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Abstract. We discuss two model constructions related to the coalge-
braic logic introduced by Moss. Our starting point is the derivation sys-
tem MT for this logic, given by Kupke, Kurz and Venema. Based on the
one-step completeness of this system, we first construct a finite coalge-
braic model for an arbitrary MT -consistent formula. This construction
yields a simplified completeness proof for the logic MT with respect to
the intended, coalgebraic semantics. Our second main result concerns a
strong completeness result for MT , provided that the functor T satisfies
some additional constraints. Our proof for this result is based on the
construction, for an MT -consistent set of formulas A, of a coalgebraic
model in which A is satisfiable.
Keywords: coalgebra, modal logic, completeness, finite model property,
strong completeness

1 Introduction

Universal Coalgebra [16] provides the notion of a coalgebra as the natural mathe-
matical generalization of state-based evolving systems such as streams, (infinite)
trees, Kripke models, (probabilistic) transition systems, and many others. This
approach combines simplicity with generality and wide applicability: many fea-
tures, including input, output, nondeterminism, probability, and interaction, can
easily be encoded in the coalgebra type, which in this paper we will take to be
an endofunctor T on the category Set of sets as objects with functions as arrows.
Logic enters the picture if one wants to specify and reason about behavior, one
of the most fundamental notions admitting a coalgebraic formalization. With
Kripke structures constituting key examples of coalgebras, it should come as no
surprise that most coalgebraic logics are some kind of modification or general-
ization of modal logic [5].

This approach was initiated by Moss [13], who generalized the so-called ‘cover
modality’ ∇P from Kripke structures to coalgebras of arbitrary type T . The fas-
cinating novelty of Moss’ language is that his modality has a rather non-standard
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arity: Moss’ syntax specifies that ∇Tα is a formula for all α ∈ TL (where L is
the collection of formulas), while its semantics is given by a categorical notion of
relation lifting T . This approach is completely uniform in the functor T , but as a
drawback, for T to behave well T must satisfy the category-theoretic property of
preserving weak pullbacks. In order to overcome the shortcomings of Moss’ logic,
Kurz [11], Pattinson [15] and others considered coalgebraic modal formalisms,
that use standard syntax and work for coalgebras of arbitrary type. The success
of this approach, in which the semantics of each modality is determined by a
so-called predicate lifting, directed attention away from Moss’ logic.

Interest in Moss’ logic revived when it became clear that an approach based
on his modality could have some advantages. In particular, some key results on
the modal µ-calculus were obtained by Janin & Walukiewicz [8], on the basis of
proofs that crucially involve a reconstruction of the classical modal language on
the basis of the nabla modality (which they introduced, independently of Moss,
as a primitive connective). Kupke & Venema [10] showed that many fundamental
results in the area of (fixpoint) logic and automata theory could be lifted to the
abstraction level of coalgebra.

Given the nonstandard syntax of Moss’ language it was not a priori clear
whether the collection of coalgebraic validities would allow nice derivation sys-
tems. As a first result, Palmigiano & Venema [14] gave a complete axiomatization
for the cover modality ∇P (i.e. in the case of Kripke frames). This calculus was
streamlined into a formulation that admits a straightforward generalization to
a calculus MT for an arbitrary set functor T , by B́ılková, Palmigiano & Ven-
ema [3], who also provided suitable Gentzen systems for the logic based on ∇P .
Kupke, Kurz & Venema [10] solved the outstanding problem by proving the
soundness and completeness of the calculus MT with respect to the coalgebraic
semantics.

In this paper, which originated in the first author’s MSc thesis [2] supervised
by the second author, we continue the line of investigations of [10], taking their
result on one-step soundness and completeness as our starting point. (As a minor
difference with [10], we add explicit proposition letters to the language.) Our
main contribution is two-fold. First, based on adapting ideas from Schröder [17]
to the setting of Moss’ logic, we provide a coalgebraic construction that, given
an MT -consistent formula a, yields a finite model in which a is satisfied. As a
corollary, we considerably simplify the second part of the completeness proof
of [10] for the logic MT with respect to its intended, coalgebraic semantics. Our
second main result concerns a strong completeness result for MT , provided that
the functor T restricts to finite sets and weakly preserves limits of surjective
ω-cochains of finite sets. Our proof for this result is based on the quasi-canonical
model method of Pattinson & Schröder [18].

2 Preliminaries

Categories and Coalgebras We assume familiarity with basic notions from
category theory (such as categories, functors, and natural transformations), and



from coalgebra. Here we fix some notation and terminology. We restrict attention
to Set-based coalgebras, where Set denotes the category with sets as objects and
functions as arrows.

Convention 1 Throughout the paper we fix a functor T : Set → Set, which we
assume to preserve inclusions and weak pullbacks.

