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Applications of modal logics are abundant in computer science, and a large number of structurally
different modal logics have been successfully employed in a diverse spectrum of application contexts.
Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large
variety of specific logics used in particular domains. The coalgebraic approach is generic and
compositional: tools and techniques simultaneously apply to a large class of application areas and can,
moreover, be combined in a modular way. In particular, this facilitates a pick-and-choose approach to
domain-specific formalisms, applicable across the entire scope of application areas, leading to generic
software tools that are easier to design, to implement and to maintain. This paper substantiates the
authors’ firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not
only have impact on the field of modal logic itself but also lead to significant progress in a number of

areas within computer science, such as knowledge representation and concurrency/mobility.
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1. INTRODUCTION

Logics of all colours, shapes and sizes have traditionally played
a central role in computer science, and in fact the standard design
of the modern computer itself is based on a particular brand of
logic—Boolean propositional logic. In a rough classification
along a tradeoff between expressiveness and computational
tractability, one finds simple logics such as propositional logic,
which despite being NP-complete can nowadays be efficiently
handled using modern SAT-solvers, at the one end, and very
expressive higher-order logics, which, however, typically offer
only a low degree of automation at the other end of the spectrum.
Between the two extremes there is a large variety of logics
that target application-specific sweet spots between the two
conflicting goals of expressiveness and tractability. One large

1A preliminary version of this paper was presented at the BCS08 Visions of
Computer Science Conference, held on September 22–24, 2008.

class of such logics is the vast and growing family of modal
logics, which are characterised by having operators that qualify
formulas as holding in a certain way, e.g. ‘necessarily’, ‘in

the future’, ‘everywhere’, ‘probably’, ‘as everyone knows’ or
‘normally’.

Applications of modal logics are abundant in computer
science and related disciplines. A multitude of different
formalisms, including hybrid and description logics that also
axiomatise the notion of individuals, have been studied in a
variety of application contexts.Apart from classical applications
in the field of concurrent [1], mobile [2] and probabilistic
systems [3], modal logics play a central role in artificial
intelligence, e.g. in the context of reasoning with uncertainty
[4], non-monotonic reasoning [5] and – in particular, in their
description logic incarnation – in the field of knowledge
representation and ontologies [6]. Modal logics are employed
to reason about games [7] and coalitional power in multi-agent
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systems [8]. In economics, they have been used to describe
probabilistic information of economic agents [9], whereas, e.g.
deontic logic, the logic of obligation and permission originally
studied in philosophy [10], is being used to model contracts
in multi-agent systems. While we do not pretend to work
specifically on one of the UKCRC Grand Challenges [11], it
is interesting to note that every one of the current challenges
involves modal logic in some form or other, variously referring,
e.g. to knowledge representation, logics of agents or logics
for concurrency. Today, Kripke frames [12] constitute the
most popular semantics of modal logics, and the class of
logics that can be interpreted over Kripke frames forms
the class of the so-called normal modal logics. However,
many modal logics of interest, and indeed the majority of
the logics listed above, fail to be normal and hence their
semantics necessarily goes beyond Kripke frames as we
illustrate below.

As an example in knowledge representation, imagine you
want to connect two knowledge bases that describe different
aspects of transport patterns. The first knowledge base describes
travel activities in relation to individuals. The second knowledge
base circumstantiates the volume of traffic on public and
individual transport in temporal terms. Both knowledge bases
will naturally use a plethora of different primitives to represent
information. In a seemingly simple piece of knowledge such
as ‘Normally, the likelihood of road congestion is smaller
on weekends’, one implicitly makes use of default logics
(‘normally’), probabilistic reasoning (‘the likelihood’) and
temporal knowledge (‘weekends’) under a quantitative regime
(‘smaller’). If we link this with both knowledge bases that we
seek to combine, we will moreover encounter spatial reasoning
(to cater for distances), epistemic principles (knowledge of
individuals) and deontic constructs (obligations that arise, e.g.
through social norms) adorned with constructs that formalise the
joint behaviour of individual agents. Depending on the specifics
of knowledge that we seek to combine, many more ways of
logically expressing the relationship between the entities under
scrutiny may be needed.

Central to the study of logics, in general, are a number
of recurring questions, including completeness (‘are all valid
statements derivable?’), decidability (‘is the logic amenable to
automated reasoning?’) and complexity (‘what resources are
required to mechanise the logic?’). Given the diversity of the
modal logic family on the one hand and the uniformity of
the problems arising in meta-theory and implementation on the
other hand, it is clearly desirable to have a common framework
that captures the syntax and semantics of the mentioned modal
logics and many others, existing or yet to be developed, in a
uniform way and at the same time allows for a common meta-
theory and generic mechanised reasoning tools. The unifying
ingredient that makes all this possible is found in the semantics,
however varied shapes the latter assumes in specific cases. It
turns out that the common denominator is a view of models as
dynamic or reactive systems in a very general sense, which

is formally captured by regarding them as coalgebras. We
illustrate this view by a quick glance at a few examples.

