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We fix a logical connection (Stone � Pred : Setop −→ BA given by 2 as a schizophrenic

object) and study coalgebraic modal logic that is induced by a functor T : Set −→ Set that

is finitary and standard and preserves weak pullbacks and finite sets. We prove that for any

such T , the cover modality nabla is a left (and its dual delta is a right) adjoint relative to

�ω . We then consider monotone unary modalities arising from the logical connection and

show that they all are left (or right) adjoints relative to �ω .

1. Introduction

We are going to study universal properties of modalities in coalgebraic modal logic,

considered as monotone operations on the set of modal formulas, preordered by the

semantic consequence relation.

In coalgebraic logic, there are essentially two approaches to modalities: modalities are

given by predicate liftings , which can be viewed as the modalities described in Section 2.2,

(Pattinson 2003), or, in the case of set-coalgebras, by cover modalities that identify the

modalities with the coalgebra functor (Moss 1999).

In either case, we are naturally interested in the adjointness properties of the modalities

that would entail their ‘nice’ behaviour, for example, with respect to suprema/infima in

the consequence preorder. However, it can be seen almost immediately that a monotone

modality can rarely be a left or right adjoint, since, typically, a modality preserves only

some and not all suprema/infima.

In this paper, we show that all cover modalities and all monotone unary modalities

do indeed enjoy adjointness properties in a weaker sense: the desired left/right adjoints

do exist if we require the adjointness property to hold only relative to the doctrine �ω
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of free join-semilattices – see Definition 2.11 for details. In fact, as we argue below, this

weak notion of adjointness is, when proper adjunction is not available, the ‘second best’

one can hope for in case of finitary languages.

Moreover, such adjointness has a proof-theoretic significance: proper adjointness is

closely related to the possibility of formulating a sound and invertible rule for the

operator in question. The above weaker adjointness property indicates a possibility of

formulating a weakly invertible rule. The rule, read backwards, gives finitely many possible

continuations of the proof search – a situation well known in the proof theory of modal

logics.

Adjointness properties of modalities only make sense, of course, for monotone modal-

ities. Monotone modalities yield expressive languages for coalgebraic functors preserving

weak pullbacks (Kurz and Leal 2009). Furthermore, monotone modalities having an

expressive language allow one to add fixpoint operators to the language.

Our propositional setting for coalgebraic modal logic is classical , that is, we work over

Boolean algebras. It is not hard to see, however, that one can obtain the same results for

positive fragments of the logics in question, that is, for the case when the propositional part

of the logic is given by distributive lattices. We indicate below how such a generalisation

can be made.

1.1. Organisation of the paper

After recalling the notions required for the rest of the paper in Section 2, we prove in

Section 3 that every nabla cover modality is a left adjoint and every delta cover modality

is a right adjoint in the weak sense. In this way we generalise the results of Santocanale

and Venema (2007) for coalgebras for the finitary powerset functor to a rather wide class

of functors. In Section 4 we analyse monotone unary modalities and prove that every such

modality is a left adjoint in the weak sense. We also prove a structural result: every unary

monotone modality is a finite join of unary modalities that are both left and right adjoints

in the weak sense. For that our coalgebraic behaviour functor needs to fulfil certain side

conditions – see Section 2.1.

1.2. Related work

We should certainly mention the paper Schröder and Venema (2010), which was written

in parallel with our work. While the main purpose of Schröder and Venema (2010) was to

generalise the completeness result of Santocanale and Venema (2007) to a more general

coalgebraic setting, the notion of O-adjointness also plays a supporting but crucial role†.

Working in a setting of modalities obtained from predicate liftings, Schröder and Venema

isolate a fairly large syntactic fragment of the language, consisting of so-called admissible

formulas, which they prove to be O-adjoints. We will discuss the relation between the two

papers in more detail in Remark 5.1.

† The notion of O-adjointness is exactly our notion of adjointness relative to �ω – see Definition 2.11.
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2. Preliminaries

In this section we gather together the notions we will need in the rest of the paper.

Most of the material presented here is standard, and the details can be found in the

references.

2.1. The basic setting of coalgebraic modal logic

We study the coalgebraic modal logic induced by a functor T : Set −→ Set (thus, we

study a logic of T -coalgebras) where T has the following properties:

(1) T is finitary, standard and preserves weak pullbacks.

(2) T preserves finite sets.

The preservation of weak pullbacks is crucial for the whole setting to work – it enables

one to pass from the category Set to the category PreOrd of preorders and monotone

maps. The concepts we use for defining the semantics live naturally in PreOrd, the basic

example being the concept of relation lifting used to define the semantics of the nabla

modality.

A functor T : Set −→ Set is said to be standard if it preserves inclusions and

each distinguished point of T is standard. Here, a point x ∈ TX is distinguished if

Tf(x) = Tg(x) holds for every pair f, g : X −→ Y . And a point x ∈ TX is standard if

x = T !X(x0) for some x0 ∈ T� and the unique map !X : � −→ X.

We restrict ourselves to standard functors (the concept goes back to Trnková (1969))

since they behave well with respect to the preservation of set inclusions and finite

intersections. Namely, every standard functor preserves inclusions (by definition) and

finite intersections of sets (see, for example, Adámek (1983, Theorem 5.9)).

The requirement to be finitary produces finitary logic (which is not so important per se

if one is ready to use infinitary languages), but also means that the adjointness result is

to be obtained relative to �ω (and it is crucial for this). For the latter result, we also need

the requirement that T preserves finite sets (see Example 3.1).

We consider two different, though closely related, ways of defining a modal language

for T -coalgebras. The first is based strictly on a logical connection between a category of

spaces, where the coalgebras are studied, and a category of algebras, where the logic is

studied, induced by a schizophrenic object (which represents the external ‘truth values’),

see, for example, Bonsangue and Kurz (2005) or Pavlović et al. (2006). Throughout

this paper, we fix spaces to be the category Set of sets and mappings and algebras to

be the category BA of Boolean algebras, and the schizophrenic object to be the two-

element set (Boolean algebra) 2. However, we want to be as open as possible to possible

generalisations of all three ingredients, so we will continue to distinguish the three levels.

In this paper we will concentrate on unary monotone modalities arising from the logical

connection.

The other approach to coalgebraic modal logic is based on Moss’ cover modality nabla

(Moss 1999), which comes naturally with a functor T as its ‘arity’, and its semantics arises

from the notion of relation lifting given by T .
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For the propositional part of the logics, we fix a countable set of propositional variables

Prop and consider the following propositional language L0:

a ::= p | ¬a |
∧

ϕ |
∨

ϕ

where p ∈ Prop and ϕ is in PωL0. We will use the abbreviations � :=
∧

� and ⊥ :=
∨

�.

We will also consider the positive fragment L +
0 of the language dropping the clause

for negation from the definition, and a variant of L0 with negations restricted to act on

propositional variables only. We will consider extensions of the propositional language

L0 and its variants with various modalities. If no confusion arises, we will simply denote

all the resulting modal languages by L to help keep the proofs readable.

In our approach, propositional letters are not a part of the coalgebraic functor. T -

coalgebras are therefore the frames, and the semantics is completed by adding a valuation

map in the usual manner (in the setting of a logical connection of Section 2.2, given a T

coalgebra c : X −→ TX, a valuation is an algebraic homomorphism ‖.‖ : L0 −→ PredX).

2.2. Modalities arising from a logical connection

The T -coalgebras considered in this paper live in the category Set, and we assume that

the propositional part of the modal logic is classical, therefore we fix a logical connection

Stone � Pred : Setop −→ BA (2.1)

between the category Set and the category BA of Boolean algebras and their homomorph-

isms that is induced by a two-element schizophrenic object.

This means that, for every set X, the algebra PredX of predicates on X is the Boolean

algebra [X, 2] of characteristic functions on X, and for every Boolean algebra A, the set

StoneA is the set BA(A, 2) of all ultrafilters on A. Predicates on X can be seen as possible

meanings of formulas, while the set BA(A, 2) of all ultrafilters on A is the set of theories

of states.

By a well-known procedure (Bonsangue and Kurz 2005), there is a way of constructing

the Boolean algebra L of formulas of the modal logic corresponding to T . Namely, for

every natural number n, the elements ♥ of the set Set(T (2n), 2) are the n-ary modalities

of the logic and every formula of the form ♥(a0, . . . , an−1) has an interpretation

‖♥(a0, . . . , an−1)‖c : X −→ 2, x 	→ 1 iff x �c ♥(a0, . . . , an−1)

in a coalgebra c : X −→ TX. The interpretation of ♥(a0, . . . , an−1) is defined inductively

as the composite

X
c �� TX

T 〈‖a0‖c,...,‖an−1‖c〉
�� T (2n)

♥ �� 2

One can see each modality ♥ : T (2n) −→ 2 as coming with its ‘truth table’, where

objects in T (2n) are its ‘rows’ coding the ‘type of future’ of the state of a coalgebra with

respect to the validity of an n-tuple of formulas, each such ‘type of future’ returning

a value in 2. The modalities we consider here are in one-to-one correspondence with

predicate liftings (Pattinson 2003).
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We slightly abuse the notation and use the same ♥ sign to denote the corresponding

operator on the free modal algebra L maping an n-tuple of formulas to a formula.