The restriction that T preserves inclusions is for reasons of presentation only;
we motivate the other restriction in Remark 1. Many (but not all) examples of
coalgebraically interesting set functors fall in the scope of our work. We mention
the inductively defined class EKPF of extended Kripke polynomial functors given
as follows

T := Id | C | P | Bω | Dω | T0 ◦ T1 | T0 + T1 | T0 × T1 | TD,

where C is an abitrary constant functor, P is power set, Bω is finitary multiset,
Dω is finitary probability distribution and TD is exponentiation with respect to
an arbitrary set. An example of a functor that does not preserve weak pullbacks
is the (monotone) neighborhood functor.

The finitary version Tω : Set → Set of T is given, on objects, by TωX :=⋃
{TY | Y ⊆ X,Y finite }, and on arrows by Tωf := Tf . It can be proved that

Tω also preserves inclusions and weak pullbacks. Given an object α ∈ TωA, we
let BaseA(α) denote the smallest finite subset of A such that α ∈ TBaseA(α);
in fact, the family of operations BaseA : TωA → PωA constitutes a natural
transformation Base : Tω→̇Pω [7].

Definition 1. A T -coalgebra is a pair (S, σ) where S is a set and σ : S → TS
is a function. A morphism of T -coalgebras from (S, σ) to (S′, σ′), written f :
(S, σ)→ (S, σ′), is a function f : S → S′ such that Tf ◦ σ = σ ◦ f .

Relation lifting The coalgebraic semantics of Moss’ coalgebraic language is
based on the notion of relation lifting that we now briefly discuss (see [10] for
more information). First we introduce some notation for relations and functions.
The graph of a function f : X → X ′ is the relation Grf := {(x, f(x)) ∈ X×X ′ |
x ∈ X}. The diagonal relation on a set X is denoted as IdX , and the converse
of a relation R as R .̆ Given subsets Y ⊆ X, Y ′ ⊆ X ′, the restriction of R to Y
and Y ′ is given as R �Y×Y ′ := R ∩ (Y × Y ′). The composition of two relations
R ⊆ X ×X ′ and R′ ⊆ X ′ ×X ′′ is denoted by R ; R′, whereas the composition
of two functions f : X → X ′ and f ′ : X ′ → X ′′ is denoted by f ′ ◦ f . Thus, we
have Gr(f ′ ◦ f) = Grf ; Grf ′.

Definition 2. [1] Given a binary relation R ⊆ X1 ×X2 with projection func-
tions πi : R→ Xi, we define its T -lifting TR ⊆ TX1 × TX2 as follows:

TR := {((TπR1 )ρ, (TπR2 )ρ) | ρ ∈ TR}.

Throughout the paper, we will use properties of the relation TR; unless
explicitly stated otherwise, these can always be derived by elementary means
from the following fact.



Fact 2 (Properties of Relation Lifting) The relation lifting T satisfies the
following properties, for all functions f : X → X ′, all relations R,S ⊆ X ×X ′,
R′ ⊆ X ′ ×X ′′, and all subsets Y ⊆ X, Y ′ ⊆ X ′:
1. T extends T : T (Grf) = Gr(Tf);
2. T preserves the diagonal: T (IdX) = IdTX ;
3. T commutes with relation converse: T (R )̆ = (TR)̆ ;
4. T is monotone: if R ⊆ S then T (R) ⊆ T (S);
5. T distributes over composition: T (R ; R′) = (TR) ; (TR′);
6. T commutes with restriction: T (R�Y×Y ′ ) = TR�TY×TY ′ .
7. Tω coincides with T : TωR = (TR)�TωX×TωX′ .

Remark 1. The main reason why we restrict our attention to coalgebra types
T that preserve weak pullbacks is that for these functors, T distributes over
relation composition (Fact 2(5)) [1, 19].

Applying relation lifting to the membership relation ∈, we obtain an inter-
esting operation. Given a set X, we let ∈X ⊆ X × PX denote the membership
relation, restricted to X. We define the map λTX : TPX → PTX by

λTX(Φ) := {α ∈ TX | α T∈X Φ},

and call elements of λTX(Φ) lifted members of Φ. Related to Fact 2(5) is that the
family of maps λTX : TPX → PTX constitutes a distributive laws of T over
the monad P (see [10] for a discussion). Of more immediate importance is the
following distributive law relative to the contravariant power set functor P̆ [4].

Fact 3 The family of maps λT provides a natural transformation λT : T P̆→̇P̆ T .

The following concept is needed in the axioms describing the interaction
between ∇ and conjunctions.

Definition 3. An object Φ ∈ TPX is a redistribution of A ∈ PTX if A ⊆
λTX(Φ). In case A ∈ PωTωX, we call a redistribution Φ slim if Φ ∈ TωPω(

⋃
α∈A Base(α)).

The set of slim redistributions of A is denoted as SRD(A).