Kripke frames. The traditional textbook semantics of the modal
logic K and its extensions is usually presented in relational
form: a Kripke frame is a pair (W, R) where W is a set of worlds
and R ⊆ W × W is an accessibility relation. The interpretation
of the accessibility relation varies according to the application
domain—e.g. in concurrency, worlds are seen as states of a
system, andR as representing their potential temporal evolution,
in knowledge representation, worlds are regarded as individuals
and R is a relationship between individuals such as parthood,
and in epistemic reasoning, R captures epistemic alternatives.
In a Kripke frame, a world w satisfies a modal formula of the
form �φ, read, e.g. ‘necessarily φ’ or ‘in all successor states,
φ’, if all worlds w′ accessible from w, e.g. all successor states
of w or all parts of w, satisfy φ. Now Kripke frames are easily
seen to be in one-to-one correspondence with transition maps
ρ : W → P(W) that assign the set of successors {w′ ∈ W |
wRw′} to each world w, where P(W) is the powerset of W .
From this point of view, if φ is a modal formula with extension
[[φ]] ⊆ W , then a world w satisfies �φ (w |= �φ) if and only
if the successor set of w is contained in [[φ]]. In other words,

w |= �φ ⇐⇒ ρ(w) ∈ {B ∈ P(W) | B ⊆ [[φ]]}.

Probabilistic transition systems. One step up from Kripke
frames, probabilistic transition systems extend the notion of
transition with quantitative uncertainty. In its simplest form
[3, 9], probabilistic modal logic (PML) extends propositional
logic with operators Lp (‘at least p’) where p ∈ [0, 1] is a
rational number. PML is interpreted over probabilistic transition
systems (W, P ) where W is a set of worlds and P = (Pw)w∈W

is a family of probability distributions on W , indexed by the
set of worlds. Again, according to the application context
P is variously interpreted as, e.g. governing the evolution
of a black-box dynamic system or the beliefs of an agent.
Correspondingly, the intended reading of Lpφ is ‘φ holds with
probability at least p in the next state’, or from the perspective of
quantitative uncertainty ‘in their present state of belief, agents
assign probability at least p to φ’. We may view probabilistic
transition systems as transition maps ρ : W → D(W), where
D(W) denotes the set of discrete probability distributions on
W ; i.e. ρ assigns to each world w a successor distribution
ρ(w) ∈ D(W). The main difference with Kripke frames lies
in the fact that collections of successors are now structured:
moving from frames to probabilistic models entails a shift from
successor sets to distributions. The classical interpretation of
probabilistic formulas, i.e.

w |= Lpφ ⇐⇒ Pw([[φ]]) ≥ p

can now be re-phrased in terms of successor distributions,

w |= Lpφ ⇐⇒ ρ(w) ∈ {μ ∈ D(W) | μ([[φ]]) ≥ p},
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Modal Logics are Coalgebraic 33

i.e. a state w satisfies Lpφ if its successor distribution assigns
probability at least p to the event [[φ]] ⊆ W . Again, the
quintessential nature of a probabilistic modal operator manifests
itself as providing a passage from properties of states to
properties of successor distributions.

Conditional logic. The language of conditional logic [13]
extends propositional logic with a binary connective that we
write as ⇒ using infix notation. The operator ⇒ represents a
non-monotonic conditional, whose intended readings include,
e.g. default implication ‘if φ then normally ψ’ and the
conditional version ‘ψ holds under the condition φ’. The
ensuing logics are often used in knowledge representation to
deal with the non-monotonic nature of information. Note that
the operator ⇒ is, in general, distinct from material implication
→. For example, the validity of φ ⇒ ψ does, in general,
not imply that of φ ∧ φ′ ⇒ ψ . Thus, conditional logic is
a modalised version of default logic, where defaults may be
nested. Conditional logic is usually interpreted in so-called
(standard) conditional frames (or selection function frames),
that is, pairs (W, f ) where W is a set of worlds and f :
W × P(W) → P(W) is a selection function that assigns a
proposition f (w, A) ⊆ W to each world w and condition
A ⊆ W . Alternatively, we may view conditional frames as
transition maps ρ : W → (P(W) → P(W)) that map
each world w ∈ W to a function ρ(w) : P(W) → P(W)

from conditions to propositions, both formalised as subsets of
W . That is, successor structures of worlds are now (selection)
functions of type P(W) → P(W).

In a conditional frame (W, f ), the standard semantics of the
conditional operator takes the form

w |= φ ⇒ ψ ⇐⇒ f (w, [[φ]]) ⊆ [[ψ]].
Again, the semantics of the conditional operator can be
understood as specifying a property of successor structures, i.e.
selection functions: we have

w |= φ ⇒ ψ ⇐⇒
ρ(w) ∈ {f : P(W) → P(W) | f ([[φ]]) ⊆ [[ψ]])},

where [[φ]] and [[ψ]] are again the truth-sets of φ and ψ ,
respectively. We note that, as in the other examples above,
the semantics of the conditional operator is embodied by an
operation, in this case binary, that maps predicates on the set
of worlds to predicates on the set of structured successors,
in this case selection functions. Other examples include, e.g.
spatial transition systems where binary modalities are used to
decompose concurrent processes.

The pattern that becomes apparent in the above examples
is that we may typically see the semantic transition structures
over which modal logics are interpreted as maps of the type
W → T (W), where T is some operator on sets, technically a
functor, and to be thought of as a form of parametrised datatype,
which determines the branching type of the transitions; and

moreover the interpretation of modal operators is embodied
in terms of predicate liftings that transform predicates on the
set W of worlds into predicates on the set T (W) of successor
structures. As a map W → T (W) is just what is technically
termed a coalgebra for T , this is the starting point of coalgebraic
modal logic: we can study modal logics at the right level of
generality by parametrising their semantics in the choice of a
functor T and a suitable set of predicate liftings.