The logical connection taken together with T automatically induces all possible

modalities, amongst which we will concentrate on the unary monotone ones. A modality

is monotone if the underlying map ♥ : T (2n) −→ 2 is monotone. Here we consider T (2n)

with the preorder lifted from that on 2n – see Section 2.3.

It is not difficult to see that if ♥ is monotone, the corresponding operator on formulas

is monotone with respect to the (local) consequence preorder given by the coalgebraic

semantics.

We will study the basic unary monotone modalities that arise naturally from the logical

connection in Section 4 and are given by members of T2 (they can be related to the

singleton predicate liftings of Kurz and Leal (2009), only here we consider them to

be monotone). We show that they are essentially equivalent to simple nablas or deltas

defined in Section 2.3. This is one way that nablas appear in the setting given by the

logical connection.

Moreover, the above logical connection (2.1) can be replaced by one having the category

DL of distributive lattices instead of Boolean algebras, thereby yielding results on positive

fragments of modal languages.

2.3. Cover modalities nabla and delta

There is a general single modality ∇, called the cover modality , that corresponds directly

to the functor T . Rather than n-tuples, ∇ can be applied to ‘T -tuples’, that is, for every

α ∈ TL we have a formula ∇α†. Thus the language we consider is

a ::= p | ¬a |
∧

ϕ |
∨

ϕ | ∇α,

where p is a propositional variable, ϕ is in PωL and α is in TL .

In order to define the semantics of the cover modality, we need to exploit the fact

that T preserves weak pullbacks: it is known, see, for example, Moss (1999), that the

preservation of weak pullbacks implies that T can be lifted to the functor T on the

category Rel of binary relations in the following sense.

For a binary relation R ⊆ A × B, represented as a span

Routl

�����
��� outr

����
���

�

A B

where outl and outr are the left-hand and right-hand projections, respectively, we form

the span

TRToutl
������

�� Toutr
�����

���

TA TB

† Note that here we are not quite in the setting of the logical connection fixed above, since the functor T is

also freely used on the ‘algebra’ side. However, the idea of T providing the arity as well as the semantics is

natural, and everything works well in the setting we are in (based on Set as the basic category).
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and denote the corresponding binary relation between TA and TB by R. Thus,

(a, b) ∈ R if and only if there exists a witness w ∈ TR such that

Toutl(w) = a

Toutr(w) = b.

The lifted functor T : Rel −→ Rel then acts as follows:

(1) For every object A of Rel, that is, for every set A, we put T A = TA.

(2) For every morphism R : A −→ B in Rel, that is, for every binary relation R ⊆ A × B,

we define T R to be the binary relation R⊆ TA × TB, described above.

The lifting of relations allows us to define the semantics ‖∇α‖c : X −→ 2 in the

coalgebra c : X −→ TX by putting

x �c ∇α iff c(x) �c α

Example 2.1. For the powerset functor P : Set −→ Set, the lifted binary relation R ⊆
PA × PB of R ⊆ A × B can be described in the Egli–Milner manner, that is, (a, b) ∈ R

holds if and only if the following two conditions hold:

(1) For all i ∈ a there exists j ∈ b such that (i, j) ∈ R.

(2) For all j ∈ b there exists i ∈ a such that (i, j) ∈ R.

Thus the semantics of the cover modality ∇ for P takes the following form: given a

coalgebra c : X −→ PX (that is, given a Kripke frame c), we define

x �c ∇α iff for every x′ ∈ c(x) there exists a ∈ α such that x′ �c a, and

for every a ∈ α there exists x′ ∈ c(x) such that x′ �c a.

for every α ∈ PL .

In fact, the lifted functor T induces an endofunctor of the category PreOrd of preorders

and monotone maps, which we again denote by T . More precisely, for a preorder 〈X,�〉,
we put T 〈X,�〉 = 〈TX,�〉 (where � is the lifted relation �) and, for a monotone map

f : 〈X,�〉 −→ 〈Y ,�〉, we put Tf = Tf (this is correct since it is easy to verify that Tf

is monotone with respect to the lifted preorders).

Moreover, T : PreOrd −→ PreOrd is locally monotone, that is, it preserves the preorder

on hom-sets.

In order to access the subformulas of ∇α, we need, for each α ∈ TL , the notion of its

base. We will now give a general definition and exploit some of its properties.

Definition 2.2 (Venema 2006). We define, for every X, the mapping

BaseX : TX −→ PωX

by putting

BaseX(z) =
⋂

{W | W ∈ PωX such that z ∈ TW }.
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Note that, for a fixed X and z ∈ TX, the system

{W | W ∈ PωX such that z ∈ TW }

is always non-empty since T is finitary. Thus BaseX(z) is always a finite set. The set

BaseX(z) may be empty, but the following result shows that BaseX(z) is the smallest

finite set W such that z ∈ TW .

Lemma 2.3. For every z ∈ TX, we have z ∈ TBaseX(z).

Proof. Since T is assumed to be finitary, there exists a finite set W0 such that z ∈ TW0.

We define the finite set Z by

Z =
⋂

{W | W ⊆ W0 such that z ∈ TW }.

We then claim the following:

(1) z ∈ TZ .

(2) Z ⊆ BaseX(z).

The first assertion follows immediately from the fact that T is standard and hence

preserves finite intersections (see, for example, Adámek (1983)). The second assertion then

follows from the first as follows. First observe that if z ∈ TW for a finite set W , then

Z ⊆ W . This is because if z ∈ TW , then z ∈ TW ∩ TZ = T (W ∩ Z), so Z ⊆ W ∩ Z .

But the last inclusion implies that Z ⊆ W . Thus Z ⊆ BaseX(z).

To complete the proof, we use the fact that T , being standard, preserves inclusions, so

z ∈ TZ ⊆ TBaseX(z).

The following technical lemma shows that lifted relations can be restricted to bases.

Lemma 2.4. Suppose R ⊆ X × Y and x R y holds. Then there exists

S ⊆ BaseX(x) × BaseY (y)

such that S ⊆ R and x S y.

Proof. Consider the diagram

S

outl

����
��
��
�

outr

��
��

��
��

�

S1

outl

����
��
��
��
�

outr

��
��

��
��

��
S2

outl

��		
		
		
		 outr

		
















BaseX(x)

incl
		















R

outl
��		
		
		
		

outr
��
��

��
��

��
BaseY (y)

incl
����
��
��
��
�

X Y

where incl denotes the inclusions and all the squares are pullbacks.

Since injective mappings are stable under pulling back, we know that S is a subset of

R through the injective diagonal f : S −→ R of the middle pullback.
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Let w ∈ TR be the witness of x R y. Since T preserves all the above pullbacks weakly,

and since x ∈ TBaseX(x) and y ∈ TBaseY (y), we conclude that there exists w′ ∈ TS

with Tf(w′) = w and, moreover, w′ witnesses x S y.

The notion of a base extends naturally to objects A of type PωTL as follows:

Base[A] =
⋃

{Base(α) | α ∈ A}. (2.2)

Another technicality we use when working with nabla is the notion of slim redistribution

(Kupke et al. 2008; Bı́lková et al. 2008).

Definition 2.5. An element Φ ∈ TPωL is a slim redistribution of A ∈ PωTL (notation

Φ ∈ SRD(A)) if the following two conditions hold:

(1) A ⊆ {α ∈ TL | α ∈ Φ}.
(2) Φ ∈ TPωBase[A].

Example 2.6. If T is the power set functor, a set Φ ∈ PωPωX is a slim redistribution

of a set A ∈ PωPωX if and only if
⋃
A =

⋃
Φ (by condition (2) of Definition 2.5) and

ϕ ∩ α �= � for all ϕ ∈ Φ and α ∈ A (by condition (1) of 2.5).

In addition to ∇, there is always its boolean dual modality ∆ : TL −→ L satisfying

∆α ≡ ¬∇(T¬)α

(where T¬ : TL −→ TL is the lifted negation operation). Observe that the following

lemma holds for its coalgebraic interpretation.

Lemma 2.7. For any coalgebra c : X −→ TX and any x ∈ X, we have x ��c ∆β if and

only if c(x) ��c β.