Fact 4 [21] Given sets X,Y , a set Γ ∈ PTX and a surjection f : X → Y , we
have

{TPf(Φ) | Φ ∈ SRD(Γ )} = SRD(PTf(Γ )).

Propositional logic Given a set X, we define the set L0(X) of propositional
formulas over X by the following grammar:

a ::= x | ¬a |
∧
A |
∨
A,

where x ∈ X, and A ∈ PωL0(X). That is, as the primitive connectives of our
propositional language we take the unary symbol ¬ and the finitary meet and
join symbols,

∧
and

∨
. We abbreviate ⊥ :=

∨
∅ and > :=

∧
∅.

Given sets X and S, an X-valuation on S is a map V : X → PS; such a map
can be naturally extended to a homomorphism V̂ : L0(X) → PS by putting

V̂ (
∧
A) :=

⋂
{V0(a) | a ∈ A}, etc.



3 Moss’ logic and its axiomatization

In this section we briefly recall the syntax and semantics of Venema’s finitary
version of Moss’ coalgebraic logic [13, 20], and the axiomatization of its coalge-
braic valid formulas, given by Kupke, Kurz and Venema [10].

3.1 Moss’ logic

The finitary version L of Moss’ language is defined as follows.

Definition 4. Given a set Prop of variables, the set L(Prop) of Moss formulas
in Prop is given by the following grammar:

a ::= p | ¬a |
∧
A |
∨
A | ∇α

where p ∈ Prop, A ∈ PωL and α ∈ TωL.

Despite its unconventional appearance, the language L admits fairly standard
definitions of most syntactical notions. For example, we may define the (finite!)
set Sfor(a) of subformulas of a by a straightforward formula induction, of which
the only nonstandard clause concerns the nabla operator:

Sfor(∇α) := {∇α} ∪
⋃

a∈Base(α)

Sfor(a).

The elements of Base(α) ⊆ Sfor(∇α) will be called the immediate subformulas
of ∇α. Given a formula a, we define the single negation of a formula a as ∼a := b
if a = ¬b for some formula b, and as ∼a := ¬a otherwise.

Since in this paper we will not only be dealing with formulas and sets of
formulas, but also with elements of the sets TωL, PωTωL and TωPωL, it will be
convenient to use the following naming convention:

Set Prop L TωL PωL PωTωL TωPωL
Elements p, q, . . . a, b, . . . α, β, . . . A,B, . . . Γ,∆, . . . Φ, Ψ, . . .

We may see the boolean connectives
∨

and
∧

as maps from finite sets of
formulas to formulas,

∨
,
∧

: PωL → L. Applying the functor to these maps,
we obtain functions T

∨
, T
∧

: TωPωL → TL. In particular, for any object
Φ ∈ TωPωL, we obtain well-formed formulas of the form ∇(T

∨
)Φ and ∇(T

∧
)Φ.

Since we consider a version of Moss’ language with proposition letters, in
order to interpret this language we have to introduce valuations and models.

Definition 5. A valuation on a T -coalgebra (S, σ) is a valuation V : Prop →
PS; the induced structure (S, σ, V ) will be called a T -model. For such a model,
the satisfaction relation σ,V ⊆ S × L is defined by the following induction on
the complexity of formulas:

s σ,V p if s ∈ V (p),
s σ,V ¬a if s 6σ,V a,
s σ,V

∧
A if s σ,V a for all a ∈ A,

s σ,V
∨
A if s σ,V a for some a ∈ A,

s σ,V ∇α if σ(s) Tσ,V α.



(∇1)
{a 4 b | (a, b) ∈ Z}

∇α 4 ∇β (α, β) ∈ TZ

(∇2)
{∇(T

∧
)(Φ) 4 a | Φ ∈ SRD(Γ )}∧
{∇α | α ∈ Γ} 4 a

(∇3)
{∇α 4 a | α T∈ Φ}
∇(T

∨
)(Φ) 4 a

Table 1. Modal derivation rules of the system M

When no confusion is likely, we may write  instead of σ,V . If s σ,V a we say
that a is true, or holds at s in S, and we may write S, s  a, where S denotes
the T -model (S, σ, V ).

Two important observations about Moss’ logic are that it is adequate with
respect to behavioral equivalence (or, equivalently, bisimilarity), and expressive
when we confine attention to finitely branching coalgebras.

3.2 The derivation system M

When it comes to axiomatics, following [10] we find it convenient to take an
approach based on derivation systems that manipulate equations, or rather,
inequalities. An inequality is a pair consisting of two formulas a and b, usually
written a 4 b. Readers may think of this as the formula a → b, as is obvious
from the semantics.

Definition 6. An inequality a 4 b is valid, notation: |=T a 4 b, if for every
coalgebraic model S = (S, σ, V ), and any s ∈ S, if S, s  a, then S, s  b.

The following axiomatization for this logic was proved to be sound and com-
plete in [10].

