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Abstract

The Terminology Box (TBox) of a Description Logic (DL)
knowledge base is used to define new concepts in terms of
primitive concepts and relations. The topic of this paper is
the effect of the available operations in a DL on the length
and the syntactic shape of definitions in a Terminology Box.

Defining new concepts can be done in two ways: (1) in an
explicit syntactical manner as in NewConcept ≡ C, with C
an expression in which NewConcept does not occur. Acyclic
TBoxes only contain such axioms. (2) implicitly, by writing a
set of general inclusion axioms T with the property that in any
model of T, the interpretation of NewConcept is uniquely de-
termined by the interpretation of the primitive concepts and
relations. The explicit manner is preferred because its syntac-
tic simplicity makes it immediately clear that NewConcept is
nothing but a defined concept, and leads to algorithms with
a lower worst case complexity. The focus of this paper is on
the following property of DL’s: every new concept defined in
the implicit way can also be defined in the explicit manner.
DL’s with this property are called Definitorially Complete.

It is known that ALC is definitorially complete. We provide
n concrete algorithm for computing the equivalent explicit
definitions. We also investigate definitorial completeness for
a number of extensions of ALC. We show that definitorial
completeness is preserved when ALC is extended with qual-
ified number restrictions (ALCQ), but is lost when nominals
are added (ALCO). On the other hand, definitorial complete-
ness is regained when ALCO is further extended with the
@-operator. We also show that all extensions of ALC and
ALCO@ with transitive roles, role inclusions, inverse roles,
role intersection, and/or functionality restrictions, are defini-
torially complete.

1 Introduction
The Terminology Box (TBox) of a Description Logic (DL)
knowledge base is used to assign names to complex concept
descriptions. More formally, to define new concepts in terms
of primitive concepts and relations. The topic of this paper
is the effect of the available operations in a DL on the length
and the syntactic shape of definitions in a Terminology Box.

We concentrate on the description logic ALC and exten-
sions with qualified number restrictions (ALCQ) and the
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one-of operator and nominals (ALCO). This set of oper-
ations has gained particular importance because, together
with inverse roles and role hierarchies (cf. Section 6), it
forms the basis of the Semantic Web description logic OWL-
DL (Horrocks, Patel-Schneider, & van Harmelen 2003).

Defining new concepts can be done in two ways:

1. In an explicit syntactical manner as in NewConcept ≡
C, with C an expression in which NewConcept does not
occur. Acyclic TBoxes only contain such axioms.

2. Implicitly, by writing a set of general inclusion axioms T
with the property that in any model of T, the interpretation
of NewConcept is uniquely determined by the interpreta-
tion of the primitive concepts and relations.

The explicit manner is preferred because of two reasons:
(1) Its syntactic simplicity makes it immediately clear that
NewConcept is nothing but a defined concept. (2) It yields
Acyclic TBoxes, for which reasoning algorithms exist with a
lower worst case complexity than those for general TBoxes
(e.g., the satisfiability problem is in PSPACE versus in EXP-
TIME for ALC (Baader & Sattler 2000; Donini & Massacci
2000; Donini 2003)).

We call a description logic Definitorially Complete if ev-
ery new concept defined in the implicit way can also be
defined in the explicit manner. This is Beth’s Definability
property for First Order Logic, but then stated for descrip-
tion logic. Baader & Nutt (2003) showed how Beth’s prop-
erty for modal logic yields the result that every definitorial
but potentially cyclic ALC TBox is equivalent to an acyclic
ALC TBox.

In this paper we expand this result in three directions: we
consider richer languages, allow for additional axioms in the
TBox like role hierarchies, and we consider the size of the
acyclic TBox compared to the cyclic TBox. Our main results
are

1. An algorithm for turning any definitorial ALC TBox into
an acyclic one together with upper and lower bounds on
the size of the obtained acyclic TBox. (Section 2).

2. A case study of extensions ofALC with qualified number
restrictions and nominals. (Sections 3 and 4). Concretely,
we show that all of the following description logics are
definitorially complete: ALC, ALCQ and ALCO@, as
well as any extension of ALC or ALCO@ with transitive



roles, role inclusion, inverse roles, role intersection and/or
functionality restrictions.

3. An analysis of length conservativity, that is, the question
whether adding operations to a language L may lead to
shorter definitions of concepts definable in L (Sections 2,
3, 4).

One can define new concepts from old concepts in a number
of ways, of which we consider only the “traditional” one.
We end this introduction with a brief survey of these differ-
ent ways.

Different types of definitions
Definitorial completeness is intimately related to Beth’s de-
finability property for modal logics, and notions of definition
play an important role in what is to follow. We briefly con-
sider two other such notions.

Sometimes concepts may be defined by the use of ad-
ditional, unrelated, concept symbols. Suppose that we do
not have the counting apparatus of ALCQ (see section 4)
at our disposal, but want to define the concept BiMom, of
mothers that have at least two children. We can do this
as follows: Let BiMom .= Woman u ∃hasChild.(Q) u
∃hasChild.(¬Q), where Q is a new concept symbol. The
definitional power that may be attributed to this construction
hinges on the fact that the desired property will hold if and
only if Q can be interpreted to satisfy the righthand side of
the equation. These are so called projective definitions, and
will not be considered further.

Cyclic concept definitions sometimes have a natural in-
terpretation in terms of fixed points. Consider this exam-
ple, due to Baader & Nutt (2003): let Momd .= Man u
∀hasChild.Momd, i.e. a Momd is a man who has only
male descendants. Or, in other words, Momds are those
men from whom no non-males are accessible via the transi-
tive closure of the hasChild-relation. Here semantics with
greatest fixpoints is required to capture the intended mean-
ing (and to make the definition really definitorial). We will
restrict attention to definitions that are already definitorial
under the ordinary descriptive semantics, and these types of
definitions will not be further considered.

2 Preliminaries
In this section we recall the definitions of the description
logic ALC, some welll known notions like satisfiability,
subsumption and acyclicTBoxes, and we define definitorial
completeness.

Given disjoint sets of atomic concept symbols C and roles
R, the concepts ofALC are given by the following recursive
definition:

C ::= > | ⊥ | A | C u C | C t C | ¬C | ∃R.C | ∀R.C
where A ∈ C and R ∈ R. An ALC-TBox (short for Termi-
nology Box) is a finite set of inclusion axiomsC v D and/or
concept definitions A .= C, where A is an atomic concept
symbol and C and D are ALC-concepts.