Here, we will just mention those properties of this delta modality that we will need

later – see the paper Kissig and Venema (2009) for a detailed discussion. In the following

we consider L to be a boolean language with negations restricted to occur at atoms only,

and with both ∇ and ∆ (we can clearly do this without loss of generality). We will also

consider its positive variant without negation.

We define a dualisation map d : L −→ L and its lifting Td : TL −→ TL inductively:

d(p) = ¬p d(¬p) = p

d(a ∧ b) = d(a) ∨ d(b) d(a ∨ b) = d(a) ∧ d(b)

d(∇α) = ∆(Td)α d(∆α) = ∇(Td)α.

(2.3)

It is clear that through dualisation, we can define nabla using delta and vice versa,

though this mutual definition only works in the presence of negation. In the positive case

we will need another definition – see below. However, it is easy to see that both in the

full boolean case and in the positive case d and Td satisfy the following lemma.
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Lemma 2.8. For every α, β ∈ TL and a, b ∈ L , we have:

(1) (Td)α � β if and only if (Td)β � α.

(2) d(a) � b if and only if d(b) � a.

(3) (Td)(Td)α = α.

(4) d(d(a)) = a.

Not only is ∆ definable from nabla using Boolean negation, but we also have the

following definability result, which holds independently of there being a negation in the

language and thus also applies to the positive case:

∆β =
∨

{∇γ | γ ∈ Q(β)}, (2.4)

where

Q(β) = {(T
∧

)Φ | Φ ∈ TPωBase(β) and not β �∈ Φ }

where

T (
∧

) : TPωL −→ TL

is the image of the finitary conjunction∧
: PωL −→ L

under T . Observe that the set Q(β) is finite since we assume that T preserves finite sets.

Dually, nabla can be defined as a conjunction of deltas. We can therefore restrict

consideration to either of the two modalities as the only modality, even in the positive

case.

Given a functor T satisfying our assumptions (that is, standard and finitary and

preserving weak pullbacks and finite sets), one can axiomatise the modal logic of T -

coalgebras in the boolean language with nabla as the only modality (or dually with

delta as the only modality) and prove completeness with respect to coalgebraic semantics

(Kupke et al. 2008). Everything restricts to the language not containing boolean negation

and thus to the positive fragment of modal logic for T -coalgebras. We spell out the

axioms explicitly for illustration:

(∇0) Axioms and rules for Classical Propositional Logic

(∇1) From α � β infer ∇α � ∇β
(∇2)

∧
{∇α | α ∈ A} �

∨
{∇(T

∧
)Φ | Φ ∈ SRD(A)}

(∇3) ∇(T
∨

)Φ �
∨

{∇α | α ∈ Φ}

(2.5)

In fact, rules (∇2) and (∇3) above are equalities and they can be thought of as certain

modal distributive laws.

Clearly, by the rule (∇1), the mapping ∇ : 〈TL ,�〉 −→ 〈L ,�〉 is monotone. Using

either of the definitions of ∆ by ∇, it is clear that ∆ : 〈TL ,�〉 −→ 〈L ,�〉 is also

monotone.

The axiomatisation of the logic based on nabla (or the dual of the axiomatisation in

the language with delta) gives a disjunctive (or dually a conjunctive) normal form – every

formula is equivalent to a formula in one of the following restricted languages, where π
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denotes any non-modal formula:

a ::= π |
∨

ϕ | π ∧ ∇α (2.6)

a ::= π |
∧

ϕ | π ∨ ∆α. (2.7)

Mutual translations between languages given by predicate liftings, that is, by the

modalities we consider, and languages with the nabla modality have been given in Kurz

and Leal (2009). In particular, for T satisfying our requirements, there is a one-step

translation from modalities to nablas – see Kurz and Leal (2009, Theorem 5.2).

2.4. Adjunction relative to a doctrine

We will study the adjointness properties of modalities that are monotone operations on

the free modal algebra L that is (pre)ordered by the (semantic) consequence relation.

In general, we cannot expect these modalities to be left/right adjoints in the usual sense

since they need not preserve suprema/infima in general. Therefore we confine ourselves to

adjointness relative a certain doctrine on the category PreOrd of preorders and monotone

maps. The doctrine will then serve as a measure of adjointness.

In general, a doctrine (�, η) consists of a locally monotone functor � : PreOrd −→
PreOrd, together with a natural collection η〈X,�〉 : 〈X,�〉 −→ �〈X,�〉 of fully faithful

dense monotone maps. Being fully faithful has the usual meaning when we consider

preorders as categories and hence monotone maps as functors. Thus a monotone map

f : 〈X,�X〉 −→ 〈Y ,�Y 〉 is fully faithful if, given f(x) �Y f(x′), it follows that x �X x′.

Density means that the natural map ˜η〈X,�〉 from

�〈X,�〉 = 〈DX,��〉

to the free complete join-semilattice �〈X,�〉 sending A ∈ DX to the downset

{x ∈ X | η〈X,�〉(x) �� A}

is fully faithful.

Every doctrine (�, η) then allows us to define, for a monotone map

L : 〈X,�X〉 −→ 〈Y ,�Y 〉,

its right adjoint relative to (�, η) as a monotone map

R : 〈Y ,�Y 〉 −→ �〈X,�X〉

with the property

Lx �Y y iff η〈X,�X 〉(x) �� Ry

for all x and y.

Remark 2.9. We will work with ‘joins’ in preorders in the following. What we mean by

this is the notion of a colimit known from category theory. Such a colimit is determined

uniquely only up to the equivalence x ∼ y if and only if x � y and y � x.

Thus, if we write x =
∨

i∈I xi in a preorder, we mean a choice of x such that the

following conditions are satisfied:
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(1) The inequality xi � x holds for all i ∈ I .

(2) Whenever xi � y holds for all i ∈ I , we have x � y.

When we speak about join-semilattices, and so on, in the following, the ‘joins’ are to be

understood in the above sense.

Example 2.10. The ‘least’ possible doctrine consists of the identity functor on PreOrd,

and adjointness relative to the identity doctrine is the usual concept of adjointness. The

‘largest’ possible doctrine is the doctrine (�, η) of complete join-semilattices, and the

concept of adjointness relative to this doctrine is void, since then every monotone map

L : 〈X,�X〉 −→ 〈Y ,�Y 〉 has a right adjoint relative to the doctrine (�, η) of free complete

join-semilattices, so it suffices to define R(y) = X, for every y ∈ Y .

For our applications we choose a doctrine (�ω, η) of free join-semilattices , which provides

us with a concept ‘in-between’ the usual adjointness and the void concept. In fact, as we

argue in Remark 2.13, this doctrine is the ‘best possible’ when proper adjoints are not

available. More precisely, we let

�ω : PreOrd −→ PreOrd

denote the locally monotone functor of free join-semilattices, that is, for a preorder 〈X,�〉,
we use �ω〈X,�〉 to denote the free join-semilattice on 〈X,�〉. Hence �ω〈X,�〉 is the

preorder of all finitely generated downsets of 〈X,�〉, ordered by inclusion. The map η〈X,�〉
is the usual inclusion of 〈X,�〉 in �ω〈X,�〉 given by x 	→ ↓x.

Alternatively, and for us, more conveniently, we can describe �ω〈X,�〉 as the set PωX

of all finite subsets of X, preordered by the Hoare preorder �H defined as follows (see

Stoltenberg-Hansen et al. (1994)):

W �H Z if and only if for each w ∈ W there exists z ∈ Z such that w � z.

We use η〈X,�〉 to denote the universal map x 	→ {x} exhibiting �ω〈X,�〉 as a free

join-semilattice on 〈X,�〉.
We will now spell out explicitly what we mean by the concept of adjointness relative to

(�ω, η) – from now on, we will refer to the doctrine as �ω , and omit η from the notation.

Definition 2.11. We say that a monotone map L : 〈X,�X〉 −→ 〈Y ,�Y 〉 in PreOrd is a

left adjoint relative to �ω to a monotone map R : 〈Y ,�Y 〉 −→ �ω〈X,�X〉 if we have an

equivalence

Lx �Y y iff {x} �H R(y) (2.8)

for all x ∈ X and y ∈ Y . Or, after unravelling the definition of the preorder �H on

�ω〈X,�〉, we have the equivalence

Lx �Y y iff x �X z for some z ∈ R(y).

Remark 2.12. Weak concepts of adjunctions similar to the above were studied in Tholen

(1984) and, in the context of modal logic, in Santocanale (2007) and Santocanale and

Venema (2007).
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The following comments refer to the properties of adjunctions relative to a doctrine,

and all follow easily by considering preorders as special (enriched) categories. The above

concept of adjunction relative to �ω is then an instance of an adjunction relative to a

doctrine in enriched category theory – see Karazeris and Velebil (2009).

