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Abstract

This paper generalizes existing connections between automata and logic to a coalge-
braic abstraction level.

Let F : Set→ Set be a standard functor that preserves weak pullbacks. We introduce
various notions of F-automata, devices that operate on pointed F-coalgebras. The criterion
under which such an automaton accepts or rejects a pointed coalgebra is formulated in
terms of an infinite two-player graph game. We also introduce a language of coalgebraic
fixed point logic for F-coalgebras, and we provide a game semantics for this language.

Finally we show that the two approaches are equivalent in expressive power. We prove
that any coalgebraic fixed point formula can be transformed into an F-automaton that
accepts precisely those pointed F-coalgebras in which the formula holds. And conversely,
we prove that any F-automaton can be converted into an equivalent fixed point formula
that characterizes the pointed F-coalgebras accepted by the automaton.

Keywords coalgebra, automata, modal logic, fixed point operators, game semantics, bisim-
ulation, parity games

1 Introduction

There is a long and respectable tradition in theoretical computer science linking the research
fields of automata theory and logic. This link becomes particularly strong when automata are
used to classify infinite objects like words, trees or graphs. Interestingly, this research area has
provided not only fundamental theoretical results, such as Rabin’s decidability theorem [22],
but also quite concrete applications in computer science, such as tools for the automatic
verification of reactive systems, see for instance [6] on model checking. Of the many results
that have been obtained in recent years, let us just mention the characterization, by Janin &

Walukiewicz [13], of the modal µ-calculus as the bisimulation invariant fragment of monadic
second order logic over the class of all labelled transition systems. Applications in logic of
fundamental automata theoretic results are generally based on the observation that there is
no fundamental distinction between automata and formulas. This holds of the results of Janin
and Walukiewicz, who introduce the notion of an alternating parity automaton operating on
labelled transition systems in order to capture the formulas of the modal µ-calculus. For an
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up to date introduction to the world of automata, logic and infinite games, we refer the reader
to Grädel, Thomas & Wilke [7].

Now in general, it has come out that most of the key results in automata theory can be
proved for word and tree automata alike, and many of these results can even be formulated
and proved for automata that operate on more complex objects such as graphs or labelled
transition systems. The approach of Niwiński [20] lifts the theory to a higher level of
generality where automata are devices operating on arbitrary relational structures. It is our
intention here take a natural further abstraction step, namely, to study the area from a
coalgebraic perspective. In fact, much of the work in this particular border area of (modal)
logic and automata theory has a strong coalgebraic flavor. In itself this should not come as
a surprise, since the kind of objects (words, trees, graphs, . . . ) that are studied here admit
a natural coalgebraic presentation, and both (modal) logic and automata theory admit a
lucrative coalgebraic perspective.

This certainly applies to logic, and to modal logic in particular. Since coalgebra can
be seen as a very general model of state-based dynamics, and modal logic as a logic for
dynamic systems, there are interesting links between the two fields. One of the first to
realize this, in the late 1980s, was Abramsky [1]. Barwise & Moss [4], a rich source of
material on a great variety of circular systems, contains the outline of Moss’ general approach
towards coalgebraic logic, discussed in more detail by Moss [17]. Over subsequent years, the
development and study of modal languages for the specification of properties of coalgebras
has been actively pursued and studied by various authors, including Baltag [3], Jacobs [9],
Kurz [15], Pattinson [21], and Rößiger [23]. However, given the intended application
of coalgebraic modal languages as specification formalisms restricting the behavior of state-
based systems, it is rather surprising that until now no languages have been developed that
incorporate explicit fixed point operators. In addition, the only work on coalgebraic modal
languages in which specimens of fixed point formulas are admitted, or in which the need
for coalgebraic modal fixed point logics is discussed, seems to be by Jacobs ([11] and [10],
respectively).

When it comes to the coalgebraic perspective on automata theory, the standard deter-
ministic and non-deterministic automata operating on finite words have been recognized as
paradigmatic examples of coalgebras, as any introduction to the field of coalgebra witnesses.
As an example of more substantial work in this area we refer the reader to Rutten [24, 26].
However, as far as we are aware, automata as (finitary) objects classifying possibly infinite
coalgebras, have until now not been studied from an explicitly coalgebraic perspective.

Summarizing the above discussion, we find that the relation between automata theory and
(modal) logic has been investigated intensively and successfully, and has a strong coalgebraic
flavor. Various modal languages have been developed, in a uniform fashion, for coalgebras of
arbitrary type, but none of these languages admit explicit fixed point operators. And lastly,
we see that certain kinds of automata have been studied from a coalgebraic perspective, but
automata for arbitrary coalgebras have not been developed. It thus seems that there is a
clear gap here, and it is precisely this gap that we intend to start filling with this paper.

We believe that the connections between automata and logic could and perhaps should
be studied from a general, coalgebraic perspective. The aim for developing such a coalgebraic
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framework is not so much to develop new ideas in automata theory, as to provide a common
generalization for existing notions that are known from the theory of more specific kinds of
automata. This abstract perspective could then be of use for many purposes. For instance,
it could be instrumental to find the right notion of automaton for other kinds of coalgebras.
It could also be employed to prove interesting results on coalgebraic logics. And finally, it
may find applications in the form of uniform proofs for key results in automata theory, and
hence, increase our understanding of the field.

The main purpose of this article, which grew out of the conference paper [28], is to
introduce such a coalgebraic perspective on automata theory. We confine our attention to
functors F : Set→ Set which are standard and preserve weak pullbacks — such functors will
be called R-standard. For each such functor F, we will define the notion of an F-automaton;
the purpose of these devices is to classify pointed F-coalgebras (pairs consisting of an F-
coalgebra and an element of the carrier set of the coalgebra). The criterion under which such
an automaton A accepts or rejects a pointed coalgebra (S, s) is formulated in terms of an
infinite two-player game, to be played on a certain graph induced by A and S.

We also introduce a language µLF of coalgebraic fixed point logic for F-coalgebras. This
language is finitary in the sense that every formula comes with a finite set of subformulas.
Combining ideas from the game semantics for the modal µ-calculus as formulated by Janin

& Walukiewicz [12], and the semantic games for coalgebraic languages introduced by Bal-

tag [3], in Theorem 1 we provide a game-theoretic semantics for this language µLF. Finally,
the resemblance between these games and the acceptance games for F-automata leads to the
main technical results of the paper: Theorem 2 states that any µLF-formula can be trans-
formed into a certain kind of F-automaton that accepts precisely those pointed F-coalgebras
in which the formula is true. And Theorem 3 states that, conversely, with any F-automaton
we may associate a µLF-formula holding precisely at those pointed F-coalgebras that are ac-
cepted by the automaton. However, we do not put much focus on technical results, since we
believe that the main contribution of the paper is of a conceptual nature.

It should be mentioned that there are other approaches in which the notion of automaton
is lifted to a category-theoretic level. For instance, there is a series of articles by Arbib and
Manes and a theory of functorial automata developed by Adámek, Trnková and others, see [2]
(also for further references). Although this work bears some resemblance to ours, there are
at least two differences: first, the mentioned research focuses on an algebraic rather than a
coalgebraic framework, and second, it generalizes automata for finite rather than for infinite
objects. Nevertheless, it would be useful to investigate the precise connection with this line
of research.

Overview We first fix notation and terminology on Set-based functors and coalgebras, and
define R-standard functors; we also give a brief introduction to two-person infinite parity
graph games. In section 3 we introduce our coalgebraic perspective on automata theory
by reviewing some of the more familiar kinds of automata. Section 4 provides the general
definition of F-automata for R-standard functors (in many different but equivalent flavors),
and gives a detailed description of the acceptance games for F-automata. Then we move to
logic: in section 5 we introduce the syntax and semantics of the coalgebraic fixed point logic
µLF for coalgebras over an R-standard functor F. The next section provides the details of
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the game-theoretic approach to the semantics of this language. Section 7 states and proves
the above-mentioned main results of the paper. We finish the paper with a list of ideas for
further research.

Acknowledgements I would like to thank Alexandru Baltag, Clemens Kupke, and the
two anonymous referees, for many useful comments and suggestions for improvement of the
paper.

2 Preliminaries

This paper presupposes some familiarity with the basic concepts of coalgebra and automata
theory. The main purpose of this section is to fix notation and terminology. We also give a
very brief introduction to so-called graph games.

2.1 Set-based functors and coalgebras

Basics We let Set denote the category of sets with functions. For an endofunctor F : Set→
Set, an F-coalgebra is a pair S = (S, σ) consisting of a set S and a function σ : S → FS.
A pointed F-coalgebra is a pair (S, s) such that S is an F-coalgebra and s is an element of
(the underlying set of) S. Given two F-coalgebras S = (S, σ) and S′ = (S′, σ′), a function
f : S → S′ is an F-coalgebra morphism or F-homomorphism if F(f)◦σ = σ′ ◦ f . The category
Coalg(F) has the F-coalgebras as objects and the F-homomorphisms as arrows. A relation
Z ⊆ S × S′ is an F-bisimulation if we can impose coalgebra structure ζ : Z → FZ on Z in
such a way that the two projections π : Z → S and π′ : Z → S′ are F-coalgebra morphisms.
We write Z : S, s ↔ S

′, s′ if Z is a bisimulation between S and S′ that links s ∈ S to s′ ∈ S′,
and S, s↔ S

′, s′ if there is such a Z.

Functors and relators Let Rel denote the category with sets as objects and binary rela-
tions as morphisms. Identity arrows in this category are given, for any set S, by ∆S = {(s, s) |
s ∈ S}; composition of arrows in this category is ordinary relation composition, denoted by
◦. A functor Q : Rel→ Rel is called a relator.

It is well-known that Set can be embedded in Rel by the graph functor which is the identity
on sets and maps a function f : S → T to its graph Gr(f) = {(s, f(s))|s ∈ S}. We say that
a relator Q : Rel→ Rel extends a functor F : Set→ Set if it satisfies (i) QS = FS for all sets
S, and (ii) Q(Gr(f)) = Gr(F(f)) for all functions f : S → T .

Extensions need not always exist, but are unique if they do; we denote the extension
of the functor F by F. The image F(R) ⊆ FS × FT of a relation R ⊆ S × T is called the
relation lifting of R under F. It can be proved that an endofunctor on Set can be extended
to a relator if and only if it preserves weak pullbacks. This result is usually attributed to
Carboni, Kelly & Wood [5], but it also follows as a special case of an earlier result by
Trnková, see [27, Observation 2.10], or [2, section V.2.10] for a proof. In the sequel we will
need the following fact; details can be found in Rutten [25] (or be proved easily). We use
(·)̆ to denote relation converse.
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Fact 2.1 Let F : Set→ Set be a functor that preserves weak pullbacks. Then
1. The relator F extending F is given, for R ⊆ S × S′, by F(R) = Gr(F(π)) ◦Gr(F(π′))̆ .
2. F is monotone, that is, if R ⊆ Q then F(R) ⊆ F(Q).
3. F commutes with taking relation converse: F(R )̆ = (FR)̆ .
4. Z is a bisimulation between S and S′ iff (σ(s), σ′(s′)) ∈ FZ for all (s, s′) ∈ Z.

R-standard functors A functor F : Set→ Set is called standard if it preserves inclusions;
that is, whenever f : A ↪→ B is an inclusion, then so is F(f) : FA ↪→ FB. We need the
following property, proved in Adámek & Trnková [2].

Fact 2.2 Let F be a standard endofunctor on Set. Then F preserves finite intersections, that
is: F(A ∩B) = FA ∩ FB.

As an immediate consequence of this, one can show that if an object ξ belongs to a set FA
for some finite set A, then there is a smallest subset Base(ξ) ⊆ A such that ξ ∈ FBase(ξ).

Through most of this paper we will be working with endofunctors on Set that are both
standard and preserve weak pullbacks. Hence, it is convenient to introduce terminology.

Definition 2.3 A functor F : Set → Set is called R-standard if it is standard and preserves
weak pullbacks. �

As a useful property of R-standard functors, we mention the following.

Proposition 2.4 Let F be an R-standard endofunctor on Set. Suppose that (α, β) ∈ FZ for
some relation Z ⊆ A×B, and that A′ and B′ are subsets of A and B respectively, such that
α ∈ FA′ and β ∈ FB′. Then we have (α, β) ∈ F(Z ∩ (A′ ×B′)).

Proof. Let, for two sets X ⊆ Y , ιXY : X ↪→ Y denote the inclusion map. Then by
standardness of F we have that F(ιXY ) = ιFXFY . Now let A,A′, B,B′, Z, α and β be as stated
above. Then it is immediate that (α, β) ∈ Gr(ιFA′FA)◦FZ◦Gr(ιFB′FB )̆ . But a straightforward
calculation, using earlier mentioned properties of F, shows that Gr(ιFA′FA)◦FZ◦Gr(ιFB′FB )̆ =
F(Gr(ιA′A) ◦ Z ◦Gr(ιB′B )̆ ). From this the proposition is immediate. qed

2.2 Graph games

Two-player infinite graph games, or graph games for short, are defined as follows. For a
more comprehensive account of these games, the reader is referred to Grädel, Thomas &

Wilke [7].
First some preliminaries on sequences. Given a set A, let A∗, Aω and A? denote the

collections of finite, infinite, and all, sequences over A, respectively. (Thus, A? = A∗ ∪ Aω.)
Given α ∈ A∗ and β ∈ A? we define the concatenation of α and β in the obvious way, and we
denote this element of A? simply by juxtaposition: αβ. Given an infinite sequence α ∈ Aω,
let Inf (α) denote the set of elements a ∈ A that occur infinitely often in α.

A graph game is played on a board B, that is, a set of positions. Each position b ∈ B
belongs to one of the two players, ∃ (Éloise) and ∀ (Abélard). Formally we write B = B∃∪B∀,
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and for each position b we use P (b) to denote the player i such that b ∈ Bi. Furthermore,
the board is endowed with a binary relation E, so that each position b ∈ B comes with a set
E[b] ⊆ B of successors. Formally, we say that the arena of the game consists of a directed
bipartite graph B = (B∃, B∀, E).

A match of the game consists of the two players moving a pebble around the board,
starting from some initial position b0. When the pebble arrives at a position b ∈ B, it is
player P (b)’s turn to move; (s)he can move the pebble to a new position of their liking, but
the choice is restricted to a successor of b. Should E[b] be empty then we say that player
P (b) got stuck at the position. A match or play of the game thus constitutes a (finite or
infinite) sequence of positions b0b1b2 . . . such that biEbi+1 (for each i such that bi and bi+1

are defined). A full play is either (i) an infinite play or (ii) a finite play in which the last
player got stuck. A non-full play is called a partial play.