Definition 7. The derivation system M is given by the derivation rules of Ta-
ble 1, together with any complete set of axioms and rules (in inequational format)
for classical propositional logic.

Observe that unless T restricts to finite sets, M is an infinitary derivation
system, in that the rules (∇2) and (∇3) may have infinitely many premisses.
To get some intuitive understanding of this derivation system, we first note that
(∇1) functions as a combined congruence and monotonicity rule. It has a side
condition expressing that it may only be applied when the set of premisses is
indexed by a relation Z such that (α, β) belongs to the lifted relation TZ. Each
of the other two rules should be seen as a distributive law (in the logical sense



of the word). To see this, first consider the case that T preserve finiteness. Then
we may replace the rules (∇2) and (∇3) with the following axioms:∧{

∇α | α ∈ Γ
}
4
∨{
∇(T

∧
)Φ | Φ ∈ SRD(Γ )

}
(∇2f )

∇(T
∨

)Φ 4
∨{
∇β | β T∈ Φ

}
(∇3f )

Roughly speaking, (∇3f ) expresses how ∇ distributes over disjunctions, while
(∇2f ) shows how a conjunction of nabla formulas can be rewritten as a disjunc-
tion of nabla formulas of conjunctions of the collection of immediate subformulas
of the nabla formulas. If T does not restrict to finite sets, we may still think of
(∇2) and (∇3) as these identities: the only problem is that the expressions on
the right hand side of (∇2f ) and (∇3f ) may no longer denote properly defined
formulas.

The notions of derivability with respect to this system is standard. A deriva-
tion is a well-founded tree, labelled with inequalities, such that the leaves of
the tree are labelled with axioms of M, whereas with each parent node we may
associate a derivation rule of which the conclusion labels the parent node itself,
and the premisses label its children. If there is a derivation of the inequality
a 4 b, we write `T a 4 b. A formula a is M-consistent if the inequality a 4 ⊥
is not derivable in M; a set A of formulas is consistent if the formula

∧
A0 is

consistent for each finite subset A0 ⊆ A.
The following theorem is the main result of Kupke, Kurz & Venema [10]

Fact 5 (Soundness and Completeness of M) [10] For each pair of formu-
las a, b ∈ L:

|=T a 4 b iff `T a 4 b.

The completeness proof in [10] proceeds in two steps. First the authors prove
a so-called one-step completeness result for their system; then they apply Pat-
tinson’s stratification method, involving the terminal sequence of the functor T ,
to prove Fact 5. The construction given in our paper will provide a much simpler
alternative for the second part of their proof.

3.3 One-step soundness and completeness

Given a set X, we define the set L∇(X) of rank-1 formulas in X by putting

L∇(X) := L0{∇α | α ∈ TωL0X}.

It will sometimes be convenient to think of L∇(X) as a propositional language,
generated from the set T∇ω (X) := {∇α | α ∈ TωL0X} as proposition letters.

Any valuation V : X → PS, interpreting elements of X as subsets of some set
S, not only extends to a propositional meaning function V̂ : L0(X)→ PS, it also

induces an interpretation Ṽ : L∇(X)→ PTS of rank-1 formulas in X as subsets



of TS. For the definition of Ṽ , observe that the map T V̂ : TωL0X → TPS
naturally yields a T∇ω (X)-valuation λTS ◦ T V̂ on TS given by, for α ∈ TωL0X:

∇α 7→ λTS (T V̂ (α)).

Then we define Ṽ :=
̂

λT ◦ T V̂ .
We may take the set PS itself as a collection of proposition letters; then

the identity map on PS becomes a special PS-valuation on PS: the identity
valuation on S, notation iS : PS → PS. We say that an L0(PS)-inequality

a 4 b is a true fact on PS, notation: |=S
0 a 4 b, if îS(a) ⊆ îS(b); an L∇(PS)-

inequality a 4 b is one-step valid, notation: |=S
1 a 4 b, if ĩS(a) ⊆ ĩS(b).

On the axiomatic side, we modify the derivation M into a one-step derivation
system MS , which only uses L0(PS) and L∇(PS)-formulas. More precisely,
a MS-derivation is a well-founded tree, labelled with L0(PS)- and L∇(PS)-
inequalities, such that (1) the leaves of the tree are labelled with true facts
on PS, whereas (2) with each parent node we may associate a derivation rule
of which (a) the conclusion is an L∇(PS)-inequality labelling the parent node
itself, (b) the premisses label its children, and (c) these premisses are either all
L∇(PS)-inequalities, or all L0(PS)-inequalities; in the latter case the children
are all leaves and the derivation rule is (∇1). Hence if we do induction on the
complexity of one-step derivations, we may assume that the base case is given by
an application of rule (∇1). If there is such a one-step derivation of the inequality
a 4 b, we write `S1 a 4 b.