(1) Karazeris and Velebil (2009, Theorem 3.7) gives us an ‘Adjoint Functor Theorem’ for

adjointness relative to �ω:

A monotone map L : 〈X,�X〉 −→ 〈Y ,�Y 〉 has a right adjoint relative to �ω if

and only if the suprema†

R(y) =
⊔{

{x} | L(x) �Y y
}

(2.9)

exist in �ω〈X,�〉 for every y ∈ Y and are all preserved by the monotone map

˜η〈X,�〉 : A 	→ {x | x �X a for some a ∈ A}

from �ω〈X,�〉 to the preorder �〈X,�〉) of all lower sets of 〈X,�〉.
Moreover, the desired adjoint R : 〈Y ,�〉 −→ �ω〈X,�〉 then has the above suprema

R(y) as values.

(2) Provided the preorder 〈Y ,�Y 〉 has enough suprema, one can prove that the monotone

map L : 〈X,�X〉 −→ 〈Y ,�Y 〉 has a right adjoint relative to �ω if and only if the

monotone map

L̂ : �ω〈X,�X〉 −→ 〈Y ,�Y 〉
sending a finite set A to the supremum⊔

{Lx | x �X a for some a ∈ A}

has a right adjoint in the usual sense.

(3) Every left adjoint L : 〈X,�X〉 −→ 〈Y ,�Y 〉 relative to �ω preserves existing directed

suprema. This is proved in Santocanale (2007, Lemma 6.2), or it can be derived easily

from the fact that �ω freely adds finite suprema to a preorder.

The following remark explains that studying the existence of right adjoints relative to

�ω is the ‘next best thing to do’ when the proper right adjoints are not available.

Remark 2.13. Clearly, the doctrine �ω is an instance of the doctrine �λ, where λ is an

infinite regular cardinal. More precisely, �λ〈X,�X〉 is the preorder of λ-generated downsets

in 〈X,�X〉. It is easy to see that �λ is a locally monotone endofunctor of PreOrd and

that, for each λ, there exists a unique ‘comparison’ natural transformation ι : �ω −→ �λ

such that the diagram

�ω
ι �� �λ

�� �

Id

η





Id

η





Id

η





† Suprema are to be understood here as colimits in preorders, and are thus determined uniquely up to

isomorphisms.
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commutes, where the η’s are the corresponding canonical maps of the doctrines in question

and the upper horizontal unnamed arrow is the obvious comparison from �λ to �.

In other words, the doctrine �ω is the ‘least’ among the doctrines that add joins freely

and is above the identity doctrine. This can be formulated as the slogan “adjoints relative

to �ω are the ‘closest’ ones to adjoints in the ordinary sense”.

3. Cover modalities are adjoints relative to �ω

In this section we prove that ∇ : TL −→ L , as a monotone map

∇ : 〈TL ,�〉 −→ 〈L ,�〉,

is a left adjoint relative to �ω . In this way we can generalise the results of Santocanale and

Venema (2007) from the finite powerset functor to general T (that satisfies our standing

assumptions). The adjointness means that for ∇ there exists a monotone map

G : 〈L ,�〉 −→ �ω〈TL ,�〉

such that for any b ∈ L ,

∇α � b iff α � γ for some γ ∈ G(b).

Although the considerations in Remark 2.12 give the desired right adjoint explicitly, it

may be hard to see straight away that for a given monotone map

L : 〈X,�X〉 −→ 〈Y ,�Y 〉,

the relevant suprema (2.9) in �ω〈X,�〉 exist. Since this is the case for ∇, we will use a

strategy of defining the right adjoint G relative to �ω inductively, using conjunctive normal

forms of formulas in L using ∆.

We stress that the side condition that T preserves finite sets will be crucial for our result.

The following example shows that one cannot hope to obtain such a result generally.

Example 3.1. Consider the following functor N : Set −→ Set that sends every set to

the set � of natural numbers, and sends any set map to the identity map. It is easy to see

that it is a functor, and that it preserves weak pullbacks. Notice that objects in NL are

natural numbers and that α � β means α = β as natural numbers, since any lifted relation

is equality on �. We claim that the cover modality for this functor is not a left adjoint

relative to �ω . Consider the case ∇α � � (which always holds). The only candidate for

G(�) such that for any α we have some γ ∈ G(�) such that α = γ as natural numbers

clearly equals the whole set �, and no finite subset of it would do the job.

We can now state and prove our main theorem.

Theorem 3.2. ∇ : 〈TL ,�〉 −→ 〈L ,�〉 is a left adjoint relative to �ω .

Proof. We have to define a monotone map G : 〈L ,�〉 −→ �ω〈TL ,�〉 and prove that,

for any b ∈ L ,

∇α � b iff α � γ for some γ ∈ G(b). (3.10)
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We use the fact that we can consider b in a conjunctive normal form given by (2.6).

So b =
∧
ϕ for some finite set ϕ, where each b ∈ ϕ is of the form π ∨ ∆β and π is

a non-modal formula. We will reason by induction on the complexity of b in terms of this

normal form.

(I) We first consider the clauses π ∨ ∆β and will use the following lemma.

Lemma 3.3. Suppose π is a non-modal formula and β is in TL . Then the following

are equivalent for every α in TL :

(1) ∇α � π ∨ ∆β.

(2) � � π or ∇α � ∆β or ∇α � ⊥.

Proof. The fact that (2) implies (1) is trivial, so we will just prove that (1) implies (2).

In condition (2), the third case implies the second, but we will need to distinguish

the three cases in the definition of G, so we mention all three cases here. Suppose

� �� π and ∇α �� ∆β (thus, clearly, ∇α �� ⊥). Hence the (non-modal!) formula ¬π is

satisfiable and we can choose a maximal consistent set Γ containing ¬π. Furthermore,

there exists a coalgebra c : X −→ TX and x0 ∈ X such that x0 �c ∇α and x0 ��c ∆β.

By abuse of notation, we use x0 : 1 −→ X to denote the mapping that has x0 as the

value.

We define a new coalgebra

c′ : X + 1 −→ T (X + 1)

as follows:

X + 1
c′

�� T (X + 1) X + 1
c′

�� T (X + 1)

X

inl





c
�� TX

T inl





1

inr





x0

�� X

c





We need to define the theory map thc′ : X + 1 −→ Stone(L ), which we do as follows:

X + 1
thc′ �� Stone(L ) X + 1

thc′ �� Stone(L )

X

inl





thc

�������������
1

inr





Γ

�������������

Now observe that

t �c′ ¬π, t �c′ ∇α, t ��c′ ∆β

for t being the unique element of 1 in X+1, which completes the proof of Lemma 3.3.

From this lemma, it follows that we can define

G(π ∨ ∆β) := G(π) ∪ G(∆β). (3.11)
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It is therefore clear that we need to distinguish the cases

(a) ∇α � ∆β, and define G(∆β).

(b) � � π, and define G(�).

(c) ∇α � ⊥, and define G(⊥).

We consider each of these in turn:

(a) We first consider the case ∇α � ∆β:

We define

G(∆β) := {(T
∧

)Φ | Φ ∈ TPωBase(β) and not β �∈ Φ} (3.12)

where

T (
∧

) : TPωL −→ TL

is the image of finitary conjunction∧
: PωL −→ L

under T .

We will use the following result.

Lemma 3.4. The following are equivalent:

(i) ∇α � ∆β.

(ii) It is not the case that α �� β.

Proof. To prove (i) implies (ii), we will suppose that α �� β holds and show a

contradiction. By Lemma 2.4, we can consider the span

��
outl
�����

��� outr
����

���
�

Base(α) Base(β)

By assumption, there exists x ∈ T ( ��) such that Toutl(x) = α and Toutr(x) = β.

Now, for every (a, b) ∈ �� there exists a coalgebra ca,b : Xa,b −→ TXa,b and

xa,b ∈ Xa,b such that xa,b �ca,b a ∧ ¬b.

We define

X = 1 +
∐

(a,b)∈��
Xa,b

and observe that there exists a map

f : �� −→ X, (a, b) 	→ xa,b

We define c : X −→ TX as follows:

1 +
∐

(a,b) Xa,b
c �� T (1 +

∐
(a,b) Xa,b)

1

in1





t	→x
�� T ( ��)

Tf
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1 +
∐

(a,b) Xa,b
c �� T (1 +

∐
(a,b) Xa,b)

Xa,b

in(a,b)





ca,b
�� TXa,b

T in(a,b)





where we have used t to denote the unique element of 1.

We will prove that t �c ∇α and t ��c ∆β, which will give the desired contradiction.

Consider the mapping

g : �� −→ �, (a, b) 	→ (xa,b, a).

Then the diagram

T ( ��)

Tg



��

Tf



��

Toutl



T (�)

Toutl

����
��
��
��
�

Toutr

��





TX TBase(α)

commutes. Put w = Tg(x). Clearly, Toutl(w) = Tf(x) = c(t) and Toutr(w) = α,

and we have now proved that t �c ∇α holds.

