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1. Introduction: representation of time in intervals

When developing a logical formalism to represent time, several choices are
to be made in the field of language, ontology and semantics. E.g. concerning
the language an important question is whether to use classical logic or some
kind of a modal formalism; the ontology can be such that the timepoints are
the basic entitics, or one may start with periods of time. Two choices, four
possible outcomes: of these, the modal logic of periods seems to have
received the least attention [3, 8, 9, 19, 20, 7, 24]. We hope to help fill this
gap with this article, which is devoted to a modal system of intervals. We
will use the term ‘interval’ for an uninterrupted stretch of time informally
visualized by a horizontal line segment:
i.

Although we only study linear time here, on the whole we want to be as
general as possible. We make no further assumptions about the underlying
nature of time, such as denseness or discreteness, but we show some of these
properties to be expressible in the modal language, and very easily so. We

“do not impose any restructions on the semantics, like homogeneity: an
atomic formula need not be true on all subintervals of i if it is true on i itself,
or locality: if two intervals start simultaneously, they need not make the
same atomic formulas true.

Except for [19], all modal systems of intervals developed up till now have
unary modal operators associated with binary accessibility relations of
intervals. It is well known [1, 3] that in linear time structures there are
thirteen such relations. In the figure below, we visualize seven of them; the
other relations are the converses of the ones we show (here equals is its own
converse).

fequsls j:  —————}

i meets §: 1 j

i precedes j: -t —_
i overlaps j; ——————=t i

i starts j; ———— i

i ends §: j |

i during j: L
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In [9] and [3], the systems defined have operators F, P and O,
corresponding to respectively the following relations: precedes”, precedes,
and the union of during”, starts* and ends*. In [7] one has operators
corresponding to the meets, starts and ends relations and their converses,
e.g. (B)¢ holding at an interval i if it has an interval j such that j starts i and
¢ holds at j. In the same article one can find some results concerning the
complexity of the validity problem for formulas of this language with respect
to several classes of frames. In [24] sound and complete axiom systems are
given for the system of {7].

Here we present a system with binary modal operators connected with a
ternary accessibility relation A. This relation A may be defined as follows:

Aijk =i starts k A i meetsj A j ends k,

i i
X

The introduced system CDT is called a logic for chopping intervals because
it has an operator C, the interpretation of ¢Cy being formally

M, k £ ¢Cy if there are i, j with Aijjk and M,iF¢ and M, jE Y,

and informally: ¢Cy holds at an interval iff we can chop it into a ¢-part and
a -part.

We would like to thank one of the anonymous referees for bringing the
article [19] to out attention. Where the CDT-operators can be seen as totally
describing the situation when there is one extra point given besides the
beginning and endpoint of the current interval, Nishimura gives similar
operators for every number of extra points. So his system, having infinitely
many operators, of increasing arity, can be seen as a generalization of ours.

The CHOP-operator seems to be a very natural one; one may see it, just
like von Wrights ANDNEXT-operator [3], as a formalization of the
temporal connective in sentences like

He came home and went to bed.

Besides this relevance for natural language processing (and artificial in-
telligence), the CHOP-operator also has computational and mathematical
interest: it has a part to play in the branch of computer science where
temporal logic is used to prove program correctness. Interpreting formulas
not in intervals but in paths, i.e. sequences of computation states, ¢Cy
holds in sequences which are the concatenation of two sequences in which ¢
resp. ¥ holds. Some results on this approach can be found in [21]. Finally,
the modal logic studied here has a close link with the mathematical theory of
Relation Algebras [11, 12], which form an algebraic treatment of the logic of
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binary relations, in the same way as Boolean algebras form an algebraic
approach towards propositional logic. Here the link is formed by the
observation, that if one views an interval as the ordered pair consisting of its
beginning and endpoint, a set of intervals can be seen as a binary relation
(on the set of timepoints). The details of this connection, which inspired our
completeness results of sections 4 and 5, are given in [25].

The paper is organized as follows: first we give the necessary definitions
concerning syntax and semantics; in sections 3 and 4 we give some results
concerning expressiveness and correspondence; in section 5 we briefly
consider sound and complete axiom systems, and the last section treats a
complete natural deduction system for CDT.

2. CDT, a modal logic for chopping intervals

2.1. Syntax

Besides the usual Boolean connectives, the system CDT has three binary
modal operators, C, D and 7, and a propositional constant, x. The intuitive
picture is given by the following figure:

current interval: f 1

eCy — Y i

— T
eTy L%
oDy .éfp"".—_w I ——

i.e. ¢C holds at an interval if it can be chopped into two pieces, at the first
of which ¢ is to hold, and at the second W. The constant & will hold for
‘point-intervals’, i.e. intervals of zero duration. As abbreviations we use tt
(fF) for an arbitrary tautology (falsity), e.g. tt= s v -, ff=m A—m.

2.2. Semantics

We have a choice between an ontology in which intervals are the primary
objects and one in which they are defined as a sets of points in an underlying
linear order. we present both approaches, the most general one first:

Derinimion 2.2.1.
An i-frame is a triple J = (I, A, P) with A<’ and P I Intuitively, Ak
represents the following situation:
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i.e. k is the ‘sum’ of two adjacent intervals i and j. An i-model is a pair
M, =(J, V) with J an i-frame and V a valuation, i.e. a map assigning subsets
of I to atomic propositions. We can define a fruth relation t for i-models in
the following way:

MikqgifieV(q)
M itnifieP
MitpaypifMitpand M, ik,
M, ik ¢Cp if there are j, k in I with Ajki and jE ¢ and kF y,
M, iE ¢Ty if there are j, k in [ with Aijk and jE¢ and kv,
M, ik D1 if there are j, k in I with Ajik and jF ¢ and k F y.
A frame is a pair F = (T, <) with < a linear ordering on T. For a frame F we
define the set of F-intervals INT(F) = {[s, 1] |'s, te F, s <t} and the i-frame
on F, I(F) = (INT(F), A, P) with
(s. 1), [u, v], [w, x] e Aifs=w,t=uandv =1,
[s. t]ePiffs=1.
A model is an i-model (J, V) with J based on a frame F. In such a case we
denote the model by (F, V). Note that for models we have F, V, [s, t]F ¢Cyp
iff there is a u with s =u =<t, [s, u] £ ¢ and [u, t]E .
For both kind of models, the notions of satisfiability and validity are
defined in the usual way. An i-frame on a linear ordering is called

two-dimensional if it is isomorphic to an i-frame on a linear ordering; the
class of two-dimensional frames is denoted by E.