The rules of the game associate a winner and (thus) a looser for each full play of the
game. A finite full play is lost by the player who got stuck; the winning condition for infinite
games is given by a subset Ref of Bω (Ref is short for ‘referee’): our convention is that ∃
is the winner of β ∈ Bω precisely if β ∈ Ref . A graph game is thus formally defined as a
structure G = (B∃, B∀, E,Ref ). Sometimes we want to restrict our attention to matches of a
game with a certain initial position; in this case we will speak of a game that is initialized at
this position.

Various kinds of winning conditions are known. In a parity game, the set Ref is defined
in terms of a parity function on the board B, that is, a map Ω : B → ω with finite range.
More specifically, the set Ref is of the form

Bω
Ω := {β ∈ Bω | max{Ω(b) : b ∈ Inf (β)} is even}. (1)

A strategy for player i is a function mapping partial plays β = b0 · · · bn with P (bn) = i
to admissible next positions, that is, to elements of E[bn]. In such a way, a strategy tells i
how to play: a play β is conform or consistent with strategy f for i if for every proper initial
sequence b0 · · · bn of β with P (bn) = i, we have that bn+1 = f(b0 · · · bn). A strategy is history
free if it only depends on the current position of the match, that is, f(β) = f(β′) whenever β
and β′ are partial plays with the same last element (which belongs to the appropriate player).
A strategy is winning for player i from position b ∈ B if it guarantees i to win any match
with initial position b, no matter how the adversary plays — note that this definition also
applies to positions b for which P (b) 6= i. A position b ∈ B is called a winning position for
player i, if i has a winning strategy from position b; the set of winning positions for i in a
game G is denoted as Wini(G).

Parity games form an important game model because they have many attractive proper-
ties, such as history-free determinacy.

Fact 2.5 Let G = (B∃, B∀, E,Ω) be a parity graph game. Then
1. G is determined: B = Win∃(G) ∪Win∀(G).
2. Each player i has a history free strategy which is winning from any position in Wini(G).

The determinacy of parity games follows from a far more general game-theoretic result
concerning Borel games, due to Martin [16]. The fact that winning strategies in parity
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games can always be taken to be history free, was independently proved in Mostowski [18]
and Emerson & Jutla [8].

3 Automata on infinite objects

In this section we intend to supply a gentle introduction to our general definition of an
automaton operating on coalgebras, by discussing the shape of some finite automata that are
well known from the literature. While we subsequently increase the (conceptual) complexity
of these machines, their overall shape will be fixed as a quadruple A = (A, aI ,∆,Acc), with
A some finite set of objects called states, aI ∈ A the initial state, ∆ some kind of transition
function, and Acc ⊆ Aω the acceptance condition.

There are in fact quite a few dimensions along which one may classify such automata. For
instance, an important criterion, and one that we will encounter here as well, concerns the
flavor of the transition function; this flavor makes whether we call the automaton determin-
istic, non-deterministic, or alternating. A second useful criterion is based on the acceptance
condition of the device; examples include the Büchi condition, and the parity condition that
we will focus on in this paper.

However, both of these criteria are fairly orthogonal to the aim of this paper. Our purpose
here is to start with a classification of finite automata according to the kind of object on which
the device operates (words, trees, or graphs). We hope that our presentation will convince
the reader that the obvious similarities in the definition of an automaton accepting an object,
are essentially coalgebraic in nature. This naturally leads to the general definition of an
automaton that operates on pointed coalgebras of type F, where F is an arbitrary R-standard
endofunctor on Set.

Let us first fix some terminology and notation. Throughout this section, we will work
with a fixed alphabet, or color set, C.

Definition 3.1 Let F be an endofunctor on the category Set, and C an arbitrary finite
set of objects that we shall call colors. We let FC denote the functor FCS = C × FS;
that is, FC maps a set S to the set C × FS (and a function f : S → S′ to the function
idC × Ff : C × FS → C × FS′). FC-coalgebras will also be called C-colored F-coalgebras.

We will usually denote FC-coalgebras as triples S = (S, γ, σ), with γ : S → C the coloring
and σ : S → FS the F-coalgebra map. �

Infinite words over an alphabet Σ can thus be seen as (special) IdΣ-coalgebras, where Id
is the identity functor on Set. Likewise, infinite Σ-labeled binary trees are special coalgebras
for the functor (Id× Id)Σ. The third and last kind of objects for which we will consider finite
automata in this section are the C-colored coalgebras for the power set functor P. Recall
that there are plenty of examples of P-coalgebras in the literature, since any binary relation
R ⊆ S × S can be presented as the P-coalgebra map sending a point s ∈ S to the collection
{t ∈ S | (s, t) ∈ R} of its R-successors. As particular examples we mention graphs and Kripke
frames; Kripke models, say, over a collection Prop of proposition letters, can be seen as Kripke
frames that are colored by the collection of subsets of Prop.
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The process of an automaton traversing and scanning a coalgebra structure needs a start-
ing point: the first letter of a word, the root of a tree. In general, it is pointed coalgebras
(see section 2.1) rather than coalgebras per se that are the objects of investigation for our
automata.

Automata on infinite words

To start with, consider simple automata operating on infinite words. In the deterministic
flavor, these are objects A = (A, aI , δ,Acc) where the transition function is of the form

δ : A× C → A.

If we let such a device operate on an infinite C-word γ = c0c1c2 . . ., the result is a so-called
run, that is, a sequence ρ = a0a1a2 . . . such that a0 = aI and ai+1 = δ(ai, ci) for all i ∈ ω.
Now A is defined to accept γ if and only if this run, which is uniquely determined by A and γ,
belongs to the set Acc. (In the case of a standard finite automaton, the acceptance condition
is given by a subset F ⊆ A of final, or more appropriately, accepting states. An infinite word
is accepted by such a machine if at least one of these accepting states occurs infinitely often
in the run. This relatively simple concept is called Büchi acceptance.)

In the non-deterministic variant of a word automaton, we are dealing with a transition
function

∆ : A× C → PA.

Runs of such machines are no longer uniquely determined: a run of A on an infinite word
γ = c0c1c2 . . . may be any ω-word ρ = a0a1a2 . . . over A satisfying a0 = aI and ai+1 ∈ ∆(ai, ci)
for all i ∈ ω. A accepts γ if at least one of these runs meets the acceptance condition. A good
way to envisage this is to think of the automaton traversing γ and at each time choosing a
new state ai+1 from the set ∆(ai, ci).

It is completely straightforward to generalize these notions from infinite words over C
to arbitrary IdC-coalgebras. For instance, in the non-deterministic variant, a run of A on a
IdC-coalgebra S = (S, γ, σ) starting at s ∈ S is an ω-word ρ = a0a1a2 . . . such that a0 = aI
and ai+1 ∈ ∆(ai, γ(σn(s))). A accepts (S, s) if one of these runs is accepting.

Automata on binary trees

Changing the type of the coalgebra functor, we move on to automata that operate on C-
labeled binary trees (or on arbitrary structures that can be represented as coalgebras for the
functor (Id×Id)Σ). The basic new idea here is that an automaton which scans such a structure,
starting at the root of the tree, at each node splits into two copies, each of which continues
the investigation of the tree at one of the two successors of the current node. Formally, we
denote a binary tree as a structure T = (2∗, γ), where 2∗ denotes the set of finite words over
the alphabet 2 = {0, 1} and γ : 2∗ → C is the coloring of the tree. A (deterministic) tree
automaton A = (A, aI , δ,Acc) has a transition function

δ : A× C → A×A.
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A run of such an automaton on a C-labeled binary tree T = (2∗, γ) is now an A-labeled binary
tree ρ = (2∗, L : 2∗ → A) such that for all nodes s ∈ 2∗, (L(s0), L(s1)) = δ(L(s), γ(s)). The
automaton is defined to accept the tree β if each path of the run ρ, seen as an infinite word
over A, belongs to A.

Deterministic tree automata, just like deterministic word automata, have a unique run on
each input tree. And similarly as for word automata, we obtain a non-deterministic variant
by taking, as the transition map of the automaton, a function

∆ : A× C → P(A×A).

Acceptance for such automata may again be formulated in terms of the existence of an
accepting run, where an accepting run is now defined as an A-labeled binary tree ρ satisfying
(L(s0), L(s1)) ∈ δ(L(s), γ(s)) for every node s ∈ 2∗. It is more convenient however, to
rephrase the definition of acceptance within the framework of game theory. The combination
of the existential (‘for some run . . . ’) and universal quantification (‘for all paths . . . ’) can be
explained quite naturally in terms of the interaction of two players.

With any tree automaton A and tree T we associate an acceptance game G(A,T), which
has two players, ∃ (Eloise) and ∀ (Abélard). For an intuitive understanding of this game,
think of ∃ as aiming for the automaton to accept the tree, and of ∀ as trying to prevent this.
Basically, a position of the game is a pair (a, s) ∈ A × 2∗, which codes the situation of the
automaton being in state a, inspecting node s of the tree. In such a position, ∃ chooses a
pair (a0, a1) ∈ ∆(a, γ(s)), after which ∀ chooses to move either left or right, thus determining
the next node of the tree to be either s0 or s1, and the next state of the automaton to be
either a0 or a1. Any full match of the game thus provides an infinite sequence α = a0a1a2 . . .
of states in A (with a0 = aI), which in its turn determines the winner of the match: it is
∃ if α ∈ Acc, and ∀ otherwise. The automaton accepts the tree T in case ∃ has a winning
strategy for the associated game initiated at the pair (aI , ε), where ε is the root of the tree.

Formally, we may represent this game as the graph game (see section 2.2) of which the
game positions are given in the following table, and the acceptance condition is given as
before.

Position: b P (b) Admissible moves: E[b]
(a, s) ∈ A× 2∗ ∃ {(ξ, s) ∈ P(A×A)× 2∗ | ξ ∈ ∆(a, γ(s))}
((a0, a1), s) ∈ P(A×A)× 2∗ ∀ {(a0, s0), (a1, s1)}

This game theoretic perspective on acceptance opens up various ways to generalize the
notion of a tree automaton. A standard way to do so proceeds as follows. First, read the
pair (a0, a1) ∈ ∆(a, γ(s)) as a conjunction of the statements ‘go left, and switch to state a0’,
and ‘go right, and switch to state a1’. Abbreviate this as L:a0 ∧R:a1. Similarly, read the set
∆(a, c) = {(ai0, ai1) | i ∈ I} disjunctively, that is, as the formula

∨
i(L:ai0∧R:ai1). The concept

of alternation then naturally arises if we allow arbitrary conjunctions and disjunctions over
the set LRA := {L:a,R:a | a ∈ A} in the range of the transition function of the automaton.
That is, we let the transition function be of the form

∆ : A× C → DL(LRA),
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where, for any set X, we let DL(X) denote the set of (distributive) lattice terms over X, that
is, the smallest collection of objects that includes X and contains the expressions

∧
P and∨

P for any finite set P of objects in DL(X). The board of this graph game looks as follows.

Position: b P (b) Admissible moves: E[b]
(a, s) ∈ A× S – {∆(a, γ(s))}
(
∨
P, s) ∈ DL(A×A)× S ∃ {(p, s) ∈ DL(A×A)× S | p ∈ P}

(
∧
P, s) ∈ DL(A×A)× S ∀ {(p, s) ∈ DL(A×A)× S | p ∈ P}

(L:a, s) ∈ LRA × S – {(a, s0)}
(R:a, s) ∈ LRA × S – {(a, s1)}

Note that in the cases where we do not associate a player with a position, the next position of
the game is uniquely determined by the current one, and thus it does not matter which player
owns this position. Special attention is needed for positions of the form (

∨
P, s) and (

∧
P, s)

in case P is the empty set. In a position (
∨
∅, s), ∃ gets stuck since there is no move available

for her. Thus, in accordance with the definition of parity games, ∃ immediately looses the
match. Intuitively, this is correct since the disjunction over an empty set of propositions is
usually taken to be the falsum formula ⊥. Likewise, ∀ looses any match ending at a position
of the form (

∧
∅, s), which is in accordance with the convention that

∧
∅ is equivalent to the

formula >. In any case, it is important to note that in the acceptance game for alternating
tree automata, full matches may be finite. The winner and looser of an infinite match are
provided by the acceptance condition of the automaton. Given an infinite match β, consider
the infinite sequence of ‘basic’ positions (a0, s0)(a1, s1)(a2, s2) . . . occurring in β. The match
β is won by ∃ if the induced infinite word a0a1a2 . . . belongs to Acc, and by ∀, otherwise.

For our purposes however, it is more convenient to define the notion of an alternating tree
automaton in a slightly different (but equivalent) way. We require the transition function to
be of the form

∆ : A× C → DL(A×A),

with the board of the acceptance game looking as follows.

Position: b P (b) Admissible moves: E[b]
(a, s) ∈ A× S – {∆(a, γ(s))}
(
∨
P, s) ∈ DL(A×A)× S ∃ {(p, s) ∈ DL(A×A)× S | p ∈ P}

(
∧
P, s) ∈ DL(A×A)× S ∀ {(p, s) ∈ DL(A×A)× S | p ∈ P}

((a0, a1), s) ∈ (A×A)× S ∀ {(a0, s0), (a1, s1)}

In order to see why these two approaches are equivalent, recall that the pair (a0, a1) ∈ A×A
can be represented as the conjunction L:a0∧R:a1. In the other direction, the atomic formula
L:a can be represented by the pair (a, a>) where a> is a special ‘true’ state, that is, it has
∆(a>, c) = {∅} for all colors c.

It is not hard to show that the distributive laws (between
∨

and
∧

) apply to this kind
of game, in the sense that replacing a position (ϕ, s) with (ϕ′, s), in case ϕ and ϕ′ are
propositionally equivalent formulas, makes no essential change to the game. From this it
follows that instead of allowing arbitrary formulas as the value of the transition function,
we may confine ourselves to formulas in disjunctive normal form. This enables the following
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set-theoretic, ‘logic-free’, presentation of alternating tree automata, namely, in which the
transition map has the form

∆ : A× C → PP(FA),

where F denotes the functor Id×Id. Under this definition of the automaton we may present the
board of the acceptance game as in the table below. Here we have also made the amendments
necessary to enable the automaton to operate on arbitrary (Id× Id)C-coalgebras.