To prove that t ��c ∆β, consider the mapping h : �� −→ ��, defined by (a, b) 	→
(xa,b, b). Then the diagram

T ( ��)

Th



��

Tf



��

Toutr



T ( ��)

Toutl

����
��
��
��
�

Toutr

��





TX TBase(β)

commutes. For w = Th(x), we have Toutl(w) = Tf(x) = c(t) and Toutr(w) = β,

proving that t ��c ∆β.

To prove (ii) implies (i), suppose ∇α �� ∆β and let c : X −→ TX be a coalgebra

and x ∈ X be such that x �c ∇α and x ��c ∆β. We use c(x) to find a witness of

α � β.

Consider the diagram

R

outl

��		
		
		
		 outr

��
��

��
��

�

�
outl

����
��
��
��
�

outr

��
��

��
��

��
��

outl

����
��
��
�� outr

���
��

��
��

��

Base(α) X Base(β)
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where the square is a pullback. Then R ⊆ ��, since (a, b) ∈ R means that there

exists x′ ∈ X such that x′ �c a and x′ ��c b.

Consider the diagram

TR

Toutl

����
��
��
��

Toutr

���
��

��
��

�

T�
Toutl

�����
���

���
�

Toutr

���
��

��
��

��
T ��

Toutl

����
��
��
�� Toutr

��







TBase(α) TX TBase(β)

and observe that the square is a weak pullback. We now take w1 witnessing c(x) � α

and w2 witnessing c(x) �� β and use the weak pullback property to produce an

element w ∈ TR. Since T is standard, we have an inclusion TR ⊆ T ( ��) so w is a

witness of α �� β, which completes the proof of Lemma 3.4.

To derive (3.10) from the above, we define f : Base(α) −→ PBase(β) by

f(a) := {b ∈ Base(β) | a � b}.

Then for all a ∈ Base(α), b ∈ Base(β), we have that a � b implies b ∈ f(a), so

b �∈ f(a) implies a �� b. By the properties of relation lifting, this means that

β �∈ (Tf)α implies α �� β,

so it follows from Lemma 3.4 that (β, (Tf)α) �∈ �∈. Hence we find that

γ := (T
∧

)(Tf)α ∈ G(∆β). (3.13)

We still need to verify that

α � γ. (3.14)

To see why this holds, observe that by the definition of f, we have that a �
∧
f(a)

for all a ∈ Base(α). Thus, in the diagram

R

outl

�����
���

���
���

outr

����
���

���
���

�

graph(f)

outl

�����
���

���
�

outr

����
���

���
���

graph(
∧

)

outl

�����
���

���
��

outr

����
���

���
��

Base(α) PBase(β) Base(β)

where the square is a pullback, we have R ⊆ �.
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Hence the diagram

TR

Toutl

�����
���

���
���

Toutr

����
���

���
���

�

Tgraph(f)

Toutl

�����
���

���
��

Toutr

����
���

���
���

Tgraph(
∧

)

Toutl

�����
���

���
��

Toutr

����
���

���
���

TBase(α) TPBase(β) TBase(β)

produces a witness w ∈ TR of γ = (T
∧

)(Tf)α. Since T is standard, TR ⊆ T (�),

from which (3.14) follows.

For the right to left direction, we suppose α � (T
∧

)Φ for some Φ ∈ TPBase(β)

such that not β /∈ Φ. We need to show that ∇α � ∆β holds. By Lemma 3.4 it is

sufficient to show that α �� β does not hold.

From the assumption β /∈ Φ, we will show by contradiction that T (
∧

)Φ �� β does

not hold. So we ssume T (
∧

)Φ �� β holds. Consider the diagram

��
��

outl



��

outr





R

outl

����
��
��
��
�

outr

��








/∈
outl

��		
		
		
		 outr

���
��

��
��

� graph(
∧

)

outl

����
��
��
��
�

outr

		
















L PωL L

where the middle square is a pullback (hence R = {(a,
∧

ϕ) | a /∈ ϕ}) and the

unnamed arrow is an inclusion due to the fact that b ��
∧
ϕ implies b /∈ ϕ.

By lifting the above diagram, we get that β /∈ Φ, which gives a contradiction.

Therefore T (
∧

)Φ �� β does not hold.

But if T (
∧

)Φ �� β does not hold, then α �� β does not hold, since α � T (
∧

)Φ

holds by assumption and � is transitive.

(b) Next we consider the case � � π:

So ∇α � π holds for every α. We define

G(�) := {(T
∧

)Φ | Φ ∈ TP {�}}. (3.15)

Notice that TP {�} is finite, so (T
∧

) : TP {�} −→ T {�}, and thus, in particular,

G(�) is finite and a subset of T {�}.
The right to left direction of the theorem is now immediate since ∇α � � holds

for free.

We will now show the left to right direction. As in the previous case, we define

f : Base(α) −→ P {�} as a constant map assigning {�} to each a ∈ Base(α)
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(morally, f(a) is {c ∈ {�} | a � c} as before). Now, for each α and for the same

reasons as before, α � (T
∧

)(Tf)α, where clearly (Tf)α is in TP {�}.
(c) We now consider the case ∇α � ⊥:

We define

G(⊥) := {(T
∧

)Φ | Φ ∈ TP {⊥} and for all β ∈ T {⊥},
it is not the case that β /∈ Φ}.

(3.16)

The definition of G(⊥) is motivated by the following fact.

Lemma 3.5. ∇α � ⊥ holds if and only if, for all β ∈ T {⊥}, it is not the case that

α � β.

Proof. We first prove the left to right direction, which we will need later on. We

suppose that there exists β ∈ T {⊥} such that α � β and show that ∇α is then

satisfiable.

Suppose α � β is witnessed by an element x ∈ T �� such that (Toutl)x = α

and (Toutr)x = β. Let Z ⊆ Base(α) × {⊥} denote the obvious restriction of the

relation �, so Z = {(a,⊥) | a satisfiable }. For each (a,⊥) ∈ Z there is a coalgebra

ca : Xa −→ TXa and a state sa such that sa �ca a. We consider a coalgebra having

the disjoint union of the family {Xa | (a,⊥) ∈ Z} with a new root s0 added as its

carrier. Thus we put

X :=
∐

{Xa | (a,⊥) ∈ Z} + {s0}

and the coalgebra map c : X −→ TX will have an obvious definition for s �= s0.

We define a mapping f : Z −→ S by f(a,⊥) := sa and define c(s0) := (Tf)x.

For each z = (a,⊥) ∈ Z , we have that (f(z), outlz) = (sa, a) ∈ �. By the properties

of the relation lifting, it follows that

((Tf)x, (Toutl)x) = (c(s0), α) ∈ �,

which means that s0 � ∇α.
We now suppose ∇α is satisfiable and will prove that there exists β ∈ T {⊥} such

that α �� β holds.

Let c : X −→ TX be a coalgebra and x ∈ X be such that x �c ∇α holds. Consider

the diagram

R

outl

��		
		
		
		 outr

��
��

��
��

�

�
outl

����
��
��
��
�

outr

��
��

��
��

��
��

outl

����
��
��
�� outr

��
��

��
��

��

Base(α) X {⊥}
where the square is a pullback. We clearly have R ⊆ ��. Moreover, R is the graph

of the function g : � −→ � sending (a, y) to (y,⊥). Hence TR is the graph

of Tg since T preserves weak pullbacks and we can find w ∈ T ( ��) witnessing
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α �� β as follows. We first find w1 ∈ T (� ) witnessing c(x) � α, and then put

w2 := Tg(w1) ∈ T ( ��) to produce w := (w1, w2) ∈ TR. Since T is standard,

TR ⊆ T ( ��) holds, which concludes the proof of Lemma 3.5.

To continue the proof of case (c), we first deal with the left to right direction

of (3.10). We suppose, therefore, that ∇α � ⊥ holds.

We define f : Base(α) −→ P {⊥} by putting f(a) = {c ∈ {⊥} | a � c}. For the same

reasons as before, α � (T
∧

)(Tf)α, and (Tf)α is in TP {⊥}.
To prove that (Tf)α is a possible Φ in (3.16), we need to show that the condition

β /∈ (Tf)α holds for no β ∈ T {⊥}.
Since we assume that ∇α � ⊥ holds, and since by Lemma 3.5 this is equivalent to

α � β holding for no β ∈ T {⊥}, it suffices to prove that

for all β ∈ T {⊥} not α � β implies for all β ∈ T {⊥} not β /∈ (Tf)α (3.17)

holds.

