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Abstract. Coalgebra automata, introduced by the second author, gen-
eralize the well-known automata that operate on infinite words/streams,
trees, graphs or transition systems. This coalgebraic perspective on au-
tomata lays foundation to a universal theory of automata operating on
infinite models of computation.
In this paper we prove a complementation lemma for coalgebra automata.
More specifically, we provide a construction that transforms a given coal-
gebra automaton with parity acceptance condition into a device of similar
type, which accepts exactly those pointed coalgebras that are rejected by
the original automaton. Our construction works for automata operating
on coalgebras for an arbitrary standard set functor which preserves weak
pullbacks and restricts to finite sets.
Our proof is coalgebraic in flavour in that we introduce and use a notion
of game bisimilarity between certain kinds of parity games.

1 Introduction

Through their close connection with modal fixpoint logics, automata operating
on infinite objects such as words/streams, trees, graphs or transition systems,
provide an invaluable tool for the specification and verification of the ongoing
behavior of infinite systems. Coalgebra automata, introduced by the second au-
thor [9, 10], generalize the well-known automata operating on possibly infinite
systems of a specific type. The motivation underlying the introduction of coal-
gebra automata is to gain a deeper understanding of this branch of automata
theory by studying properties of automata in a uniform manner, parametric in
the type of the recognized models, that is, the coalgebra functor. The aim is thus
to contribute to Universal Coalgebra [8] as a mathematical theory of state-based
evolving systems.

Operationally, coalgebra automata are devices for scanning pointed coalge-
bras. Structurally the automata rather closely resemble the coalgebras on which
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they operate; for instance, in the nondeterministic variant, every state in a coal-
gebra automaton may be seen as capturing various ‘realizations’ as a T -coalgebra
state. The resemblance between coalgebra automata and coalgebras is reflected
by the acceptance game that is used to determine whether a pointed coalgebra
is eventually accepted or rejected by the automaton: This acceptance game, a
two-play parity graph game, is a variant of the bisimilarity game [1] that can be
played in order to see whether two pointed coalgebras are bisimilar or not.

Earlier work by Kupke and the second author [5] revealed that in fact a
large part of the theory of parity automata can be lifted to a coalgebraic level of
generality, and thus indeed belongs to the theory of Universal Coalgebra. More
specifically, the main result of [5] is a construction tranforming a given alter-
nating coalgebra automaton into an equivalent nondeterministic one; this shows
that the nondeterministic model is just as powerful as the alternating one. In
addition, coalgebra automata satisfy various closure properties: under some con-
ditions on the coalgebra type functor, the collection of recognizable languages
(that is, classes of pointed coalgebras that are recognized by some coalgebra au-
tomaton) are closed under taking unions, intersections, and existential projec-
tions. These results have many applications in the theory of coalgebraic fixpoint
logics.

The question whether coalgebra automata admit a Complementation Lemma
was left as on open problem in [5]. Closure under complementation does not
obviously hold, since even for alternating automata the role of the two players
in the acceptance game is not symmetric. Nevertheless, in this paper we provide
a positive answer to the complementation problem, under the same conditions3

on the functor as in [5]. More precisely, we will prove the following theorem.

Theorem 1 (Complementation Lemma). Let T be a standard set functor
that restricts to finite sets and preserves weak pullbacks. Then the class of rec-
ognizable T-languages is closed under complementation.

Our proof of this Complementation Lemma will be based on an explicit con-
struction which transforms a T -automaton A into a T -automaton Ac which
accepts exactly those pointed T -coalgebras that are rejected by A. In order to
define and use this construction, it will be necessary to move from the nondeter-
ministic format of our automata to a wider setting. First of all, since we want to
apply the dualization and complementation method of Muller & Schupp [6], we
work with automata that are alternating, meaning that we increase the role of
Abélard in the acceptance game, and logical in the sense that the possible unfold-
ings of an automaton state are expressed as a logical formula rather than as a set
of options. Concretely, we would like to move to a setting where the unfolding of
an automaton state is a lattice term over nabla-formulas over automaton states,
with conjunctions denoting choices for Abélard, disjunctions denoting choices
for Éloise, and ∇ denoting Moss’ coalgebraic modality. However, it will turn out
3 The condition that T should restrict to finite sets is not mentioned in [5], but it is
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that by the nature of our construction we also need conjunctions and disjunc-
tions under (that is, within the scope of) the modality. Because of this enriched
transition structure, the resulting automata will be called transalternating.

Concerning these transalternating automata we will prove two results. First,
we establish a complementation lemma, by providing a construction which trans-
forms a transalternating automaton A into a transalternating automaton Ac

which behaves as the complement of A. Note that this construction is linear
in size: in fact, Ac is based on the same carrier set as A. And second, we give
a construction transforming an arbitrary transalternating automaton into an
equivalent alternating one (of size exponential in the size of the original automa-
ton).