Position: b P (b) Admissible moves: E[b]
(a, s) ∈ A× S ∃ {(Ξ, s) ∈ P(FA)× S | Ξ ∈ ∆(a)}
(Ξ, s) ∈ P(FA)× S ∀ {(ξ, τ) ∈ FA× FS | ξ ∈ Ξ and τ = σ(s)}
((a0, a1), (s0, s1)) ∈ FA× FS ∀ {(a0, s0), (a1, s1)}

Automata on graphs/amorphous trees

The last kind of objects for which we consider finite automata are the C-colored coalgebras for
the power set functor P. It is important to realize that P-coalgebras differ from coalgebras
for the functor Idk (which sends a set X to its k-ary Cartesian power) in one important
aspect. In a P-coalgebra, the collection of successors of a point s is amorphous in the sense
that one does not have explicit access to the individual points of this set. This means that
whereas it is completely trivial to modify the definition of binary tree automata to the case
of k-ary trees, some new ideas are required to extend the definition to capture automata for
amorphous trees.

There is in fact more than one way to go here. Probably the most intuitive solution
generalizes the first-mentioned approach towards alternation for tree automata, i.e., the one
in which the transition function takes values in the set of lattice expressions over the set LRA

of ‘atomic formulas’. Think of the atomic formula L:a as a modal expression stating that
a applies to the L-successor of the current node of the tree. In the case of the power set
functor P, without explicit reference to individual successors, one may use the formulas 3a
and 2a as the basic building blocks of the distributive lattice expressions. The meaning of
these formulas would then be to send a copy of the automaton, switched to state a, to some
successor of the current point of the graph or tree. Here the difference is of course that in
the case of a diamond formula 3a, this successor is chosen by ∃, while it is ∀ who chooses
the next node in the case of a box formula 2a. Thus the net effect is that in the case of a
diamond formula, a single copy of the automaton is sent out to one successor of the current
point in the tree, whereas in the case of a box formula, a copy of the automaton is moving to
each successor node.

The perspective on graph automata that we discuss now is equivalent but different. Our
approach roughly follows Janin & Walukiewicz [12], but we have streamlined the presen-
tation quite a bit in order to bring out the coalgebraic aspect of the definition more clearly.
This facilitates the generalization towards arbitrary coalgebras.

The basic idea of this second approach is to use sets of states of A as ‘descriptions’ of sets
of nodes of the colored graph S under inspection. Such a ‘description’, say, by a set B ⊆ A of
a set T ⊆ S, needs to be substantiated by a relation Z ⊆ A× S which is full on B and T , in
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the sense that for every b ∈ B there is a t ∈ T such that (b, t) ∈ Z, and for every t ∈ T there
is a b ∈ B such that (b, t) ∈ Z.

In the case of a deterministic automaton then, we may simply take the transition map to
be of the form

δ : A× C → PA,

and the idea is that when the automaton, in state a ∈ A, inspects a node s ∈ S, the set
δ(a, γ(s)) provides a description of the collection σ(s) of successors of s. (Recall that we use
γ to denote the coloring of the graph.) It is the task of ∃ to come up with a full relation
Z ⊆ δ(a, γ(s)) × σ(s) to substantiate the claim that δ(a, γ(s)) is an adequate description of
σ(s). After she has chosen such a relation Z, it is ∀’s turn to pick a pair (b, t) ∈ Z. The
automaton then switches to state b and moves to successor t of s, and the acceptance game
continues. Thus, different from the case of bounded trees, here even the acceptance game
associated with a deterministic automaton may witness some nontrivial interaction between
the two players.

In passing we note that the equivalence of both approaches can be seen quite easily in
terms of coalgebraic modal logic. For, our notion of a set P ⊆ A ‘describing’ the set σ(s) of
successors of s, can be very succinctly formulated by the formula

∇P := 2
∨
{p | p ∈ P} ∧

∧
{3p | p ∈ P} (2)

holding at s. And conversely, the standard modal operators can be expressed using the ∇
operation: 3ϕ ≡ ∇{>, ϕ} and 2ϕ ≡ ∇∅ ∨∇{ϕ}. Thus, at least in the cases where we have
conjunctions and disjunctions at our disposal, we may freely switch between ∇ on the one
hand, and 3 and 2 on the other.

Given the above description of the deterministic graph automata, it is straightforward
to come up with the definition of its nondeterministic and alternating variants. Concerning
the latter, one could define the transition function of an alternating automaton A to take
values in the set DL(PA) of lattice expressions over the set PA, but it seems cleaner to take
the equivalent set-theoretic formulation that is based on the disjunctive normal form of such
expressions. That is, the transition function of an alternating graph automaton has the form

∆ : A× C → PPPA.

The triple occurrence of the power set operation may seem rather confusing at first sight.
Probably the best way to understand this feature is by recalling that there is one P for ∃,
one for ∀, and one for the functor. A better way to type this transition function is as

∆ : A× C → PPFA.

Formally, the acceptance game of such an automaton is played on the following graph:

Position: b P (b) Admissible moves: E[b]
(a, s) ∈ A× S ∃ {(Ξ, s) ∈ P(FA)× S | Ξ ∈ ∆(a, γ(s))}
(Ξ, s) ∈ P(FA)× S ∀ {(ξ, τ) ∈ FA× FS | ξ ∈ Ξ and τ = σ(s)}
(ξ, τ) ∈ FA× FS ∃ {Z ∈ P(A× S) | Z is full on (ξ, τ)}
Z ∈ P(A× S) ∀ Z
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As always, the winning conditions of the game are completely determined by the acceptance
condition Acc of the automaton. That is, each match of the game induces, in the most obvious
way, a sequence of states of the automaton, and (at least, in case we talking about an infinite
match), the winner of the match is ∃ if this sequence belongs to Acc, and ∀ otherwise.

A coalgebraic perspective

Our presentation of graph automata has provided almost all of the ingredients needed for
generalizing the definition of an automaton to a general, coalgebraic level. The key observation
still to be made is that our fairly vague story of a subset P ⊆ A ‘describing’ the set σ(s) ∈ PS
is in fact an instance of the coalgebraic notion of relation lifting (see section 2.1). More
precisely, a relation Z ⊆ A × S is full on P ⊆ Q and T ⊆ S if and only if the pair (P, T ) ∈
FA× FS belongs to the relation lifting FZ.

Also in the cases of word and tree automata, it is relation lifting that determines how a
match of the game proceeds. In these cases however, there is no real choice for ∃ when it
comes to the ‘witnessing relation’ Z. For instance, given ((a0, a1), (s0, s1)) ∈ FA× FS, where
F is the binary tree functor Id× Id, a relation Z ⊆ FA× FS satisfies ((a0, a1), (s0, s1)) ∈ FZ if
and only if Z contains both (a0, s0) and (a1, s1). But since ∃ will always choose the witnessing
relation Z as small as possible, this means that without loss of generality we may assume
that she picks exactly the set {(a0, s0), (a1, s1)}, and thus effectively, has no choice at all. The
reader is invited to check how this is reflected in the definition of the acceptance game of tree
automata.

Thus we have arrived at a natural notion of an automaton operating on pointed FC-
coalgebras — at least, for any functor F for which relation lifting ‘works’. In the deterministic
case, the transition function could be defined to be of the form

δ : A× C → FA.

The acceptance game for such an automaton A operating on an FC-coalgebra S = (S, γ : S →
C, σ : S → FS) is given by the following table:

Position: b P (b) Admissible moves: E[b]
(a, s) ∈ A× S ∃ {Z ∈ P(A× S) | (δ(a, γ(s)), σ(s)) ∈ FZ}
Z ∈ P(A× S) ∀ Z

In the acceptance game for the alternating version such an automaton, the players first
play, at a position (a, s) ∈ A×S, a little ‘subgame’ in order to arrive at a position (α, σ(s)) ∈
FA×FS. From there, play proceeds as in the deterministic version. In general, it is interesting
to observe that the alternating game proceeds in rounds, and that each round witnesses two
fairly different kinds of interaction between ∃ and ∀.

Finally, it turns out that we can simplify our discussion somewhat by disposing of the col-
ors. In the following section, we develop a framework of F-automata as devices for inspecting
coalgebras based on an arbitrary functor, rather than colored coalgebras only. This enables
us to work with transition functions that are of the form

∆ : A→ PPFA.
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Obviously, this theory applies to functors of the form FC as well, and, hence, it does provide us
with a notion of an FC-automaton that will operate on C-colored F-coalgebras, see section 4.6
for more details.

4 Coalgebra Automata

4.1 Basic definition

The following definition concerns the most important notion of the paper: F-automata.

Definition 4.1 Let F be an R-standard endofunctor on Set. An (alternating) F-automaton
is a quadruple A = (A, aI ,∆,Acc), with A some finite set of objects called states, aI ∈ A the
initial state, ∆ : A→ PPFA the transition function, and Acc ⊆ Aω the acceptance condition.

An F-automaton is called non-deterministic if all members of each ∆(a) are singletons.
An F-automaton is called deterministic if for each a ∈ A there is an element δ(a) ∈ FA such
that ∆(a) = {{δ(a)}} (in particular, such an automaton is non-deterministic). �

The meaning of this definition should become clear below when we discuss the acceptance
games. In the sequel we may drop the adjective ‘alternating’ when referring to such an
automaton: in our terminology, the generic automaton is alternating, and deterministic and
non-deterministic automata are special instances of alternating ones.

There are various kinds of acceptance conditions known from the literature. For almost all
of these, the criterion, whether an infinite sequence α ∈ Aω belongs Acc or not, is formulated
in terms of the set Inf (α). For instance, a Büchi condition puts α ∈ Acc if and only if Inf (α)
contains at least one of a set of special acceptance states. In the remainder of this paper we
will work exclusively with parity automata.

Definition 4.2 Let F be an R-standard endofunctor on Set. A parity F-automaton is an
F-automaton A = (A, aI ,∆,Acc), such that Acc = AωΩ for some parity map Ω : A → ω,
see (1). Such an automaton is usually presented as A = (A, aI ,∆,Ω). The map Ω is called
the parity function of the automaton. �

4.2 Acceptance game

F-automata are supposed to operate on pointed F-coalgebras. Basically, the idea is that an
F-automaton will either accept or reject a given pointed F-coalgebra. The best way to express
the evaluation process leading to either acceptance or rejection, is in terms of a two-player
infinite graph game, or briefly: graph game, see section 2. It is useful to first consider the
following coalgebraic example of a graph game.

Example 4.3 There are various ways to put the notion of bisimulation into this game-
theoretic framework. At this stage it is instructive to consider the following approach from
Baltag [3].

Let S = (S, σ) and S′ = (S′, σ′) be two F-coalgebras for some endofunctor F on Set which
preserves weak pullbacks. The bisimulation game B(S,S′) between S and S′ is defined as the
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graph game (B∃, B∀, E,Ref ) with B∃ := S×S′, B∀ := P(S×S′), Ref := Bω (i.e., all infinite
matches are winning for ∃), while the edge relation E is given as follows:

• in position (s, s′), ∃ may choose any set Z ⊆ S × S′ satisfying (σ(s), σ′(s′)) ∈ FZ;

• in position Z ⊆ S × S′, ∀ may choose any element (t, t′) of Z.

We leave it to the reader to verify that

(s, s′) ∈Win∃(B) iff S, s↔ S
′, s′.

The key observation for the direction from left to right is that the relation Win∃(B) itself is a
bisimulation between S and S. For the other direction, let ∃ choose, at an arbitrary position
(t, t′), any bisimulation between S and S′ that links t to t′, cf. Fact 2.1(3).

Definition 4.4 Let A = (A, aI ,∆,Ω) be an F-automaton, and let S = (S, σ) be an F-
coalgebra. The acceptance game G(A,S) associated with A and S is the parity graph game
(B∃, B∀, E,Ω) with

B∃ := A× S ∪ FA× FS
B∀ := P(FA)× S ∪ P(A× S).

(For the sake of a smooth presentation, we will occasionally represent a position of the form
(ξ, σ(s)) ∈ FA× FS as (ξ, s) ∈ FA× S.)

The edge relation E and the parity map Ω of the game are given by the table below:

Position: b P (b) Admissible moves: E[b] Ω(b)
(a, s) ∈ A× S ∃ {(Ξ, s) ∈ P(FA)× S | Ξ ∈ ∆(a)} Ω(a)
(Ξ, s) ∈ P(FA)× S ∀ {(ξ, τ) ∈ FA× FS | ξ ∈ Ξ and τ = σ(s)} 0
(ξ, τ) ∈ FA× FS ∃ {Z ∈ P(A× S) | (ξ, τ) ∈ FZ} 0
Z ∈ P(A× S) ∀ Z 0

Finally, A accepts the pointed F-coalgebra (S, s) if (aI , s) is a winning position for ∃ in
the game G(A,S). �

In order to get an understanding of this game, consider an F-automaton A and an F-
coalgebra S. Of all the positions in the game G = G(A,S), those in A × S are the basic
ones — the other positions are just intermediate stages. Roughly, one should see a pair
(a, s) ∈ A × S as a situation in which the automaton is in state a, inspecting the point s of
the coalgebra. The aim of ∃ is to show that this description ‘fits’; while the aim of ∀ is to
convince her that this is not the case. Going into detail we first look at two special cases.

First suppose that the automaton A is deterministic. That is, there is a map δ : A→ FA
such that ∆(a) = {{δ(a)}} for each a ∈ A. Now at any position (a, s) ∈ A×S of the game G,
∃ can only make one move, namely, to the position {(δ(a), s)} ∈ P(FA)×S; after that, ∀ has
no choice either: he has to move the pebble to (δ(a), σ(s)) ∈ FA×FS. Note that this position
is completely determined by the first position — hence the name ‘deterministic’. A position
of the form (δ(a), σ(s)) is like the position (a, s) of the bisimulation game of Example 4.3: ∃
chooses a relation Z ⊆ A × S such that (δ(a), σ(s)) ∈ FZ, after that, ∀ chooses a new pair
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(b, t) ∈ Z, and we are back in one of the basic positions. So in the deterministic case, a parity
automaton itself can be represented as a ‘decorated’ F-coalgebra: apart from an initial state
it also carries an acceptance condition Ω : A→ ω. Likewise, the acceptance game G(A,S) for
such an automaton is like a ‘decorated’ bisimulation game. Note however, that much of the
power of automata working on infinite objects precisely stems from the intricacies of these
‘decorations’.

Now take the more general case in which we only know that A is non-deterministic, and
consider a position (a, s) ∈ A × S. Here ∃ has a real choice: she can pick any singleton {α}
from ∆(a) and move the pebble to position {(α, s)} ∈ P(FA × S). After that, ∀s choice is
forced: he must move the pebble to position (α, σ(s)) ∈ FA×FS. Effectively then, at position
(a, s) it is ∃ on her own who determines the later position (α, σ(s)) ∈ FA × FS. Note that
at positions of the form (α, σ(s)) ∈ FA× FS the game proceeds as in the deterministic case,
until another central position is reached.