The length of a concept C (notation: |C|) is the number
of subconcepts of C (which is in the same order of size as
the number of symbols in C). For a TBox T , |T | denotes

the sum of all |C|, for C the left or right hand side of an
inclusion axiom or a concept definition in T .

The semantics of description logics such as ALC is given
in terms of interpretations. Formally, a (C,R)-interpretation
I consists of a set ∆I (called the domain of I), and a func-
tion (·)I that assigns to each atomic concept symbol A ∈ C
a subset of ∆I and to each role R ∈ R a binary relation
over ∆I . This interpretation function naturally extends to
complex ALC concepts, as indicated in Table 1.

The following notions will also be used for DL’s other
than ALC. A concept C is satisfiable if CI 6= ∅ for some
interpretation I. Given an interpretation I and a TBox A,
we say that an I satisfies T (notation: I |= T , if CI ⊆ DI

for all inclusion axioms (C v D) ∈ T , and AI = CI for
all concept definitions (A .= C) ∈ T . In this case, we will
also say that I is an model of T . Two TBoxes are said to
be equivalent if they have the same models. A concept C is
subsumed by a concept D (notation: |= C v D) if for all
interpretations I, CI ⊆ DI . C is subsumed by D given a
TBox T (notation: T |= C v D) if CI ⊆ DI holds for all
I with I |= T .

Often, the set of concept symbols C can be partitioned into
two disjoint sets: the Primary concept symbols CP and the
Defined concept symbols CD. The idea is that the interpreta-
tion of the symbols in CD is defined by the TBox in terms of
that of the symbols in CP , whereas the interpretation of the
latter comes directly from the application domain. In order
to test if the TBox indeed defines the symbols of CD in terms
of the symbols in CP , one can employ the following notion.

Definition 1 Let CP and CD be disjoint sets of atomic con-
cept symbols. A TBox T is (CP , CD)-definitorial if every
(CP ,R)-interpretation I can be expanded in at most one
way to a (CP ∪ CD,R)-interpretation I ′ satisfying T .

By expansion we mean that I and I ′ restricted to CP are the
same, but I ′ also interprets the atomic symbols in CD. The
notion of definitoriality captures the fact that, in interpreta-
tions satisfying the TBox, the denotation of the concepts in
CD is fully determined by that of the concepts in CP .

Let T be a TBox and T ′ the TBox obtained form it by
uniformly replacing every occurrence of each concept sym-
bol C ∈ CD with a new concept symbol C ′. It is not dif-
ficult to see that T is (CP , CD)-definitorial if and only if
T ∪ T ′ |=

d
C∈CD

C
.= C ′. It is therefore possible to de-

termine whether a Tbox is (CP , CD)-definitorial, or whether
a concept is implicitly defined by the TBox, by simply per-
forming a suitable subsumption check.

In some cases definitoriality follows from the syntactic
shape of a TBox. For instance:

Definition 2 An ALC-TBox T is (CP , CD)-acyclic if it sat-
isfies the following two properties:

1. T consists of exactly one concept definition A .= C for
each A ∈ CD, plus a number of inclusion axioms of the
form C1 v C2, where C1 and C2 are concepts without
any atomic concept symbols from CD.



Table 1: Semantics of the ALC connectives

>I = ∆I

⊥I = ∅
(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(¬C)I = ∆I \ CI

(∃R.C)I = {d ∈ D | there exists e ∈ D with (d, e) ∈ RI and e ∈ CI}
(∀R.C)I = {d ∈ D | for all e ∈ D, if (d, e) ∈ RI then e ∈ CI}

2. There is no cycle in the concept definitions in T , neither
directly, as in A .= (· · ·A · · · ), nor indirectly, by transi-
tivity.

Clearly, every ({A,B}, {C})-acyclic TBox is
({A,B}, {C})-definitorial, just in virtue of its syntac-
tic shape. Although sufficient, acyclicity is not necessary
in order to be definitorial. For instance, the TBox
{C .= At (B u (C t¬A))} is equivalent to {C .= AtB},
and hence is ({A,B}, {C})-definitorial without being
({A,B}, {C})-acyclic.

Whether each definitorial TBox is equivalent to an acyclic
TBox depends on the description logic being studied. If this
holds for a DL, we call it definitorially complete.

Definition 3 A description logic L is called definitorially
complete if each (CP , CD)-definitorial L-TBox T is equiva-
lent to a (CP , CD)-acyclic L-TBox T ′.

3 The basic description logic ALC
The following result is shown in (Baader & Nutt 2003).

Theorem 4 ALC is definitorially complete.

Theorem 4 is of limited practical use, unless one has both
a concrete algorithm for obtaining the equivalent acyclic
TBox T ′ and an upperbound on its size. In the remainder of
this section, we will provide a partial solution to this prob-
lem. We will describe an explicit algorithm for computing
T ′, that involves at most a triple exponential blowup. We
do not know at present whether this result can be improved,
although a single exponential blowup is unavoidable:

Theorem 5 There is an (CP , CD)-definitorialALC TBox T ,
such that the smallest equivalent (CP , CD)-acyclic TBox T ′
is exponentially longer than T .

Proof. Let A1, . . . , An be atomic concept symbols and R
a role, and let T be the TBox consisting of the inclusion
axioms

¬A1 u · · · u ¬An v ∀R.⊥

and
A1 t · · · tAn v ∃R.>

and

¬A1 u · · · u ¬Ak−1 uAk v
∀R.(A1 u · · · uAk−1 u ¬Ak) u

l

k<`≤n

((A` u ∀R.A`) t (¬A` u ∀R.¬A`))

for k = 1 . . . n. Note that the size of T is polynomial in n.
T expresses thatA1, . . . , An form an n-bit counter (withA1

the least significant bit), counting the lengths of the maximal
RI-paths starting from elements in an models, I, of T . To
be more precise, any such model, I, will contain noRI-path
of length greater than 2n−1, and every (Ai)I can be defined
explicitly as follows: x ∈ (Ai)I iff the n-bit binary encod-
ing of the length of the longest RI-path starting from x has
a 1 as ith least significant bit. (Note that the explicit defini-
tion is definable as an ALC concept without occurrances of
atomic concepts). It follows that T is (∅, {A1, . . . , An})-
definitorial. Now, every (∅, {A1, . . . , An})-acyclic TBox
equivalent to T must define at least one of A1, . . . , An with-
out reference to any atomic concept symbols. Now, the
depth of nesting of ∃R and/or ∀R-constructors in any such
explicit definition of Ai will have to be at least 2n, for any
shallower concept will not be able to distinguish all the do-
main elements distinguished by Ai. Hence, the length of
any such definition will be exponential in n. Consequently
every (∅, {A1, . . . , An})-acyclic TBox equivalent to T must
be exponentially longer than T . QED

We will now proceed to give an algorithm for turning a
definitorialALC TBox into an acyclic one. The algorithm is
based on a special normal form forALC concepts which was
introduced by Janin & Walukiewicz (1995), in the setting
of the modal µ-calculus. By a literal we mean an atomic
concept or its negation.