2.3. Geometrical representation

If we represent intervals [s, f] of INT(F) as points (s, ¢} in the ‘North-
western halfplane’ of F?, we get a ‘rectangular’ interpretation for (i, j, k) €
A : (i, j, k) forms an A-triple iff we can make a a rectangle in F**" having as
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its vertices: i, k, j and the intersection of the horizontal line through i and
the vertical one through j, viz. the above figure. The set P of point intervals
is visualized as the diagonal {(s, t) | s =t}; Points (s, ) with s <t represent
stretched intervals. For the interpretation of the binary modal operators, we
obtain:

Cy g ¥ @Dy b4 ¢

2.4. Compass-operators

The system HS defined by Halpern and Shoham in [7] can be seen as a very
natural subsystem of CDT: define the following modal operators as
abbreviations in CDT:

o for

O ¢ for 0Co, & for ¢Co

&¢ for oD ¢, Oo for T,

O¢ for (O v P v OP), O¢ for (O@ v ¢O9),

O¢ for -, etc.

In the light of the previous paragraph it will be clear how we can give these
operators a ‘compass interpretation’ in point-based frames, e.g. {>¢ holds at
a two-dimensional point X iff there is a ¢-point right south of X. Note
however, that our set of possible worlds still consists of the North-western
halfplane. This will mean, for example, that the formula & is equivalent to
Lff.

In terms of intervals, the meaning of the compass operators is given by the
following scheme:

& ¢ holds at an interval if it has a starting interval where ¢ holds.
& ¢ holds at an interval if it has an ending interval where ¢ holds.
& ¢ holds at an interval if it starts a ¢-interval.
<&@ holds at an interval if it ends a ¢-interval.

Here the relations ‘starts’ and ‘ends’ are supposed to be irreflexive: an
interval does not start or end itself. We use the name HS for the sublogic of
CDT in which we only have the compass operators. The system HS is in a
certain sense complete with respect to the binary relations of intervals: for
each of the thirteen accessibility relations given in the introduction, we can
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define in HS the operator connected with it. For example, i F QO ¢ if there
is an interval j during i at which ¢ holds.

On the other hand, HS is less expressive than CDT itself: in [24] it is
proved that we cannot even define the simple CDT-formula gCq in HS.

3. CDT and classical logic of time points

When a new modal logic is defined, it is natural to apply the familiar theory
of modalitics to this logic and to ask old questions about the new subject.
We will do this here, but for lack of surprising results we will only touch a
small number of topics, and only lightly.

To start with, we can look at the capacity of CDT to characterize classes
of frames and develop its correspondence theory [4]. Analogous to the choice
in semantics for CDT, we have a choice in the first-order language which is
to be the target of the correspondence translation: we may choose an
‘interval language’ with a triadic predicate symbol A and a monadic P, or a
‘point language’ with only a dyadic symbol <. This section is devoted to the
second option: we will compare the expressive strength of CDT with that of
the first-order language L, having identity and a binary relation symbol <.
Let L., be the language L, cxtended with binary relation symbols
Oy, Oy - -

First, we can easily give a straightforward translation t of CDT-formulas
into the set of Lpo-formulas having two free variables, in such a way that ¢
and ¢ are locally equivalent on the model level: Let M = (F, V) be a model
on the p-frame F. We may consider M as a structure for Ly (in the usual
classical sense) by interpreting every Q, by V(g;). We then have, for any pair
(51, 5;) with 5, <s,:

ME[s,, s;] ©ME P (xy, x)[x,— 5]

Here t. denotes the classical truth relation.

Equivalence on the frame level may then be obtained by a universal
quantification over all relation symbols Q,, .. ., O, appearing in ¢, global
equivalence by a first order universal closure:

FEPOFENVVNVO, ... VO, (x), x3).

Fortunately, we need not always go as far as second-order Ly-logic: some
important first order definable properties of linear orders can be charac-
terized by a simple CDT-formula.

Derintrion 3.1
Call a frame dense if it satisfies Vst(s <t— Ju(s <u <t)), discrete if
Vst(s < t— [Fu(s <u A -~Fv(s <v <u)) A u(u <t A-Jv(u <v <1))]) holds

in F.

Eama i v

A Modal! Logic for Chopping Intervals / 459

Let length 1 be the CDT-formula o A —(0Co), then length 1 holds at
intervals with no proper subintervals. Furthermore, define the following
CDT-formulas:

DENSE = 0— (0Co)
DISCRETE ={(length 1 C tt) A (1t Clength 1)].

Prorosition 3.2
Let F be a p-frame.
(1) FEDENSE & F is dense.
(2) FEDISCRETE & F is discrete.

Proor. Straightforward. O

Note that the CDT-formulas characterizing density and discreteness only use
atomic constants o, tt. This will turn out to be of great use in Section 5.

In CDT we can also characterize the classes of, for example, the
Dedckind-complete frames or the ‘iso-choppable’ ones (i.e. F consisting of a
frame F' with an isomorphic copy of F' glued behind it), but as this has
already been shown in [7], resp. [24], for the subsystem HS of CDT, we omit
it here.

Now let us return to the model level. Using a trick of Gabbay [6], we
might easily show (cf. also the proof of lemma 2.7 in {24]) that the
translation t may be defined so that ¢* uses only three variables x,, x,, x;
(possibly bound by different quantifiers at different occurrences). For
notational simplicity, we drop subscripts of the predicate symbols and modal
atomic propositions, and let Q range over the Q,’s.