Given that, as already illustrated by the above examples,
the level of generality of the coalgebraic approach is quite
high indeed, one may wonder whether it is actually the right
level of generality as claimed, i.e. whether one can indeed
develop a powerful generic theory rather than just gather lots
of examples under a common umbrella. It is one of the aims
of this paper to substantiate the claim that this is really the
case by highlighting some of the achievements of coalgebraic
modal logic to date. Indeed the scope of the established meta-
theory of coalgebraic modal logic reaches surprisingly far.
Besides basic meta-logical properties such as generic criteria
for soundness and completeness [14], it includes, e.g. some
new classical results of modal logic such as duality and
ultrafilter extensions [15], but also computational aspects such
as generic finite and shallow model constructions with ensuing
decidability and complexity results [16, 17], as well as proof-
theoretic results such as cut elimination and interpolation [18].
The parametricity over system types afforded by the coalgebraic
approach may be combined with reasoning principles of varying
strength, leading to, e.g. generic fixed-point logics [19] and
generic hybrid logics [20]. The coalgebraic framework is
not only parametric, but also modular w.r.t. combinations of
logics [21, 22]. Moreover, the parametricity extends also to the
underlying form of propositional logics and thus includes, e.g.
logics over nominal frameworks [23].

Having thus emphasised the suitability of the coalgebraic
approach as a universal framework for modal logic, we set out to
develop our vision of a unified description logic with universally
applicable automatic reasoning support. In this ideal future,
workers in knowledge representation, verification of concurrent
systems and many other areas will put together the domain-
specific modal logic suited for their problem domain in a pick-
and-choose approach, and immediately obtain efficient and
scalable reasoning tools by instantiating the generic coalgebra-
based reasoning framework.

2. A COOK’S TOUR OF COALGEBRAIC LOGICS

The above examples support the claim that modal logics can
be interpreted over general coalgebraic models. The idea that
underlies the whole body of research into coalgebraic logics
is parametricity: the methods and tools of coalgebraic modal
logic apply to coalgebras of any type. In other words, the
abstract theory speaks about T -coalgebras (C, γ : C → T C)

without ever assuming a concrete definition of T . Applications
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to concrete logics then simply fall out by instantiating the type
functor T accordingly. In this way, one obtains, e.g. algorithms
for reasoning with coalgebraic logics that uniformly cover all
the previously given examples. A surprisingly large body of
results can be obtained at this high level of generality, indicating
that coalgebras relate to modal logic at precisely the right level
of abstraction. We illustrate this by the following overview of
the main results, tools and techniques in the field of coalgebraic
logics.

2.1. Compositionality of coalgebraic logics

As illustrated above, the coalgebraic paradigm is a very flexible
means of describing dynamic behaviour. For example, we have
seen that probabilistic transition systems can be described as
coalgebras of type C → D(C), where D(C) is the set of
(discrete) probability distributions over C. Similarly, game
frames [8] can be phrased coalgebraically: a game frame
amounts to a coalgebra of type C → G(C) for

G(C) = {(S1, . . . , Sn, f ) |
Si �= ∅, i = 1, . . . , n; f : S1 × · · · × Sn → C},

where informally the Si are sets of strategies of the individual
agents 1, . . . , n and f is an outcome function that produces a
new position on the game board given the choice of individual
strategies. Games with uncertainty can now be modelled by a
simple combination: rather than a new position as in the game
with certainty, the outcome of a choice of strategies is now an
uncertain position, i.e. a probability distribution over positions
on the game board. That is to say, a model for games with
uncertainty is a coalgebra of type C → G(D(C))—a position
on the game board and choice of strategies yields a distribution
over successor states. In a similar way, simple Segala systems
(called probabilistic transition systems in [24]) can be modelled
as coalgebras of type

C → (P(DC))A,

where (−)A represents function space: to every state c ∈ C

and every label a ∈ A, one associates the non-deterministic
choice of a probability distribution over successor states which
accounts for a probabilistic interaction with the environment.
Similar combinations abound in many areas of computing: in
the area of knowledge representation, one may, for instance,
consider combinations of non-monotonic conditionals and
quantitative uncertainty, and logics for mobile systems are
most conveniently addressed using logical primitives for
communication and the generation of new channels at run time.

The power of the coalgebraic approach comes into play by
associating a logical description to every component that can
be composed to obtain a description of combined systems in
the spirit of Abramsky’s domain theory in logical form [25]. In
more detail, we have for every type functor T on sets:

• a one-step syntax, consisting of a set of modal operators
with arities that are used to describe possible next-state
behaviours;

• a one-step semantics for each such modal operator, in the
shape of a choice of predicate liftings as explained in the
introduction; and

• a set of one-step rules axiomatising the one-step observable
behaviours of states of T -coalgebras.