At the heart of our construction of the complement automaton lies a new
result in coalgebraic modal logic that we call the One-step Complementation4

Lemma. This Lemma states that the Boolean dual ∆ of Moss’ modality ∇ can
be expressed using disjunctions, Moss’ modality itself, and conjunctions. Here
‘Boolean dual’ refers to the fact that we want for a given formula ∇α that

∆α ≡ ¬∇(T¬)(α), (1)

For instance, in the case of the power set functor P, defining, for a nonempty α,

∆α := ∇∅ ∨
∨
{∇{a} | a ∈ α} ∨ ∇{

∧
α,>}

we indeed obtain that

∆{a1, . . . , an} ≡ ¬∇{¬a1, . . . ,¬an}.

In the general case, we will see that for each formula ∇α, we can find a set Q(α)
(which only uses finite conjunctions over the ingredient formulas from α), such
that the following definition

∆α :=
∨
{∇β | β ∈ Q(α)}

indeed provides a Boolean dual ∆ for ∇, i.e., for this ∆ we may prove (1). Note
that in order for this definition to give a proper (finitary!) lattice term, we need
the set Q(α) to be finite; it is for this reason that we need the functor T to
restrict to finite sets.

Applying the methodology of Muller & Schupp [6] to this coalgebraic dualiza-
tion, we obtain a very simple definition of the complement automaton. Roughly
speaking, we obtain the complement of a transalternating automaton by dualiz-
ing its transition map, and performing a role switch on its priority map.

Then, in order to prove that Ac is the complement of A, we compare, for an
arbitrary pointed coalgebra (S, s), the acceptance games G(A, S) and G(Ac, S).
We will show that

(aI , s) ∈ Win∃(G(Ac, S)) iff (aI , s) ∈ Win∀(G(A, S)).
4 Perhaps ‘One-step Dualization Lemma’ might have been a more adequate name —

we chose against this because in the context of coalgebraic logic the word ‘dual’ has
strong connotations towards Stone-type dualities.



In order to streamline the proof of this result, we introduce a notion of equiv-
alence between positions in parity games. We base this definition on well-known
ideas from game theory (for instance, van Benthem’s notion of power of play-
ers to achieve certain outcomes in finite games [2], and Pauly’s bisimulation for
coalition logics [7]), adding some features taking care of the acceptance condi-
tion. With the resulting notion of ‘basic game bisimilarity’, we may exploit some
of the coalgebraic intuitions we have of parity graph games.

Acknowledgement We are grateful to Alessandra Palmigiano and one of the
anonymous reviewers for suggesting a simplification of a definition, and to the
anonymous reviewers in general for their comments.

2 Preliminaries

For background information on coalgebra automata, we refer to [5, 10]. We will
also use notation and terminology from that paper, with the following minor
deviations and additions.

Categorical notions Throughout the paper we asssume that T is a set func-
tor, that is, an endofunctor on the category Set of sets as objects and func-
tions as arrows. This functor is supposed to be (i) standard (that is to pre-
serve embeddings), (ii) to preserve weak pullbacks, and (iii) to restrict to fi-
nite sets. We let Tω denote the finitary version of T , given on objects by
TωX :=

⋃
{TX0 | X0 ⊆ω X}, while on arrows Tωf := Tf . Given an ob-

ject α ∈ TωX, we let Base(α) denote the smallest subset X0 ⊆ω X such that
α ∈ Tω(X0).

Preserving weak pullbacks, T extends to a unique relator T , which is mono-
tone when T is standard. For a given relation Z ⊆ X × Y , we denote the lifted
relation as TZ ⊆ TX ×TY . Without warning we will assume that T is mono-
tone, that it is a relator (that is, it preserves the diagonal relation and distributes
over relation composition), and that it commutes with taking relation converse.

Games Throughout the paper, when discussing parity games, the players will
be 0 = ∃ and 1 = ∀. We will denote an arbitrary player as Π, and use Σ to
denote Π ′s opponent.

Coalgebra automata As mentioned we will work with coalgebra automata in
logical format [10, section 4.5]. It will be convenient to make explicit reference
to Moss’ modality.

Definition 1. The functor L : Set → Set takes a set Q to the carrier L(Q) of
the free lattice term algebra over Q. Lattice terms t are respectively of the form

a ::= q ∈ Q |
∧

τ |
∨

τ,



Position Player Admissible Moves ΩG
(q, s) ∈ Q× S - {(θ(q), s)} Ω(q)
(
V

τ, s) ∈ LT∇Q× S ∀ {(a, s) | a ∈ τ} 0
(
W

τ, s) ∈ LT∇Q× S ∃ {(a, s) | a ∈ τ} 0

(∇α, s) ∈ T∇Q× S ∃ {Z ⊆ Q× S | (α, σ(s)) ∈ TZ} 0
Z ⊆ Q× S ∀ Z 0

Table 1. Acceptance game for alternating automata

where τ denotes a finite set of lattice terms. Given a set X, let T∇
ω X denote the

set {∇α | α ∈ TωX}, and define L1Q := LT∇
ω L(Q). Elements of LQ will be

called depth-zero formulas and elements of L1Q depth-one formulas over Q.