Definition 6 For any role R and finite set of ALC concepts
Φ, let ∇R.Φ be shorthand for

l

C∈Φ

∃R.C u ∀R.
⊔

C∈Φ

C

expressing that each C ∈ Φ is satisfied by some R-
successor, and each R-successor satisfies some C ∈ Φ. An
ALC concept is said to be in disjunctive form if it is gener-
ated by the following recursive definition:

C ::= > | ⊥ | π u∇R1.Φ1 u · · · u ∇Rn.Φn | C t C



where π is a consistent conjunction of literals,R1, . . . Rn are
distinct roles, and Φ1, . . . ,Φn are finite sets of concepts in
disjunctive form. For Φ = ∅, ∇R.Φ is shorthand for ∀R.⊥.

Lemma 7 Every ALC concept is equivalent to an ALC
concept in disjunctive form whose length is at most singly
exponential in the length of the original concept.

Proof. D’Agostino & Lenzi (2002) already showed (in the
equivalent context of the modal logic K) that every ALC
concept is equivalent to one in disjunctive form, but their ar-
gument gives a non-elementary upperbound. The proof we
give here improves on this: it involves only a single expo-
nential blow-up.

Let C be any ALC concept. We may assume without loss
of generality that C is in negation normal form. For conve-
nience, we will here consider conjunction as an operator that
can take any finite set of concepts as its arguments. Thus, C
is built up from literals and >,⊥ using ∃R, ∀R, t and

d
.

We inductively translate C into a formula φ∗ in disjunctive
form. Most clauses of the translation are straightforward:

>∗ = >
⊥∗ = ⊥
A∗ = A (for A a literal)
(∃R.D)∗ = ∇R.{D∗,>}
(∀R.D)∗ = ∇R.∅ t ∇R.{D∗}
(D t E)∗ = D∗ t E∗

The only difficult case is when the concept under consider-
ation is a conjunction, i.e., when C is of the form

d
Φ. We

can consider several subcases. If one of the elements of Φ is
of the form >, ⊥ or ψ t χ or

d
Ψ, then we apply one of the

following rules:
d

(Φ ∪ {>})∗ = (
d

Φ)∗d
(Φ ∪ {⊥})∗ = ⊥d
(Φ ∪ {D t E})∗ =

d
(Φ ∪ {D})∗ t

d
(Φ ∪ {E})∗d

(Φ ∪ {
d

Ψ})∗ =
d

(Φ ∪Ψ)∗

Finally, suppose that our concept C is of the form
d

Φ, such
that no element of Φ is of the form >, ⊥, D t E or

d
Φ.

Then each element of Φ must be either a literal or a concept
of the form ∃R.D or ∀R.D, for some role R. We can split
Φ accordingly into disjoint subsets Φlit, Φ∃R1 , Φ∀R1 , . . . ,
Φ∃Rn

, Φ∀Rn
. Let Ψi = {C : ∃Ri.C ∈ Φ∃Ri

}, and Γi =
{C : ∀Ri.C ∈ Φ∀Ri

}. If Φlit contains some atomic concept
symbol and its negation, then, clearly, C is inconsistent, and
we may define C∗ as ⊥. Otherwise, let C∗ =

d
Φlit ud

i φRi
, where

φRi
=

{
∇Ri.{(D u

d
Γi)∗ | D ∈ Ψi ∪ {>}} if Φ∃Ri

6= ∅
∇Ri.{(

d
Γi)∗} t ∇Ri. ∅ otherwise

It can be shown by induction on C that C∗ is equivalent
to C and that the length of C∗ is singly exponential in the
length of C, more precisely is 2O(|C|·log |C|), even taking
into account that ∇R.Φ is shorthand for

d
D∈Φ ∃R.D u

∀R.
⊔

D∈ΦD. QED

The next result, but without reference to the size of the in-
terpolant, was first proved by (Visser 1996; Ghilardi 1995).
The idea of bisimulation quantifiers used in the proof may be
traced via (D’Agostino & Lenzi 2002) back to (Pitts 1992).

Theorem 8 (Uniform interpolation) For each ALC con-
cept C and set of atomic concept symbols Φ, there is an
ALC concept, which we will denote by ∃̃Φ.C, satisfying the
following conditions:

1. ∃̃Φ.C contains only atomic concept symbols that occur in
C and are not in Φ.

2. |= C v ∃̃Φ.C
3. For all ALC concepts D not containing any atomic con-

cepts from Φ, |= C v D iff |= ∃̃Φ.C v D.

4. The length of ∃̃Φ.C is singly exponential in the length of
C.

Proof. First, apply Lemma 7 to turnC into disjunctive form.
This might involve a single exponential blowup. Then, de-
fine ∃̃Φ.φ inductively as follows:

∃̃Φ.> = >
∃̃Φ.⊥ = ⊥
∃̃Φ.(π u

d
i∇Ri.Ψi) = π′ u

d
i∇Ri{∃̃Φ.C | C ∈ Ψi}

∃̃Φ.(D t E) = ∃̃Φ.D t ∃̃Φ.E

where π′ is obtained from the consistent conjunction of liter-
als π by removing all (positive and negative) occurrences of
atomic concept symbols in Φ. A straightforward inductive
argument establishes the following fact:

For all interpretations I and elements d ∈ ∆I , d ∈
(∃̃Φ.C)I iff there is an interpretation J and an element
e ∈ CJ such that d and e are bisimilar with respect to
all atomic concept symbols except possibly those in Φ.

In other words, ∃̃ is a ‘bisimulation quantifier’. It follows
that ∃̃Φ.C satisfies the requirements (2) and (3). That ∃̃Φ.C
satisfies the requirements (1) and (4) follows directly from
its definition. QED

Lemma 9 For allALC conceptsC1, C2 and TBoxes T con-
sisting only of inclusion axioms, the following are equiva-
lent:

T |= C1 v C2,(1)

|=
(
C1 u

l

(CvD)∈T

R1...Rn∈R, n≤2(|T |+|C1|+|C2|)

∀R1 · · · ∀Rn(¬C tD)
)
v C2.(2)

where R is the set of roles occuring in C1, C2 and T .