Finally, we consider the most general case, in which A is an arbitrary automaton. Here it is
still the aim to arrive, starting from a position (a, s) ∈ A×S, at a position (α, σ(s)) ∈ FA×FS,
but now ∃ and ∀ play a little ‘subgame’ in order to get there. In the version presented here,
first ∃ makes a preselection, that is, she chooses some subset Ξ ⊂ FA; then ∀ picks an element
ξ ∈ Ξ, and the new position is (ξ, σ(s)); from here, play proceeds as before. Note that any
match of the game is over as soon as the responsible player gets stuck, in the sense that (s)he
reaches a position in which no moves are admissible. This happens for instance in a position
(a, s) such that ∆(a, s) = ∅; in this case ∃ gets stuck and immediately looses the match.
Likewise, if ∃ can choose ∅ ∈ ∆(a, s) then she wins the match since ∀ will get stuck in the
next move.

For future use as a measure of the complexity of an F-automaton, we now define the index
of an automaton, and some auxiliary notions. Recall that for an element ξ ∈ FA, where A is
finite, we define Base(ξ) as the smallest subset A0 ⊆ A such that ξ ∈ FA0.

Definition 4.5 Given an R-standard set functor F, let A = (A, aI ,∆,Ω) be some F-automaton.
The relation →A is defined by putting a→A b if b ∈ Base(ξ) for some ξ ∈ FA that occurs in
∆(a). �

It will be intuitively clear that in an acceptance game G(A,S), at a position of the form
(ξ, σ(s)) ∈ FA × FS, ∃ will choose the relation Z ⊆ A × S as small as possible. But the
set Base(ξ) has the property that if (ξ, σ(s)) ∈ FZ, then (ξ, σ(s)) already belongs to the
set F(Z ∩ (Base(ξ) × S)). Hence we may always assume without loss of generality that
Z ⊆ Base(ξ)× S. From this we may conclude that two subsequent basic positions (a, s) and
(b, t) in any acceptance game will be such that a→A b.

Definition 4.6 Let F be some R-standard set functor, and consider an F-automaton A =
(A, aI ,∆,Ω). We will call a subset C of A strongly connected if for every c and d in C there
is a path c = c0 →A c1 →A . . .→A cn = d in C. Now the index of A is defined as

ind(A) := max{#(Ω[C]) | C a strongly connected component of A},

that is, ind(A) is the maximal number of distinct parities reached by the elements of a strongly
connected component of A. �
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4.3 Some basic results

In order to obtain some familiarity with the notion of an F-automaton, let us start with
discussing two basic results. First, we prove that acceptance is bisimilation invariant.

Proposition 4.7 Let F be some R-standard endofunctor on Set, let A be some F-automaton,
and let S = (S, σ) and S′ = (S′, σ′) be two F-coalgebras. Then for any pair of bisimilar states
s in S and s′ in S′, A accepts (S, s) iff it accepts (S′, s′).

Proof. Let B ⊆ S × S′ be a bisimulation containing the pair (s0, s
′
0) ∈ S × S′, and assume

that A = (A, aI ,∆,Ω) accepts (S, s0). We will prove that A then also accepts (S′, s′0).
To see why this is so, consider a match of the game G′ = G(A,S′) that starts at the position

(aI , s′0). Since by assumption, the position (aI , s0) in the game G = G(A,S) is winning for ∃,
it holds in particular that ∆(a) 6= ∅ — otherwise, ∃ would have lost immediately. Suppose
that in G, ∃ would choose the position (Ξ, s) ∈ P(FA)× S, then in G′ her choice at position
(aI , s′0) will be (Ξ, s′0).

Now if we have Ξ = ∅, then she wins the match immediately, in which case we are done.
So suppose otherwise, then ∀ chooses an element ξ ∈ Ξ, so that the next position in the
G′-match is (ξ, s′0). Now suppose that in the corresponding G-position (ξ, s0), ∃’s move would
be some relation Z ⊆ A × S. We claim that in the corresponding G′-match, the relation
Z ′ := Z ◦ B is a legitimate move for ∃ at (ξ, σ′0), that is, we have (ξ, σ′(s′0)) ∈ FZ ′. To see
why this is so, observe that it follows from the legitimacy of Z as a move in G at (ξ, s0),
that (ξ, σ(s0)) ∈ FZ, and from the fact that B is a bisimulation with (s0, s

′
0) ∈ B, that

(σ(s0), σ′(s′0)) ∈ FB. But then we have (ξ, σ′0) ∈ FZ ◦ FB = F(Z ◦B) = FZ ′, as required.
To finish the first round of the game, suppose that at the position Z ′ of G′, ∀ picks a

pair (a1, s
′
1) ∈ Z ′. Then by definition, there is a point s1 in S such that (a1, s1) ∈ Z and

(s1, s
′
1) ∈ B.

Continuing in this fashion, we see that ∃ obtains her strategy in G′ from playing a shadow
match of G. The relation between any match β′ of G′ in which ∃ follows this strategy, and the
corresponding shadow match β of G, is that at every stage k of the match, the k-th positions
pk of G and p′k of G′ satisfy one of the following conditions:

1. pk is of the form (x, s) and p′k is of the form (x, s′), with (s, s′) ∈ B (and x belonging
to either A, P(Fa) or FA), or

2. pk is some relation Z ⊆ A× S, and p′k is the relation Z ◦B.

But then it follows immediately from the definitions that the winners of the two matches
must be identical. And so, from our assumption that A accepts (S, s0), it follows that it also
accepts (S′, s′0). qed

In fact, we may prove something of a converse to this result, at least for finite coalge-
bras. (Our result could be extended to arbitrary coalgebras if we would allow automata to
be infinite.) That is, with every finite pointed F-coalgebra (S, s) we may associate an au-
tomaton AS,s that characterizes (S, s) modulo bisimulation. This automaton is in fact the
structure (S, s) itself, dressed up as a deterministic F-automaton (cf. the discussion following
Definition 4.4).
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Definition 4.8 Let F be some R-standard endofunctor on Set. Given a finite F-coalgebra S =
(S, σ), and a point s in S, define the F-automaton AS,s as the structure AS,s = (S, s,∆σ,Ω0),
where ∆σ and Ω0 are given by putting ∆σ(t) := {{σ(t)}}, and Ω0(t) := 0, for every point
t ∈ S. �

Proposition 4.9 Let F be some R-standard endofunctor on Set, and let (S, s) be some finite
pointed F-coalgebra. Then for any pointed coalgebra (S′, s′), it holds that

AS,s accepts (S′, s′) iff S, s ↔ S
′, s′.

Proof. It is immediate from the definitions that for every pointed coalgebra (S′, s′), the eval-
uation game G(AS,s,S′), initialized at (s, s′), is essentially the same as Baltag’s bisimulation
game, see Example 4.3. From this, the proposition follows immediately. qed

4.4 Variation: chromatic F-automata

Familiar automata, such as the ones discussed in section 3, operate on coalgebras that are
colored by some set C, and have a transition function ∆ taking input from the set A × C
(with A the state set of the automaton). Now obviously, our definition 4.1, when applied to a
functor of the form FC , does provide automata that will scan C-colored F-coalgebras, but the
reader may worry that their transition function ∆ : A → PP(C × FA) has the wrong shape
since it seems to take input only from A. In this section we will show that the notion of an
F-automaton is flexible enough to encode the technicalities involving colors, so that we may
work in the simpler framework without making concessions to its scope of applicability.

Let us first introduce a coalgebraic generalization of the notion of automaton that seems
to be more in line with standard usage in automata theory. As before, we represent FC-
coalgebras as triples of the form S = (S, γ, σ) with γ : S → C and σ : S → FS.

Definition 4.10 Let F be an R-standard endofunctor on Set. A chromatic F-automaton over
C is a quintuple A = (A, aI , C,∆,Ω) such that ∆ : A×C → PPFA (and A, aI , and Ω are as
before).

Given such an automaton and an FC-coalgebra S = (S, γ, σ), we define the acceptance
game GC(A,S) in a very similar way as before, witnessed by the following table:

Position: b P (b) Admissible moves: E[b] Ω(b)
(a, s) ∈ A× S ∃ {(Ξ, s) ∈ P(FA)× S | Ξ ∈ ∆(a, γ(s))} Ω(a)
(Ξ, s) ∈ P(FA)× S ∀ {(ξ, τ) ∈ FA× FS | ξ ∈ Ξ and τ = σ(s)} 0
(ξ, τ) ∈ FA× FS ∃ {Z ∈ P(A× S) | (ξ, τ) ∈ FZ} 0
Z ∈ P(A× S) ∀ Z 0

�

We will now show that the differences between the two kinds of automata for recognizing
C-colored F-coalgebras are only superficial. That is, we will provide very simple constructions
for transforming FC-automata into equivalent chromatic F-automata over C, and vice versa.
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Definition 4.11 Let A = (A, aI , C,∆,Ω) be a chromatic F-automaton over C. We define its
FC-companion AC as the automaton (A, aI ,∆C ,Ω), with ∆C : A→ PP(C × FA) given by

∆C(a) := {{c} × Ξ | Ξ ∈ ∆(q, c), c ∈ C} .

(Note that if Ξ = {ξ1, . . . , ξn}, then {c} × Ξ is the set {(c, ξ1), . . . , (c, ξn)}).
Conversely, given an FC-automaton B = (B, bI ,Θ,Ψ), the structure (B, bI , C,ΘC ,Ψ) with

ΘC(b, c) := {Ξ ∈ PFB | {c} × Ξ ∈ Θ(b)}.

is called the chromatic F-companion of B, notation: BC . �

The following claim shows that the two kinds of automata for FC-coalgebras are merely
variants of one another.

Proposition 4.12 Let A be a chromatic F-automaton over C, and B an FC-automaton. Then
for any pointed FC-coalgebra (S, s) it holds that

A accepts (S, s) iff A
C accepts (S, s), (3)

B accepts (S, s) iff BC accepts (S, s). (4)

Proof. We confine our attention to (4). Fix B and S. We will show that

Win∃(G(B,S)) = Win∃(GC(BC ,S)), (5)

which clearly suffices to prove the equivalence of B and BC .
For the inclusion ⊇ of (5), note that by Fact 2.5 we may assume that in GC(BC ,S), ∃

has a history free strategy f which is winning from every position in Win∃(GC(BC ,S)). Now
define the following map f ′ on ∃’s positions in the other game, G(B,S). For (b, s) ∈ B × S,
let f−(b, s) denote the unique element Ξ ∈ FA such that f(b, s) = (Ξ, s), and put

f ′(b, s) :=
(
{g(s)} × f−(b, s), s

)
,

f ′(ξ, τ) := f(ξ, τ).

We first show that f ′ is a legitimate strategy for ∃ on each of her positions in the set
Win∃(GC(BC ,S)). This is obvious for positions of the form (ξ, τ) ∈ FB × FS. For a po-
sition (b, s) ∈ B × S, from the fact that f(b, s) ∈ ΘC(b, γ(s)) and the definition of ΘC , it is
immediate that f ′(b, s) belongs to Θ(b), as required.

Now consider an arbitrary match β of G(B,S), initiated at a position p that we know to
be winning in the game GC(BC ,S), and assume that ∃ plays according to her strategy f ′. It
is not hard to see that with β we may associate a shadow match β′ of GC(BC ,S) in which ∃
plays according to her winning strategy f , and such that β and β′ pass through exactly the
same basic positions (i.e., in A × S). This immediately implies that ∃ wins β, and so her
strategy f ′ must be winning for her in G(B,S). This proves the inclusion ⊇ of (5).

For the other inclusion, let f be a history free winning strategy for ∃ in G(B,S). The
key observation is that for any position (b, s) ∈ Win∃(G(B,S)), f(b, s) must be of the form
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({c} × Ξ, s) for some c ∈ C and Ξ ∈ FB. From this observation it is completely straightfor-
ward to define a strategy for ∃ in the other game, GC(BC ,S), and to prove, in analogy of the
proof just given, that this strategy is winning from every position in Win∃(G(B,S)).

In order to prove the key observation, assume that f(b, s) = (Π, s) ∈ P(C × FB)×S, and
suppose for contradiction that Π contains elements (c1, ξ1) and (c2, ξ2) with c1 6= c2. The
point is that this would always enable ∀ to choose, in the next move, a pair ((ci, ξi), s) such
that ci is distinct from γ(s), and thus provide him with an immediate win of the match.
Hence we arrive at the desired contradiction, since we assumed that f was a winning strategy
on (b, s).

This justifies our key observation, and hence, we are done with the proof of (5). qed

4.5 Variation: logical automata

A different perspective on the step function ∆ of an F-automaton A is that for all states
a, ∆(a) is a disjunction of conjunctions of elements of FA. This suggests the following
generalization. Recall that, given a set X, DL(X) denotes the set of lattice expressions over
X.

Definition 4.13 Let F be an R-standard endofunctor on Set. A logical F-automaton is a
quadruple A = (A, aI ,∆,Ω) with A, aI and Ω as before, and ∆ : A→ DL(FA). �

The acceptance game for this A is defined in a completely obvious way, making ∃ choose
between disjuncts, moving from (

∨
P, s) to (p, s) for some p ∈ P , and making ∀ choose

between conjuncts, moving from (
∧
P, s) to a position (p, s) with p ∈ P , until a position (α, s)

is reached with α ∈ FA. Play then continues as in the game for the standard automaton.

Position: b P (b) Admissible moves: E[b] Ω(b)
(a, s) ∈ A× S – {∆(a)} Ω(a)
(
∨
P, s) ∈ DL(FA)× S ∃ {(p, s) ∈ DL(A ∪ FA)× S | p ∈ P} 0

(
∧
P, s) ∈ DL(FA)× S ∀ {(p, s) ∈ DL(A ∪ FA)× S | p ∈ P} 0

(ξ, s) ∈ FA× S ∃ {Z ∈ P(A× S) | (ξ, σ(s)) ∈ FZ} 0
Z ∈ P(A× S) ∀ Z 0

This generalization to logical automata is nice and useful, but it does not add any recog-
nizing power to our automata:

Proposition 4.14 F-automata and logical F-automata recognize the same classes of pointed
F-coalgebras.