Definition 2 (Alternating Automata). An alternating T-automaton is a
structure A = 〈Q, θ, qI , Ω〉 consisting of a finite set Q of states, a transition
function θ : Q → LT∇

ω Q, a state qI ∈ Q distinguished as initial, and a priority
function Ω : Q → N.

Definition 3 (Acceptance Game). The notion of an alternating T-automaton
accepting a pointed T-coalgebra (S, s) is defined in terms of the parity graph
game G(A, S) given by Table 1: A accepts a pointed coalgebra (S, s) iff ∃ has a
winning strategy in the acceptance game G(A, S) from the initial position (qI , s).
Positions of the form (q, s) ∈ Q× S are called basic.

Remark 1. In a basic position (q, s), there is exactly one admissible move, namely,
to position (θ(q), s). As a consequence, technically it does not matter to which
player the position is assigned. In Table 1 we have not assigned a player to these
positions, since this has some conceptual advantages further on.

One-step semantics It will be convenient to think of elements of L1Q as
formulas indeed, with the following semantics.

Definition 4. Given sets Q and S, a Q-valuation on S is a map V : Q → P(S).
We define relations V

0 ⊆ S ×LQ and V
1 ⊆ TS ×L1Q, as follows. For V

0 , we
define s V

0 q if s ∈ V (q), s V
0

∧
τ (

∨
τ , respectively) if s V

0 a for all a ∈ τ
(some a ∈ τ , respectively); and we define a relation V

1 such that σ V
1 ∇α if

(σ, α) ∈ T (V
0 ), while for

∧
and

∨
the same clauses apply as for V

0 .
For clarity of notation we also write V, s 0 a for s V

0 a, and V, s 1 a for
s V

1 a.

3 One-Step Complementation

The notion of the (Boolean) dual of a connective makes a frequent appearance
in various branches of logic. For instance, ∧ & ∨, and 3 & 2, are well-known



pairs of dual operators in propositional and in modal logic, respectively. In this
section we introduce the dual, ∆, of Moss’ coalgebraic modality, ∇. Building on
this we define the dual of a depth-one formula.

Definition 5. Let T be a standard set functor. Then for each set Q, and each
α ∈ TωQ, we define the set D(α) ⊆ TωPQ as follows:

D(α) :=
{

Φ ∈ TωPωBase(α) | (α, Φ) 6∈ (T 6∈)
}

In case T restricts to finite sets, define ∆α as the following formula:

∆α :=
∨ {

∇T
∧

(Φ) | Φ ∈ D(α)
}

.

Here we see the connective
∧

as a map
∧

: PωQ → Q, so that T
∧

: TωPωQ →
TωQ.

We claim that ∆ is the Boolean dual of ∇. In case we are dealing with a full
Boolean language, we can simply express this fact as in (1). In a setting where
negation is not available as a connective, we can formulate the notion of Boolean
duality as follows.

Definition 6. Given a valuation V : Q → P(S), we define the complementary
valuation V c by putting V c(q) := S \ V (q). Two formulas a, b in LQ (in L1Q,
respectively) are (Boolean) duals if for all sets S and all Q-valuations on S,
S \ V̂ c(a) = V̂ (b) (respectively, if TS \ Ṽ c(a) = Ṽ (b)).

Putting it differently, two depth-zero formulas a and b are Boolean duals iff
for all sets S, all valuations V , and all s ∈ S: V c, s 60 a iff V, s 0 b. Likewise,
two depth-one formulas a and b are Boolean duals iff for all sets S, all valuations
V , and all σ ∈ TS: V c, σ 61 a iff V, σ 1 b.

Theorem 2 (One-Step Complementation Lemma). Let T be a standard
set functor preserving weak pullbacks, and let α ∈ TωQ for some set Q. Then
∇α and ∆α are Boolean duals.

Proof. Fix an arbitrary set S, an arbitrary Q-valuation V on S, and an arbitrary
element σ of TS.

First assume that V, σ 1 ∆α, that is, V, σ 1 ∇(T
∧

)(Φ) for some Φ ∈ D(α).
Then there is some relation Y ⊆ PQ × S such that Y ⊆ (Gr

∧
) ◦ (V

0 )̆ and
(Φ, σ) ∈ TY . In order to show that V c, σ 61 ∇α, suppose for contradiction
that there is some relation Z such that (σ, α) ∈ TZ and V c, t 0 q for all pairs
(t, q) ∈ Z. It follows that (σ, α) ∈ TZ and Z ∩ V

0 = ∅.
Now consider the relation R := Y ◦Z ⊆ PQ×Q, then clearly (Φ,α) ∈ TR =

TY ◦ TZ. On the other hand, it follows from the definition of R that R ⊆ 63,
because for any (φ, q) ∈ R there is an s ∈ S such that (i) (φ, s) ∈ Y implying
V, s 0 p for all p ∈ φ, and (ii) (s, q) ∈ Z meaning that V, s 60 q. But this gives
the desired contradiction since Φ ∈ D(α).



Conversely, assume that V c, σ 61 ∇α. In order to show that V, σ 1 ∆α we
need to find some Φ ∈ D(α) such that V, σ 1 ∇(T

∧
)(Φ). For this purpose,

define a map φ : S → PBase(α) by putting, for any s ∈ S, φs := {q ∈ Base(α) |
V, s 0 q}.