Fact 6 (One-step soundness and completeness) [10] Given a set S, for
each pair of rank-1 formulas a, b ∈ L∇(PS):

|=S
1 a 4 b iff `S1 a 4 b.

4 A finite model construction

In this section we will give the main construction of this paper, serving to prove
Theorem 7 below. As a corollary we obtain Fact 5, the Soundness and Com-
pleteness Theorem of [10].

Theorem 7. Every consistent formula is satisfied in a finite T -coalgebra.

Our construction is based on ideas from Schröder [17]. To give a rough idea,
we need to introduce some terminology. We call a set of formulas closed if it is
closed under taking subformulas and single negations (∼). Given a closed set R
of formulas, we call a subset A ⊆ R an R-atom if A is a maximal consistent
subset of R. Any R-atom A has the properties, for every a ∈ R, that a ∈ A iff
∼a /∈ A, and for every a ∧ b ∈ R, that a ∧ b ∈ A iff both a ∈ A and b ∈ A, etc.
As usual it is straightforward to prove a Lindenbaum Lemma stating that every
consistent subset of R can be extended to an R-atom.



Definition 8. Given a formula c, let C(c) denote the smallest closed set con-
taining c, and define the closed set R(c) by

R(c) := {
∨
A∈A

∧
A,¬

∨
A∈A

∧
A | A ⊆ PC(c)}.

We let S(c) denote the set of R(c)-atoms.

Clearly S(c) is a finite set. Hence, by the Lindenbaum Lemma, in order to
prove Theorem 7, it suffices to build a model (S(c), σ, V ) on the set S(c) for
which we can prove a Truth Lemma stating that for all atoms/states A ∈ S(c)
and all formulas a ∈ C(a):

a ∈ A iff A σ,V a. (1)

The proof of this Truth Lemma will proceed by a formula induction. It should
be obvious how to define a valuation V : Prop → S(c) ensuring (1) for atomic
formulas a; the earlier mentioned properties of atoms takes care of the boolean
cases of the inductive step of the proof. In order to prove the ∇-case of the
induction, we have to come up with a proper definition of the coalgebra map σ :
S(c)→ TS(c). This definition will be crucially based on the one-step soundness
and completeness (Fact 6).

Turning to the technicalities, we fix a consistent formula c, and write C,R
and S instead of C(c), R(c) and S(c). For technical reasons, it will be convenient
to see formulas in R as separate proposition letters; formally we define

R := {b | b ∈ R},

and we assume the existence of a bijection q : R → R given by q(b) := b. In
order to apply the one-step soundness and completeness, we link this set with
PS by defining the valuation j : R→ PS as follows:

j(b) := {A ∈ S | q(b) = b ∈ A}.

It is straightforward to verify that j is surjective: For each A ∈ S we have
j(
∧

(A ∩ C)) = {A} and for each Z ⊆ S we have j(
∨
A∈Z

∧
(A ∩ C)) = Z. We

extend j to a function j0 : L0R → L0PS by inductively defining j0(¬b) =
¬j0(b), j0(

∧
B) =

∧
{j0(b′) | b′ ∈ B} and j0(

∨
B) =

∨
{j0(b′) | b′ ∈ B} for all

b ∈ L0R and B ⊆ L0R. We now lift j0 to a function j1 : L∇R → L∇PS, by
putting j1(∇β) = ∇Tj0(β), j1(¬b) = ¬j1(b), j1(

∧
B) =

∧
{j1(b′) | b′ ∈ B} and

j1(
∨
B) =

∨
{j1(b′) | b′ ∈ B} for all ∇β ∈ L∇R, b ∈ L∇R and B ⊆ L∇R.

In the same way we obtain q0 and q1 from q. Note that all these functions
are surjective, however, q0 and q1 are not necessarily injective. For example take
any a ∧ b ∈ R, then q0(a ∧ b) = q0(a ∧ b) = a ∧ b.

Lemma 1 below, our main technical lemma, links M-derivations of formulas
in L0R and L∇R to, respectively, true facts on PS, and one-step derivations of
formulas in L∇PS. The R-formulas serve as a bridge between R-formulas and
PS-formulas.



Lemma 1. 1. For a, b ∈ L0R we have `M q0(a) 4 q0(b) iff |=S
0 j0(a) 4 j0(b).

2. For a, b ∈ L∇R we have `M q1(a) 4 q1(b) iff `S1 j1(a) 4 j1(b).

Proof. For part 1, first observe that by some routine propositional reasoning,
we may reduce the problem to the case where a =

∧
A and b =

∨
B for some

A,B ⊆ R. (To see this, note that
∨
A′ 4 b corresponds to the set {a′ 4 b | a′ ∈

A′}, etc.)