(The assumption that T consists only of inclusion axioms is
not an essential restriction: this can always be ensured at the
cost of at most a doubling of the size of T .)



Proof. Trivially (2) implies (1). For the other direction,
suppose there is an interpretation I and an element d ∈ ∆I ,
such that

d ∈ (
(
C1 u

l

(CvD)∈T

R1...Rn∈R, n≤2(|T |+|C1|+|C2|)

∀R1 · · · ∀Rn(¬C tD)
)I

and d 6∈ (C2)I . We may assume without loss of general-
ity that I is generated by d, meaning that every e ∈ ∆I is
reachable from d in finitely many steps along the union of
all relations RI for R ∈ R. We will construct a new inter-
pretation J with an element e ∈ ∆J , such that J |= T and
e ∈ (C1 u ¬C2)J .

First, we need to introduce some terminology. Let Σ
be the set of subconcepts of concepts in T ∪ {C1, C2}.
Let a type be any subset τ ⊆ Σ. There are precisely
2(|T |+|C1|+|C2|) many such types. We say that an element
e ∈ ∆I has a type τ (or, that e realizes τ ), if, of all subcon-
cepts in Σ, e satisfies precisely those that are in τ . We write
e ∼ e′ if the e and e′ have the same type.

For each type τ ⊆ Σ that is realized in I, pick a witness
dτ ∈ ∆I at minimal distance from d. We will now create
a new interpretation J , whose domain is the set of these
witnesses. In particular, d itself belongs to the domain of J .
The interpretation of the atomic concepts in J is the same as
in I but restricted to the new domain (i.e., AJ = AI ∩∆J ).
For each role R, we let RJ be the set of pairs (dτ , dτ ′) such
that, in I, dτ has an R-successor of type τ ′. Finally, let Jd

be the submodel of J generated by d.
A straightforward inductive argument shows that the truth

value of concepts in Σ is preserved:
Fact 1: For each e ∈ ∆Jd and C ∈ Σ, e ∈ (C)Jd iff
e ∈ (C)I .

Thus, since d ∈ ∆Jd and d ∈ (Ci u ¬C2)I , also d ∈ (Ci u
¬C2)Jd . Now we show that Jd is also a model of the TBox
T . It follows, by the construction of Jd, that

Fact 2: No two distinct e, e′ ∈ ∆Jd have the same type
in Jd.

By a straightforward induction on the length of the shortest
path from d to e in Jd, we have that

Fact 3: The shortest path from d to a world e in Jd is
no shorter than the shortest path from d to e in I.

To see that Jd |= T , consider any e ∈ Jd. Since Jd is
generated by d, there must be a path from d to e along the
union of all relations RJd for R ∈ R. Consider any shortest
such path:

d = dτ0 (R1)Jd dτ1 (R2)Jd . . . (Rn)Jd dτn = e

Since this is a shortest path and Jd contains only one rep-
resentative of each type (cf. Fact 2), no two distinct worlds
on the path can have the same type. It follows that n ≤
2(|T |+|C1|+|C2|). Hence, by Fact 3, e is reachable from d in
at most 2(|T |+|C1|+|C2|) steps along the union of all relations
RI forR ∈ R, which, by our initial assumption, implies that
e ∈ (¬C t D)I for all (C v D) ∈ T , and hence, by Fact
1, e ∈ (¬C t D)Jd for all (C v D) ∈ T . In other words,
Jd |= T . QED

Theorem 10 Every (CP , CD)-definitorial ALC TBox T is
equivalent to an (CP , CD)-acyclic ALC TBox T ∗, the size
of which is at most triply exponential in the size of T .

Proof. Let T be a (CP , CD)-definitorial ALC TBox. Intro-
duce for each concept symbol C ∈ CD a distinct concept
symbol C ′, and let C ′

D = {C ′ | C ∈ CD}. Let T ′ be ob-
tained by replacing in T each concept C ∈ CD by C ′. As
noted before, the (CP , CD)-definitoriality of T implies that

T ∪ T ′ |= C < C ′

for each C ∈ CD. With 2≤n shorthand ford
R1...Ri∈R,i≤n ∀R1 · · · ∀Ri, it follows by Lemma 9 that

there is an n ∈ O(2|T |) such that, for each C ∈ CD,

|= 2≤n(
l

(T ∪ T ′)) u C v C ′.

and hence
|= (2≤n(

l
T ) u C) v (¬2≤n(

l
T ′) t C ′).

By Theorem 8 we find

|= (2≤n(
l
T ) u C) v ∃̃CD.(2≤n(

l
T ) u C)

and
|= ∃̃CD.(2≤n(

l
T ) u C) v (2≤n(

l
T ′) v C ′).

Hence
T |= C v ∃̃CD.(2≤n(

l
T ) u C)

and
T ′ |= ∃̃CD.(2≤n(

l
T ) u C) v C ′

Substituting C for C ′ for every C ∈ CD in the latter entail-
ment, we can combine the two to obtain

T |= C
.= ∃̃CD.(2≤n(

l
T ) u C).

For eachC ∈ CD, denote the right-hand-side of this equality
by ∆C . Finally, let T ∗ be the TBox obtained from T by
replacing each occurrence of a C ∈ CD by ∆C , and adding
the relevant equations (C .= ∆C). Then T ∗ is (CP , CD)-
acyclic and equivalent to T . Finally, the length of T ∗ is
easily seen to be at most triply exponential in the length of
T . QED

4 Adding qualified number restrictions
One limitation of the expressive power ofALC is the inabil-
ity to count objects. The description logic ALCQ removes
this limitation, by extending ALC with qualified number re-
strictions. Formally, for all natural numbers n and concepts
C, (≤ n R C) is admitted a concept. The semantics of this
new operator is as follows:

(≤ n R C)I = {a ∈ ∆I | there are at most n

elements b ∈ CI with (a, b) ∈ RI}
We use (≥ n R C) as shorthand for ¬(≤ (n− 1) R C).

Clearly, there are ALCQ concepts that cannot be de-
fined in ALC. However, ALCQ extends ALC in a length-
conservative manner: no ALC-definable concept can be de-
fined in ALCQ by a shorter formula. This is what we will
mean when we will say that ALCQ is a length-conservative
extension of ALC.



Theorem 11 ALCQ is a length-conservative extension of
ALC.