The proposition can be proved using some standard game-theoretical argumentation, see
for instance Muller & Schupp [19, Appendix C]. (Basically, it just involves applying the
distributive laws of disjunction over conjunction, and vice versa).
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4.6 Variation: delayed F-automata

The automata of Definition 4.1 all have the property that in the acceptance game, the play
basically switches from positions in A×S to ones in FA×FS, perhaps with some alternation
between

∨
/∃ and

∧
/∀. For many purposes this is rather restrictive; it would be more

convenient to allow moves from a position (a, s) ∈ A × S to another position (b, s) ∈ A × S
without making a coalgebraic move in between. That is, while the automaton switches state,
it would stay in the same point of the coalgebra. We will call such automata delayed because
the move to successors of the coalgebra point is delayed. Just as in the case of ordinary
automata, we can define the transition function of a delayed automaton as a map of the form
∆ : A→ PP(A∪FA), or we can choose the equivalent ‘logical’ format. For our purposes, the
latter formulation is more convenient.

Definition 4.15 Let F be an R-standard endofunctor on Set. A delayed F-automaton is a
quadruple A = (A, aI ,∆,Ω), with A, aI and Ω as usual, and transition function ∆ : A →
DL(A ∪ FA). �

The acceptance game G(A,S) associated with A and an F-coalgebra S is the parity graph
game given by the following table. (For the sake of a smoother notation, positions of the form
(ξ, σ(s)) ∈ FA× FS are given as (ξ, s) ∈ FA× S.)

Position: b P (b) Admissible moves: E[b] Ω(b)
(a, s) ∈ A× S – {∆(a)} Ω(a)
(
∨
P, s) ∈ DL(A ∪ FA)× S ∃ {(p, s) ∈ DL(A ∪ FA)× S | p ∈ P} 0

(
∧
P, s) ∈ DL(A ∪ FA)× S ∀ {(p, s) ∈ DL(A ∪ FA)× S | p ∈ P} 0

(ξ, s) ∈ FA× S ∃ {Z ∈ P(A× S) | (ξ, σ(s)) ∈ FZ} 0
Z ∈ P(A× S) ∀ Z 0

Once more, it can be shown that the new type of F-automata has the same expressive
power as the old one.

Proposition 4.16 Delayed F-automata recognize the same classes of coalgebras as ordinary
F-automata.

In order to prove this proposition, we first need some definitions.

Definition 4.17 Let A = (A, aI ,∆,Ω) be a delayed F-automaton. We define the relation
� ⊆ A × A by putting b � a if and only if b occurs in ∆(a) (that is, b is an atomic subterm
of ∆(a)). We call a state a ∈ A semi-guarded if Ω(b) > Ω(a) whenever b� a, and guarded if
there is no b such that b� a. An automaton is called semi-guarded (guarded, respectively) if
each of its states is semi-guarded (guarded). �

We will now first prove that any delayed automaton can be turned into an equivalent
semi-guarded one, and then show that any semi-guarded automaton can be replaced with an
equivalent guarded one. This suffices to prove the proposition, because clearly, the ordinary
F-automata can be identified with the guarded delayed ones.
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Proposition 4.18 Every delayed F-automata A is equivalent to a semiguarded F-automaton.

Proof. Fix the delayed automaton A = (A, aI ,∆,Ω). Without loss of generality, we may
assume that Ω is injective. By induction we will show that for all i ≥ −1 we may find an
automaton Ai = (A, aI ,∆i,Ω) which is equivalent to A and satisfies

Ω(b) > min(Ω(a), i) for all a ∈ A and for all b� a. (6)

Clearly then the proposition is proved once i takes the value of the maximum parity of all
states in A.

Since the base case of the induction (i = −1) is immediate by the definition of parity
functions, we move on to the inductive case, for i+ 1. By the inductive hypothesis then, we
have that Ω(b) > min(Ω(a), i) for all a ∈ A and for all b� a. Now distinguish cases.

If there is no a ∈ A such that Ω(a) = i + 1, we simply put Ai+1 := Ai. In this case
Ai+1 and Ai are trivially equivalent, so by the induction hypothesis, Ai+1 is equivalent to
Ai. It remains to be proved that Ai+1 meets the required constraint. Take states a and b
in A such that b � a, and distinguish further cases. In case Ω(a) < i + 1, then we have
min(Ω(a), i) = Ω(a), so we may read the induction hypothesis as stating that Ω(b) > Ω(a);
hence, we see that Ω(b) > min(Ω(a), i + 1), as required. In the case that Ω(a) ≥ i + 1, it
follows from the assumption that in fact, Ω(a) > i+ 1. Now the induction hypothesis implies
that Ω(b) > i, and since Ω(b) 6= i+ 1, this gives that Ω(b) > i+ 1 = min(Ω(a), i+ 1), again,
as required.

Now suppose that, on the other hand, i+1 does belong to the range of Ω. We only consider
the case that i + 1 is odd — the case that it is even can be treated in a similar fashion. By
our assumption on Ω there is in fact a unique state c ∈ A such that Ω(c) = i+ 1. Define, for
any natural number j, Aj := {a ∈ A | Ω(a) ≥ j}, then it easily follows from the induction
hypothesis that ∆i(c) ∈ DL(Ai+1 ∪ FA). Due to the validity of the distributive laws in this
context, without loss of generality we may assume that ∆i(c) is of the form (c∨δ1)∧δ2, where
c does not appear in δ1 or δ2.

Let θ := δ1 ∧ δ2, and let, for any ϕ ∈ DL(A ∪ FA), ϕ[θ/c] denote the result of uniformly
substituting θ for c in the lattice term ϕ (elements from FA remain untouched under this
operation). Now define ∆i+1 as follows:

∆i+1(a) :=


∆i(a) if Ω(a) < i+ 1,
θ if Ω(a) = i+ 1 (i.e., a = c),
∆i(a)[θ/c] if Ω(a) > i+ 1.

From the fact that ∆i(c) ∈ DL(Ai+1 ∪ FA), and the assumption that c does not occur in δ1

and δ2, it follows that θ ∈ DL(Ai+2∪FA). Using the induction hypothesis, it is straighforward
to derive from this that ∆i+1 satisfies (6) for i+1, whence Ai+1 is at least of the right format.

It is thus left to prove that Ai+1 is equivalent to A, so by the induction hypothesis it
suffices to show that Ai+1 is equivalent to Ai. Fix some F-coalgebra S = (S, σ), then we must
show, for all points s0 ∈ S, that

(aI , s0) ∈Win∃(G(Ai,S)) iff (aI , s0) ∈Win∃(G(Ai+1,S)). (7)
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For the direction (⇐) of (7), let f be a history free winning strategy for ∃ in Gi+1 := G(Ai+1,S).
In order to define a strategy f ′ for her in Gi := G(Ai,S), suppose that play of Gi has arrived
at a position (ϕ, s) with ϕ ∈ DL(A∪FA). Let (a, s) be the last basic position that we passed
in this match, and distinguish cases:

If Ω(a) ≤ i + 1 and ϕ 6= c ∨ δ1, then it is easy to see that (ϕ, s) must be a position of the
game Gi+1 as well, so that we may simply define f ′(ϕ, s) := f(ϕ, s). In this case we say
that (ϕ, s) is its own corresponding position.

If Ω(a) = i+ 1 and ϕ = c ∨ δ1, then ∃ chooses f ′(c ∨ δ1, s) := (δ1, s). In this case, (ϕ, s) has
no corresponding position.

If Ω(a) > i + 1, then the pair (ϕ[θ/c], s) must be a position of Gi+1; since we are dealing
with positions for ∃, ϕ must be a disjunction. Now define f ′(ϕ, s) := (ψ[θ/c], s), where
ψ is the disjunct of ϕ given by f(ϕ, s) = (ψ, s). Also, call (ϕ[θ/c], s) the corresponding
position, in Gi+1, of (ϕ, s).

Now consider an arbitrary match β of Gi, starting from (aI , s0), and such that ∃ plays accord-
ing to the strategy described above. It is easy to see that if we (i) replace every Gi-position
in β with its corresponding Gi+1-position, (ii) erase all positions of the form (c ∨ δ1, s), and
(iii) leave positions of the form Z ⊆ A × S untouched, then we obtain an f -conform match
β′ of Gi+1. It follows by the assumption on f that β′ is won by ∃.

Now let k be the highest parity occurring infinitely often in β. If k < i + 1, then from a
certain moment on, the matches β and β′ are identical ; clearly then, β is also won by ∃. If
k > i+1, then it is not hard to see that k must also be the highest priority occurring infinitely
often in β′, so that again, ∃ is the winner of β. Now suppose for contradiction that k = i+ 1.
Since ∃ never chooses c in a position of the form (c∨ δ1, s), we may infer that positions of the
form (c, s) occur infinitely often in β because of being chosen by ∀ as elements of a position
Zk ⊆ A × S, and that among all positions for which this holds, these are the ones with the
highest parity. But then by definition this must apply to the match β′ as well. From this it
is easy to derive that i+ 1 is the highest parity occurring infinitely often in β′. This provides
the desired contradiction with the assumption on f , and thus proves that k 6= i+ 1.

It follows that in all cases, ∃ wins β, and since β was arbitrary, we have proved that
(aI , s0) is a winning position for ∃. This proves the direction (⇐) of (7); we omit the proof
for the other direction, which is similar. qed

Proposition 4.19 Every semiguarded F-automata is equivalent to a guarded F-automaton.

Proof. Let A = (A, aI ,∆,Ω) be a delayed F-automaton that is semiguarded. For the
definition of its guarded equivalent A′, we need some preparations.

For each state a ∈ A, we will construct, in finitely many steps, a tree T (a), together with
a labelling and a (partial) marking of the nodes of the tree. To set up the construction, we
start with the construction tree C(a) of the DL(A∪ FA)-term ∆(a). The inner nodes of this
tree are labelled with a connective (

∨
or
∧

), and the leaves with an atomic term of the form
b ∈ A or ξ ∈ FA. (Nodes labelled with terms

∨
or
∧

will be considered as inner nodes also
if they have no children.) Furthermore, the root of this tree is marked ‘a’, while no other
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node of the initial tree is marked. Now recursively, replace each leaf labelled b ∈ A with its
construction tree C(b), and use ‘b’ to mark the new inner node of the tree. Repeat the process
until no leaves are left that are labelled with elements of A.

It is not difficult to see that this process must terminate after finitely many steps. The
key observation here is that for any two states a, b ∈ A, we find b as the label of some leaf of
C(A) if and only if b � a. And since A is semiguarded we have Ω(b) > Ω(a) if b � a. From
this it follows that there are no infinite sequences a0 � a1 � a2 � . . ., and so the algorithm
must terminate.

We define T (a) as the tree that is constructed by the algorithm that we just described.
Clearly, T (a) can be seen as the construction tree of some DL(FA) term δ(a). Let Sq�(A)
be the set of all nonempty sequences a0 . . . an such that an � an−1 � . . .� a0, then with each
leaf l of the final tree we may associate, apart from its label ξl ∈ FA, also a unique sequence
αl ∈ Sq�(A), consisting of the sequence of marks encountered on the path leading from the
root to the leaf l.

We are ready for the definition of A′. To start with, for its state set we take the set
A′ := Sq�(A) × A. It follows from earlier observations by König’s Lemma that Sq�(A) is
finite, and so A′ is finite as well. (We could obtain a smaller guarded equivalent for A, but
size considerations are not our worry here.) For any α ∈ Sq�(A), we let ρα : A→ A′ denote
the map given by ρα(a) := (α, a). Now let T ′(a) be the tree obtained from T (a) by replacing,
for each leaf l, the label ξl ∈ FA with the object (Fραl)(ξl) ∈ FA′, and let δ(a) denote the
DL(FA′) term associated with T ′(a). Then we define the transition map ∆′ of A′ by

∆′(α, a) := δ(a),

while its parity map Ω′ is given by

Ω′(a1 . . . an, a) := max{Ω(ai) | 1 ≤ i ≤ n}.

(In fact, it follows from the definitions that Ω′(a1 . . . an, a) = Ω(an), but this does not play a
role in the sequel.) Finally, we define

A
′ := (A′, (aI , aI),∆′,Ω′).

It follows immediately from the definitions that A′ is a guarded automaton, so it is left to
show that A and A′ are equivalent. For this purpose, fix an arbitrary F-coalgebra S = (S, σ).
We will prove that

for all s ∈ S, A accepts (S, s) only if A′ accepts (S, s). (8)

(We omit the similar proof that, conversely, A accepts every pointed coalgebras that A′

accepts.) For simplicity we assume that all games are infinite; games that might end after
finitely many rounds can be taken care of by a suitable case distinction.

Before we turn to the proof of (8), first consider a basic position ((α, a), s) ∈ A′×S of the
game G′ = G(A′,S). Define the static game G′((α,a),s) as the (part of) the game G′ that starts
at ((α, a), s) and ends when a position (ξ′, s) ∈ FA′×S is reached. A similar definition applies
to the static game G(a,s). The crucial observation concerning these games is that the earlier
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defined tree T (a) represents the game tree of both these static games, in the sense that the
nodes of T (a) labelled with a disjunction (conjunction, respectively) represent choice nodes of
∃ (∀, respectively) and that leaves of T (a) represent positions that mark the end of the static
games, etc. Now a strategy of ∃ in either G′((α,a),s) or G(a,s) corresponds to a partial function
that maps each disjunctive node of T (a) to one of its children, and a similar correspondence
applies to strategies of ∀. This provides an obvious and direct way to mimick any strategy,
for either player, and in either static game, by a strategy for the same player, in the other
static game.

Now we consider one round of the game G′, starting from the basic position ((α, a), s) ∈
A′ × S. Let f be an arbitrary history free strategy for ∃ in G, and let f ′ be the strategy
in G′((α,a),s) that mimicks (the relevant part of) f . Then with any match of G′((α,a),s) that is
conform f ′, we may associate a shadow match of G(s,a) that is conform f . The point is that
if the G′((α,a),s) match ends at a position ((Fρaa1...an)(ξ), s) ∈ FA′×S, then the shadow match
ends at the position (ξ, s) ∈ FA × S. (In the tree T (a), both matches correspond to a path
passing the inner nodes marked a, a1, . . . , an.)