We claim that Φ := Tφ(σ) has the required properties. First of all, it follows
by construction that Gr(

∧
◦φ) ⊆ V

0 , so that Gr(Tφ) ◦Gr(T
∧

) ⊆ TV
0 . From

this it is immediate that V, σ 1 ∇T
∧

(Φ). It remains to show that Φ ∈ D(α). For
that purpose, consider the relation Z := Gr(φ) ◦ 63 ⊆ S ×Q. It is easily verified
that V c, s 0 q for all (s, q) ∈ Z. Hence, we may derive from the assumption
V c, σ 61 ∇α that (σ, α) 6∈ TZ = Gr(Tφ) ◦ (T 63). But then it follows from
(σ, Φ) ∈ Gr(Tφ) that (Φ,α) 6∈ (T 63), as required.

It is an almost immediate consequence of this result, that negation can be
defined as an abbreviated connective in the finitary version of Moss’ language
(with finite conjunctions, disjunctions, and ∇). As we will see, the main result
of this paper, viz., the complementation lemma for coalgebra automata, is also a
direct corollary of the one-step complementation lemma. As a first step towards
proving that statement, let us define the dual of a one-step formula.

Definition 7. Given a set Q we define the base dualization map δ0 : LQ → LQ
and the one-step dualization map δ1 : L1Q → L1Q as follows:

δ0(q) := q
δ0(

∧
φ) :=

∨
δ0[φ]

δ0(
∨

φ) :=
∧

δ0[φ]

δ1(∇α) := ∆(Tδ0)α
δ1(

∧
φ) :=

∨
δ1[φ]

δ1(
∨

φ) :=
∧

δ1[φ]

Example 1. With T = P and α = {q1 ∨ q2, q3 ∧ q4}, we may calculate that

δ1(∇α) = ∆{q1 ∧ q2, q3 ∨ q4}
= ∇∅ ∨∇{q1 ∧ q2} ∨ ∇{q3 ∨ q4} ∨ ∇{(q1 ∧ q2) ∧ (q3 ∨ q4),>}.

The following corollary of the One-Step Complementation lemma states that
these dualization operations indeed send formulas to their one-step Boolean du-
als. The proof of this result is left for the reader.

Corollary 1. The formulas a and δ1(a) are Boolean duals, for any a ∈ L1Q.

4 Game Bisimulations

In the preliminaries we introduced acceptance games of coalgebra automata as
specific parity graph games. In acceptance games we distinguish some positions
as basic, which allows us to partition plays into rounds, each delimited by basic
positions. From this observation we derive the following definition of basic sets.

Definition 8 (Basic Sets of Positions). Given a parity graph game G =
〈V0, V1, E, vI , Ω〉, call a set B ⊆ V0 ∪ V1 of positions basic if

1. the initial position of G belongs to B;



2. any full play starting at some b ∈ B either ends in a terminal position or it
passes through another position in B; and

3. Ω(v) = 0 iff v 6∈ B.

Another way of expressing condition 2 is to say that there are no infinite
paths of which the first position is the only basic one. The third condition is
there to ensure that who wins an infinite match is determined by the sequence
of basic positions induced by the match. It should be clear that the collection of
basic positions in acceptance games of coalgebra automata indeed qualifies as a
basic set in the sense of Definition 8. By a slight abuse of language, we refer to
elements of any basic set as basic positions.

The point behind the introduction of basic positions is that, just as in the
special case of acceptance games, we may think of parity games as proceeding in
rounds that start and finish at a basic position. Formally we define these rounds,
that correspond to subgraphs of the arena, by their unravelling as follows.

Definition 9 (Local Game Trees). Let B be a basic set related to some parity
game G = 〈V0, V1, E, vI , Ω〉. The local game tree associated with a basic position
b ∈ B is defined as the following bipartite tree T b = 〈V b

0 , V b
1 , Eb, vb

I〉. Let V b

be the set of those finite paths β starting at b, of which the only basic positions
are first(β) = b and possibly last(β). The bipartition of V b is given through
the bipartition of V , that is V b

Π := {β ∈ V b | last(β) ∈ VΠ} for both players
Π ∈ {0, 1}. The root vb

I is 〈b〉, the path beginning and ending in b. The edge
relation is defined as Eb := {(β, βv) | v ∈ E(last(β))}.

A node β ∈ V b is a leaf of T b if |β| > 1 and last(β) ∈ B; we let Leaves(T b)
denote the set of leaves of T b, and put N(b) := {last(β) | β ∈ Leaves(T b)}.

Intuitively, T b can be seen as the tree representation of one round of the
game G, starting at b. N(b) ⊆ V denotes the set of positions one may encounter
in a match of G as the next basic position after b — this intuition will be made
more precise in Lemma 1 below. It follows from the definition that all paths in
T b are finite, and hence we may use (bottom-up) induction on the immediate
successor relation of the tree, or, as we shall say, on the height of nodes.