Proof. Consider any complex ALCQ concept C, and sup-
pose it is equivalent to anALC concept. LetC ′ be theALC-
concept obtained from C by replacing every subformula of
the form (≥ k R C) by ∃R.C if k ≥ 1 and > otherwise.
Then C ′ is equivalent to C. To see this, consider any inter-
pretation I. Let J be the interpretation with ∆J = N×∆I ,
AJ = {(n, a) | n ∈ N, a ∈ AI} for each atomic concept
A, and RJ = {((n, a), (m, b)) | (a, b) ∈ RI} for each
role R. A straightforward bisimulation argument, using the
fact that C is equivalent to a ALC-concept and hence pre-
served under bisimulation, shows that for each (n, d) ∈ ∆J ,
(n, d) ∈ CJ iff d ∈ CI , and (n, d) ∈ (C ′)J iff d ∈ (C ′)I .
Furthermore, by construction, C andC ′ have the same inter-
pretation in J . It follows that C and C ′ also have the same
interpretation in I. Since I was chosen arbitrarily, we have
thus showed that C and C ′ are equivalent in all interpreta-
tions. This proves the result, since C ′ is clearly no longer
than C. QED

Theorem 12 (Definitorial completeness of ALCQ) Every
(CP , CD)-definitorial ALCQ-TBox is equivalent to a
(CP , CD)-acyclic ALCQ-TBox.

Proof. Let T be a (CP , CD)-definitorial ALCQ-TBox. We
will show that each concept symbol A ∈ CD has an explicit
definition, by which we mean a complex concept C involv-
ing only concept symbols from CP , such that T |= A

.= C.
The result then follows, since replacing each A ∈ CD by the
relevant concept C and adding these concept definitions will
make the TBox (CP , CD)-acyclic. Suppose, for the sake of
contradiction that some A ∈ CD has no such explicit defini-
tion.

Claim 1. There is an model I of T and a ∈ (¬A)I and
b ∈ AI such that a and b agree on all concepts involving
only concept symbols from CP .

Proof of claim. We use a standard argument, in-
volving a double application of the compactness the-
orem. Consider ConsCP

(A) = {C | T |=
A v C and C only involves concept symbols from CP }.
By compactness, there is an model I1 of T and an element
a ∈ (¬A)I1 such that a ∈ CI1 for each C ∈ ConsCP

(A).
For, otherwise, there would be C1, . . . , Cn ∈ ConsCP

(A)
such that T |= C1 u · · · u Cn v A, which would imply that
C1 u · · · u Cn is an explicit definition of A. Next, consider
ThCP

(a) = {C | a ∈ CI1andC only involves concept sym-
bols from CP }. Again by compactness, there is an model I2

of T and an element b ∈ AI2 such that b ∈ CI2 for each
C ∈ ThCP

(a). For, otherwise, there would beC1, . . . , Cn ∈
ThCP

(a) such that T |= A v ¬(C1u· · ·uCn), which would
imply that ¬(C1u· · ·uCn) ∈ ConsCP

(A), thus contradict-
ing the fact that a ∈ CI1 for each C ∈ ConsCP

(A). By
construction, a and b agree on all complex concepts only
involving concept symbols from CP . Finally, let I be the
disjoint union I1 ] I2. Then I |= T , a ∈ (¬A)I , b ∈ AI

and a and b agree on all concepts involving only concept
symbols from CP . End of proof of claim.

We may assume without loss of generality that I is count-
able and recursively saturated. (An interpretation is recur-
sively saturated if it realizes every recursively enumerable
type that is consistent with its theory. Every interpretation is
elementarily equivalent to a countable recursively saturated
interpretation. For details, see for instance (Doets 1996).)

Claim 2. For each d, e ∈ ∆I , agreeing on all complex
ALCQ[CP ]-concepts, and for all roles R, there is a bijec-
tion between the R-successors of d and the R-successors of
e preserving all complex ALCQ[CP ]-concepts.

Proof of claim: Let {d1, d2, . . .} be the R-successors of
d, and {e1, e2, . . .} those of e (note that there are at most
countably many). We obtain the desired bijection between
{d1, d2, . . .} and {e1, e2, . . .} as the limit of a sequence of
finite partial bijections. Roughly speaking, we will alter-
nate between finding images for elements of {d1, d2, . . .}
and finding pre-images for elements of {e1, e2, . . .}, so en-
suring that, in the limit, the constructed function is indeed
total and surjective (the injectivity will be apparent from the
individual steps of the construction.)

Let f0 = ∅, which is trivially a finite partial bijection.
Next, we will now show how to construct fn+1 on the basis
of fn. Let dom(fn) and rng(fn) denote the domain and
the range of fn, respectively. Depending on the parity of n,
proceed as follows:

n even: Let i be the least natural number such that di 6∈
dom(fn). For each of the finitely many d′ ∈ rng(fn) ∪
{e, di}, introduce a new constant cd′ denoting d′. Con-
sider the type

τ =
{
R(ce, y), y 6= ce′} ∪

{(STcdi
(φ) → STy(φ)) | e′ ∈ rng(fn), φ ∈ ALCQ[CP ]

}
This is clearly a recursive type (i.e., membership of τ can
be decided by a Turing machine). Furthermore, every fi-
nite subtype of τ is realized in I. Indeed, consider any
finite subtype τ ′ ⊆ τ , and let φ1, . . . , φm be the (finitely
many) ALCQ[CP ]-concepts occurring in τ ′ that are true
at di. Note that there may be d′ ∈ dom(fn) satisfy-
ing (φ1 u · · · u φm). Suppose there are k many such d′
(where 0 ≤ k ≤ n). Then d satisfies (≥ (k + 1)R.(φ1 u
· · · u φm)), and hence also e (recall that d and e agree
on all ALCQ[CP ]-concepts). By the inductive hypothe-
sis, elements linked by fn satisfy the same ALCQ[CP ]-
concepts, and hence exactly k elements e′ ∈ rng(fn) sat-
isfy (φ1 u · · · u φm). It follows that there must be an R-
successor e∗ of e distinct from all elements of rng(fn),
satisfying (φ1 u · · · u φm). Thus, τ ′ is realized by e∗.