Suppose that in G, ∃’s move at the position (ξ, s) is the binary relation Z ⊆ A × S. It
follows from the legitimacy of Z that (ξ, σ(s)) ∈ FZ. Now define the relation Z ′ ⊆ A′ × S as
follows:

Z ′ := {((β, b), t) ∈ A′ × S | (b, t) ∈ Z},
where β abbreviates the sequence β = aa1 . . . an. Putting it differently, we have Z ′ =
(Gr(ρβ))̆ ◦Z. Using Fact 2.1, we may derive that FZ ′ = F(Gr(ρβ))̆ ◦FZ = (Gr(Fρβ))̆ ◦FZ. In
particular, it follows from (ξ, σ(s)) ∈ FZ that ((Fρβ)(ξ), σ(s)) ∈ FZ ′. In other words, Z ′ is a
legitimate move for ∃ at the position ((Fρβ)(ξ), s). If she chooses, indeed, Z ′ as her next move,
∃ guarantees that any element of Z ′ that ∀ picks must be of the form ((aa1 . . . an, b), t). That
is, the history a, a1, . . . , an has been coded up in the next basic position ((aa1 . . . an, b), t).

Summarizing, where one round of the G′-match moves from one basic position ((α, a), s)
to a next one of the form ((aa1 . . . an, b), t), the shadow match in G started from the basic
position (a, s), passed the basic positions (a1, s), . . . , (an, s), and arrived at the basic position
(b, t).

Now assume that ∃ plays an entire match of G′, according to the strategy f ′ just described.
Start from the basic position ((a0,0, a0,0), s0) — here we write a0,0 for the initial state aI of
A. Suppose that

((a0,0, a0,0), s0)((a0,0a0,1 . . . a0,n0 , a1,0), s1)((a1,0a1,1 . . . a1,n1 , a2,0), s2) . . . (9)

is the sequence of basic positions in an arbitrary match in which ∃ plays f ′. Then it is not
hard to see that

(a0,0, s0)(a0,1, s0) . . . (a0,n0 , s0)(a1,0, s1) . . . (a1,n1 , s1)(a2,0, s2) . . . (10)

is the sequence of basic positions in the associated shadow match in G starting from (a0,0, s0).
We claim that the two matches are won by the same player.

To see why this is so, let Q′ be the set of states from A′ that occur infinitely often in (9),
and likewise with Q and (10). It is straightforward to verify that Q′ can be represented as

Q′ = {(bi,0bi,1 . . . bi,ni , bj,0) | i, j ∈ I}
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for some finite set I, so that it is not so hard to derive that

Q = {bi,k | i ∈ I, 0 ≤ k ≤ ni}.

Now by definition of Ω′ it follows immediately from these characterizations that max{Ω′(a′) |
a′ ∈ Q′} = max{Ω(a) | a ∈ Q}, which establishes our claim.

This shows that if A accepts (S, s0), then so does A′, and thus finishes the proof of (the
direction from right to left of) (8). qed

5 Coalgebraic fixed point logic

We now turn to the second main topic of the paper, coalgebraic fixed point logic. The
formalism that we are about to define can be seen as a straightforward extension with fixed
point operators of a natural, finitary, version of Moss’ coalgebraic logic [17].

5.1 Syntax

Definition 5.1 Let F be an R-standard endofunctor on Set, and let X be a set of objects
to be called variables. Inductively we define, for each natural number n, the set µLF

n(X) of
coalgebraic fixed point formulas over X of depth n:

• µLF
0(X) is the smallest set S which contains >, ⊥, and all variables in X and satisfies

(i) if p and q belong to S, then so do p ∧ q and p ∨ q; and (ii) if p belongs to S, then so
do µx.p and νx.p, for each x ∈ X.

• µLF
n+1(X) is the smallest superset of µLF

n(X) which contains the formula ∇π for each π
that belongs to FQ for some finite Q ⊆ µLF

n(X) and is closed under the same formation
rules (i) and (ii).

The union µLF(X) =
⋃
n∈ω µLF

n(X) is the set of all coalgebraic fixed point formulas over X.
�

The set X in µLF(X) refers to all variables that may occur in the formulas, not just the
free ones (to be defined later). Quite often we have no reason to make the set X of variables
explicit and so we will frequently write µLF rather than µLF(X).

Example 5.2 Our definition is intended to generalize that of the modal µ-calculus to ar-
bitrary R-standard endofunctors on Set. Recall that the modal µ-calculus is a language for
coalgebras for the functor FS = P(Prop) × P(S)Act, where Prop is some set of propositional
variables and Act some set of atomic actions. In the formulation of the modal µ-calculus
of Janin & Walukiewicz [12], the modal operators 〈a〉 and [a] are replaced with a single
connective ‘a → ·’ operating on finite sets of formulas: if Φ is a finite set of formulas, then
a→ Φ is a formula. The meaning of a→ Φ can be expressed in terms of 〈a〉 and [a]: a→ Φ
is equivalent to

∧
{〈a〉p | p ∈ Φ} ∧ [a]

∨
{p | p ∈ Φ}, cf. the ∇-operator from (2). This is of

course quite familiar in coalgebraic logic, and it is not difficult to show that the language of
Janin & Walukiewicz is in fact expressively equivalent to our coalgebraic fixed point logic for
this functor, see Example 5.16 for more details.
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Before we turn to the coalgebraic semantics of this language, there are a number of
syntactic issues to be settled.

We start with the important observation that every coalgebraic fixed point formula comes
with a unique construction tree; the key insight here is that every formula p has a unique,
naturally defined set of ‘immediate subformulas’. In case p is of the form ∇π ∈ µLF

n this
insight is based on the fact that for all finite sets Q ⊆ µLF

n and all π ∈ FQ there is a (unique)
smallest set Base(π) ⊆ µLF

n such that π ∈ FQ′ (we already mentioned that the existence of
such a set easily follows from Fact 2.2. We leave it for the reader to give a formal definition
of construction trees; we do provide an explicit definition of the notion of subformula.

Definition 5.3 We will write q � p if q is a subformula of p. Inductively we define the set
Sfor(p) of subformulas of p as follows:

Sfor(p) := {p} if p ∈ {>,⊥} ∪X,
Sfor(p♥q) := {p♥q} ∪ Sfor(p) ∪ Sfor(q) if ♥ ∈ {∧,∨},
Sfor(ηx.p) := {ηx.p} ∪ Sfor(p) if η ∈ {µ, ν},
Sfor(∇π) := {∇π} ∪

⋃
p∈Base(π) Sfor(p),

where Base(π) denotes the smallest set Q such that π ∈ FQ; the elements of Base(π) will be
called the immediate subformulas of ∇π. �

The following proposition can then be proved by a straightforward induction on the com-
plexity of formulas.

Proposition 5.4 Every formula p ∈ µLF has finitely many subformulas.

Definition 5.5 The fixed point operators µ and ν bind the variable that they occur with,
everywhere in the subformula to which they are applied. This notion of binding is fairly
standard, and so are the definitions of the sets FVar(p) and BVar(p) of free and bound
variables, respectively, of a formula p ∈ µLF. (For instance, the inductive clause for ∇ reads
FVar(∇π) :=

⋃
{FVar(p) | p ∈ Base(π)}.) The set Var(p) = FVar(p)∪BVar(p) denotes the

collection of all variables occurring in p, free or bound. As in first order logic, we will call a
formula without free variables, a sentence.

A formula p ∈ µLF is called clean if no variable occurs both free and bound in p, and
no two distinct occurrences of fixed point operators bind the same variable. Hence, in a
clean formula p, with each x ∈ BVar(p) we may associate a unique subformula of p where
x is bound; we will denote this formula as ηxx.px, and call x a µ-variable if ηx = µ, and a
ν-variable if ηx = ν. A formula p ∈ µLF is called guarded if every subformula ηx.q of p has
the property that all occurrences of x inside q are within the scope of a ∇.

Now let p be a clean formula. Let ≤p ⊆ BVar(p)× BVar(p) denote the relation given by

x ≤p y if qx � qy.

Clearly, ≤p is a partial order on BVar(p); it is called the subformula order of p. �
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5.2 Semantics

We now introduce the semantics of coalgebraic fixed point logic. Although we are primarily
interested in the interpretation of sentences, we also need to worry about the semantics of
formulas with free variables. For this purpose we define the notion of an F-model over a set
of variables.

Definition 5.6 Let F be an R-standard endofunctor on Set, and let X be a set of variables.
An F-model over X is a triple (S, σ, V ) such that S = (S, σ) is an F-coalgebra, and V : X →
P(S) is a valuation on S.

Given such a valuation on S, a variable x ∈ X and a subset T ⊆ S, we define the valuation
V [x 7→ T ] as the map given by V [x 7→ T ](x) = T while V [x 7→ T ](y) = V (y) for all variables
y ∈ X that are distinct from x. �

Of course, it would be more in style with the coalgebraic paradigm to present an F-model
(S, σ, V ) over X as a coalgebra for the functor FP(X) (cf. Definition 3.1). We follow the
present approach because it seems to lend itself better towards the treatment of fixed point
operators.

Definition 5.7 Inductively we define the notion of truth, i.e., we define when a µLF(X)-
formula p is true or holds at a state s of a coalgebra S = (S, σ) under the valuation V .

More precisely, we define a relation V⊆ S×µLF(X); when the pair (s, p) belongs to V ,
we say that p is true at or holds in s ∈ S under the valuation V , and usually write S, V, s  p.
We also use [[·]] for the extension of a formula in a coalgebra: [[p]]S,V := {s ∈ S | S, V, s  p}.

The clauses of the inductive truth definition are as follows:

S, V, s  >,
S, V, s 6 ⊥,
S, V, s  x if s ∈ V (x),
S, V, s  p ∧ q if S, V, s  p and S, V, s  q,
S, V, s  p ∨ q if S, V, s  p or S, V, s  q,
S, V, s  µx.p if s ∈

⋂
{T ⊆ S | [[p]]S,V [x 7→T ] ⊆ T},

S, V, s  νx.p if s ∈
⋃
{T ⊆ S | T ⊆ [[p]]S,V [x 7→T ]},

S, V, s  ∇π if (σ(s), π) ∈ F(V�Base(π) ),

where, in the last clause, the set V�Base(π)⊆ S×µLF(X) is given as V�Base(π) = V ∩ (S×
Base(π)).

We say that a formula p is true throughout a model M = (S, V ), notation: M  p, if
[[p]]M ⊆ S. A formula is valid, notation: |= p, if it is true throughout every model; two
formulas p and q are called equivalent, notation: p ≡ q, if [[p]]M = [[q]]M for every model M. �

All clauses of this truth definition are completely standard, with the possible exception
of the one for ∇π. The standard definition from the literature (cf. Moss [17]) would require
that S, V, s  ∇π if (σ(s), π) ∈ F(). However, given our definition of the language, and
the guideline that the truth of a formula should only depend on the interpretation of its
immediate subformulas, the truth definition of ∇π seems to be quite natural. Fortunately,
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since any such π belongs to the set F (Base(π)), it follows from Proposition 2.4 that the two
definitions are equivalent.

Concerning the fixed point operators, it will be convenient to introduce some further
terminology.

Definition 5.8 Let S be a set, and ϕ : P(S) → P(S) a map. A subset X ⊆ S is called
a pre-fixed point of ϕ if ϕ(X) ⊆ X, a post-fixed point if X ⊆ ϕ(X), and a fixed point if
X = ϕ(X). �

It then immediately follows from the definitions that the set [[µx.p]]M is the intersection of
the collection of all pre-fixed points of the map λX ∈ P(S).[[p]]M[x 7→X], while [[νx.p]]M is the
union of the collection of all post-fixed points of this map.

5.3 Basic semantic results

Before we can do anything interesting, there are a few technicalities that we have to get out of
the way. First, we need a Finiteness Lemma stating that the truth of a formula only depends
on its free variables.

Proposition 5.9 (Finiteness) Let F be an R-standard endofunctor on Set, let Y ⊆ X be
two sets of variables, and let (S, σ) be an F-coalgebra. Now suppose that V and V ′ are two
X-valuations on S such that V (y) = V ′(y) for all y ∈ Y . Then for all p with FVar(p) ⊆ Y ,
and all s ∈ S it holds that

S, σ, V  p iff S, σ, V ′  p.

Proof. The proof is by induction on the complexity of p. All cases are completely standard,
with the possible exception of the case that p = ∇π. Inductively we assume that V�Base(π)

= V
′
�Base(π) , so that F(V�Base(π) ) = F(V

′
�Base(π) ). From this it is immediate by the

definition that S, σ, V  ∇π iff S, σ, V ′  ∇π. qed

For sentences in particular, it follows from the previous proposition that it does not matter
which valuation we take into consideration. This inspires the following definition.

Definition 5.10 Let F be an R-standard endofunctor on Set, p a µLF-sentence, S an F-
coalgebra and s a point in S. Then we say that p is true at s in S, notation: S, s  p, if
S, V, s  p for some valuation V , (or, equivalently, for all valuations V ). �

Next we turn to the Monotonicity Lemma.

Proposition 5.11 (Monotonicity) Let F be an R-standard endofunctor on Set, X a set of
variables, and S an F-coalgebra. Now suppose that V and V ′ are two X-valuations on S such
that V (x) ⊆ V ′(x) for all x ∈ X. Then for all p with FVar(p) ⊆ X it holds that

[[p]]S,V ⊆ [[p]]S,V ′ ,

that is: for all s ∈ S we have that S, σ, V  p only if S, σ, V ′  p.
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Proof. This can be proved by a standard induction on the complexity of p. The proof in the
inductive case of p = ∇π is based on the fact that F is monotone (Fact 2.1). qed

Remark 5.12 The Monotonicity Lemma justifies the terminology fixed point in the name
of our formalism: by the Knaster-Tarski Theorem in fixed point theory, every monotone
operation ϕ on a complete lattice (such as a full power set) has a least and a greatest fixed
point, and these can be obtained as the intersection of the collections of pre-fixed points
and post-fixed points of ϕ, respectively. In particular, for every formula p and every model
M = (S, σ, V ), the set [[µx.p]]M is the least fixed point of the operation λX ∈ P(S). [[p]]M[x 7→X],
and the set [[νx.p]]M is the greatest fixed point of this operation.

Remark 5.13 It also follows from standard fixed point theory that least and greatest fixed
points of monotone operations on complete lattices (such as full power set algebras) can be
approximated by ordinal unfoldings. This yields a nice connection between our coalgebraic
fixed point logic, and more standard coalgebraic logics.

Let LF
∞(X), the language of infinitary coalgebraic F-logic, be the smallest collection S

of formulas which includes the set {>,⊥} ∪ X and satisfies (i) if β is some ordinal, and
{pα | α < β} is a set of formulas in S, then both

∧
α<β pα and

∨
α<β pα belong to S, and (ii)

if π belongs to FQ for some Q ⊆ S, then ∇π belongs to S. Note that F-models, with the
obvious interpretation for

∧
and

∨
, form a natural semantics for this language.