Once we have established the dissection of a parity graph game through basic
positions, we may think of the game being in an iterative strategic normal form,
in the sense that in each round players make only one choice, determining their
complete strategies for that round right at the beginning. We may formalize this
using the game-theoretic notion of power, which describes the terminal positions
in a finitary graph game which a player can force, for instance by deploying a
strategy; we refer to van Benthem [2] for an extensive discussion and pointers
to the literature. In the following we define the notion of power of a player Π
at a basic position b as a collection of sets of basic nodes. Intuitively, when we
say that U is in Π’s power at basic position b, we mean that at position b, Π
has a local strategy ensuring that the next basic position belongs to the set U .
Hence, the collection of sets that are in Π’s power at a certain basic position
is closed under taking supersets. In the definition below we define a collection
PΠ(b) ⊆ PB. Further on we will see that a set U ⊆ B is in Π’s power at b, in



the sense described above, iff U ⊇ V for some V ∈ PΠ(b). It will be convenient
to use the following notation.

Definition 10. Given a set H ⊆ PB, define

⇑(H) := {V ⊆ B | V ⊇ U for some U ∈ H}.

Definition 11 (Powers). Let B be a basic set related to some parity game
G = 〈V0, V1, E, vI , Ω〉, and let b be a basic position. By induction on the height
of a node β ∈ V b, we define, for each player Π, the power of Π at β as a
collection PΠ(β) of subsets of N(b):

– If β ∈ Leaves(T b), we put, for each player,

PΠ(β) :=
{
{last(β)}

}
.

– If β 6∈ Leaves(T b), we put

PΠ(β) :=


⋃
{PΠ(γ) | γ ∈ Eb(β)} if β ∈ V b

Π ,{⋃
γ∈Eb(β)Yγ | Yγ ∈ PΠ(γ), all γ

}
if β ∈ V b

Σ .

where Σ denotes the opponent of Π.

Finally, we define the power of Π at b as the set PΠ(b) := PΠ(〈b〉), where 〈b〉 is
the path beginning and ending at b.

Perhaps some special attention should be devoted to the paths β in T b such
that Eb(β) = ∅. If such a β is a leaf of T b, then the definition above gives
PΠ(β) = PΣ(β) =

{
{last(β)}

}
. But if β is not a leaf of T b, then we obtain, by

the inductive clause of the definition:

PΠ(β) :=
{

∅ if β ∈ V b
Π ,

{∅} if β ∈ V b
Σ .

This indeed confirms our intuition that at such a position, the player who is to
move gets stuck and loses the match.

The following definitions make the notion of a local game more precise.

Definition 12 (Local Games). Let G = 〈V0, V1, E, vI , Ω〉 be a parity graph
game with basic set B ⊆ V . We define a game Gb local to a basic position b ∈ B
in G as the (finite length) graph game played by 0 and 1 on the local game tree
T b = 〈V b, Eb〉. Matches of this game are won by a player Π if their opponent Σ
gets stuck, and end in a tie if the last position of the match is a leaf of T b.

Definition 13 (Local Strategies). A local strategy of a player Π in a local
game Gb = 〈V b

0 , V b
1 , Eb, vb

I〉 is a partial function f : V b
Π → V b defined on such

β iff Eb(β) is non-empty, then f(β) ∈ Eb(β). Such a local strategy for player
Π is surviving if it guarantees that Π will not get stuck, and thus does not lose



the local game; and a local strategy is winning for Π if it guarantees that her
opponent Σ gets stuck.

Consider the match of the local game Gb in which 0 and 1 play local strategies
f0 and f1, respectively. If this match ends in a leaf β of the local game tree, we
let Res(f0, f1) denote the basic position last(β); if one of the players gets stuck
in this match, we leave Res(f0, f1) undefined. Given a local strategy f0 for player
0, we define

Xf0 := {Res(f0, f1) | f1 a local strategy for player 1 },

and similarly we define Xf1 for a strategy f1 for player 1.

Local strategies for Π in Gb can be linked to (fragments of) strategies for Π
in G. Since these links are generally obvious, we will refrain from introducing
notation and terminology here.

The following lemma makes precise the links between players’ power and
their local strategies.

Proposition 1. Let G, B and b as in Definition 11, let Π ∈ {0, 1} be a player,
and let W be a subset of N(b). Then the following are equivalent:

1. W ∈ PΠ(b);
2. Π has a surviving strategy f in Gb such that W = Xf .

In the next section we will need the following lemma, which states a deter-
minacy property of local games.

Proposition 2. Let G, B and b as in Definition 11, and let Π ∈ {0, 1} be a
player. For any subset U ⊆ N(b), if U 6∈ ⇑(PΠ(b)) then there is a V ∈ PΣ(b)
such that U ∩ V = ∅.

The partitioning of matches of parity games into rounds between basic po-
sitions, and the normalization of the players’ moves within each round, lay the
foundations to the introduction of a structural equivalence between parity games
that we refer to as basic game bisimulation. This equivalence combines (i) a struc-
tural part that can be seen as an instantiation of Pauly’s bisimulation between
extensives strategic games [7], or van Benthem’s power bisimulation [2], with a
combinatorial part that takes care of the parity acceptance condition.