The great advantage of the above approach is its composi-
tionality, which allows deriving composite modal logics in
parallel with the structure of composite type functors such as
P(D(−))A above: it suffices to identify a number of ‘basic’
logical features, such as non-determinism, strategies or proba-
bility, and a number of ways of combining such features (these
two ingredients can even be seen as instances of the same
concept [22]), and equip these constructions with the above-
mentioned semantic and proof-theoretic structure. One thus
obtains multi-sorted modal logics that mix the involved modal
operators under a typing discipline that reflects the structure of
the underlying systems, such as the PML for simple Segala sys-
tems advocated in [24], which distinguishes probabilistic and
non-deterministic formulas. The compositional nature of this
approach allows properties such as soundness, completeness,
expressiveness (w.r.t. characterising similarity [21]) and decid-
ability, as well as upper complexity bounds (Section 1.4), to be
derived in a modular fashion: all one needs to show is that the
basic building blocks satisfy certain conditions at the one-step
level, such as one-step completeness or one-step expressive-
ness [21, 22]. Instantiated, e.g. with the PML of simple Segala
systems [24], the coalgebraic approach provides in particular

• a modularised proof of the expressiveness of this logic
w.r.t. the standard notion of bisimilarity,

• a modular way of deriving a sound and complete proof
system, and

• a modular satisfiability algorithm (see Section 2.4) that
witnesses a PSPACE upper bound.

While the first item is just an alternative proof of a known
result in probabilistic process algebra, the latter two have, to
our knowledge, first been stated and proved in a coalgebraic
setting [21, 22]. So far, only a limited amount of interaction
between the different components can be accounted for [26]
but more general results are anticipated.

A variation of the main technique used to derive
expressiveness results w.r.t. bisimilarity can be used to obtain
logics that characterise (weaker) notions of similarity [27]. In
addition to the three ingredients mentioned earlier, a fourth one
identifies a particular notion of similarity between coalgebras
by specifying a one-step simulation relation between one-
step behaviours. Expressiveness of modal logics w.r.t. such
notions of similarity is, as before, derived modularly using
conditions at the one-step level, in this case relating the
chosen one-step syntax and one-step semantics with the
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Modal Logics are Coalgebraic 35

one-step simulation relation under consideration. For simple
Segala systems, for instance, this technique can be used to
obtain a logic that characterises the probabilistic similarity of
[24]—a similarity relation that accounts for the probabilistic
nature of schedulers, by simulating (non-deterministic)
transitions by convex combinations of (again non-deterministic)
transitions.

2.2. Logics for nominal calculi

In the previous section, we have argued that the coalgebraic
approach is parametric and compositional in the notion of
behaviour, which is conveniently abstracted into a type functor.
But what constitutes the semantical base whose properties we
are to observe? It turns out that there is a plethora of different
semantical structures which form the underlying basis over
which we analyse behaviour.

This is reflected in the different ways of building logics and
models. For example, on the logical side, the variation starts
already at the level of the underlying propositional logic (clas-
sical, intuitionistic, positive, substructural, etc.). Semantically,
we may start with basic entities that we call states and then add
structure, beyond the coalgebraic transition structure, in many
different ways, e.g. algebraic operations (reflecting the way pro-
cess calculi allow us to construct new states from given ones),
topological structure (capturing that not all but only ‘open’ sets
of states are observable) and, most importantly, recursion. Like
in the ‘plain’ coalgebraic setting, we wish to find a systematic
and modular way of linking logics to structured models.

The semantics of the logics we want to use as the basic
building blocks are best described via Stone duality [28]
and its relatives. The idea is to describe a logic (syntax and
proof system) as a category of algebras (such as Boolean
algebras, Heyting algebras and distributive lattices) and the
models as topological spaces (the topology corresponds to the
fact that, e.g. finitary Boolean logic is not strong enough to
reason about arbitrary infinite unions and intersections). Duality
then amounts to a (dual) equivalence between a category of
algebras and a category of topological spaces (such as Boolean
algebras and Stone spaces). The two layers, duality and modular
combination, can be brought together in a fruitful way to account
for the computational structure over which observations are
made. A famous example, and indeed the ancestor of this
approach, isAbramsky’s programme of domain theory in logical
form, which extends Stone dualities to the solution of recursive
domain equations [25, 29].

We now proceed to illustrate how coalgebraic techniques
and a suitable choice of base category can be combined to
derive in a systematic way a logic for the π -calculus [30],
which characterises strong late bisimilarity and accounts for
name binding; see [23] for a full treatment. This showcases
yet another orthogonal aspect of genericity in the coalgebraic
framework. To capture the semantics of the π -calculus, we need
to interpret processes not in the standard set-theoretic universe

(as before) but in a variation where each set is equipped with
the action of a group of renamings that affect the so-called free
names of a process. More formally, we use the presheaf category
N of functors from finite sets (of channel names) with injective
renamings to a certain category of domains (representing
observable behaviour in the presence of recursion). As with the
coalgebraic approach, in general, the type of possible one-step
behaviours of processes is captured by a type functor, but now
taking sets with names, i.e. the category N as the semantic base.
For the π -calculus, the following functor on N was introduced
independently in [31, 32]:

Pi(X) = P(X + N × XN + N × (N × X) + N × δX).

As before P is for non-determinism, + is binary choice; N is a
constant for the set of names, δ allows creating a fresh name and
(·)N inputs a (possibly fresh) name. We read Pi as follows. The
possible one-step behaviours of a process are non-deterministic
(due to P) and may be one of the following alternatives: A
silent step (the X component), an input of a name (XN ) over a
channel (N ), the output of a free name over a channel (due to
N × N × X) or the allocation and sending of a fresh name (the
N × δ(X)-part).