We now appeal to the recursive saturation of I, and con-
clude that τ is realized in I, i.e. that there is an element
e∗ that realizes τ , hence belongs to {e1, e2, . . .}, is dis-
tinct from all elements of rng(fn), and agrees with di

on all complex ALCQ[CP ]-concepts. We set fn+1 =
fn ∪ {(di, e

∗)}.
n odd: We consider the least natural number i such that
ei 6∈ rng(fn), and proceed symmetrically to the previ-
ous case. End of proof of claim



Next, we take the tree-unravelings of I around a

and b, respectively. More precisely, let Î[a] be the
interpretation whose domain consists of all finite se-
quences 〈a1, R1, a2, R2, . . . , Rn−1, an〉 with a1 = a
and (ak, ak + 1) ∈ RIk for k = 1, . . . , n − 1, and
such that for any role R, R

bI[a] consists of all pairs
(〈a1, R1, a2, . . . , an〉, 〈a1, R1, a2, . . . , an, R, an+1〉) where
(an, an+1) ∈ RI . We regard the length of a sequence
〈a1, R1, a2, R2, . . . , an〉 to be n, i.e. as the number of do-
main elements occurring in it. An inductive argument shows
that for all complex ALCQ-concepts C and sequences σ =
〈a1, R1, a2, R2, . . . , Rn−1, an〉, σ ∈ C

bI[a] iff an ∈ CI . In
particular, Î[a] is an model of T and 〈a〉 ∈ (¬A)bI[a]. Define
Î[b] analogously, starting from the node b. Observe that Î[b]
is an model of T and that 〈b〉 ∈ A

bI[b] and that 〈a〉 and 〈b〉
still agree on all complex ALCQ[CP ]-concepts.

Claim 3. There exists a CP -isomorphism between Î[a]
and Î[b] linking 〈a〉 to 〈b〉.

Proof of claim: We obtain the claimed isomorphism by
constructing a chain of partial isomorphisms g1 ⊆ g2 ⊆ · · ·
and taking g as the union. Each gi will have as its domain
and range all sequences of length at most i in ∆bI[a] and
∆bI[b], respectively. Moreover, if gi(x) = y, then x and y
will agree on all complex ALCQ[CP ]-concepts.

Let g1 = {(〈a〉, 〈b〉)}. This is clearly a partial isomor-
phism, satisfying the above conditions. Suppose that gn

has been constructed as a partial isomorphism, satisfying
the conditions. Let σ = 〈a1, R1, a2, . . . , Rn, an〉 ∈ Î[a],
and suppose g(σ) = ρ = 〈b1, R′1, b2, . . . , R′n, bn〉. Then,
by the inductive hypothesis σ and ρ agree on all complex
ALCQ[CP ]-concepts, i.e. an and bn agree on all such
concepts. By claim 2, a bijection f , preserving all complex
ALCQ[CP ]-concepts exists between {d′ | anR

Id′} and
{e′ | bnRIe′}, for any role R. Now for any sequence
of the form σ ◦ 〈R, an+1〉,1 i.e. for any R-successor of
σ, let gσ(σ ◦ 〈R, an+1〉) = ρ ◦ 〈R, f(an+1)〉. Note that
σ ◦ 〈R, an+1〉 and ρ ◦ 〈R, f(an+1)〉 agree on all complex
ALCQ[CP ]-concepts, and that gσ , so defined, constitutes
a bijection between the sets of successors of σ and ρ. Let
gn+1 be the union of gn with all such gσ for all σ ∈ Î[a]
which are sequences of length n. End of proof of claim

But we have now obtained two models of T , namely Î[a]
and Î[b], agreeing on the interpretation of all concepts in
CP -concepts, but differing on the interpretation of a concept
in CD, namely A. This contradicts the assumption that T is
(CP , CD)-definitorial. QED

5 Adding nominals
Another limitation of the expressive power of ALC is the
inability to refer to individual objects. ALCO addresses

1where ‘◦’ denotes sequence concatenation

this issue by extending ALC with nominals: atomic con-
cepts that denote a unique object. Examples of ALCO con-
cepts are john (true of the unique individual named john),
∃CHILD.john (true of all parents of the unique individual
named john) and (johntmaryt jane) (true of individuals
named john, mary and jane, and false of all other individu-
als).

Formally, besides the atomic concept symbols C and the
roles R, we assume a set of nominals N = {i, j, . . .}. Syn-
tactically, these nominals are treated as atomic concepts, just
like the atomic concept symbols in C. Semantically, each
nominal is interpreted as a singleton set. No further assump-
tions are made on the interpretations. In particular, we do
not assume that different nominals name different objects,
or that all objects are named by a nominal. Uniqueness of
names can be enforced, if needed, by extending the TBox
with inclusion axioms of the form i v ¬j. Also, for N a
finite set of nominals, the axiom T v

⊔
{i | i ∈ N} states a

closed world assumption.
Again, ALCO extends ALC in a length-conservative

manner:

Theorem 13 ALCO is a length-conservative extension of
ALC.

Proof. Suppose an ALCO-concept C is definable in ALC.
Let C ′ be the ALC-concept obtained from C by replacing
all nominals by⊥. Clearly, C ′ is at most as long as C. Now,
consider any interpretation I and element d ∈ ∆I . Let I ′ be
obtained from I by extending the domain with a single new
point, e, and making all nominals true at e. Then it can be
shown that, for all ALC-concepts D, d ∈ DI iff d ∈ DI′

.
Hence, the same holds for C, as it is equivalent to an ALC
concept. Moreover, by construction d ∈ CI′

iff d ∈ C ′I′
.

All in all, this entails that d ∈ CI iff d ∈ C ′I . Thus, C and
C ′ are equivalent. QED

Theorem 14 ALCO is not definitorially complete.

Proof. Let T be the TBox consisting of the following ax-
ioms:

A v i
j uB v ∃R.(i uA)
j u ¬B v ∃R.(i u ¬A)

This TBox is clearly ({B, i, j}, {A})-definitorial: consider
any model I of T . If jI ∈ BI , then AI = {iI}, and
otherwise, AI = ∅. However, T is not equivalent to any
({B, i, j}, {A})-acyclic TBox. To see this, let I be the inter-
pretation with ∆I = {a, b}, RI = {(a, b)}, iI = b, jI = a,
AI = {b},BI = {a}, and letJ be defined similarly, except
that AJ = BJ = ∅. Note that I and J both satisfy T . It’s
quite easy to see that anALCO concept that does not contain
A cannot distinguish the nodes b of the two interpretations
(and, in fact, the same holds for ALCQO concepts). It fol-
lows that A cannot be defined in terms of the other symbols
by means of an ALCO concept definition, and hence there
can be no acyclic equivalent of T . QED



Adding qualified number restrictions will not help: the
same argument shows that also ALCQO is definitorially in-
complete. Fortunately, we have been able to identify a mod-
est extension ofALCO which is definitorially complete. We
extend the syntax of ALCO by allowing @iC as a concept,
for each concept C and nominal i. The semantics of this
new construct is given as follows:

(@iA)I =
{

∆I if iI ∈ AI
∅ otherwise

With @, the concept A from the proof of Theorem 14 is
explcitly definable: T |= A ≡ i u @jB. The resulting
description logic, which we will call ALCO@, is closely
related to the notion of a Boolean IBox (Areces et al. 2003).