Definition 14 (Basic Game Bisimulation). Let G = 〈V0, V1, E, Ω〉 and G′ =
〈V ′

0 , V ′
1 , E′, Ω′〉 be parity graph games with basic sets B and B′, respectively, and

let Π and Π ′ be (not necessarily distinct) players in G and G′, respectively.
A Π,Π ′-game bisimulation is a binary relation Z ⊆ B×B′ satisfying for all

v ∈ V and v′ ∈ V ′ with vZv′ the structural conditions

– (Π,forth) ∀W ∈ PG
Π(v).∃W ′ ∈ PG′

Π′(v′).∀w′ ∈ W ′.∃w ∈ W. (w,w′) ∈ Z,
– (Σ,forth) ∀W ∈ PG

Σ(v).∃W ′ ∈ PG′

Σ′(v′). ∀w′ ∈ W ′.∃w ∈ W.(w,w′) ∈ Z,
– (Π,back) ∀W ′ ∈ PG′

Π (v′).∃W ∈ PG
Π′(v).∀w ∈ W.∃w′ ∈ W. (w,w′) ∈ Z,



– (Σ,back) ∀W ′ ∈ PG′

Σ (v′).∃W ∈ PG
Σ′(v).∀w ∈ W.∃w′ ∈ W. (w,w′) ∈ Z,

and the priority conditions

– (parity) Ω(v) mod 2 = Π iff Ω′(v′) mod 2 = Π ′,
– (contraction) for all v, w ∈ V and v′, w′ ∈ V ′ with vZv′ and wZw′, Ω(v) ≤

Ω(w) iff Ω(v′) ≤ Ω(w′).

In Condition (parity) above we identify players with their characteristic par-
ity. Note that in fact there are only two kinds of game bisimulations: the (0, 0)-
bisimulations coincide with the (1, 1)-bisimulations, and the (0, 1)-bisimulations
coincide with the (1, 0)-bisimulations.

The following theorem bears witness to the fact that game bisimulation is
indeed a good notion of structural equivalence between parity games.

Theorem 3. Let G = 〈V0, V1, E, Ω〉 and G′ = 〈V ′
0 , V ′

1 , E′, Ω′〉 be parity graph
games with basic sets B and B′, respectively, and let Π and Π ′ be (not necessarily
distinct) players in G and G′, respectively. Whenever v and v′ are related through
a Π,Π ′-bisimulation Z ⊆ B ×B′, we have

v ∈ WinΠ(G) iff v′ ∈ WinΠ′(G′). (2)

5 Complementation of Alternating Coalgebra Automata

This section is devoted to our main result:

Theorem 4 (Complementation Lemma for Coalgebra Automata). The
class of alternating coalgebra automata is closed under taking complements.

As mentioned already, based on the approach by Muller & Schupp [6], we will
obtain the complement of an alternating automaton by dualizing its transition
map, and performing a role switch on its priority map. More in detail, consider an
alternating automaton A = 〈Q, qI , θ, Ω〉, with θ : Q → LT∇Q. Its complement
Ac will be based on the same carrier set Q and will have the same initial state
qI , while the role switch operation on the priority map can be implemented very
simply by putting Ωc(q) := 1 + Ω(q). With dualizing the transition map we
mean that for each state q ∈ Q, we will define θc(q) as the dual term of θ(q)
(as given by Definition 7). However, already when dualizing a simple term ∇α
with α ∈ TQ (rather than α ∈ TLQ), we see conjunctions popping up under the
modal operator ∇. Hence, if we are after a class of automata that is closed under
the proposed complementation construction, we need to admit devices with a
slightly richer transition structure. It follows from the results in section 3 that
the set L1Q is the smallest set of formulas containing the set LT∇Q which is
closed under the dualization map δ1, and hence the ‘richer transition structure’
that we will propose comprises maps of type θ : Q → L1Q.

We will call the resulting automata transalternating to indicate that there is
alternation both under and over the modality ∇. For these transalternating au-
tomata we devise a simple algorithm to compute complements. Finally we show



Position Player Admissible Moves ΩG
(q, s) ∈ Q× S - {(θ(q), s)} Ω(q)
(
V

i∈I ai, s) ∈ L1Q× S ∀ {(ai, s) | i ∈ I} 0
(
W

i∈I ai, s) ∈ L1Q× S ∃ {(ai, s) | i ∈ I} 0

(∇α, s) ∈ T∇LQ× S ∃ {Z ⊆ LQ× S | (α, σ(s)) ∈ TZ} 0
Z ⊆ LQ× S ∀ Z 0

(
V

i∈I ai, s) ∈ LQ× S ∀ {(ai, s) | i ∈ I} 0
(
W

i∈I ai, s) ∈ LQ× S ∃ {(ai, s) | i ∈ I} 0

Table 2. Acceptance Games for Transalternating Automata

that the richer transition structure of transalternating automata does not really
increase the recognizing power, by providing an explicit construction transform-
ing a transalternating automaton into an equivalent alternating one.

5.1 Transalternating Automata

Formally, transalternating automata are defined as follows.