In the same way in that modularity was invoked to obtain
sound, complete and fully abstract logics for set-based models,
the same machinery also applies uniformly in this different,
more complex setting: One has to describe the logical structure
of the semantical base category, in this case N, and of the functor
Pi. This is not hard: The case of the basic functors P, +, × has
been treated in Abramsky [25, 33] and the axiomatisations can
be reused without further modification (providing, e.g. the usual
modalities � and �); allocation of new names gives rise to a
modal operator [νb] for name creation. The result is a new fully
abstract, sound and complete modal logic for the π -calculus.
Again, the power lies in the modularity: the same techniques
give rise to out-of-the-box logics both for other calculi and
other forms of equivalences, in particular, including ones yet
to be developed.

2.3. Automata and fixpoint logics

We now proceed to give another example of the unifying
power of the coalgebraic perspective, now in a classical area
of computer science: automata theory. More specifically, we
consider the theory of finite automata as devices for classifying
infinite, or possibly infinite, objects. This branch of theoretical
computer science has found important applications in areas of
computer science where one investigates the ongoing behaviour
of non-terminating programs such as operating systems. As an
example we mention the automata-based verification method of
model checking [34].

This research also has a long and strong theoretical tradition,
in which an extensive body of knowledge has been developed,
with a number of landmark results. Many of these link the field
to neighbouring areas such as logic and game theory, see [35]
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for an overview. The outstanding example here is of course
Rabin’s decidability theorem [36] for the monadic second-
order logic of trees; to mention a more recent result, Janin
and Walukiewicz [37] identified the modal μ-calculus as the
bisimulation invariant fragment of the monadic second-order
logic of labelled transition systems.

The automata that we refer to come in many kinds and
shapes, and can be classified according to a number of criteria,
including

(i) the kind of objects the automata operate on: words, trees,
transition systems, …

(ii) the degree of interaction encoded in the automaton
transition map: is it deterministic, non-deterministic or
alternating?

(iii) the acceptance condition of the automaton: using a
Büchi, Muller or parity condition?

Note that the objects that automata operate on very often are
coalgebras, so it should come as no surprise that coalgebraic
notions will play a role here. Interestingly, many of the key
results in automata theory involve a comparison of automata
that fall in different classes according to the second and third
criterion above, but apply separately to each class of automata
as given by the first criterion. This applies for instance to various
closure properties of the class of recognisable languages, and to
the fact that alternating parity automata can be transformed into
equivalent non-deterministic ones: these results hold for word,
tree and graph automata alike. We claim that it will increase
our understanding of automata theory if we see these results as
manifestations of a more general, ‘universal’ automata theory
which is essentially coalgebraic in nature.

The key idea underlying the coalgebraic perspective on
automata theory is that acceptance (of an object by an
automaton) generalises bisimilarity (of two objects).As a simple
example of this, we consider tree automata.

Here, by a tree we mean an infinite binary tree whose nodes
are labelled with elements of a set C of colours. In other words,
a tree is a map τ : {0, 1}∗ → C that labels each finite bitstring
w with a colour τ(w) ∈ C. These maps may be viewed as
coalgebras of type BC , where BC is the functor taking a set S

to the set BC(S) := C × S × S. Arbitrary coalgebras for this
functor are pairs (S, σ ), where σ : S → BCS associates with
each state s a colour σC(s) and a left and right successor σ0(s)

and σ1(s), respectively. It is easy to see that C-coloured binary
trees are of this shape.

As mentioned earlier, each type of coalgebra comes with
a notion of bisimilarity or behavioural indistinguishability.
This notion can be nicely captured by an infinite bisimilarity
game of two players that we call ∃ (Éloise) and ∀ (Abélard).
The bisimilarity game is played on pointed BC-coalgebras
(X, ξ, x0), that is, coalgebras (X, ξ) augmented with an initial
state x0 ∈ X. Given two pointed BC-coalgebras A = (A, α, a0)

and S = (S, σ, s0), matches of the game start at the position
(a0, s0). Whenever a match arrives at some basic position

(a, s) ∈ A × S, ∃ looses if a and s have a different colour. If on
the other hand αC(a) = σC(s), then the match continues with
opponent ∀ choosing a direction (left or right). According to ∀’s
choice, the next position of the match is either (α0(a), σ0(s)) or
(α1(a), σ1(s)). ∃ may have no opportunity to win finite matches
of this game, and is declared the winner of every infinite match.
This game (which is essentially a one-player game due to the
simplicity of the functor BC) characterises bisimilarity in the
sense that a0 and s0 are bisimilar if and only if every match of
the game is won by ∃.

In order to bring automata into the picture, we think of one
structure, A, from now on called the automaton, as classifying
the other structure, S, from now on called the coalgebra. This
conceptual breach of the symmetry between the two structures
allows us to make some modifications to the structure of the
automaton. Most importantly, we give ∃ a bigger role in the
game by replacing the transition map α : A → BCA with
a non-deterministic variant  : A → P(BCA) where P is
powerset. The game is modified accordingly: Instead of fixing
the coalgebraic reading of a state a ∈ A as the element
α(a) ∈ BCA, we allow ∃ to dynamically pick such a reading
from the set (a) ⊆ BCA, whenever the state a pops up during
the match. Similar modifications of the bisimilarity game allow
us to add an acceptance condition that allows ∀ to win some
infinite matches, and a requirement that the automaton be finite.

The key point is that we have turned the bisimilarity game into
an acceptance game, and that when we take the coalgebra S to be
a binary tree, then this acceptance game is exactly the standard
one that we know from classical automata theory. For readers
eager to check this: our presentation of the transition structure
 : A → P(C × A × A) of an automaton is isomorphic to the
more standard presentation  : A × C → P(A × A).