Derinrrion 3.3

The set L, of L-formulas in at most 3 variables is inductively defined as the
smallest set of L-formulas containing the atomic formulas x; <x;, Qxx; and
x; = x; (with i, j € {1, 2, 3}), which is closed under Boolean formula-building,
and under the quantifications 3x,, Ix, and Ix,. L,(x;, x;) denotes the set of
L.-formulas having (at most) x; and x; as their free variables.

So, cvery CDT-formula has an equivalent (on the model lcvel) in
Ly(x;, x;). Now an interesting feature of CDT is that the converse holds as
well: we can show that every L,(x;, x,)-formula has an equivalent CDT-
formula over the class of linear orders. There is a small technical problem,
however: in a CDT-model, the truth of formulas is only evaluated at pairs
(51, 5,) of points for which s, =<s,, while in classical logic we do not have
such a constraint. We solve this problem by giving two translations ¢*, ¢~
of a classical formula ¢, and by introducing adapted CDT-models:
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Derinimion 3.4
Let M = (F, *) be a structure for Ly. Introduce, for every predicate symbol
Q, atomic CDT-formulas g*, q~. Let M’ be the CDT-model with

V(g*)={(s,t} |s<tand (s, t) e Q*}
Vig)={(s, )| s <tand (1, s) € Q*}.

Furthermore, we need a handier characterization of L,-formulas. In the
sequel i, j and k will be such that {i, j, k} = {1,2, 3}.

Derintrion 3.5
L'(x;, x;) is inductively defined as follows:

(1) Oxixi, xi=x;, % <Xx;, Qxx;, X = X; and x, <x; are in L'(x;, x;) and in
L'(x;, x;).

(2) If ¢ and  are in L'(x;, x;), then so are 7@ and ¢ A Y.

(3) If w e L'(x;, x) and § € L'(x,, x;), then Ix(y A E)isin L'(x;, x;).

ProrosiTion 3.6
Every formula in Ly(x,, x;) bas an equivalent in L'(x,, x2).

Proor. By a straightforward induction on the complexity of L,-formulas we
prove the following strengthening of the above proposition:

Every L,-formula ¢ is equivalent to a Boolean combination ¢’ of
L'-formulas, where ¢' has the same free variables as ¢.

The only interesting case of the proof is the quantifier step: let ¢ be of the
form 3x, ¥(x,, X2, x5), then by Induction Hypothesis ¢ is equivalent to 3x,
Y'(x,, X, X;), where we may assume that Y’ is a disjunction of a
conjunction of L'-formulas.

Distribute the 3x, over the disjuncts. Let 3x,E(xy, x2, x,) be one of the
new disjuncts, then & can be written as E=E,, A Ei3 A By, with every
g, € L'(x;, x;). Clearly then Ix,E(x,, X2, X5) is equivalent to &y A Ix,(Ex A
&,;), which is a Boolean combination of two L’(x,, x;)-formulas.

We leave it to the reader to verify that the Boolean combination of
L'-formulas has the proper free variables. 0

We have now come to the main result of this section; first consider

Derinimion 3.7
By induction on the complexity of L'-formulas we define translations :

(x,' = x,')ii = it

(i =x)" = T
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(= x;)" = tt

(x; <x;)" = f

(x; <x;)’ = o (=)
(o <x;)” = ff

(Qxx)’ = P(rag™)
(Qx.x;)? = q*

(Qxx)" = q
(Ox;x))" = OrAagY)
()’ = —¢’

(¢ A y) = ' Ay’

Ax (W, x0) A E, X)) = YDEY v y*CEY v EX Ty
Lemma 3.8. For all L'(x,, x;)-formulas
ME. p(xi, X)X 50, x> 51 MOE ¢7s,, 5] if s, =35 *)
Proor. The proof is of course by induction on the complexity of L'-
formulas. For the atomic case, the validity of (*) can easily be verified; the
Boolean induction step does not cause any problems, so let us suppose
¢(x, x;) = (P(x;, x) A E(xx, x;)), and 5; =55,
Then Mt ¢(x;, x)[x;=>s,, x;+—=s;] iff there is an s, in M with
ME P (x;, x )X s, X, s, ] and M k. E(xi, x;)[xi = Sk x> 5] (**)
As M is lincar, there are only three possibilities for the position of s, with
respect to s; and s;: either s, =5, =5; Or 5; =5, =5; OF §; =s;<s,. Together
with the induction hypothesis this gives the equivalence of (**) with
(M°E9¥[s,, s;] and M°EE¥[s,, 5))
or (MUEy™*(s;, s,] and M"EEY[s,, s;])
or (MEE*[s;, s,] and M°EY[s;, sc]).
So by the truth definition of the CDT-operators, indeed M k. ¢(x,, x,)[x;~
5;, x5 iff MUE @[5, 5;]- 0

Now let ¢(x,, x;) be an Li-formula. By 3.6, ¢ has an equivalent ¢'e€
L'(x,, x,). Let ¢* be the formula (¢)"%, ¢~ the formula (¢')*. Lemma 9
then gives

Tueorem 3.9
For every L.-formula ¢:
ME @[x, 5, X, 5] O ME@*ls,, 5,]ifs, <5,
MU't @ sy, s )ifs,<s,.

Thus we have established the equivalence of CDT to the three-variable
fragment of Ly, over the class of linear models. Now suppose we impose the
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condition of locality upon our semantics:
for atomic p, [s, t]e V(p) iff [s, s] € V(p).

Then CDT collapses to CDT,,, a sort of extended temporal logic of points.
Formulas of CDT will then correspond to classical formulas in an extension
Lem of Lp with monadic relation symbols Q,, Q,,... Now as the three-
variable fragment of Ly is as expressive as Lpy itself over the class of linear
orders ([6, 10]), Theorem 3.9 gives a functional completeness result of
CDT,,. with respect to the class of linear orders.