Definition 15 (Transalternating Automata). A transalternating T-automa-
ton A = 〈Q, θ, qI , Ω〉 consists of a finite set Q of states, a transition function
θ : Q → L1Q, a state qI ∈ Q distinguished as initial, and a priority function
Ω : Q → N.

Just as for alternating automata, acceptance of a pointed coalgebra (S, s) is
defined in terms of a parity game.

Definition 16 (Acceptance Games for Transalternating Automata). Let
A = 〈Q, qI , θ, Ω〉 be a transalternating automaton and let S = 〈S, σ〉 be a T-
coalgebra. The acceptance game G(A, S) is the parity graph game G(A, S) =
〈V∃, V∀, E, vI , ΩG〉 with vI = (qI , sI) and V∃, V∀, E and ΩG given by Table 2.
Positions from Q× S will be called basic.

In the next subsection we will define the complementation construction for
transalternating automata and show the correctness of this transformation. Our
proof will be based on a game bisimulation between two acceptance games, and
for that purpose we need to understand the powers of the two players in a single
round of such an acceptance game. The next Lemma shows that these powers
can be conveniently expressed and understood in terms of the one-step semantics
defined in section 3. In order to make sense of this remark, recall that the basic
positions in an acceptance game are of the form (q, s) ∈ Q× S. Also, note that
this terminology is justified because the set Q × S is indeed basic in the sense
of Definition 8. Hence, we may apply the notions defined in section 4, and in
particular, given a basic position (q, s) we may consider the question, what it
means for a set Z ⊆ N(q, s) to belong to the set PΠ(q, s) for one of the players
Π ∈ {∃,∀}. First note that potential elements of PΠ(q, s) are sets of basic



positions, and as such, binary relations between Q and S. A key observation is
that such a binary relation may be identified with a Q-valuation on S.

Definition 17. Given a relation Z ⊆ Q×S, we define the associated Q-valuation
on S as the map VZ : Q → P(S) given by

VZ(q) := {s ∈ S | (q, s) ∈ Z}.

Using this perspective on relations between Q and S, we may give the fol-
lowing logical characterization of the players’ powers in single rounds of the
acceptance game.

Proposition 3. Let A be a transalternating T-automaton, and S a T-coalgebra.
Given a basic position (q, s) in G(A, S), and a relation Z ⊆ Q× S, we have:

Z ∈ ⇑(P∃(q, s)) ⇐⇒ VZ , σ(s) 1 θ(q)
Z ∈ ⇑(P∀(q, s)) ⇐⇒ VZ , σ(s) 1 δ1(θ(q))

5.2 Complementation of Transalternating Automata

As announced, we define the complement of a transalternating automaton as
follows.

Definition 18 (Complements of Transalternating Automata). The com-
plement of a transalternating T-coalgebra automaton A = 〈Q, θ, qI , Ω〉 is the
transalternating automaton Ac = 〈Q, θc, qI , Ω

c〉 defined with θc(q) := δ1(θ(q))
and Ωc(q) := Ω(q) + 1, for all q ∈ Q.

Ac is indeed the complement of A.

Proposition 4. For every transalternating T-coalgebra automaton A, the au-
tomaton Ac accepts precisely those pointed T-coalgebras that are rejected by A.

Proof. Clearly it suffices to prove, for a given T -coalgebra S, state q of A, and
point s in S:

(q, s) ∈ Win∃(G(Ac, S) iff (q, s) ∈ Win∀(G(A, S)).

In order to prove this claim we will use a basic game bisimulation.
First we note that Q × S is a basic set in both acceptance games, G(A, S)

and G(Ac, S). The main observation is that the diagonal relation IdQ×S :=
{((q, s), (q, s)) | q ∈ Q, s ∈ S} is an ∀,∃-game bisimulation between G(A, S) and
G(Ac, S). Since it is immediate from the definitions that the diagonal relation
satisfies the priority conditions, it is left to check the structural conditions.

Leaving the other three conditions for the reader, we establish the condition
(∃,forth) as an immediate consequence of the following claim:

for all Z ∈ PG
∃ (q, s) there is a Z∀ ⊆ Z such that Z∀ ∈ PGc

∀ (q, s), (3)



which can be proved via the following chain of implications:

Z ∈ PG
∃ (q, s)

⇒ VZ , σ(s) 1 θ(q) (Proposition 3)
⇒ (VZ)c, σ(s) 61 δ1(θ(q)) (Corollary 1)
⇒ (VZ)c, σ(s) 61 θc(q) (definition of θc)
⇒ VZc , σ(s) 61 θc(q) (†)
⇒ Zc 6∈ ⇑(PGc

∃ (q, s)) (Proposition 3)

⇒ there is a Z∀ ∈ PGc

∀ (q, s) with Zc ∩ Z∀ = ∅ (Proposition 2)

⇒ there is a Z∀ ⊆ Z with Z∀ ∈ PGc

∀ (q, s) (elementary set theory)

Here we let Zc denote the set (Q×S) \Z, and in the implication marked (†) we
use the easily verified fact that (VZ)c = VZc .