Theorem 15 ALCO@ is definitorially complete.

This was essentially proved by ten Cate, Marx, & Viana
(2005) in the context of hybrid logic. (For more on the rela-
tionship between hybrid and description logics see (Areces
& de Rijke 2001; Sattler, Calvanese, & Molitor 2003).) It is
a special case of Theorem 18 below.

Theorem 16 ALCO@ is a length-conservative extension of
ALC but is not a length-conservative extension of ALCO.

Proof. That ALCO@ is a length-conservative extension
of ALC can be shown similar as for ALCO: suppose an
ALCO@-concept C is definable in ALC. Let C and N be
the sets of atomic concepts and nominals of the language,
respectively. Let C ′ be the ALC-concept obtained from C
by replacing all nominals by⊥ and replacing subconcepts of
the form @iφ by> if φu∀R.(⊥)u

d
P∈C∪N P is satisfiable,

and ⊥ otherwise. Clearly, C ′ is at most as long as C. Now,
consider any interpretation I and element d ∈ ∆I . Let I ′
be obtained from I by extending the domain with a single
new point, e, and making all nominals and atomic concepts
true at e. Then it can be shown that, for all ALC-concepts
D, d ∈ DI iff d ∈ DI′

. Hence, the same holds for C.
Moreover, by construction d ∈ CI′

iff d ∈ C ′I′
. All in all,

this entails that d ∈ CI iff d ∈ C ′I . Thus, C and C ′ are
equivalent.

As for the second claim, we will assume a count-
ably infinite set of atomic concepts C = {P1, P2, . . .}.
Consider the sequence of ALCO@-concepts φn = i u
∃.R

d
k=1,...,n(Pk ↔ @iPk)), with n ∈ ω. Each φn has

length linear in n, even if the bi-implication sign is treated
as a defined connective. Moreover, each φn is equivalent
to an ALCO-concept. (For instance, φ1 = i u ∃R.(P1 ↔
@iP1) ≡ iu ((P1 u∃R.P1)t (¬P1 u∃r.¬P1))). Now, take
any sequence {ψn}n∈ω of ALCO-concepts with the prop-
erty that there is a fixed polynomial h(n) such that the length
of each ψn is less that h(n). We will show that φn 6≡ ψn for
some n ∈ ω.

For n ∈ ω, let Fn be the set of all functions f :
{1, . . . , n} → {0, 1}. For each subset G ⊆ Fn, define an
interpretation IG as follows. The domain ∆IG consists of

all f ∈ G, together with an extra world w. The relationRIG

connects w to each function f ∈ G. Further, for each f ∈ G
and primitive concept Pk, f ∈ P IG

k iff f(k) = 1. Lastly
w ∈ iIG .

Now, the number of subconcepts of any ψn is bounded
by h(n). Hence, one can distinguish between at most 2h(n)

different elements in interpretations by using subconcepts
of ψn. On the other hand, the number of subsets of Fn is
doubly exponential in n, so for large enough n there must
exist G1, G2 ⊆ Fn such that G1 6= G2 and such that w ∈
CIG1 iff w ∈ CIG2 for all subconcepts C of ψn. Without
loss of generality, we may assume that G1 \ G2 6= ∅. Let
g ∈ G1 \ G2. As a final step, let the interpretations I1 and
I2 be identical to IG1 and IG2 , respectively, except that, for
all k ≤ n, w ∈ (Pk)I1 and w ∈ (Pk)I2 iff g(k) = 1. A
simple inductive argument shows that, still, w ∈ (ψn)I1 iff
w ∈ (ψn)I2 . However, by construction w ∈ (φn)I1 and
w 6∈ (φn)I2 . We conclude that ψn 6= φn. QED

6 Adding role axioms
Besides nominals and qualified number restrictions, DLs
such as OWL often allow for certain types of role axioms.
Typical examples are transitivity and role inclusion. In this
section, we generalize some of our results to incorporate
such role axioms. The results we obtain also apply to role
inverse and role intersection.

Almost all role axioms used in description logics can be
expressed by a special type of first-order formulas:

Definition 17 A PUR-formula (“Positive allowing Universal
Restrictions”) is a first-order formula built up from atomic
formulas (of the form Rxy, x = y, >, or ⊥) using con-
junction, disjunction, existential quantification and universal
quantification, plus restricted universal quantification of the
form ∀y.(Rxy → · · · ), for x, y distinct variables. A PUR
Horn condition is a first-order sentence of the form

∀x1, . . . , xn.(φ→ ψ)

where φ is a PUR formula and ψ is of the form R(xi, xj),
xi = xj , or ⊥).

PUR Horn conditions form a generalization of universal
Horn conditions. Table 2 lists examples of role axioms that
can be expressed by means of PUR Horn conditions. We call
a DL definitorially complete in the presence of PUR Horn
conditions if, whenever a TBox is (CP , CD)-definitorial rel-
ative to a set of PUR Horn conditions H , then it is equivalent
(relative to H) to a CP , CD)-acyclic TBox. This is clearly
a strengthening of the usual notion of definitorial complete-
ness.

Theorem 18 ALC andALCO@ are definitorially complete
in the presence of PUR Horn conditions.

Proof. It was shown in (ten Cate 2005) that ALC and
ALCO@ have interpolation relative to any set of PUR Horn



Table 2: Role axioms that can be expressed using PUR Horn conditions

Transitivity: ∀xyz.(Rxy ∧Ryz → Rxz) (“R is transitive”)

Role inclusion: ∀xy.(Rxy → Sxy) (“R ⊆ S”)

Role inverse: ∀xy.(Rxy → Syx),
∀xy.(Sxy → Ryx) (“S = R−1”)

Role intersection: ∀xy.(R1xy ∧R2xy → Sxy),
∀xy(Sxy → R1xy),
∀xy(Sxy → R2xy) (“S = R1 ∩R2”)

Functionality: ∀xy.(Sxy → x = y),
∀x(∃y∀z(Rxz → z = y) → Sxx),
∀xyz(Sxx ∧Rxy ∧Rxz → y = z) (“S = {(x, x) | x has at most one R-successor }”)

conditions:2

Let H be any set of PUR Horn conditions, and let L be
either of the description logics ALC and ALCO@. If
H |= C v D, for some L-concepts C,D, then there is
an L-concept E such that H |= C v E, H |= E v D,
and all atomic concepts (but not necessarily nominals)
occurring in E occur both in C and in D.