First suppose that `M q0(
∧
A) 4 q0(

∨
B), then the set {q(a′) | a′ ∈ A} ∪

{¬q(b′) | b′ ∈ B} is M-inconsistent. We claim that if {q(a′) | a′ ∈ A} ⊆ D for
some D ∈ S, then q(b′) ∈ D for some b′ ∈ B. (If not, then since D is an R-atom,
we would obtain ¬q(b′) ∈ D for all b′ ∈ B, contradicting the consistency of D.)

Therefore we have îSj0(
∧
A) =

⋂
a′∈A j(a

′) ⊆
⋃
b′∈B j(b

′) = îSj0(
∨
B), thus

j0(
∧
A) � j0(

∨
B) is a true fact on PS.

For the other direction, suppose that 6`M q0(
∧
A) 4 q0(

∨
B), then the set

{q(a′) | a′ ∈ A}∪ {¬q(b′) | b′ ∈ B} is M-consistent. By the Lindenbaum Lemma

there exists a D ∈ S extending this set. Thus D ∈ îSj0(
∧
A) =

⋂
a′∈A j(a

′),

but D /∈ îSj0(
∨
B) =

⋃
b′∈B j(b). Therefore

⋂
a′∈A j(a

′) *
⋃
b′∈B j(b

′) and thus
j0(
∧
A) � j0(

∨
B) is not a true fact on PS.

For part 2, we only consider the direction from right to left. (The other direc-
tion, which we do not need in the remainder, is proved similarly.) By induction
on the complexity of one-step derivation trees we will show that any one-step
derivation tree D, of which the root is labelled with an inequality j1(a) 4 j1(b),
can be transformed into an M-derivation tree for the inequality q1(a) 4 q1(b).

Base case: ∇1 By definition of our one-step derivation tree, we may just as
well assume that in the base case of our inductive proof we are dealing with an
instance of the rule ∇1, of which the premisses are all true facts on PS. More
precisely, in this case the conclusion j1(a) 4 j1(b) stems from some a = ∇α
and b = ∇β (where α, β ∈ TL0R) in the sense that j1(a) = ∇Tj0(α) and
j1(b) = ∇Tj0(β), and the last applied rule was

(∇1)
{a′ � b′ | (a′, b′) ∈ Z}
∇Tj0(α) � ∇Tj0(β)

(Tj0(α), T j0(β)) ∈ TZ.

for some relation Z ⊆ L0PS × L0PS. In fact, given the properties of relation
lifting, we may assume without loss of generality that

Z = {(a′, b′) ∈ Base(Tj0(α))× Base(Tj0(β)) | a′ 4 b′ is a true fact }.

By the naturality of Base we have for all δ ∈ TL0R

Base(Tj0(δ)) = {j0(d) | d ∈ Base(δ)}. (2)

Now define

Ẑ := {(a′, b′) ∈ Base(α)× Base(β) | q0(a′) 4 q0(b′) is derivable},



then by equation (2) and by part 1, we have for all a′ ∈ Base(α), b′ ∈ Base(β)
that (j0(a′), j0(b′)) ∈ Z iff (a′, b′) ∈ Ẑ. From this it follows by the properties of
relation lifting that for all α′ ∈ TBase(α), β′ ∈ TBase(β):

(Tj0(α′), T j0(β′)) ∈ TZ iff (α′, β′) ∈ T Ẑ.

In particular, we obtain that (α, β) ∈ T Ẑ. Again using the properties of relation
lifting we may conclude from this that

(Tq0(α), T q0(β)) ∈ T
(
{(q0(a′), q0(b′)) | (a′, b′) ∈ Ẑ}

)
.

But then, since q1(a) = ∇Tq0(α) and q1(b) = ∇Tq0(β), we can derive the
inequality q1(a) 4 q1(b), as follows:

(∇1)
{q0(a′) � q0(b′) | (a′, b′) ∈ Ẑ}
∇Tq0(α) � ∇Tq0(β)

,

where all premisses are derivable by definition of Ẑ.

In the inductive step we make a case distinction; we only consider the cases
where the last applied rule was (∇3).

Inductive case: (∇3) Suppose that j1(a) is of the form ∇(T
∨

)(Ψ) for some

Ψ ∈ TPL0PS, and that the last applied rule is:

(∇3)
{∇β � j1(b) | β T∈ Ψ}
∇(T

∨
)(Ψ) � j1(b)

(3)

We claim that a is of the form ∇(T
∨

)(Φ) for some Φ ∈ TωPωL0R such that
Ψ = TPj0(Φ). To see this, first observe that a must obviously be of the form
∇α for some α ∈ TωL0R; we will show that α is of the form T

∨
(Φ) with Φ

as above. For this purpose, note that by definition of j0, if a′ ∈ L0R is such
that j0(a′) =

∨
A for some A ∈ PωL0PS, then a′ must be of the form

∨
B for

some B ∈ PωL0R with A = {j0(b′) | b′ ∈ B}. This condition can be expressed
as Gr(j0) ; (Gr

∨
)̆ ⊆ (Gr

∨
)̆ ; Gr(Pj0). Then by the properties of relation

lifting we find that Gr(Tj0) ; (GrT
∨

)̆ ⊆ (GrT
∨

)̆ ; Gr(TPj0). From this the
existence of the required object Ψ is immediate.