4. CDT and classical logic of intervals

In this section we treat the ‘other’ correspondence theory of CDT, viz. the
one in which we compare CDT with the first order interval language L,
having a triadic relation symbol A and a monadic P. We will not give the
formal definition of the straightforward translation and only treat the frame
level. First we discuss some formulas which will come back as axioms for the
class of p-frames later on. The fact that the formulas involved have first
order correspondents over the class of i-frames is a direct consequence of
their Sahlqvist form [4, 23]).

ProrosiTioN 4.1

JE(pCy)CE— ¢C(YCE) (M1)
& J EVuvwz[3x(Auvx A Axwz)— Jy(Auyz A Avwy)] (1

Proor. First, the following picture should make clear what is going on:

Suppose JF(C1) and there is a valuation V and an interval z with
zE(¢Cy)CE. Then there are u, v, w and x with Axwz and wk§&, Auvx,
ut¢ and vEy. By (Cl) there is a y with Auyz A Auwy. This means
y EyCE, and then 2 £ ¢C(yCE).

For the other direction, suppose J ¥ (C1). Then there are u, v, w, z and x
with Auvx and Axwz, but for no y we have Auyz and Avwy. If V is a
valuation with V(p) = {u}, V(g) = {v} and V(r) = {w}, then it is straight-
forward to show that J, V, z E(pCq)Cr A ~(pC(qCr)). O

In the same way one can show that (C1) is characterized by the following
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CDT-formulas as well:

PT(YTE)— (oTy)TE (M1)

yD(¢TE)— ¢T(yDE) (M17)
Now suppose J F(0Co)— o. Then (C1) implies transitivity of the starting
relation of intervals: if u starts x and x starts z then u starts z. This
transitivity is reflected in (M1) if we take both ¢ and vy to be 0. (1) then
reads as HGE— (0Co)TE, and as oCo implies o, we get GOE-OE, a
familiar correspondent of transitivity.

ProrosiTion 4.2
JE@T(yCE)— [yC(PTE)V (ETH)Ty) (M2)
& JEYowxy[Iz(Avwz A Axyz)
— Juf(Axuv A Auwy)V (Avux A Auyw)]]  (C2)

Proor. The proof runs in the same line as the previous one. The following
picture may be of use; here v should be seen as the current interval and ¢,
1 and & as holding in w, x and y.

4 2

v w X ('3

X Y v w
Y u

Note that in (C2) some kind of ‘internal linearity’ is involved: if both
meeting points, of v and w and of x and y, are in the interval z, then one of
them is before the other (or they are identical).

In some respect the following pair of formulae can be seen as the
converses of the previous ones:

ProrosiTion 4.3
JEYC(PTE)— ¢T(YCE) (M3)
& JEVuwxy|Ju(Axuv A Auwy)— 3z(Axyz A Avwz)] (C3)

Proor. Again we only give a picture, and here its two-dimensional
counterpart too:




464 / A Modal Logic for Chopping Intervals

Again, v is the current interval and in the proof one should consider a
valuation V with V(¢) = {w}, V(v)={x} and V(&) = {y}. a

Note that (C3) implies what is called in [24] ‘north-western directedness’: if
v and y are respectively west and north of u, then there is a z north of v and
west of y. One can easily show that this property is characterized by the
HS-formula OOE— OGE, the same one we obtain by taking both ¢ and ¢
to be o in (M3).

ProrosiTiON 4.4

JE(@TY)CE—[(EDP)Ty v yC(¢DE) (M4)
&JEVx1x2y1y2[u(Auxlyl A Aux2y2)—
Ju[(Axlux2 A Ayluy2) v (Ax2uxl A Ay2uyl)]] (C4)

Proor. (C4) expresses that if we have both

7] %1 u X2
yt 8nd y2

then there is an interval v connecting the x1, y1 and the x2, y2-endpoints;
either

L Y uo il ¥
%1 X1
yl or gl

X2 — X2

y2 y2

If we keep this in mind, the proof is straightforward: take y1 as the current
interval and let x1 be the &-interval, x2 the ¢-one and y2 the 1-one. O

Here we may consider (C4) as a sort of generalization of ‘external linearity’:
if x1 and x2 have the same beginning point then one of them starts the
other, or they are identical.

We conclude this part by mentioning two correspondences involving the
st-constant: Proposition 15 says that a stretched interval cannot start a point,
(16) is about chopping off the starting-point interval, leaving the current
interval undamaged and (17) expresses the fact that two intervals u and w
have the same starting-point interval if u starts w.

ProrosiTION 4.5
J E x> ~(-mtt) (M5)

J EYw(Pw — Yuv(Auvw — Pu). (C5)
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ProrosiTiON 4.6

JEaCp o ¢ (M6)
& JEVuw(Ju(Auvw A Pu) v =w) (Ce)

Proposition 4.7
JE[(7 A @)Ctt A ((r A PI)CH)CHt]— (7 A p)Cit (M7)
J EYuvwxypq|Auvw A Apux A Aqwy A Pp A Pq—p =q] (Co)

The above results show that CDT can express many essential properties of
two-dimensional frames. However, CDT cannot characterize this class K,: to
show this, we apply a version of the well known theorem of preservation of
modal validity under zigzagmorphisms:

Derinirion 4.8
LetJ=(I, A, P)andJ' =(I', A’, P') be two i-frames. A function f: I —]'is
a zigzagmorphism from I onto J' if

(1) fis surjective

(2) fis a homomorphism

(3) P'fu=>Pu

(4) Assume A'u'v'w’.

If f(u) = u’ then there are v, w with Auvw, f(v)=v' and f(w)=w".

If f(v) = v’ then there are u, w with Auvw, f(u)=u’ and f(w)=w’.

If f(w) =w' then there are u, v with Auvw, f(u)=u' and f(v)=v'".

Proposttion 4.9
If fis a zigzagmorphism from F onto F' then for all CDT-formulas:

FE¢=>F'Eg.

