs positively in γ , the language $\mathcal{L}_{\sharp}(\Gamma)$ is obtained by adding to the language of polymodal logic \mathbf{K} connectives $\sharp_{\gamma}, \gamma \in \Gamma$. Each term \sharp_{γ} is meant to be interpreted as the parametrized least fixed point of the functional interpretation of the term $\gamma(x)$. Examples of such languages are CTL and LTL. We consider the following problem: given Γ , construct an axiom system $\mathbf{K}_{\sharp}(\Gamma)$ which is sound and complete w.r.t. the concrete interpretation of the language $\mathcal{L}_{\sharp}(\Gamma)$ on Kripke frames. In the talk we give an effective solution for this problem. For every connective \sharp_{γ} our procedure provides a bounded set of axioms and derivation rules. In many concrete cases we simply obtain the standard fixpoint axioms and rules.

If an algebraic perspective on modal logic is adopted, then $\mathbf{K}_{\sharp}(\Gamma)$ is a collection of Horn formulas which is finite whenever Γ is finite.

^{*}Laboratoire d'Informatique Fondamentale de Marseille, Université de Provence. †Institute for Logic, Language and Computation, Universiteit van Amsterdam.