In order to find an M-derivation for the inequality q1(a) 4 q1(b), we calculate
q1(a) = q1(∇(T

∨
)(Φ)) = ∇(T

∨
)(TPq0(Φ)). Aiming to derive∇(T

∨
)(TPq0(Φ))

4 q1(b) via the rule (∇3), let β be an arbitrary lifted member of TPq0(Φ).
From β ∈ λT (TPq0(Φ)) = PTq0(λT (Φ)), we obtain that β is of the form
Tq0(α′), for some lifted member α′ of Φ. But from α′ ∈ λT (Φ) it follows
that Tj0(α′) ∈ PTj0(λT (Φ)) = λT (TPj0(Φ)) = λT (Ψ). Now observe that
j1(∇α′) = ∇Tj0(α′), and so the inequality j1(∇α′) 4 j1(b) is one of the pre-
misses of (3). Thus by the inductive hypothesis, we have a M-derivation for
the inequality q1(∇α′) 4 q1(b), which is nothing but ∇Tq0(α′) 4 q1(b), that is,
∇β 4 q1(b).



It follows that we can derive q1(a) = ∇(T
∨

)(TPq0(Φ)) � q1(b) by

(∇3)
{∇β � q1(b) | β T∈ TPq0(Φ)}
∇(T

∨
)(TPq0(Φ)) � q1(b)

On the basis of Lemma 1(2) we can prove the existence of a coalgebra map
σ : S → TS with the right properties. Note that jq−1(b) = {B ∈ S | b ∈ B}

Lemma 2 (Existence Lemma). There is a map σ : S → TS such that for all
atoms A ∈ S and all formulas of the form ∇α ∈ R:

∇α ∈ A iff σ(A) T∈ T (jq−1)(α). (4)

Proof. Suppose towards contradiction that for some A ∈ S there is no σ(A) that
satisfies equation (4). Define b :=

∧
∇α∈A∇Tq−1(α) ∧

∧
¬∇α∈A ¬∇Tq−1(α). By

assumption we have

ĩSj1(b) =
⋂
∇α∈A

λT (T (jq−1)(α)) ∩
⋂

¬∇α∈A
TS \ λT (T (jq−1)(α)) = ∅.

In other words, |=S
1 j1(b) � ⊥, and so we have `S1 j1(b) � ⊥ by one-step com-

pleteness. Then Lemma 1 provides an M-derivation of q0(b) � ⊥, contradicting
the consistency of A.

Lemma 3 (Truth Lemma). Let (S, σ, V ) be a model where S is the set of R(c)-
atoms, σ is any map satisfying condition (4) of Lemma 2, and V : Prop→ PS is
given by V (p) := {A ∈ S | p ∈ A}. Then (1) holds for all a ∈ C and all A ∈ S.

Proof. Via a straightforward induction on the complexity of a. We only discuss
the case a = ∇α. By definition of the semantics we have A  ∇β iff σ(A) T β,
and by Lemma 2 we have ∇β ∈ A iff σ(A) T∈ T (jq−1)(β). So in order to finish
the proof, it suffices to show that T = T∈ ; Gr(T (jq−1))̆ , or, equivalently,
that (*) T = T∈ ; Gr(Tj)̆ ; Gr(Tq). But inductively, if we restrict to formulas
b ∈ R of smaller complexity than ∇α, we have that jq−1(b) = {B ∈ S | b ∈
B} = {B ∈ S | B  b}. This means that  = ∈ ; Gr(j)̆ ; Gr(q) so that (*)
directly follows by the properties of relation lifting.

The proof of Theorem 7 is now straightforward. If c is a consistent formula, it
belongs to some R-atom A by the Lindenbaum Lemma. Then by the Existence
Lemma and the Truth Lemma, we can endow the (finite!) set S of R-atoms with
a coalgebra structure σ and a valuation V such that A σ,V a.

5 Strong completeness

In this section we will prove strong completeness of the axiom system M. That is,
we will prove that, given some restrictions on the functor T , every M-consistent
set of formulas is satisfiable. It might be possible to see our strong completeness



result as a special case of Theorem 8.1 in Kurz & Rosický [12] (see also [9]). Nev-
ertheless, we believe our short, direct proof, which follows the ideas of Pattinson
& Schröder [18], to be of value.