The coalgebraic perspective on automata theory that we
just described applies to set coalgebras of arbitrary type
T [38]. In addition, in order to specify and reason about
ongoing coalgebraic behaviour, one may extend the coalgebraic
logics mentioned in the earlier parts of this note with fixpoint
operators, obtaining coalgebraic generalisations of the modal μ-
calculus [37]. Perhaps of more significance, under some mild
condition on the functor T (namely, that it preserves so-called
weak pullbacks), most of the important results in the theory of
tree and graph automata can in fact be proved at this level of
generality [39].As examples we mention the following results:

• reduction of alternating to non-deterministic automata
• various closure properties of recognisable languages
• decidability and finite model property of an associated

coalgebraic fixpoint logic.

We believe that the coalgebraic perspective has a lot to offer
in the area of automata theory and its applications.

To start with the latter, within the framework sketched in this
paper every (new) type of coalgebra comes equipped with a
modular arsenal of concepts (such as bisimilarity) and tools
(such as coalgebraic modal logic) that are well understood,
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backed up by a strong mathematical theory and ready to be
applied. The point that we argue in this section is that as
an integral part of this ‘coalgebraic package’ we obtain a
natural notion of automaton and a corresponding modal fixpoint
language for specifying ongoing coalgebraic behaviour, both
with nice computational properties.

Second, on the more theoretical side, coalgebra as an
organisational principle helps to understand some of the non-
trivial parts of automata theory through identifying general
principles shared by automata of various coalgebraic type.
For instance, in the analysis of [39] the transformation of
a non-deterministic equivalent of an alternating automaton
is the combination of a coalgebraic automaton construction
which works for arbitrary types and the classical Safra
construction which works for stream automata (ω-automata)
only. The specific coalgebraic contribution is that it separates the
dynamics (inside the coalgebra functor) from the combinatorics
(encoded in the acceptance condition of automata).

It should be noted that all the above constructions are
naturally of a modular nature [40] and so truly faithful to the
coalgebraic paradigm.

2.4. Generic algorithms and reasoners for modal logics

Given the extremely broad scope of coalgebraic modal logic,
one of the most important and also the most surprising aspects
of its emerging meta-theory is that it allows for a generic
algorithmic treatment, including both the proof of tight generic
complexity bounds and actual implementations. The corre-
sponding theoretical results take the shape of well-defined and
easily verified criteria that a logic must satisfy in order to have
a decidable satisfiability problem or even to be of low computa-
tional complexity. Technically, these criteria reduce properties
of the logic to much simpler properties of the underlying coalge-
braic structure as given by the choice of a functor and associated
predicate liftings; generic complexity bounds are then witnessed
by generic algorithms that are parametrised by subroutines
dealing with logic-specific aspects of local satisfiability.

Early results of this type have been limited to the so-called
rank-1 logics, characterised semantically as imposing only
local restrictions (such as seriality) rather than global restric-
tions (e.g. transitivity) on the underlying models. Advances
into the generic study of logics outside rank 1 are being made
currently [26, 41]. The first widely applicable criterion [16]
made use of a filtration-based finite model construction to
obtain a generic decidability criterion and ensuing EXPTIME
or NEXPTIME upper bounds, establishing a (universally valid)
finite model property for coalgebraic logics along the way.
A strongly improved version of this result [41] applies to vari-
ous logics outside rank 1, and in particular has led to the design
of a description logic with qualified number restrictions that is
able to handle parthood across several layers of decomposition
while keeping decidability; this contrasts sharply with existing

approaches using transitive parthood, which quickly lead to
undecidability [42].

Within the realm of rank-1 logics (unlike in the case of
higher-rank logics as treated in [41]), the generic exponential
time bounds of [16] generally do not match the actual
complexity of individual logics, which is typically PSPACE.
It does, however, turn out that these bounds can be matched
by generic algorithms, and indeed the latter have been used
to determine the exact complexity of a number of logics
where this was previously unknown. The generic algorithms
available can be broadly grouped into two classes: syntax-
oriented algorithms that connect proof search with shallow
models, and semantically minded algorithms that reduce global
satisfiability to local satisfiability using a direct construction
of shallow models. An algorithm of the former type, based on
the central notion of resolution closed rule sets [17], captures
the known tight PSPACE upper bounds for such diverse logics
as K (or KD), coalition logic, graded modal logic and PML,
and moreover has led (simultaneously with [43]) to a new
PSPACE upper bound for majority logic [44]. This algorithm, in
modularised form, is implemented in the prototypic coalgebraic
logic satisfiability solver CoLoSS [45]. Alternative semantics-
based algorithms [46] cover, e.g. complex logics such as
Presburger modal logic [43] and the modal logic of probability
of [47], which both feature linear inequalities between formula
weights and whose axiomatisations have so far evaded attempts
at harnessing their resolution closure, a prerequisite for the
application of the syntax-oriented approach. Moreover, the
semantics-based approach has been used to establish new
PSPACE upper bounds, e.g. for Elgesem’s logic of agency [48].
Not only does this already cover an impressive collection of
modal logics. What is more is that—faithful to the coalgebraic
paradigm—the reasoning principles for individual logics can be
combined and induce reasoners for composite logics [22].