Now for each ordinal α there is a translation tα mapping µLF-sentences to LF
∞-formulas.

This translation is defined as follows; first, we define, for any LF
∞(X)-formula p, any variable

x ∈ X, and any ordinal α, the formulas µα.p and ναx.p via transfinite induction:
µ0x.p := ⊥,

µα+1x.p := p[µαx.p/x],
µλx.p :=

∨
α<λ µαx.p,

ν0x.p := >,
να+1x.p := p[ναx.p/x],
νλx.p :=

∧
α<λ ναx.p.

Using these formulas, one puts

tαp := p for p ∈ {>,⊥} ∪X,
tα(p♥q) := tαp♥tαq for ♥ ∈ {∧,∨},
tα(ηx.p) := ηαx.t

αp for η ∈ {µ, ν},
tα(∇π) := ∇(Ftα)(π).

Observe that tα translates µLF-sentences into variable-free LF
∞-formulas.

One can show that these translations locally embed µLF inside LF
∞, in the following sense:

[[p]]M = [[tαp]]M, for any F-model M = (S, σ, V ) and any ordinal α > |S|+. (11)

Note however, that in general, the ‘unfolding ordinal’ α of (11) depends on the size of the
model M. Coalgebraic fixed point logic cannot be embedded in infinitary coalgebraic logic,
as is known from the modal µ-calculus.

An important property of our coalgebraic fixed point logic is that truth is bisimulation
invariant. Using the appropriate notion of bisimulation for F-models this can be proven for
arbitrary µLF-formulas, but here we state it just for sentences.
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Proposition 5.14 Let S and S′ be two F-coalgebras. Then for any bisimulation Z ⊆ S × S′
and any two points s ∈ S, s′ ∈ S′ with (s, s′) ∈ Z, and any µLF-sentence p it holds that

S, s  p iff S′, s′  p.

Proof. A simple proof for this proposition uses the ordinal unfolding of Remark 5.13, and
the easily established fact that truth of LF

∞-sentences is a bisimulation invariant property.
qed

We are now ready to state our last basic semantic result.

Proposition 5.15 (Normal Form) Let F be an R-standard endofunctor on Set. Then ev-
ery formula p ∈ µLF is equivalent to some clean, guarded formula p′.

Proof. It is easy to rewrite an arbitrary µLF-formula into a clean equivalent, by consistently
renaming bound variables.

The second part of the proposition is proved by a completely standard induction on the
complexity of formulas. We confine ourselves to a proof sketch for the case that p is of the
form µx.q.

By the inductive hypothesis we may assume that q is guarded. Hence, if we replace
every fixed point subformula ηy.r(x, y) of q with its unfolding r(x, ηy.r(x, y)), we obtain an
equivalent q′ of q, in which the only unguarded occurrences of x are outside the scope of fixed
point operators. Then, using laws of classical propositional logic, it is not hard to rewrite
q′(x) in an equivalent form q′′(x) = (x ∨ r(x)) ∧ s(x), where all occurrences of x in r(x) and
s(x) are guarded. It can subsequently be shown that µx.(x∨ r(x))∧ s(x) is equivalent to the
formula µx.r(x) ∧ s(x). qed

Now that we have explained the syntax and semantics of coalgebraic fixed point logic, we
briefly describe how it generalizes the modal µ-calculus.

Example 5.16 Fix a set Prop of atomic propositions and a set Act of atomic actions.
We will show that the language of the modal µ-calculus, in the formulation of Janin &

Walukiewicz [12] (see Example 5.2) is in fact expressively equivalent to our coalgebraic
fixed point logic for the functor FS = P(Prop)× P(S)Act.

First, if we consider an arbitrary µLF-formula of the form ∇π, it is easy to see that π can
be represented as a pair (P, {Φa | a ∈ Act}), with P ⊆ Prop a set of atomic propositions, and
each Φa a finite set of formulas. Then we may rephrase the formula ∇π in the language of
Janin and Walukiewicz as

∇π ≡
∧
q∈P

q ∧
∧
q 6∈P
¬q ∧

∧
a∈Act

(a→ Φa).

On the basis of this it is straightforward to define a truth invariant translation from µLF-
formulas to formulas in the modal µ-calculus.

Conversely, one may show that every coalgebraic fixed point formula for the functor F
defined above has an equivalent modal fixed point formula. To see why this is so, first observe
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that for any action a, the formulas a → ∅ and a → {>} are equivalent to [a]⊥ and 〈a〉>,
respectively. Hence, the formula > can be represented as the disjunction (a→ ∅)∨(a→ {>}).
Now for simplicity we assume that Act consists of two elements, a1 and a2. It follows that,
for instance, the formula a1 → Φ can be rewritten as

(a1 → Φ) ≡
∨

P⊆Prop

∇(P, {(a1,Φ), (a2,∅)}) ∨∇(P, {(a1,Φ), (a2, {>})}).

Also, using the fact that any proposition letter q is equivalent to
∨
q∈P⊆Prop(

∧
p∈P p∧

∧
p6∈P ¬p),

it can be shown that

q ≡
∨

q∈P⊆Prop

∨
Φ1∈{∅,{>}}

∨
Φ2∈{∅,{>}}

∇(P, {(a1,Φ1), (a2,Φ2)}).

From these two observations it is again completely straightforward to obtain a function map-
ping modal µ-formulas to equivalent coalgebraic fixed point formulas.

6 Game semantics

In this section we develop a game-theoretic characterization of the semantics of our coalge-
braic fixed point logics, generalizing results on for instance the modal µ-calculus to a general
coalgebraic framework.

6.1 Evaluation games

Given an F-model M = (S, σ, V ) and a coalgebraic fixed point formula q, we will define the
evaluation game E = E(q,M) as the following infinite two-player graph game.

Definition 6.1 Let F be an R-standard endofunctor on Set. Given an F-model M = (S, σ, V )
and a clean coalgebraic fixed point formula q, we first define the arena of the evaluation game
E = E(q,M).
The board of E is given as the set

B = Sfor(q)× S ∪ P(Sfor(q)× S).

The partition of B into positions for ∃ and ∀, respectively, and the edge relation E of the
graph are given by the table of Figure 1. �

Note that positions of the form (x, s) or (ηx.p, s) have a unique successor, whence the
moves that are made at such positions are completely determined. Thus it does not matter
to which player these positions are assigned.

In order to get some intuitions for this kind of game, the reader is advised to assign the
following aims to the players. Basically, in a position (p, s) it is the aim of ∃ to show that
p is actually true at s, while ∀ tries to convince her that this is not the case. This already
explains the rules for positions of the form (p, s) with p an atomic constant, a conjunction,
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Position: b Player: P (b) Admissible moves: E[b]
(⊥, s) ∃ ∅

(>, s) ∀ ∅

(p1 ∧ p2, s) ∀ {(p1, s), (p2, s)}
(p1 ∨ p2, s) ∃ {(p1, s), (p2, s)}
(x, s) with x 6∈ BVar(q), s ∈ V (x) ∀ ∅

(x, s) with x 6∈ BVar(q), s 6∈ V (x) ∃ ∅

(x, s) with x ∈ BVar(q) - (qx, s)
(ηx.p, s) - (p, s)
(∇π, s) ∃ {Z ⊆ Base(π)× S | (π, σ(s)) ∈ F(Z)}
Z ⊆ Sfor(q)× S ∀ Z

Figure 1: Admissible moves in the evaluation game

or a disjunction. For instance, in (p1 ∨ p2, s), ∃ may win by winning either (p1, s) or (p2, s),
because p1 ∨ p2 holds at s if either p1 or p2 does.

Each time during a match when the pebble moves from a position (x, s) to its successor
(qx, s), we say that the fixed point variable x is unfolded. Roughly spoken, the intuition
behind this is that the formula ηx.qx (represented by x) is equivalent to the formula qx[ηx.qx/x]
(represented by qx). This applies to both µ and ν-variables. The difference between the two
kinds of fixed point variables, which only comes out in infinite matches, can be put in the
following slogan: all fixed points mean unfolding, and least fixed points mean finite unfolding.
In order to make this more precise, we need the following observation.

Proposition 6.2 Let F be an R-standard endofunctor on Set, q a clean µLF-formula and M
an F-model. Then in any infinite match β of the game E(q,M), the set of variables that are
unfolded infinitely often during β contains a maximal member (in the subformula order).

Proof. Let U be the set of variables that are unfolded infinitely often during β. Since β is
an infinite game, and q has only finitely many subformulas, U is non-empty. We claim that
U is in fact directed (with respect to the subformula order ≤q). The claim of the Proposition
is then immediate by the fact that U is finite.

Suppose for contradiction that x and y are in U while x and y are incomparable with
respect to ≤q, that is, neither qx � qy nor qy � qx. Since both x and y get unfolded infinitely
often during β, the match can never go into one of the formulas, say, qx, and stay there. But
then the only way to get back, from a position inside qx, to a position where y can be unfolded,
is through unfolding a variable z such that both qx and qy are subformulas of qz. Since this
must happen infinitely often, one such variable z must be in U . Hence U is directed. qed

Definition 6.3 Let F be an R-standard endofunctor on Set. Given an F-model M = (S, σ, V )
and a clean coalgebraic fixed point formula q, we now define the winning conditions of the
evaluation game E = E(q,M).

Let β be a full match played on the arena of E .

• If β is finite then it is lost by the player who got stuck (and thus, won by their adversary).
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• If β is infinite, let x be the highest ranking fixed point variable that got unfolded
infinitely often during β. Now β is won by ∃ if x is a ν-variable, and by ∀ if x is a
ν-variable.

�

6.2 Adequacy of game semantics

The following theorem states that the evaluation games as introduced above, indeed constitute
an equivalent characterization for the semantics of coalgebraic fixed point formulas.

Theorem 1 (Adequacy) Let F be an R-standard endofunctor on Set. Then for any clean
µLF-formula q, any F-model M = (S, σ, V ) and any state s ∈ S it holds that

M, s  q iff (q, s) ∈Win∃(E(q,M)). (12)

Proof. The proof of this theorem proceeds by induction on the complexity of the formula q.
We leave the base step (p ∈ {>,⊥} or p is a variable), the boolean cases, and the greatest
fixed point case of the inductive step as exercises for the reader.

We do treat the inductive case where q is of the form q = µx.q′. First consider the direction
(⇒) of (12). Let W be the set of states w ∈ S such that (w, q) is a winning position for ∃ in
E = E(q,M). In order to show that [[q]]M ⊆ W it suffices to prove that W is a prefixed point
of the map λX.[[q′]]M[x 7→X]. Abbreviate V ′ := V [x 7→ X] and M′ := (S, σ, V ′), and let t ∈ S
be an arbitrary state in [[q′]]M′ , that is, M′, t  q′. It suffices to show that t ∈ W ; in other
words, we have to provide ∃ with a winning strategy in E(q,M) starting from position (q, t).

First, note that it follows inductively from M
′, t  q′ that ∃ has a winning strategy f ′

from position (q′, t) in the evaluation game E ′ = E(q′,M′). Now observe that E and E ′ are in
fact very similar games: apart from the fact that E ′ has no positions of the form (q, u), the
only difference between the two games concerns positions of the form (x, u). In E ′, x is a free
variable, so in a position (x, u), the match is over, and the winner of such a match depends
on whether u belongs to V ′(x) = W or not. In E on the other hand, x is a bound variable, so
at a state (x, u), the variable x will get unfolded.

Second, observe that by definition of W , for every state w ∈W , ∃ has a winning strategy
fw for the game E initialized at (w, q). Note that in this initialized game, the second position
invariably will be (w, q′). So ∃ could not have spoiled her chances in this first round, and
hence fw is winning for ∃ in E at (w, q′) as well.

Now suppose that ∃ plays E from (q, t) according to the following strategy g:

• after the initial move, the pebble is in position (q′, t);

• ∃ first plays her strategy f ′;

• as soon as a position (x, u) is reached, distinguish the following two cases:

1. if u ∈W then ∃ continues with fu;

2. if u 6∈W then ∃ continues with a random strategy.
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We now claim that this strategy g is in fact a winning strategy for ∃ in the game E initialized
at (q, t). To see why this must be so, make the following case distinction concerning an
arbitrary full play β which is consistent with g:

No state (x, u) is ever reached. This means that β doubles as an E-match and an E ′-match.
As an E ′-match, β is won by ∃. Since E and E ′ only differ when it comes to x, this
means that β is also a win for ∃ in E . Note that it does not matter here whether β is
finite or infinite.

At some stage a position (x, u) is reached. In the E ′-perspective on π, the match would have
reached a final position here. Since f ′ was a winning strategy for ∃, this can only happen
if u ∈ V ′(x) = W . (In other words, case 2 mentioned above will never occur.) So ∃
consequently plays according to fu; the first position after (x, u) is (q′, u). We know
that fu is a winning strategy for ∃ in the game E initialized at (q′, u). It is then easy to
see that any continuation of the match in which ∃ plays fu, is won by ∃.

Altogether this shows that indeed, g is a winning strategy for ∃.

We now consider, still for the inductive case in which q = µx.q′, the direction (⇐) of
(12). Assume that ∃ has a winning strategy f in the game E = E(µx.q′,M), and suppose for
contradiction that M, s 6 µx.q′. Abbreviating Q := [[µx.q′]]M, this means that s 6∈ Q.

First consider an arbitrary point t 6∈ Q. It follows from S, t 6 µx.q′ that there is a prefixed
point U ⊆ S of the map λX ⊆ S.[[q′]]M[x 7→X] to which t does not belong. That is, t 6∈ U while
[[q′]]M[x 7→U ] ⊆ U . It follows that t 6∈ [[q′]]M[x 7→U ], or, equivalently, that M[x 7→ U ], t 6 q′. By
the inductive hypothesis then, ∃ does not have a winning strategy in E(q′,M[x 7→ U ]) from
(q′, t). But since Q ⊆ U (because U is a prefixed point of the map λX ⊆ S.[[q′]]M[x 7→X], and
Q is the intersection of all such prefixed points), it easily follows from the rules of the game
that ∃ does not have a winning strategy in the game E ′ := E(q′,M[x 7→ Q]) from (q′, t) either.
That is, for each strategy g of ∃ starting at (q′, t), ∀ has a counter strategy ḡt such that the
match of E ′ determined by g and gt is won by ∀.

Furthermore, observe that because of the resemblance between the games E and E ′, any
strategy g of ∃ in E , as a map restricted to partial E ′-matches, uniquely determines a strategy
in E ′; this strategy will be denoted as g as well.