Our purpose is to endow the set S of maximal M-consistent sets of formulas
with a coalgebra structure σ : S → TS and a valuation V such that for all A ∈ S
we can prove the following Truth Lemma, stating that for all formulas a:

a ∈ A iff A σ,V a. (5)

The idea underlying the construction of σ is that, for each A ∈ S, we may
approximate σ(A) by considering finite versions of S. For this purpose, enumerate
Prop = {pi | i ∈ ω}, and define Propn := {pi | 0 ≤ i < n}. Let L0 = L0(∅) and
let Ln denote the set L0(Propn+1 ∪ {∇α | α ∈ TLn}). Then clearly L(Prop) =⋃
n∈ω Ln. Let Sn be the set of Ln-atoms. It is not hard to show that if T restricts

to finite sets, then each Ln is finite modulo equivalence, whence each Sn is finite.
We let hn : Sn+1 → Sn and πn : S → Sn be defined by hn(A) := A ∩ Ln and
πn(A) := A ∩ Ln. By the Lindenbaum Lemma all hn and πn are surjective.

On the basis of the results in the previous section we can prove the following
lemma.

Lemma 4. For each maximal consistent set A ∈ S there is a family (τn)n∈ω,
with τn ∈ TSn, and such that for all n:

(Thn)τn+1 = τn, (6)

and for all α ∈ TLn it holds that

∇α ∈ πn+1(A) iff α T∈ τn. (7)

Note that (7) requires a relation between elements of Sn+1 and objects, not in
TSn+1, but in TSn.

Proof. (Sketch) For each n let An ∈ Sn denote the atom πn(A). Using the
methods of the previous section it is straightforward to show that for the atom
An ∈ Sn there is an object ρ ∈ TSn which works for An in the sense that for
all α ∈ TLn−1 it holds that ∇α ∈ An iff α T∈ ρ. It is not hard to show that if
ρ ∈ TSn+1 works for An+1 then (Thn)ρ works for An. Consider the tree with
nodes N :=

⋃
n∈ω{ρ ∈ TSn | ρ works for An}, and edge relation E given by

ρEρ′ iff ρ = (Thn)ρ′ for some n. By König’s Lemma this tree has an infinite
path (τn)n∈ω, and it is a routine exercise to verify that this family satisfies the
required properties.

The point of considering the sequence (τn)n∈ω is that, under some condition
on T , they approximate some object τ ∈ TS, that we can take for our σ(A).
To formulate this condition, we define a surjective ω-cochain of finite sets to be
a sequence (Xn)n∈ω of finite sets, with surjections hn : Xn+1 → Xn that are
called projections. In Set, such a diagram has a limit X with limit projections
πn : X → Xn. Clearly also in Set each endofunctor T transforms a surjective



ω-cochain of sets into a surjective ω-cochain of sets. Now, to say that T weakly
preserve limits of these diagrams means that whenever we have a diagram as
above, with limit (X, (πn)n∈ω), the set TX with the maps Tπn : TX → TXn is
a weak limit of the diagram ((TXn)n∈ω, (pn)n∈ω). An equivalent requirement is
that for each so-called coherent family (τn ∈ TXn)n∈ω (that is, satisfying (6) for
all n), there is a (not necessarily unique) element τ ∈ TX such that Tπn(τ) = τn
for all n.

On the basis of Lemma 4 we can now prove the following.

Lemma 5. Let T restrict to finite sets and weakly preserve limits of surjective
ω-cochains of finite sets. Then there is a coalgebra map σ : S → TS and a
valuation V : Prop → PS such that for all a ∈ L(Prop), and all A ∈ S, the
Truth Lemma (5) holds.

Proof. We define V : Prop → PS by putting V (p) := {A ∈ S | p ∈ A}. For the
definition of σ, take an arbitrary A ∈ S, and consider the coherent family (τn)n∈ω
of Lemma 4. By the assumptions on T , we may fix an element σ(A) ∈ TS such
that Tπn(σ(A)) = τn for each n.

By induction on n we prove that for all a ∈ Ln we have

A σ,V a iff a ∈ πnA. (8)

Confining our attention to the inductive case where n = k + 1, we prove (8) by
formula induction, and we only cover the case where a = ∇α. Note that here we
have α ∈ TLn, and this enables us to apply the outer induction hypothesis.

Now we prove (8) by the following chain of equivalences (writing  rather
than σ,V ):

A  ∇α iff (σ(A), α) ∈ T (definition of )

iff (σ(A), α) ∈ T
(
�S×Lk

)
(Fact 2)

iff (σ(A), α) ∈ T
(
Gr(πk) ; (∈)̆

)
(inductive hypothesis)

iff α T∈ Tπk(σ(A)) (Fact 2)

iff α T∈ τk (definition of σ)

iff ∇α ∈ πk+1(A) (equation (7))

Finally, the Truth Lemma is immediate from (8) by the fact that L(Prop) =⋃
n∈ω Ln and the definitions.

On the basis of this the following is immediate.

Theorem 8. Let T restrict to finite sets and weakly preserve limits of surjective
ω-cochains of finite sets. Then the logic MT is strongly complete with respect to
its coalgebraic semantics.
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