The proof of this proposition is like in ordinary modal logic [4]. The
following theorem expresses the fact that there is no (set of) CDT-
formula(e) characterizing the two-dimensional frames.

TreoREM 4.10
Let @ be a set of CDT-formulas. If JE®, for all two-dimensional frames J,
then there is a J' not in F;, with J' £ &,

Proor. Consider the i-frames F = I(Q, <) and F'= (I, A, P) with I = {q €
Q|qg=0}, A={(p.q.r)|p+q=r} and P={0}. Let f be the function
from INT(Q, <) onto I mapping intervals on their length, i.e. f([p, g]) =
q —p. It is straightforward to verify that f is a zigzagmorphism, so if @ is a
set of CDT-formulas valid on £, by the previous proposition we have ' F ¢
for all ¢ in ®. Obviously, F' is not two-dimensional; e.g. it does not satisfy
the property C8 below, as every ‘interval’ in F' has () as its starting point and
0 as its endpoint. |
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In the first-order language with predicates A and P we don’t have any
problems in defining two-dimensional frames. We might do this by defining
the meets relation |(u | v =3wAuvw) and then proceeding like Allen and
Hayes [2] (cf. [13], Ch. 5), where points are defined as equivalence classes of
meeting pairs of intervals. In this way we wouldn’t even need the
P-predicate (except for some defining formulas, as our i-frames need an
interpretation for P); we choose to give a.proof in our own language here.

Derinrrion 4.11
Consider the following formulas:

Vpuvg(Pp A Pq A Apuu A Apvv A Auqu A Avqu—>u = v) (C8)
Vpq(Pp A Pg— [p = q o Ju(~Pu A Apuu A Auqu)
or Ju(-Pu A Aquu A Aupu)]) (C9)

where or is the exclusive or, i.e. p or Y =(¢ v ¢) A~ (¢ A ¥).

Let TWO-DIM be the conjunction of (C1)—(C9) and their mirror images,
where the mirror image of a formula ¢ is obtained by replacing all
occurrences of a predicate Av,v,v, in ¢ by Av,u,v,.

Tueorem 4.12
Let J = (I, A, P) be an i-frame. Then

JETWO-DIM & ] is two-dimensional.

Proor. We only prove the direction from left to right: suppose POINT-
BASED holds in J; we will show that J is isomorphic to a point frame based
on the set of point-intervals P.

(1) First we need the fact that A is functional in all its arguments, i.e.

Yuvww'(Auvw A Auvw’'—w =w')
Yuu'vw(Auvw A Au'vw—u=u').

For, suppose Auvw A Auvw'; by (C6) there are p, q, p’, q', p", q", in P
with Apuu, Ap'ww, Ap"w'w’, Awq'w and Aw’'q"w’; by (C7) p'=p=p”
and ¢' =q =q", so by (C8), w=w".

We can now define the linear ordering on P: set, for p, g€ P, p<gq if
there is a u ¢ P with Apuu and Auqu.

We prove the following:

(2) Ypq(p < q or p = q or g <p): this is immediately by (C9)
(3) < is transitive: suppose p < q <r as Apuu, Auqu, Aquy and Avrv.

By (C3) there is a w such that Auvw, by (C4) w ¢ P. By (C1) there is
a w' with Apw'w and Auvw’, (1) gives w =w' whence Apww. In the
same manner we prove Awrw, so p <r.
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Now let u e I; by (C6) and (C7) we may define unique intervals Lu and
Ru such that

ALuuu, AuRuu, Lu € P, Ru e P.

Of course, Lu and Ru are to be seen as the beginning- and endpoint of u. It
will be clear that e P> Lu <Ru, ue P> Lu = Ru. Now we are ready to
show that the map f : I —I(P, <), given by

f(u) = (Lu, Ru) is the desired isomorphism.

(5) f is a bijection: surjectivity is immediate by definition of <; for
injectivity, suppose f(u) =f(v). Then Lu = Lv and Ru= Rv, so by
(C8), u=w.

(6) f prescrves A and P. For P:ue P> Lu=Ru= f(u)e P'. For A:
supposec Auvw; we must show Lu=Lw, Rv=Rw and Ru = Lv, of
which we only prove the latter: by (C2) there is an x with Auxu and
Axvv. By (C7) we have x = Ru and x = Lv, so Ru= Luv.

(7) [ anti-preserves A and P. For P:u¢ P> Lu <Ru= Lu +# Ru by (2).
For A: supposc A'f(u)f (v)f (w)=> by (C3) there is a z with Auvz; by
(C7), Lu =Lz and Rv = Rz. This implies f(z) =f(w), so by injec-
tivity of f we get z = w, which implies Auvw. a

5. Axiomatic completeness for CDT

In this section and the next we turn to the matter of recursively enumerating
the CDT-formulas valid in several classes of frames. As the classes of frames
involved arc all first-order definable (viz. the linear, the densc and the
discrete flows of time), it is quite easy to show that the set of valid
CDT-formulas is recursively enumerable: the easiest proof uses the embed-
ding of CDT-formulas into first order logic which we gave above. The
problem is to give explicit derivation systems. In this section we take an
axiomatic approach, in the next we give a natural deduction system.

The axiom system of this section has a derivation rule (CR) for which we
need the following definition: let

HOR(¢)=He¢ A OB-¢ A WE¢,

then in a two-dimensional model, M, [s, t{] E HOR(¢) iff ¢ holds at all points
on the horizontal line through (s, 1), viz.