5.3 Transalternating and Alternating Automata

In the remainder of this section we prove that the enriched structure of transalter-
nating automata does not add expressivity compared to alternating automata.
Since there is an obvious way to see an alternating automaton as a transalter-
nating one, this shows that the transalternating automata have exactly the same
recognizing power as the alternating ones. Consequently, the complementation
lemma for transalternating automata also yields a complementation lemma for
alternating ones.

The transformation of a given transalternating automaton A into an equiv-
alent alternating automaton will be taken care of in two successive steps. The
intuitive idea is to first remove the disjunctions, and then the conjunctions,
from under the modal operators. In the intermediate stage we are dealing with
automata that only allow (certain) conjunctions under the nabla operator.

Definition 19. Given a set Q we let SQ denote the set of conjunctions of the
form

∧
Q′, with Q′ ⊆ Q. We let ≤ ⊆ SQ × Q denote the relation given by∧

Q′ ≤ q iff q ∈ Q′.

Definition 20. A semi-transalternating T-automaton is a automaton of the
form A = 〈Q, θ, qI , Ω〉 with θ : Q → LT∇SQ.

We omit the (obvious) definition of the acceptance game associated with this
type of automaton.

Proposition 5. There is an effective algorithm transforming a given transalter-
nating automaton into an equivalent semi-transalternating one based on the same
carrier.

The proof of this proposition, which we omit for reasons of space limitations,
is based on the fact that every formula in L1Q can be rewritten into an equivalent
formula in LT∇SQ, see [3] for the details.



It is left to prove that every semi-transalternating automaton can be trans-
formed into an equivalent alternating one. Intuitively speaking, one has to carry
over the (universal) non-determinism after the ∇-translation to the branching
for the next automaton state.

Definition 21. Let A = 〈Q, qI , θ, Ω〉 be a semi-transalternating automaton. We
define the alternating automaton A◦ = 〈Q′, q′I , θ

′, Ω′〉 by putting Q′ := Q× SQ,
q′I := (qI , qI), Ω′(a, b) := Ω(a), while θ′ : (Q × SQ) → LT∇(Q × SQ) is given
by

θ′(q, a) :=
∧
p≥a

LT∇ιp(θ(p)).

Here ιq : SQ → (Q× SQ), for q ∈ Q, is the map given by ιq(a) := (q, a).

For reasons of space limitations we omit the proof of the equivalence of A◦

and A, confining ourselves to an intuitive explanation of this definition. Note that
in principle we would like to base A◦ on the carrier SQ, defining a transition
map θ′′(a) :=

∧
p≥a θ(p). (Note that this gives a well-defined map θ′′ : SQ →

LT∇SQ.) Unfortunately, this set-up is too simple to give a proper account of
the acceptance condition. The problem is that in the acceptance game, when
moving from a state (a, s) ∈ SQ × Q to (θ′′(a), s) and then on to (θ(p), s) for
some p ≥ a, one would ‘bypass’ the position (p, s), and thus miss the crucial
contribution of the priority of the state p to the information determining the
winner of the match. A solution to this problem is to tag p to the new states of
A◦ occurring in θ(p). This is exactly the role of the function ιp in the definition
of θ′ above: note that LT∇ιp(θ(p)) is nothing but the term θ(p), seen as an
element of LT∇SQ, but with every formula b ∈ SQ under the ∇ replaced by
(p, b) ∈ Q× SQ.

Thus, intuitively, a A◦-state of the form (p, b) represents the conjunction of
the states above b (where q is above b =

∧
Q′ iff it belongs to Q′). However, the

priority of the state (p, b) is that of p — thus the state (p, b) encodes (‘remem-
bers’) an earlier visit to p.

Proposition 6. A and A◦ are equivalent, for any semi-transalternating au-
tomaton A.

The latter two propositions establish that there is an effective procedure
transforming a transalternating automaton into an equivalent alternating one.

5.4 Size matters

We conclude this section with some remarks about the size of the automaton
resulting from the complementation algorithm presented. By the size of an au-
tomaton we understand the number of its states.

First of all, since every alternating T -automaton can itself be seen as a
transalternating T -automaton, there is no size issue here. Also, our comple-
ment of a transalternating T -automaton is of the same size as the original. It is



the translation from transalternating to alternating T -automata that introduces
exponentially many new states: more specifically, with A a transalternating au-
tomaton of size |Q| = n, the equivalent alternating automaton of Definition 21
has |SQ×Q| = 2n∗n states. From these observations the following is immediate.

Theorem 5. For any alternating T-automaton with n states there is a comple-
menting alternating automaton with at most n ∗ 2n states.

In case we are dealing with a functor T such that the set LT∇Q is closed
under taking duals, we do not need the concept of transalternation, and we can
obtain a much better upper bound. The following result applies for instance to
alternating tree automata, see [4] for the details.

Theorem 6. Let T be such that for any α ∈ TωQ, the formula ∇α has a
dual ∆α ∈ LT∇Q. Then for any alternating T-automaton of n states there
is a complementing alternating automaton with at most n + c states, for some
constant c.
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