Now consider the matches of E , starting at (µx.q′, s), in which ∃ plays according to her
supposedly winning strategy f . Suppose that ∀ counters the strategy f as follows:

• ∀ starts with the strategy fs;

• from that moment on, ∀ sticks to the current strategy, unless a position (x, u) is reached;
now distinguish cases:

1. if u ∈ Q then ∀ continues with a random strategy;

2. if u 6∈ Q then ∀ plays as follows. Let β be the match this far (including (x, u)),
and let fβ denote the strategy of ∃ for the E-game starting at (q′, u) given by
fβ(γ) = f(βγ). Then by our earlier discussion, fβ can be seen as an E ′-strategy
for matches starting at (q′, u), and so ∀ may adopt his counter strategy (fβ)u from
this moment on.
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Consider the E-match β starting at (µx.q′, s) determined by ∃ playing her strategy f and ∀
using the strategy defined above. First observe that β can pass through positions of the form
(x, u) only finitely many times, for otherwise, the µ-variable x would be the highest fixed
point variable unfolded infinitely often, contradicting the assumption that f is winning for ∃.
Second, note that the first case of passing a state (x, u) will never occur; since arriving at a
position (x, u) with u ∈ Q would mean that, contrary to our earlier conclusion, ∃ would have
a successful strategy in E ′ at a point v 6∈ Q after all.

This means, however, that after a certain initial partial play β, ending in a position (x, u)
with u 6∈ Q, ∀ will stick to his strategy (fβ)u, while no further position (v, x) is ever reached.
It follows from our assumptions on (fβ)u that the match γ resulting from ∃ playing fβ against
∀ playing (fβ)u is winning for ∀ in E ′, and from this it is not hard to derive that the E-match
δ = βγ is won by ∀. This provides the desired contradiction, since it shows that the strategy
f is not winning for ∃ after all.

This finishes the inductive case where q = µx.q′, so we now turn to the case where q = ∇π.
In order to prove the equivalence of (12), first assume that M, s  ∇π, and consider the game
E = E(q,M). Let ∃, in the game E initialized at (∇π, s), choose the set Z := �Base(π) as her
first move. Note that it follows by definition from M, s  ∇π that (σ(s), π) ∈ , so this is a
legitimate move. Now suppose that ∀ moves at position Z, choosing (p, t) ∈ Z as the next
position. It follows from (p, t) ∈ Z and the inductive hypothesis that in the game E(p,M),
∃ has a winning strategy starting from (p, t). But then it is easy to see that this strategy
will also guarantee her winning E(∇π,M) from (p, t). All in all we have provided her with a
strategy winning E from (∇π, s).

For the other direction of (12), suppose that ∃ wins the game E = E(q,M) starting at
position (∇π, s). Let’s say that her choice at position (∇π, s) is the set Z ⊆ Base(π) × S.
Since, at position Z, ∀ may choose any (r, t) ∈ Z, we may assume that each such (r, t) is
winning for ∃ in E(r,M). It thus follows from the inductive hypothesis that Z ⊆ , whence
we see that Z ⊆ �Base(π) . Hence by monotonicity of F we obtain that F(Z) ⊆ F(�Base(π) ).
But we know that (π, σ(s)) ∈ Z, for if not, then Z would have been illegitimate. So we find
that (π, σ(s)) ∈ F(�Base(π) ), precisely what is needed to show that M, s  ∇π. qed

7 Automata and fixed point formulas

The reader will have noticed the similarity between the evaluation game of a formula and
the acceptance game of an automaton. But the connection is much tighter than a mere
resemblance, witness the theorems below, which show that the F-automata have the same
expressive strength as the logical formalism µLF when it comes to describing pointed F-
coalgebras.

Theorem 2 (Formulas are automata) Let F be an R-standard endofunctor on Set. Then
any µLF-sentence q can be transformed into a parity F-automaton Aq such that for any pointed
F-coalgebra (S, s):

S, s  q iff Aq accepts (S, s).
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Proof. By Proposition 5.15 we can assume without loss of generality that p is clean, and by
Proposition 4.16, it suffices to construct a logical F-automaton Ap. The structure of Ap will
closely resemble that of the set Sfor(p) of subformulas of p.

In fact, we can identify the states of Ap with the subformulas of p, and let p := aI be
the initial state of Ap. Now define the following transition function ∆ on Sfor(p) (where in
order to avoid confusion, we use t and u to denote the disjunction and conjunction for the
automaton):

∆(⊥) :=
∨
∅

∆(>) :=
∧
∅

∆(q ∨ q′) := q t q′

∆(q ∧ q′) := q u q′

∆(ηx.qx) := qx

∆(∇π) := π

∆(x) := qx.

With this definition, we have established that for any F-coalgebra S, the boards of the accep-
tance game G = G(Ap,S) and of the evaluation game E = E(p,S) are in fact identical. Hence
in particular, the matches of the two games coincide.

The only thing left is to define a parity function on A that takes proper care of the winning
conditions of the evaluation game E . Using the construction tree of the formula p, it is easy
to define a function Ω : Sfor(p)→ ω such that

• Ω(q) = 0 if q 6∈ BVar(p),

• Ω(x) is odd if x is a µ-variable, and even if x is a ν-variable,

• Ω(x) ≤ Ω(y) if x ≤p y (i.e., if ηxx.px � ηyy.py).

It is then straightforward to verify that ∃ is the winner of a match β in G if and only if she is
the winner of β, seen as a match of E . From this it is immediate that Win∃(G) = Win∃(E),
and hence the theorem follows by the Adequacy Theorem of the game semantics of µLF. qed

Conversely, one can show that, given a parity F-automaton A, one can construct a µLF-
formula qA that holds precisely at those pointed F-coalgebras that are accepted by A.

Theorem 3 (Automata are formulas) Let F be an R-standard endofunctor on Set. Then
any parity F-automaton A can be transformed into a µLF-sentence qA such that for any pointed
F-coalgebra (S, s):

A accepts (S, s) iff S, s  qA.

Proof. Since this result is rather standard (see for instance [7, Theorem 11.6]), we confine
ourselves to a sketch of its proof.

As an auxiliary notion we need to adapt the concept of an F-automaton to a device that
operates on F-models. Given a set X of variables, a (logical) F, X-automaton is a quadruple
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A = (A, aI ,∆,Ω), where A, aI and Ω are as before, while the transition map is now a function
∆ : A→ DL(X ∪ FA). The acceptance game of such a device is like that for ordinary logical
automata, with the proviso that a position of the form (x, s) marks an immediate end to the
match, the winner being ∃ if x is true at s, and ∀ if x is false at s.

Observe that this concept generalizes that of ordinary logical F-automata: these can be
seen as specimens of the new device over the empty set of variables. This means that by
Proposition 4.14, we may prove the theorem by establishing the following claim.

Claim For every set X and for every F, X-automaton A, there is a µLF-formula qA with
FVar(pA) ⊆ X, such that for all F, X-models (S, V ), and all points s in S:

A accepts (S, V, s) iff S, V, s  qA. (13)

The proof of this claim proceeds by induction on the index of A (this notion is defined for
F, X-automata just like for F-automata). Without loss of generality we may assume that
states in A of maximum parity must belong to some strongly connected component C of A
such that ind(A) = #(Ω[C]).

If ind(A) = 0, then there are no infinite →A-paths. Define the height h(a) of a state
a ∈ A as the length k of the longest →A-path a→A a1 →A . . .→A ak starting at a, and put,
for n ≥ 0, An := {a ∈ A | h(a) ≤ n}. Furthermore, for a ∈ A, let Aa be the automaton
(A, a,∆,Ω), that is, the automaton A but with a as its initial state.

By a subinduction on the height of a we then prove that there is a (fixed point free)
formula pa of the right shape that characterizes the pointed F, X-models that are accepted
by Aa. In the base case of this subinduction, we are dealing with a state a of height zero. It
is easy to see that for such a, we have that ∆(a) ∈ DL(X), so that we may put pa := ∆(a).

In the induction step of the subinduction, we have h(a) = n + 1. Then by the inductive
hypothesis we may assume the existence of a total map pn : An → µLF assigning to each
state b ∈ An its associated formula p(b). Also note that each ξ ∈ FA occurring in ∆(a) must
actually belong to FAn. It is then straightforward to verify that for each such ξ, the object
∇(Fpn)(ξ) is a formula in µLF(X). Now define pa as the formula we obtain by replacing every
ξ ∈ FA occurring in the DL(X ∪ FAn)-term ∆(a) with the formula ∇(Fpn)(ξ). Clearly then,
pa has the right format. It is in fact also straightforward to prove that pa characterizes the
F, X-models that are accepted by Aa; details are left to the reader.

For the inductive case (of the main induction), assume that ind(A) > 0. Let m be the
maximum parity of the states of A, and define M = {a1, . . . , ak} as the set of states of A that
actually have parity m. Now consider the F, X ∪M -automaton

AM := (A \M,aI ,∆�A\M ,Ω�A\M ).

That is, we have turned the states of M into (new) variables. Furthermore, for i ∈ {1, . . . , k},
let Ai = (A\M,ai,∆�A\M ,Ω�A\M ) be the version of AM which has ai as its initial position.
It follows from our assumptions on A and M , that each of these automata has a smaller index
than A. We may thus apply the inductive hypothesis, which provides fixed point formulas pM ,
p1, . . . , pk, all taking free variables from the set X∪M , and such that for any F, X∪M -model
(S, V ) and any point s in S, we have that AM accepts (S, V, s) iff S, V, s  pM , and, for each
i, Ai accepts (S, V, s) iff S, V, s  pi.

38



Clearly then, for any F, X ∪M -model (S, V ), the k-tuple p determines a monotone map
[[p]]S,V : (P(S))k → (P(S))k given by

[[p]]S,V (T1, . . . , Tk) := ([[p1]]
S,V [a 7→T ], . . . , [[p1]]

S,V [a 7→T ]).

Here V [a 7→ T ] denotes the valuation given by V [a 7→ T ](ai) = Ti while V [a 7→ T ](x) = V (x)
for all variables x ∈ X \M . It follows from standard fixed point theory (see for instance [7,
Theorem 20.12]), that the least and greatest fixed points of this map are given by µLF-
formulas. More precisely, there are formulas pµ1 , . . . , p

µ
k and pν1 , . . . , p

ν
k, all with free variables

in X, such that

([[pµ1 ]]S,V , . . . , [[p
µ
k ]]S,V ) is the least fixed point of [[p]]S,V

for every F, X-model (S, V ), and likewise for the greatest fixed point.
Now let qA be the formula

qA := pM [pη/a].

That is, we uniformly substitute, in pM , each ai with the formula pηi , where η denotes µ if m
is odd, and ν if m is even. The proof that this formula qA indeed satisfies (13) is fairly similar
to the proof of the Adequacy Theorem, whence we omit further details. qed

As a corollary to this Theorem, we mention a result that was first observed by Alexandru
Baltag (personal communication).

Corollary 7.1 Let F be an R-standard set functor, and let (S, s) be some finite pointed F-
coalgebra. Then there is a µLF-formula qS,s such that for any pointed F-coalgebra (S′, s′)

S
′, s′  qS,s iff S, s ↔ S

′, s′.

Proof. Define qS,s as the formula obtained by applying (the algorithm in the proof of) Theo-
rem 3 to the automaton AS,s of Definition 4.8. Then the result is immediate by Proposition 4.9
and Theorem 3. qed

8 Further research

We believe that our F-automata provide a good notion of an automaton for classifying pointed
F-coalgebras. Not only do F-automata generalize the familiar devices operating on words,
trees and graphs, but the notion is also stable under a number of natural variations, and
it is equivalent to a natural coalgebraic fixed point logic. It therefore seems interesting and
useful to develop the theory of F-automata further, and to apply this theory to the study
of coalgebraic fixed point logics. It is obvious that in this paper we have only scratched
the surface of these topics. Of the many questions that naturally arise we just mention the
following.
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1. In our opinion, the most interesting line of research is to take a coalgebraic perspective
on the study of the recognizing power of automata. The point here is that many
familiar theorems concerning the expressivity of automata as mechanisms for recognizing
structures, can now be parametrized by the coalgebraic functor type. It is thus a natural
problem to find out whether (the analogs of) these theorems hold for coalgebras of
arbitrary type F. If so, it might be of interest to find a uniform, coalgebraic proof for
the result, and if not, we have arrived at an interesting property that an endofunctor
on Set could or could not have.

To be a bit more specific, recall that some of the most important results in automata
theory concern the following kinds of questions:

simplification Given an automaton of a certain type (say, a nondeterministic automa-
ton), can it be transformed into a equivalent automaton of a simpler kind (say, a
deterministic one)?

closure properties Call a class C of pointed F-coalgebras A-recognizable, where A is a
class of F-automata, if there is some automaton A in A such that C is the class of
pointed F-coalgebras that are accepted by A. Is the collection of A-recognizable
classes closed under natural operations such as union, intersection, complementa-
tion, projection?

Such questions can now be formulated as questions about the functor F. The first re-
sults in this direction are promising. In [14], Clemens Kupke and I prove that for any
R-standard functor F, the class of languages that are recognizable by an arbitrary F-
automaton is closed under taking unions, intersections and projections. Our main tech-
nical result concerns a construction which transforms a given alternating F-automaton
into an equivalent non-deterministic one.

Many interesting problems remain, however. To mention one specific question: for which
functors F can we prove a Complementation Lemma? That is, for which functors F can
we always find, given a (non-deterministic) F-automaton A, another (non-deterministic)
F-automaton A, with the property that a pointed F-coalgebra is accepted by A iff it is
rejected by A?

2. Our parity F-automata have a coalgebraic shape themselves: the automaton A =
(A, aI ,∆,Ω) can, at least object-wise, be represented as a pointed coalgebra over the
functor FAutS = P(P(FS)) × ω. This perspective clearly needs investigation – recall
that the coalgebraic perspective on ordinary automata (operating on finite words) has
already proven to be very enlightening, see Rutten [24].

3. Our definition of coalgebraic fixed point logic is only one out of many. In fact, fixed point
operators may be added to any kind of language of coalgebraic logic. It would be good
to see more case studies on coalgebraic fixed point logics from an automata-theoretic
perspective. Related to one of the above questions, one would like to understand what
happens if we add negation to the language µLF discussed in section 5. But also, the
relation between our system and fixed point extensions of the coalgebraic modal logics
developed in Pattinson [21] would be an interesting object of study.
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4. As already mentioned in the introduction, there are earlier studies of automata that
are based on categories and functors, see for instance Adámek & Trnková [2]. This
connection clearly has to be investigated further.
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