1

._!P
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Derinmion 5.1
The axiomatic system ACDT consists of

(1) (all substitution instances of) the following axioms and their mirror
images:
A all propositional tautologies
B (¢ v y)Cxo ¢Cx v yCx
(¢vy)Txe ¢Ty v yTy
OT(p v 1) dTW v $Tx
C1~(¢Ty)Cop—>y
2 A(¢pTy)Dy——¢
3 pT(yCo)—>y
D oCtteo
ElaCped
2 aTpe ¢
3 pTned
F [(zr A )Ctt A ((7x A p)CH)CLE]— (1 A YP)Ctt
G 1 pC(pCrp) > (¢CP)Cx,
2 pT(yTy) o (pC(@Tx) v (xTd)TY
3 wC(PTE)— ¢T(PCE)
4 (pTy)CE—[(EDP) Ty v yC($DE)
(2) the following derivation rules:
MP Modus Ponens:
if ¢ and 1 are theses, then so is .
G Generalization:
if ¢ is a thesis, then so are ~(~¢Cy), ~(—¢pTy), ~(¥T-¢) and their
mirror images.
CR Consistency Rule:
if HOR(q)— ¢ is a thesis, with g an atomic constant not occurring in
¢, then ¢ is a thesis as well.

5.2. The meaning of the axioms

The B-axioms, expressing distributivity, are needed for any binary exist-
ential modal operator; the C-axioms correspond, in a certain sense, to the
axioms ¢— GP¢ and ¢— HF¢ in ordinary temporal logic. There these
axioms are needed to ensure that the accessibility relation associated with
the F-operator is the converse of the one associated with the P-operator. In
the case of CDT-logic something similar is going on: as we have three binary
modal operators, in general the frames for the logic will have three ternary
accessibility relations R., R, and R,. Just like in the F, P-case described
above, the E-axioms are expressing that R. R, and R, are no more than
‘directions’ of one ternary relation A.
The meaning of the other axioms is explained in the previous section.
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We can now establish our completeness result. As the completeness proof
is quite complex from a technical point of view, yet a straightforward
generalization of the proof given in [24] for the subsystem HS of CDT, we
confine ourselves to a very rough sketch:

TueoreM 5.2.1 (Soundness and Completeness)
A CDT-formula is a thesis iff it is valid on the class of p-frames:

oo k.

Proor. The soundness part of the proof is straightforward.

In the completeness proof, we build, for an arbitrary maximal ACDT-
consistent set  of formulas, a model for Z. This model M; = (T, V') is built
up in stages, in each of which we deal with a finite approximation of M.
Such an approximation has the form of a pair A, =(T,, A,) where T, =
{S, S1, . .., S,} is a finite subset of T and A, is a function mapping every
T,-interval [s;, 5;] onto a maximal consistent set. A, ([s;, 5;]) is to be seen as
the set of formulas holding at [s;, 5;] in the final model Mz; A, maps [s,, 5]
to ().

Every A, must satisfy conditions like
me A (s, 5] iffs, =5,
and
If ¢ € A,(Is;, 5;]) and ¥ € A ([s;, 1), then ¢Cy € A, ([si, sk)).

The ACDT-axioms ensure that we may always choose maximal consistent
sets satisfying these conditions.

As an approximation has finitely many intervals, in general it will have
defects like

there is a pCy € A, ([s:, 5¢]) yetnos; € T, with ¢ € A.([s;, 5;])
and ¢ € A, ([s;, 5:]).

The construction of the A,’s will be such that every defect will eventually be
repaired, e.g. for the example: there will be a m>n with an s; in T, such
that ¢ € A, ([5:, 5,]) and ¥ € A ([s;, si])-

The Consistency Rule is needed to implement these repairments.

The above sketched procedure will yield a chain of approximations of
which the union (Unew Ty UnewA,) does not have any defects. Then,
defining M; by T=U,.. T, and V(q)={[s; 5]]q € A(s;, 5]), we can
prove the truth lemma

¢ € A([si 5]) © Mz E Dsi, 5]
So by (*), M is a model for Z. O
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We can now proceed to define sound and complete axiom systems for the
classes of the dense and the discrete frames (cf. definition 2):

Dermvrion 5.2.2
(1) ACDT,, is the axiom system ACDT where we have added the
formula DENSE as an axiom.
(2) ACDT,; is the axiom system ACDT where we have added the formula
DISCRETE as an axiom.
(3) ACDT,, is the axiom system ACDT where we have added the
formulas DENSE, {tt and St as axioms.

Tieorem 5.2.3
(1) ACDT,} ¢ iff ¢ is valid on the class of dense p-frames
(2) ACDT,} ¢ iff ¢ is valid on the class of discrete p-frames
(3) ACDT,+ ¢ iff F is valid on (Q, <).

Proor. The proofs for these propositions are more or less the same:
Soundness is straightforward; for completeness, we simply copy the compl-
eteness proof for ACDT. Then, arriving at the truth lemma, we obscrve that
the formula DENSE (resp. DISCRETE, resp. DENSE A Ott A Oft) is an
element of every MCS, so DENSE (resp. ...) is valid on the model we
constructed, and as this formula only uses the propositional constants x and
t, it is valid on the underlying frame as well. It is then straightforward (cf.
proposition 3.2.) to verify that this frame is dense (resp. discrete, resp.
isomorphic to the ordering of the rationals). O

5.3. Undecidability

For several classes K of linear orders, Halpern and Shoham showed in [7]
that the problem whether an HS-formula is valid on every K-frame, is
(highly) undecidable. This means that the above given recursive enumera-
tions are about the best results we can get for CDT, or for any subsystem of
CDT containing HS. Such a fact cannot come as a big surprise, because any
two-dimensional modal logic is a (considerable) fragment of second-order
logic with infinitely many binary predicates, whereas the first-order logic
with one binary predicate is already known to be undecidable.

Still, there might be useful fragments of the language which are decidable:
e.g. the Sahlqvist forms ([4]) have first-order equivalents, so by decidability
of the theory of linear orders, decidability for the Sahlqvist fragment follows
immediately. It might also be interesting to try to give a sound and complete
axiom system for CDT,,. (cf. the last remark of section 3), because CDT. is
expressively complete with respect to universal monadic second-order logic,
and so we know the set of locally valid CDT-formulas to be decidable, for
e.g. N, Z, Q, R, all linear orders, etc.
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5.4. Some connections

In the introduction we mentioned the paper [19] by Nishimura with which
we only got acquainted after finishing this paper. Nishimura defines an
axiom system [ for his logic. It is very interesting to see that his system and
the way he proceeds to prove its completeness are very similar to an
approach taken in the theory of Relation Algebras, where the aim is to give
an axiomatization of the class of Representable Relation Algebras ({14, 16]).
The resemblance between these approaches lies in the fact that both axiom
systems have infinitely many axioms. each of which more or less describes,
in an exhaustive manner, all possible positions of n points. In our ACDT we
can deal with finitely many axioms because of having the consistency rule.
Later, we hope to be able to give a more claborate comparison of
Nishimura's work and our results.