Ongoing externally funded research projects are aimed at
extending the generic algorithmic framework, in particular, to
more general logics including fixpoints. Recent results more-
over include a generic algorithmic treatment of hybrid logics,
which provide the necessary facilities for reasoning about
individual states in the shape of nominals, as featured in many
description logics, and satisfaction operators. These generic
results yield new tight upper complexity bounds PSPACE for
a wide variety of hybrid logics including probabilistic hybrid
logic, conditional hybrid logic, hybrid coalition logic and
(an extension of) the description logic ALCHOQ [20]. One
important goal is to provide optimised implementations of the
generic algorithms, thus paving the way for efficient, universal
and modular coalgebraic reasoners.

3. VISIONS

We believe that, in the medium term, coalgebraic logics will
contribute to many areas, mainly because of their flexibility and
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compositional nature. One of the areas is modal logic itself, but
the potential is far greater. We outline some visions in the areas
of knowledge representation and reasoning about concurrent
and mobile systems.

3.1. Modal logic

Imagine you are exploring a newly designed or discovered
modal logic. Chances are that the logic is not normal, and
therefore not amenable to Kripke semantics. The questions on
the agenda could be computational (is the logic decidable? how
difficult is the decision problem?), of a modelling character
(what is the natural semantic domain for the logic? is it
complete? is it expressive?) or possibly pertaining to its
meta-theory (does it have the interpolation property? is it
canonical?).

The standard approach to questions of the above type is to set
up a semantics for the logic under scrutiny and to try and adapt
known constructions from other settings to the new semantic
domain in order to shed light on the properties of interest—a
laborious process that leads to results that are specific to the
logic under consideration.

Or, why not simply consult the rich and expanding literature
on coalgebraic semantics and instantiate off-the-shelf results to
obtain the properties in question? And even in case ready-made
results do not fit (yet), investigating your logic in the generic and
abstract coalgebraic framework has benefits that go far beyond
the concrete logic at hand and will later help those who ask
similar questions about their own favourite logics.

In summary, we expect the future of modal logics to be
coalgebraic. Judging from the rapid growth of the body of
literature in coalgebraic logics, and the already impressive
number of logics that fall within the coalgebraic paradigm,
coalgebras will be the standard semantics of (non-normal)
modal logics in years to come. We believe that the coalgebraic
view brings about a number of significant advantages:

Genericity. Both theoretical results and practical tools based
on the coalgebraic framework are by construction applicable to
a large class of modal logics.

Compositionality. Not only do different logics naturally co-
exist in the coalgebraic framework, but the coalgebraic approach
moreover allows for a natural and seamless integration of
logics. Coalgebra thus provides a convenient setting for
compositionality results, and under suitable assumptions caters
for the modular combination of reasoning principles [22].

Adaptability. Application areas are dynamic rather than static,
and the generic and compositional approach of coalgebraic
logics allows for an easy integration of new requirements
in particular application domains. Coalgebraic modal logic
caters for both semantics-centred approaches, where one needs
to design a logic to describe given semantic phenomena,

and syntax-centred ones [49], where one needs semantic
underpinnings for the analysis of given means of expression.

As new and domain-specific modal logics emerge steadily,
for example, in the fields of knowledge representation and
concurrency/mobility as outlined below, the time is ripe for
a more unified approach that will largely eliminate the need
for tinkering with the particulars of specifically given logics.
What we see before us in the medium term is a unitised
coalgebraic foundation that covers not only the logics of today,
but also all those logics that will be developed tomorrow to
harness the ever increasing complexity of the modern digital
society.

3.2. AI and knowledge representation

Recall the example from the introduction involving transport
patterns. We have seen that the expressive means potentially
required in traffic-related formal knowledge bases can be
cast as instances of coalgebraic modal logic. What next?
Of course we would like to reason about the information
that is represented by the amalgamation of both knowledge
bases. This involves modularity: we need to combine reasoning
principles (to capture the interaction between different
logical constructs), we need to combine knowledge and data
and we need to synthesise algorithms that allow deriving
valid conclusions from the amalgamated knowledge base
automatically.

But reasoning may not be enough. We might want to
employ mechanisms of knowledge discovery, e.g. with the
aim of supporting transport planning or to provide decision
support for network managers. This leads us into the area of
machine learning, and we would like to employ mechanisms
for knowledge discovery in this specific setting.

Of course, reasoning about transport patterns is only one
example, and we are faced with similar tasks, most prominently
in the area of medicine (with a comparatively large body of
knowledge formalised, e.g. in the GALEN ontology [50]), but
also in other areas like civil engineering, law and life sciences.
The diversity of the form of knowledge to be formalised, which
stems from the different application areas, calls for modular and
compositional systems that allow representing and reasoning
about combinations of many different facets of knowledge—
and if we were granted a wish, they should moreover allow for
induction of hypotheses.

Can such systems be achieved? We think that coalgebraic
techniques will have both a natural and a central place in the
field of knowledge representation in the years to come. The
pick-and-choose approach to modal, hybrid and description
logics allows us to combine logical features and reasoning
principles in a modular fashion. The modularity goes beyond
the blueprint stage as coalgebraic techniques also facilitate
the automated construction of reasoning engines based on
a combination of logical features. Of course, more research
is needed, and the application of coalgebraic techniques in
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knowledge representation, in particular, calls for progress in
two specific areas. The first concern is the development of a
generic theory of learning, or induction of hypotheses, to be able
tap into today’s distributed knowledge bases. Equally important
is the creation of distributed reasoning engines that support the
modular paradigm to harness the generally large volume of data
computationally.