To justify (3.17), suppose there is β ∈ T {⊥} such that β /∈ (Tf)α holds, and is

witnessed by an element w1 in T /∈. (Here we use /∈ to denote the obvious restriction

to the subset of {⊥} × P {⊥}.)
We show there is a witness w in T� of α � β. We again write

� ⊆ Base(α) × {⊥}

to mean the obvious restriction of the full � relation.

Now consider the opposite of the graph of f:

graph(f)op ⊆ P {⊥} × Base(α),

equipped with the mapping

fibre(f) : Base(α) −→ graph(f)op

that assigns to each a the pair (f(a), a). We use R to denote the pullback of the

relations graph(f)op and /∈. Thus, we have the following diagram

R

outl

��  
  
  
  
 

outr

����
���

���
���

/∈
outl

��!!
!!
!!
!!

outr

���
��

��
��

� graph(f)op

outl

�����
���

���
�

outr

����
���

���
���

{⊥} P {⊥} Base(α)

where the square is a pullback.

By lifting the above diagram and using the properties of T and the witness w1 in

T /∈ from assumption, such that

(Toutl)w1 = β

(Toutr)w1 = (Tf)α,
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and using the element

w2 := (Tfibre(f))α

in T (graph(f)op), we obtain an element w in the pullback TR. Since R ⊆ �,

we have TR ⊆ T �. Thus w witnesses that β � α, meaning that α � β (since

�= (�)op), which concludes the proof of (3.17).

The right to left direction of (3.10) for case (c) can be reformulated as follows. We

suppose that α � (T
∧

)Φ for some Φ ∈ TP {⊥}, and then want to show that if ∇α
were satisfiable, then there would exist β in T {⊥} such that β /∈ Φ.

So we suppose that there is a coalgebra c : X −→ TX and a state x ∈ X satisfying

∇α. Thus c(s) � α. Since α � (T
∧

)Φ, we also have c(s) � (T
∧

)Φ. We define a map

g from � ⊆ X × {�,⊥} to �� ⊆ P {⊥} × {⊥} by g : (x,�) −→ (�,⊥).

Since c(s) � (T
∧

)Φ, we have a witness w in T� of this fact. We now suppose outr

is the right projection of ��, and define β = (Toutr)(Tg)w. Now (Tg)w witnesses

that Φ �� β – see the following diagram

T�
Tg

�� T ��
Toutl

����
��
��
��
�

Toutr

���
��

��
��

�

TP {⊥} T {⊥}

This concludes the proof of case (c), and thus of part (I) of the theorem.

(II) Finally, we consider the general case where b is a conjunction
∧
ϕ.

Let Bϕ be the collection of sets of the form {βb | b ∈ ϕ} such that for each b ∈ ϕ, the

set βb ∈ G(b).

We now define

G(
∧

ϕ) := {(T
∧

)Φ | Φ ∈ SRD(B) for some B ∈ Bϕ}. (3.18)

For the left to right direction in (3.10), we assume that ∇α �
∧
ϕ. Then ∇α � b

for all b ∈ ϕ, so for all b ∈ ϕ, there is a βb ∈ G(b) such that α � βb. We define

B := {βb | b ∈ ϕ}, and it is then clear that B ∈ Bϕ.

With the abbreviation

Base[B] :=
⋃
b∈ϕ

Base(βb),

we define the map

f : Base(α) −→ PBase[B]

by putting

f(a) := {c ∈ Base[B] | a � c},
and let

Φ := (Tf)α

γ := (T
∧

)Φ.
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Then it suffices to prove that

Φ ∈ SRD(B), (3.19)

from which it follows that γ ∈ G(
∧
ϕ), and that

α � γ. (3.20)

The proof of (3.20) is analogous to that of (3.14), so we confine our attention to the

proof of (3.19). Since Φ ∈ TPBase[B], it suffices to show that every element β ∈ B is

a lifted member of Φ. We take such a β; by the definition of B, we know β is of the

form βb for some b ∈ ϕ. From this it follows that α � β. Also, for any a ∈ Base(a)

and c ∈ Base[B], we have by the definition of f that a � c implies c ∈ f(a). So, by the

properties of relation lifting, it follows from α � β that β ∈ (Tf)α = Φ. This completes

the proof of (3.19).

Conversely, suppose α � (T
∧

)Φ for some Φ ∈ SRD(B) and some B ∈ Bϕ. Since

Φ ∈ SRD(B), we have βb ∈ Φ for all βb ∈ B.

Consider the following diagram

�
��

outl



��

outr



R

outl

����
��
��
��
�

outr

��












∈
outl

��		
		
		
		

outr

���
��

��
��

� graph(
∧

)

outl

����
��
��
��
�

outr

		
















L PωL L

where the middle square is a pullback (hence R = {(a,
∧

ϕ) | a ∈ ϕ}) and the unnamed

arrow is an inclusion due to the fact that a �
∧
ϕ holds for every pair (a,

∧
ϕ) ∈ R.

By lifting the above diagram by T , we get that T (
∧

)Φ � βb holds for every βb ∈ B.

Thus, in particular, by the definition of B, we have proved that for every b ∈ ϕ there

exists βb ∈ G(b) such that α � βb. Hence, for every b ∈ ϕ we have ∇α � b, so ∇α �
∧
ϕ

as desired.

This completes the proof of part (II), and thus the proof of Theorem 3.2 – our main

theorem.

Corollary 3.6. ∆ : 〈TL ,�〉 −→ 〈L ,�〉 is a right adjoint relative to �ω .

Proof. For ∆ this means showing that there is a monotone map

G′ : 〈L ,�〉 −→ �ω〈TL ,�〉

such that for any a ∈ L ,

a � ∆β iff γ � β for some γ ∈ G′(a).
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The following are equivalent (the second equivalence follows from Theorem 3.2, and the

first and last from Lemma 2.8):

a � ∆β

∇(Td)β � d(a)

(Td)β � γ for some γ ∈ G(d(a))

(Td)γ � β for some γ ∈ G(d(a)).

Now we can define G′(a) = {(Td)γ | γ ∈ G(d(a))}, which is clearly monotone.

4. Unary monotone modalities

We start with the definition of some ‘basic’ unary monotone modalities. The idea is that

we define for each ‘mode of future’ (with respect to a meaning ‖a‖ of a formula a) given

by an element r ∈ T2, its own pair of monotone modalities ⊕ra, �ra with the intended

interpretation of ‘being satisfied (refuted) by futures of type at least (at most) r’. Thus

defined, the two sets turn out to be mutually definable through the usual dual boolean

laws, and, moreover, they are mutually definable even in the positive case, analogously to

nabla and delta modalities.

In fact, in doing this we will have systematically covered all the upper sets in the preorder

〈T2,�〉, and thus all unary monotone modalities are definable using (disjunctions of) the

basic ones.

We will show that ⊕r are essentially nablas, and �r are essentially deltas, which, using

the result obtained in the previous section, leads to the conclusion that they are left and

right adjoints, respectively, relative to �ω . Moreover, because of their mutual definability,

they are all both right and left adjoints relative to �ω (a similar argument does not apply

to nabla and delta, and it is not known whether they are both right and left relative

adjoints or not). One might relate these unary modalities to the singleton liftings of

Kurz and Leal (2009), except that here we consider the modalities to be monotone. The

relationship to nablas that we prove below is related to the results on mutual translations

between predicates liftings and nabla given in Kurz and Leal (2009). However, we prove

the relationship explicitly in the setting we fixed in Section 2.2.

Definition 4.1. For each r ∈ T2, we define unary modalities ⊕r : T2 −→ 2 and �r :

T2 −→ 2 as follows:

⊕rs = 1 iff r � s,

�rs = 0 iff s � r.

The modalities are obviously monotone, the sets of those s ∈ T2 returning value 1 are

in both cases upper subsets of T2.

Lemma 4.2. Given a coalgebra c : X −→ TX, we have

x �c ⊕ra iff T‖a‖c(x) � r
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and, analogously,

x ��c �ra iff T‖a‖c(x) � r.

Moreover, the following properties hold:

(1) If a � b, then ⊕ra � ⊕rb and �ra � �rb.

(2) If s � r, then ⊕ra � ⊕sa and �ra � �sa.

(3) ⊕ra ≡ ¬ �r′ ¬a and �ra ≡ ¬ ⊕r′ ¬a, where r′ is the image of r ∈ T2 under

Tswap : T2 −→ T2 where swap : 2 −→ 2 swaps 0 and 1.

(4) c � �ra if and only if ⊕r′d(a) � d(c), where r′ is as in the previous condition and d is

the dualisation map d : L −→ L , see (2.3) above.

(5) �ra ≡
∨

s

/
�r

⊕sa and, dually, ⊕ra ≡
∧

s

/
�r

�sa.

(6) Given a unary monotone modality � : T2 −→ 2, there are r1, . . . , rk such that

�a ≡
k∨

i=1

⊕ria.