6. A natural deduction system

6.1. Introduction

As was mentioned in the introduction, therc is a closc link between the
algebraic theory of binary relations and the logic CDT. Here we will use a
result by William Wadge, who gave in [26] a sound and complete natural
deduction system for the identities holding in RRA, the variety of so-called
Representable Relation Algebras: as usual in algebraic logic, representation
theorems for algegras correspond to completeness theorems in logics. As in
Wadge’s approach, the idea of our proof is to treat a CDT-formula as a sort
of compound relation symbol in a classical formalism, and then to give an
enumeration of the formulas in this language which are valid on the class of
linear orders. Following Wadge, we only take special care of the fact that
our semantics presupposes the frames to be linear orderings. This explains
the presence of the symbols ‘S’ (=<) and ‘R’ (=<) in the target set of
predicate formulas, and the need to give deduction rules for these symbols.

Derinrrion 6.1.1

The set AT of atomic terms consists of all CDT-formulas and the symbols §,
R and Q. The set T of terms is defined as the closure of AT under Boolean
operators. A (V-)formula is an expression of the form xay, where x and y
are variables and a is a term. The negation —F of a formula F = xay is
defined as ~F=x-ay. For a set ' of V-formulas we denote the set of
variables occurring in T' by Var(I').

Note that with this definition, the set of CDT-formulas is a (proper)
subset of the set of terms. Note too that a V-formula x,(q,Cqg,)x. can be
seen as an abbreviation of Ax,(x,q,x: A X3g,x,), which is more or less the
Lyo-correspondent (cf. Section 2) of the CDT-formula q,Cq,. In fact, the
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whole deductive system defined below may be seen as a calculus directed
towards recursively enumerating the set of CDT-correspondents valid on the
class of linear orders.

DeriniTiON 6.1.2

A (V-)model is a pair M = (D, <, b), where (D, <) is a linear frame and b
is a function mapping variables on elements of D and terms on subsets of
INT(D). Furthermore, b is required to satisfy the following properties:

(1) b(x) = {(s, s) |s e D}, b(S) = <, b(R) = INT(D), b(Q) =C.

(2) b(a A B)=b(a) N b(B), etc.

(3) b(aCB) = {(s, £) € INT(D) | 3u € D|(s, u) € b(@) A (u, 1) e b(B)]},
b(aTB) = {(s, t) e INT(D) | 3u € D[(s, u) € b(B) A (¢, u) € b(a)]},
b(aDPB) = {(s, t) € INT(D) | Ju € D[(u, s) € b(a) A (u, 1) € b(B)]}.

DerinrrioN 6.1.3

Let M be a model, F a formula, say xay, and I a set of formulas. F is true in
M, M satisfies F, or M is a model for F, notation M E F, if (b(x), b(y)) is in
b(a). I is true in M if all its formulas are, F(I') is valid, notation F F (ET), if
it is true in all models. F follows semantically from I, or I implies F if F is
true in all the models for I'.

Lemma 6.1.4
For CDT-formulas ¢, ¢ is valid on the class of linear models iff x(-RV¢)y
is valid.

Proor. By a straightforward induction on the complexity of ¢. O

Thus we may obtain a recursive enumeration of all valid CDT-formulas by
doing so for the valid entailments F F.

Derintrion 6.1.5

We give a natural deduction system for V-formulas by defining a notion ‘+’ of
deducibility between sets of formulas and formulas. Formally, I is defined as
the smallest relation for which {¢} F ¢ holds and which is closed under the
following rules of inference:

In these rules x,y and z are arbitrary variables, ¢ is an arbitrary
CDT-formula, o and B are arbitrary terms, F and G are arbitrary formulas
and T is an arbitrary set of formulas, with the exception that the rules C~,
D-, and T~ and may only be applied when z ¢ Var(I').

+F G T,GHF
F*Y ——— R J i
(F) ILGHF (F) 'HF
W Xxay xPy L XA xa A
() 2 () ZEAPy xanly

xa A By xay xBy
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. xay xBy . IyxaytF T,xBytF Thrxav By
v xay v By xav Py (»7) I+F
o T xayhzQz . Ixay+F T,xaytF
) ey ) TFF
xay xoay ooxQx
+ s 7 Q —
(Q%) ey @) —+
(€ xaz,C;ﬁy ) T, xaz, zﬁyli-}_FF FxaCPy
xaCpy
(T xRy, x;;, yBz () I, xRy, xaz, xﬁ}z_ ;F I'txaTfy
xaTPy
T, xRy, , +F T'kxaDf
(D) ny;;g;,yzﬁy (D) xRy, zax Zﬁ};p xaDBy
xS v my _ xRy
) —= R
(k") xRy (k™) xS v my
xSy ySz L
($) Sz (1) X
@ DIy o
xSy ySx xmy
(S5) *Qx (73) yx
x0y xay_yuz
(S2) xRy (7r4) oz

Note that, although in the above formulation we only have three
(meta)variables x, y and z, proofs in general may need more variables. We
conjecture that the situation is just like the one for Relation Algebras: let
I'+, F denote ‘there is a derivation of F from I' which uses at most n
variables'. Maddux showed in [15] that the sets V, of formulas given by
V,={F |+, F} form a strictly increasing sequence.

Derinirion 6.1.6
A theory is a sct formulas which is closed under -, i.e. THF implies F eI. A
theory I is consistent if for no x, xQx is deducible from T, it is complete if for
every CDT-term a and variables x, y, one of xay, yax, x—ay or yoax
belongs to I'.