Definitorial completeness follows from this, by a similar
argument as used in the proof of Theorem 10. We will
only discuss in detail the argument for ALC. The one for
ALCO@ is similar (cf. also the proof of Corollary 4.2 in
(ten Cate, Marx, & Viana 2005)).

Consider any ALC TBox T that is (CP , CD)-definitorial
relative to a set of univeral Horn conditions H . Introduce
for each concept symbol C ∈ CD a distinct concept symbol
C ′, and let C ′

D = {C ′ | C ∈ CD}. Let T ′ be obtained by
replacing in T each concept C ∈ CD by C ′. The (CP , CD)-
definitoriality of T relative to H implies that

H ∪ T ∪ T ′ |= C v C ′

for each C ∈ CD. Let 2≤n be shorthand ford
R1...Ri∈R,i≤n ∀R1 · · · ∀Ri. It can be shown by means of a

compactness argument, using the fact that PUR Horn condi-
tions are preserved under taking generated submodels, that
there is an n ∈ N such that, for each C ∈ CD,

H |= 2≤n(
l

(T ∪ T ′)) ∩ C v C ′.

and hence

H |= (2≤n(
l
T ) u C) v (2≤n(

l
T ′) v C ′).

2More precisely, it is shown in (ten Cate 2005) that the PUR
Horn conditions form precisely the fragment of first-order logic
that is preserved under bisimulation products and generated sub-
frames, and it is shown that the basic multi-modal logic, as well as
the basic hybrid logic, have interpolation over proposition letters
relative to any frame class closed under bisimulation products and
generated subframes.

By the above mentioned interpolation result, we can find an
ALC-concept E not containing any symbols from CD, such
that

H |= (2≤n(
l
T ) u C) v E

and
H |= E v (2≤n(

l
T ′) v C ′).

Hence

H ∪ T |= C v E and H ∪ T ′ |= E v C ′.

Substituting C for C ′, we can combine the two to obtain

H ∪ T |= C
.= E.

For each C ∈ CD, denote the concept E obtained in this
way by ∆C . Finally, let T ∗ be the TBox obtained from T by
replacing each occurrence of a C ∈ CD by ∆C , and adding
the relevant equations (C .= ∆C). Then T ∗ is (CP , CD)-
acyclic and equivalent to T , relative to H . QED

The generality of this result comes at a price: since the
result is proved model theoretically, we have no information
on the size of the smallest equivalent acyclic TBox. Never-
theless, the result is quite powerful. In particular, it allows
us to derive definitorial completeness of many description
logics:

Corollary 19 Let X ⊆ {S,H, I,F ,∩}. Then ALCX and
ALCXO@ are definitorially complete.

Proof. As shown in Table 2, transitivity axioms (S) and role
inclusions axioms (H) can be expressed directly by means
of PUR Horn conditions.

For inverse roles (I), we apply the following trick: given
a (CP , CD)-definitorial TBox containing inverse roles, we
start by replacing all occurences of inverse roles, such as
R−1, by new atomic roles S, postulating by means of PUR
Horn conditions that S is in fact the inverse of the R (see
Table 2). We then apply Theorem 18 to obtain an (CP , CD)-
acyclic TBox. Finally, we replace the newly introduced roles



S by the original R−1. The same trick can be applied in the
case of role intersection (∩).

Finally, the most difficult case is that of functionality
statements (F). Recall that, in ALCF , concepts can con-
tain functionality statements of the from (≤ 1 R) as sub-
concepts. Given a (CP , CD)-definitorial TBox containing
such functionality concepts, we replace each subconcept of
the form (≤ 1 R) by ∃S.>, for some new atomic role S.
Next, we postulate by means of PUR Horn conditions that
S = {(x, x) | x has at most one R-successor} (see Table 2).
Applying Theorem 18, we obtain an equivalent (CP , CD)-
acyclic TBox. Finally, we eliminate all occurences of S in
the new TBox, by replacing ∃S.C and ∀S.C by (≤ 1R)uC
and ¬(≤ 1 R) t C, respectively. QED

7 Conclusion
We have shown that ALC and ALCQ are milestones in
the design landscape of DL’s. Their sets of logical oper-
ations are so carefully balanced that whatever concept can
be defined implicitly, can also be defined explicitly, in the
same language. The language ALCO turned out to be less
well behaved, but this problem could be solved by extend-
ing the language with @. In fact, we showed that ALC and
ALCO@ are definitorially complete even in the presence of
role axioms defined by PUR Horn conditions. In particu-
lar, the extensions of ALC and ALCO@ with any combi-
nation of transitive roles, role inclusions, inverse roles, role
intersection, and/or functionality restrictions are all defini-
torially complete. These are important language extensions,
because they form the basis of the Semantic Web description
logic OWL-DL (Horrocks, Patel-Schneider, & van Harme-
len 2003).

1

Should we be more precise about
the connection with OWL? the full
language OWL-DL is more complicated
due to the presence of concrete
domains.

Being definitorially complete is a fragile property. Un-
like say decidability of the satisfiability problem, it does not
behave monotonically with respect to expressive power: we
saw that ALC has it, it is lost in ALCO but it is regained
again in ALCO@. While, ALCQO, like ALCO, is defini-
torially incomplete, we conjecture that ALCQO@ is again
complete. This fragile behaviour can serve as a valuable fit-
ness test for DL’s, and can help formulating clear research
goals, such as:

Find definitorially complete description logics with an
EXPTIME-complete subsumption problem that are as
expressive as possible.

Besides its theoretical interest, there is also a practical side
to being definitorial completeness. Although larger, acyclic
terminologies are often computationally more attractive than
cyclic ones. For this reason, a DL designer could forbid
users to make cyclic definitions. If the DL is acyclic defini-
torial complete, this is not a real restriction, as the user can
always make an implicit definition explicit in these logics.

However there might be a difference in user friendliness, be-
cause implicit definitions can be much more succinct than
their equivalent explicit counterparts. Exactly how much
more succinct remains an open problem, although the single
exponential lower-bound and the triple exponential upper-
bound we proved in Section 3 provides a partial answer in
the case of ALC. The authors are currently working on ex-
tending the algorithm from Section 3 to ALCQ and ALCI.
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