Axiomatizations for modal fixpoint connectives

Luigi Santocanale* Yde Venema†

Given a set Γ of modal formulas of the form $\gamma(x, \vec{p})$, where x occurs positively in γ, the language $L_{\sharp}(\Gamma)$ is obtained by adding to the language of polymodal logic K connectives $\sharp_{\gamma}, \gamma \in \Gamma$. Each term \sharp_{γ} is meant to be interpreted as the parametrized least fixed point of the functional interpretation of the term $\gamma(x)$. Examples of such languages are CTL and LTL. We consider the following problem: given Γ, construct an axiom system $K_{\sharp}(\Gamma)$ which is sound and complete w.r.t. the concrete interpretation of the language $L_{\sharp}(\Gamma)$ on Kripke frames. In the talk we give an effective solution for this problem. For every connective \sharp_{γ} our procedure provides a bounded set of axioms and derivation rules. In many concrete cases we simply obtain the standard fixpoint axioms and rules.

If an algebraic perspective on modal logic is adopted, then $K_{\sharp}(\Gamma)$ is a collection of Horn formulas which is finite whenever Γ is finite.

*Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence.
†Institute for Logic, Language and Computation, Universiteit van Amsterdam.