In summary, coalgebraic techniques have a lot to offer
for knowledge representation, first and foremost a dramatic
increase in expressive power that stems from incorporating
and combining different logics and reasoning principles that
are relevant for representing knowledge. We envisage that this
potential will be realised in the medium term in the form
of tangible tool support for (coalgebraic) reasoning about
knowledge: In a few years time, we will be able to specify the
relations of distributed knowledge bases and employ distributed,
compositional reasoning to provide, e.g. decision support for
traffic network planning, based on the integration of a large
body of knowledge over the web.

3.3. Concurrency and mobility

Imagine you are to design the IT infrastructure of a security-
relevant operation, say an airport, that is currently being
planned. Users will want to attach to the infrastructure using
a plethora of mobile devices, from handheld computers to
mobile phones. Clearly the overall architecture will have to be
location aware up to the point of distances between individuals,
reflect different security clearances and cater for availability
of finite resources in terms of personnel and hardware. It will
need to accommodate quantitative uncertainty to cope with e.g.
hardware failure or human error. One extremely important factor
is time, and the ability to incorporate both soft deadlines (related
e.g. to average baggage throughput) and hard deadlines, dictated
by security requirements.

Part of the challenge of this task is to provide quality
assurances regarding both functional and non-functional
requirements while the requirements, and consequently also the
layout of the system, are still subject to change. Of course, our
first task in this enterprise is to build a model that caters for all the
aspects indicated above, quite possibly in the form of a dedicated
calculus, followed by the design of a formalism that allows
expressing the varied requirements of the overall architecture. In
other words, we are to provide both a model and a specification
of a system, whose design and layout may still change. The task
of validating this specification against the model then takes the
form of logical reasoning, and will be achieved by a combination
of both automated theorem proving and model checking. Modal
logics in general, and coalgebraic logics in particular, are well
positioned to meet this challenge, as they combine a high degree
of expressive power with good computational properties, and
the coalgebraic framework in particular provides the common
ground that allows integrating the heterogeneous and varied

aspects of the model. Clearly, compositionality is the key
ingredient without which an endeavour like the above would
not be feasible. One needs to combine both reasoning principles
and their underlying semantics. We need a modular way to
combine location aware and spatial logics with probabilistic
aspects, notions of resource, security, concurrency and mobility,
all in a framework that honours time. The emphasis needs to be
placed on flexibility, as new requirements may emerge and the
model is subject to constant change.

The above scenario discusses just one (very concrete)
example of tasks that lie ahead of us in the future. Very
similar problems manifest themselves in three of the nine
grand challenges in computing research: we mention global
and ubiquitous computing, dependable systems evolution
and scalable ubiquitous computing systems. We believe that
coalgebraic modelling, and associated coalgebraic logics, are
very well positioned to bring about significant advances in
global computing at large. First, the coalgebraic model is
flexible. That is, it can incorporate many different types of
behaviour and interaction, e.g. location awareness, mobility
and quantitative uncertainty, to name but a few. Second, the
coalgebraic model is compositional: both on the logical and the
semantical level it allows us to combine computational features
and reason about their interaction. Third, the coalgebraic model
is uniform, i.e. all computational aspects of the model share
the same meta-theory. This, in particular, leads to software
tools that are easier to design, to maintain and to implement.
Finally, the coalgebraic model is compatible in the sense that
it subsumes nearly all existing formal notions of state-based
system as special cases.

It is precisely the large number and diverse nature
of networked devices as well as the possibly disastrous
consequences of failure that call for an integrated and
compositional approach to modelling and verification as
provided by the coalgebraic paradigm. As it stands, this
presents two research challenges. To fully maximise the
benefit of the coalgebraic approach, more investment both
at the theoretical and practical level is needed. On the
theoretical side, a more compartmentalised analysis of mobility
primitives and their interactions needs to be provided, together
with a compositionality layer that specifically addresses
the needs of ubiquitous computing. On the practical side,
this needs to be matched with adequate and modular tool
support, specifically concerning automated reasoning and
model checking.

In summary, we envisage that the coalgebraic approach will
play a leading role in the area of formal models of ubiquitous
computation in the medium and long term. In a world where
we rely on increasingly complex and self-managing networks
to an unprecedented level, quality assurance in the sense of
mathematical proof will be indispensable soon in a large
number of areas, ranging from intelligent sensor networks to
medical smartcards that store and encode highly confidential
information.
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4. CONCLUSIONS

Coalgebraic logic is an immensely rich field with a multitude
of applications, of which we have just described a tiny fraction.
We believe that the coalgebraic approach views computational
phenomena at precisely the right level of abstraction: the
modelling language is extremely flexible, while many of the
associated logics are still decidable in reasonable complexity
classes. In conjunction with the built-in compositionality of the
method at large, one obtains an extremely powerful framework
for the analysis of phenomena in Computer Science and
Artificial Intelligence. Apart from foundational research that
extends the arsenal of logical machinery, the most important
challenge is the further development of the tool support to
create optimised and efficient reasoners. Our philosophy here
is pick-and-choose, and the genericity of the coalgebraic
approach will manifest itself in a modular and compositional
reasoning framework that will be used in areas ranging from
the verification of mobile systems to knowledge representation
and artificial intelligence.
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