Proof. The satisfaction relations for ⊕r and �r follow immediately from the definition.

Assertions (1), (2), (3) and (4) are straightforward. To prove (5), suppose �rt = 1, for

t ∈ T2. Then t
/
�r and ⊕tt = 1, hence ∨

s

/
�r

⊕st = 1.

Conversely, if ∨
s

/
�r

⊕st = 1,

there exists s0

/
�r such that ⊕s0t = 1. From the first fact we get that �rs0 = 1, and from the

second fact we know that s0 � t. We now use the fact that �r is monotone to conclude

that �rt = 1. For assertion (6), we use the fact that T2 is a finite set: the upper set

{s | �s = 1} in T2 must be finitely generated, hence

�t =

k∨
i=1

⊕ri t,

for some r1, . . . , rk in T2.

Notice that properties (5) and (6) in this lemma rely heavily on the fact that T2 is a

finite set.

Example 4.3. For T = Pω , observe that 〈T2,�〉 is the following poset (in the general case

T2 is only a preorder):

•

•

•

•

�

{0}

{0, 1}

{1}
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And, in the language of � and �, we have the following equivalences:

⊕�a ≡ �⊥ ��a ≡ ��
⊕{0}a ≡ �� �{0}a ≡ �a ∨ �a

⊕{0,1}a ≡ �a �{0,1}a ≡ �a

⊕{1}a ≡ �a ∧ �a �{1}a ≡ �⊥.

Recalling the definition of nabla in the language of box and diamond,

∇α ≡ �
∨

α ∧
∧

�α,

the pattern of nablas (deltas) is immediately visible behind the modalities in the previous

example: for example, ⊕{0,1}a ≡ ∇{�, a} or ⊕{1}a ≡ ∇{a}, so 0 ∈ r means consider � ∈ α,

while 1 ∈ r means consider a ∈ α.

We will now prove that this is true for any T we may consider – unary modalities ⊕r

are essentially ∇ (dually, �r are essentially ∆). For the following it is instructive to look

first at the proofs of Santocanale and Venema (2007, Theorem 6.10 and Corollary 6.12),

where analogous ideas are used to prove the relative adjointness of nabla for the power

set functor.

We will also need the following auxiliary notation for the proof.

Notation 4.4. For every formula a in L , define its name to be the function

�a� : 2 −→ L , 0 	→ �, 1 	→ a.

Observe that, for each formula a, the map �a� reverses the order, thus it is a map

�a� : 〈2,�〉op −→ 〈L ,�〉.

Therefore, it can be lifted to a monotone map

T �a� : 〈T2,�〉op −→ 〈TL ,�〉

and, finally, we have a monotone map

〈L ,�〉 −→ [〈T2,�〉op , 〈TL ,�〉], a 	→T �a�.

The transpose of the above map is therefore a monotone map

〈T2,�〉op −→ [〈L ,�〉, 〈TL ,�〉], r 	→ fr.

Observe that fr(a) is an element of TL .

Observe that the following holds for each fr(a).

Lemma 4.5. Base(fr(a)) ⊆ {a,�}.

Lemma 4.6. For each r ∈ T2 and each a ∈ L , we have the equivalence ⊕ra ≡ ∇fr(a).

Proof. Fix r ∈ T2 and a ∈ L . Suppose c : X −→ TX is any coalgebra and x ∈ X is

arbitrary.
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(1) Suppose x �c ⊕ra holds. By Lemma 4.2, this means that T‖a‖c(x) � r holds.

First consider a pullback

R ��



�

outl



X ‖a‖
�� 2

Thus R = {(x, a, b) | ‖a‖(x) = a � b}. Observe that the diagram

TR

Toutl

����
��
��
�� Toutr

��"
""

""
""

"

Toutr



TX

T‖a‖



T�

Toutr



T�
Toutl

����
��
��
�� Toutr

��"
""

""
""

"

T2 T2

(4.21)

commutes and that the left-hand square is a weak pullback.

Since we assume that T‖a‖c(x) � r holds, we have a witness z ∈ T� with

Toutl(z) = ‖a‖c(x),

and by the property of weak pullbacks, there exists w ∈ TR such that Toutl(w) = c(x)

and Toutr(Toutr(w)) = r.

Define g : R −→ �c by putting

g(x, 0, 0) = g(x, 1, 0) = (x,�)

g(x, 1, 1) = (x, a).

Then the diagram

R

outl

��!!
!!
!!
!! outr

���
��

��
��

��

g



X

id



�

outr



�c

outl

��		
		
		
		 outr

��"
""

""
""

" 2

�a�



X {a,�}

(4.22)

commutes (where we have slightly abused the notation for the restricted relation �c

and �a�).
By applying Tg : TR −→ T�c to the element w ∈ TR we have found above, we get

Tg(w) ∈ T�c witnessing x �c ∇fr(a).
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(2) Suppose x �c ∇fr(a) holds. We will prove that x �c ⊕ra holds.

Consider the diagram

�c

outl

��		
		
		
		 outr

��"
""

""
""

"

g



X

‖a‖



{a,�}

�a�−1



�
outl

��!!
!!
!!
!! outr

���
��

��
��

��
�

2 2

where we have slightly abused the notation for the restricted relation �c and �a�. The

perimeter of the diagram obviously commutes, and it is clear that we can define the

dotted arrow g. Thus, the diagram

T�c

Toutl

����
��
��
��
�

Toutr

		
















Tg



TX

T‖a‖



T {a,�}

T �a�−1



T�
Toutl

����
��
��
�� Toutr

		#
##

##
##

##

T2 T2

commutes. Hence, if x �c ∇fr(a) holds, we have a witness of the relation

T‖a‖c(x) � r,

and this is exactly the statement x �c ⊕ra by Lemma 4.2, which completes the

proof.

Proposition 4.7. Every fr : 〈L ,�〉 −→ 〈TL ,�〉 is a left adjoint relative to �ω .

Proof. We will define a monotone map G : 〈TL ,�〉 −→ �ω〈L ,�〉 and prove that for

every a ∈ L and every α ∈ TL ,

fr(a) � α iff a � c for some c ∈ G(α).

We define an auxiliary map t : L −→ 2 by putting

t(�) = 0 and t(c) = 1 for c �= �.

We claim that the map G : TL −→ PωL defined by

G(α) =

{
� iff Tt(α)

/
�r

{
∧

Base(α)} iff Tt(α) � r

is the desired right adjoint relative to �ω .
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We divide the proof into two cases according to the definition of G(α):

(1) The case of the empty set.

The main idea is that there is an a such that fr(a) � α if and only if Tt(α) � r. The

above equivalence then proves that the adjointness formula for G works for α with

Tt(α)
/
�r.

We will prove:

There is an a such that fr(a) � α holds if and only if Tt(α) � r. (4.23)

Suppose there exists a such that fr(a) � α holds. Consider the pullback

R
outr ��

outl



�

outl



2
�a�

�� L

This means that

R = {(0,�,�), (1, a,�)} ∪ {(1, a, c) | a � c �= �}.

Define g : R −→� by putting

g(0,�,�) = (0, 0)

g(1, a,�) = (1, 0)

g(1, a, c) = (1, 1).

Then the diagram

2 L
t��

�

outl



outr





R
outr ��

outl
��		
		
		
		

g
�� �

outl



outr





2
�a�

�� L

clearly commutes, and so does its image under T :

T2 TL
Tt��

�

Toutl



Toutr





TR
Toutr ��

Toutl
��  
  
  
  

Tg
�� T�

Toutl



Toutr





T2
T �a�:r 	→fr(a)

�� TL

Since fr(a) � α holds, there is z ∈ T � such that Toutl(z) = fr(a) and Toutr(z) = α.

Since T weakly preserves pullbacks, there is a witness w ∈ TR such that Toutl(w) = r
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and Toutr(w) = z. Then Tg(w) ∈ T � witnesses r � Tt(α), which is what we set out

to prove.

Conversely, suppose Tt(α) � r holds. We claim that for a = ⊥, the relation fr(a) � r

holds.

Consider the pullback

Q
outr ��

outl



�

outr



L
t

�� 2

(4.24)

Thus

Q = {(�, 0, 0), (�, 1, 0)} ∪ {(c, 1, 1) | c �= �}.
We define h : Q −→� by putting

h(�, 0, 0) = (�,�)

h(�, 1, 0) = (⊥,�)

h(c, 1, 1) = (⊥, c) for c �= �.