A theory I'" is a saturation of T if it contains I’ and satisfies the following
condition for the operator C:

whenever xaCPy is in T, there is a z with xaz and zay in I
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and the analogons for the operators D and T. (Note that in such a case I
might need more variables than I.)
A theory I is saturated if it is a saturation of itself.

TreoreM 6.1.7 (Soundness)
IfT'FFthenTEF.

Proor. Straightforward. O

We now proceed to prove completeness, i.e. we want to show that T'k ¢
implies T+ ¢. As usual this is done by contraposition: given a I and an F for
which T F, we will construct a model for T in which F is not true. It easily
follows from the inference rules for negation that this can be done by
showing that every consistent theory has a model. We need the following
lemmas:

LemMma 6.1.3
Every consistent theory has a complete extension in the same variables.

Proor. By the standard Lindenbaum construction. a

Lemma 6.1.9
Every consistent theory has a consistent saturation.

Proor. Suppose I' is a consistent theory, xaCBy €T but thereisno zin I
with xaz and zBy in I'. Let z be a variable not occurring in I'. We claim that
the set I'U {xaz, zBy} is consistent. For, suppose this is not the case, then
T, xaz, zPy FaQa. As xaCPy e I’ we have T'+xaCPBy. Applying the rule C~
this gives '+ aQa, contradicting the consistency of I

So, using a similar procedure for every quintuple like the above
(x,y, C, a, B), we can find extensions I''eT,cI;... of T such that the
union of these extensions will be a consistent saturation of I. (By
introducing a new variable z; for every I we can ensure that no added
formulae in different T';’s will conflict.) ]

Lemma 6.1.10
Every consistent theory has a complete, saturated extension.

Proor. Using the previous two lemmas, we can construct for any consistent
theory I, a sequence of consistent theories '=T,cl'cl,cl;. ..
satisfying

(1) every I'y,,, is a complete extension of I,

(2) every I, is a saturation of [;,,.
The union of these theories will be the complete, consistent and saturated
extension of T’ we were looking for. O

Tueorem 6.1.11 (Completeness)
Every consistent theory has a model.
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Proor. Let I be a consistent theory. By the previous lemma we may assume
for this proof that I' is complete and saturated.

Define the following relation = on Var(T'): x =y if xmy is in . Using the
rules (), (7;) and (7;) one can easily verify that = is an equivalence
relation. Let [x] be the equivalence class of the variable x and define
D = Var(I)/= = {[x] | x € Var()}.

We want D to be the domain of our model; we set b(x) = [x] for variables
x, b(a) = {([x], [y]D | xay €T}. (Rule 7, ensures that this is a correct
definition). The ordering < is defined as b(S). It is easily proved that <isa
strict linear ordering, the rules S1, §2 and §3 giving that < is resp.
transitive, linear and asymmetric. That b(a) ¢ < for any a, follows from S4.
Condition (1) of Definition 6.12 is satisfied by definition of D and b, and
by the rules R* and R~, (2) is obtained by using the inference rules for
the Boolean connectives. Of condition (3) we only prove the part for C:

b(aCB) = {(s, t) € INT(D) | ueD[(s,u)eb(a) A (u, t) € b(A)]}
This statement is cquivalent to the following ones:

(Ix], [y]) € b(aCP) iff there is a z with (Ix], [z]) € b(a) and (|z]. [ y]) € b(B)
xaCPy e T iff there is a z with xaz and zfy in T

Now of the above equivalence the direction from right to left is immediate,
as by definition theories are closed under deduction and xaz, zfBy +xaCPy
by rule C*. The other direction is just the statement that T is saturated.

It then only remains to be shown that M = (D, <, b) is a model for I'. But
by definition of D, < and b it is almost immediate that M E F for all formulas

FinT. a

We finish this paper with a short comparison of the two deductive systems
we have developed: we feel that in the axiomatic system, it will be very hard
to find actual derivations of theorems in which the Consistency Rule is
needed, whereas in the natural deduction system derivations arc usually very
intuitive. On the other hand, the disadvantage of the latter method is that it
expands the formalism by adding point variables, thus violating the
paradigm of the modal variable-free approach.
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Abstract

Consistency of a knowledge-based system has become a topic of growing concern. Of
course, consistency is closely related to a notion of semantics. We present a theoretical
framework in which both the semantics and the consistency of a knowledge base can be
studied. This framework is based on first-order flat many-sorted predicate logic and is
sufficiently rich to capture an interesting class of rule-based expert systems and deductive
databases. We analyse the feasibility of the consistency test and prove that this test is
feasible for knowledge bases in Horn format without quantification.

Keywords: Knowledge-based systems, rule-based expert systems, knowledge representation,
consistency.

Introduction

The plan of this paper (a revised and extended version of [1]) is as {ollows.
First the reader is introduced to the knowledge representation used in
rule-based expert systems. We shall indicate some semantical problems in
relation to this knowledge representation. Then we explain in an informal
way how many-sorted predicate logic comes in. In the next section we
describe syntax and semantics of many-sorted predicate logic. We assume
some knowledge of first-order logic. Thereafter we shall be able to
characterize rule-based expert systems as first-order theories. The Tarski
semantics solves the semantical problems mentioned above. Furthermore,
we shall derive several results on decidability and consistency of rule-based
expert systems. Unfortunately, some natural equality and ordering axioms
are not in Horn format (see [9] for a discussion on the domain closure
axiom). Hence testing consistency with a standard theorem prover would be
very inefficient. In the fourth section we describe a technical device, a
certain kind of null value, which allows feasible consistency testing in the
presence of equality and ordering axioms which are not in Horn format.
The underlying idea is partiality of functions, thus avoiding the search for
consistent function values in a (possibly gigantic) product space. This kind of
null value, being quite different from null values as described in [4], appears
to be new. In the last section we show how to extend our results to
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