Then the diagram

L 2
�⊥���

�

outr



outl





Q
outr ��

outl
����
��
��
��

h�� �

outr



outl





L
t

�� 2

(4.25)

clearly commutes, and so does its image under T :

TL T2
T �⊥�:r 	→fr(⊥)

��

T �

Toutr



Toutl





TQ
Toutr ��

Toutl
����
��
��
��

Th�� T �

Toutr



Toutl





TL
Tt

�� T2

(4.26)

Since Tt(α) � r holds, there exists z ∈ T � such that Toutr(z) = Tt(α) and

Toutl(z) = r. Since T weakly preserves pullbacks, there exists w ∈ TQ such that

Toutr(w) = z and Toutl(w) = α. Then Th(w) ∈ T � witnesses fr(⊥) � α, which is

what we set out to prove.

(2) For the other cases, we need to prove

fr(a) � α iff a �
∧

Base(α) (4.27)
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Suppose fr(a) � α holds. By Lemma 4.5 we know that Base(fr(a)) ⊆ {a,�}. We will

use the denotation

d(a) = {c ∈ Base(α) | a � c}.

We will distinguish three cases:

(a) Base(fr(a)) contains a:

It suffices to show that α ∈ T (d(a)), since then, from the definition, each b ∈
Base(α) would be in d(a), thus proving that a �

∧
Base(α).

By Lemma 2.4, it follows that w ∈ T � witnessing fr(a) � α is, in fact, in the

vertex of the span

T �

Toutl

�����
���

���
�

Toutr

��







TBase(fr(a)) TBase(α)

A more detailed inspection shows that the above span is, in fact, the lift under T

of the span

�

outl

����
��
��
��
��

outr

��$
$$

$$
$$

$

Base(fr(a)) d(a)

(4.28)

Thus Toutr : T �−→ Td(a) and Toutr(w) = α ∈ Td(a).

(b) Base(fr(a)) = {�}:
We proceed as above with d(�) instead of d(a) to conclude that α ∈ T (d(�)). Thus

every b ∈ Base(α) is in d(�) = {�}, hence a �
∧

Base(α).

(c) Base(fr(a)) = �.

So � in (4.28) is empty, and we can work with � instead of d(a) to conclude that

α ∈ T�. Hence Base(α) = � and
∧

Base(α) = �.

Conversely, suppose a �
∧

Base(α). Also, recall that we are working under the

assumption that Tt(α) � r holds.

We now proceed similarly to part (1).

— When � ∈ Base(α), instead of the pullback (4.24), we consider

Q
outr ��

outl



�

outr



Base(α)
t

�� 2

where t : Base(α) −→ 2 sends � to 0 and everything else to 1. Hence

Q = {(�, 0, 0), (�, 1, 0)} ∪ {(c, 1, 1) | c ∈ Base(α), c �= �}.
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Define h : Q −→� by putting

h(�, 0, 0) = (�,�)

h(�, 1, 0) = (a,�)

h(c, 1, 1) = (a, c) for c �= �.

Since a � c for all c ∈ Base(α), we obtain similar diagrams to (4.25) and (4.26),

and we can conclude that fr(a) � α.

— When � �∈ Base(α), we let t : Base(α) −→ 2 be constantly 1 and define Q as a

pullback again. We can again conclude that fr(a) � α.

Corollary 4.8. Every ⊕r : TL −→ L is a left adjoint relative to �ω . Every �r : TL −→
L is a right adjoint relative to �ω .

Proof. By Lemma 4.6 we have ⊕ra ≡ ∇fr(a) for every formula a. Since both fr and ∇
are left adjoints relative to �ω , so is their composite.

To prove that �r is a right adjoint relative to �ω , we suppose c � �ra, but by

Lemma 4.2, this is equivalent to ⊕r′d(a) � d(c). We use G : 〈L ,�〉 −→ �ω〈L ,�〉 to

denote the left relative adjoint of ⊕r′ . Then ⊕r′d(a) � d(c) is equivalent to d(a) � b for

some b ∈ G(d(c)), and the latter is equivalent to d(b) � a by Lemma 2.8. Thus the desired

right adjoint of �r can be defined as H(c) = {d(b) | b ∈ G(d(c))}.

We can show even more in that ⊕r and �r are in fact both left and right adjoints

relative to �ω . And, any other monotone unary modality is a left adjoint relative to �ω .

To show this, we need the following result.

Lemma 4.9.

(1) Let � : TL −→ L be given such that �a ≡
k∨

i=1

⊕ria for some r1, . . . , rk ∈ T2. Then �

is a left adjoint relative to �ω .

(2) Let � : TL −→ L be given such that �a ≡
k∧

i=1

�ria for some r1, . . . , rk ∈ T2. Then �

is a right adjoint relative to �ω .

Proof. We will just prove the first assertion since the second will follow by duality. We

use Gri : L −→ PωTL to denote the right adjoints of ⊕ri relative to �ω , i = 1, . . . , k.

Then �α � a holds if and only if ⊕riα � a holds if and only if α � β holds for some

i = 1, . . . , k and some β ∈ Gri(a). It is then enough to put

G(a) =

k⋃
i=1

Gri(a)

to define a left adjoint to � relative to �ω .

The following corollary now follows immediately by Lemma 4.2.

Corollary 4.10.

(1) Every ⊕r : TL −→ L is a left and a right adjoint relative to �ω .
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M. B́ılková, J. Velebil and Y. Venema 414

(2) Every �r : TL −→ L is a right and a left adjoint relative to �ω .

(3) Every monotone � : TL −→ L is a left adjoint relative to �ω .

5. Conclusions

We have proved that for any finitary standard functor T : Set −→ Set preserving weak

pullbacks and finite sets, the corresponding nabla modality is a left adjoint relative to �ω

and, analogously, the dual delta modality is a right adjoint relative to �ω . This is not

only true for the propositional part of the logic being Boolean, but also for the positive

fragment of the logic. These results generalise those of Santocanale and Venema (2007)

for the finitary powerset functor. We used the results for nabla and delta to show that

all unary monotone modalities are also left adjoints relative to �ω . Moreover, we have

identified those unary monotone modalities that are both left and right adjoints relative

to �ω . Left or right adjointness relative to �ω entails, for all the modalities we consider,

the preservation of directed meets or joins, respectively.

We have argued that the choice of �ω as the doctrine gives the second best level of

adjointness when dealing with finitary languages. We propose that the proper doctrine for

the λ-ary fragment of the full infinitary logic (where λ is a regular uncountable cardinal)

would be the doctrine �λ of free semilattices with < λ-joins.

We feel that another place where the choice of the doctrine �ω is relevant is proof

theory. Adjointness relative to �ω signifies the possible existence of a ‘nice sequent rule’

for the modality under consideration in a Gentzen-style proof system. Nice here means:

the rule is invertible only in a weaker sense, that is, if we consider the rule backwards,

there is a finite set of candidates for a possible prolongation of a proof search. This relates

to the ongoing work of the first and third authors on proof theory for coalgebraic logics

following the results of Bı́lková et al. (2008).

Remark 5.1. As promised in the introduction, we will now discuss the relation between

our results and those in Schröder and Venema (2010) in a bit more detail. Recall that

O-adjointness means adjointness relative to �ω .

Working in the setting of modalities obtained through (monotone!) predicate liftings,

and relative to a ‘nice’ proof system, Schröder and Venema proved as their main technical

result on O-adjointness that every formula that is monotone and uniform in a variable x

(roughly meaning that all occurrences of x are at the same depth) gives rise to an operation

that is an O-adjoint. Using the well-known closure properties of O-adjoints (Santocanale

2007), they arrived at the result that all so-called admissible formulas provide O-adjoints.

Note that there is no restriction on the functor here.

The differences and similarities between the two papers can be described by the following

two observations:

(1) First, the fact that the results of Schröder and Venema (2010) are modulo a ‘nice’ proof

system is not a restriction since every coalgebraic logic admits a sound and complete

system of this form Schröder (2007, Theorem 18). Thus Schröder and Venema (2010)

covers a wide range of coalgebraic logics, since they impose no restrictions on the

functor such as the preservation of weak pullbacks or finite sets.
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(2) Second, once we make the above restrictions, there are mutual translations in our

Boolean setting between the nabla language and the language of all predicate liftings:

in fact, Kurz and Leal (2009) showed that all expressive coalgebraic logics for a

finitary functor that preserves weak pullbacks and finite sets are mutually translatable.

However, it is not immediately clear whether the existence of these translations implies

that our results can be derived from those in Schröder and Venema (2010), or vice

versa (if we were to consider the semantically defined version of a logic based on

predicate liftings). The precise connection between the two approaches remains a task

for further research.

Apart from the fact that we obtained our results on the nabla modality just before the

results of Schröder and Venema (2010), the main value of our results here, relative to

Schröder and Venema (2010), is that we provide a direct, semantics-oriented proof for the

O-adjointness of the nabla-modalities.
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Adámek, J. (1983) Theory of mathematical structures, Reidel Publications.
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