
A characterization theorem for the alternation-free
fragment of the modal µ-calculus

Alessandro Facchini
U. Warsaw

Email: facchini@mimuw.edu.pl

Yde Venema
U. Amsterdam

Email: y.venema@uva.nl

Fabio Zanasi
ENS Lyon, U. Lyon, CNRS, INRIA, UCBL

Email: fabio.zanasi@ens-lyon.fr

Abstract—We provide a characterization theorem, in the style
of van Benthem and Janin-Walukiewicz, for the alternation-free
fragment of the modal µ-calculus. For this purpose we introduce
a variant of standard monadic second-order logic (MSO), which
we call well-founded monadic second-order logic (WFMSO).
When interpreted in a tree model, the second-order quantifiers of
WFMSO range over subsets of conversely well-founded subtrees.
The first main result of the paper states that the expressive
power of WFMSO over trees exactly corresponds to that of weak
MSO-automata. Using this automata-theoretic characterization,
we then show that, over the class of all transition structures, the
bisimulation-invariant fragment of WFMSO is the alternation-
free fragment of the modal µ-calculus. As a corollary, we find that
the logics WFMSO and WMSO (weak monadic second-order
logic, where second-order quantification concerns finite subsets),
are incomparable in expressive power.

I. INTRODUCTION

A seminal result in the theory of modal logic is van
Benthem’s Bisimulation Theorem [1], stating that every first-
order formula α(x) which is invariant under bisimulations, is
actually equivalent to (the standard translation of) a modal
formula. Concisely, this result can be formulated as follows:

FO/↔ = ML. (1)

Over the years, a wealth of variants of the Bisimulation
Theorem have been obtained. For instance, Rosen proved that
van Benthem’s theorem is one of the few preservation results
that transfers to the setting of finite models [2]; for a recent,
rich source of van Benthem-style characterization results, see
Dawar & Otto [3].

Of particular interest to us is the work of Janin &
Walukiewicz [4], who extended van Benthem’s result to the
setting of fixpoint logics, by proving that the modal µ-calculus
(MC ) is the bisimulation-invariant fragment of monadic second-
order logic (MSO):

MSO/↔ = MC . (2)

The general pattern of these results takes the following shape:

L/↔ =M (over C), (3)

stating that M is the bisimulation-invariant fragment of L
over a class C of models. Here L is some yardstick logic
such as first-order logic (FO), monadic second-order logic
(MSO) or weak monadic second-order logic (WMSO); M
is some variant of modal logic such as the modal µ-calculus

Structures (C) L M reference

TSs

FO ML [1]
MSO MC [4]

WMSO ? –
? AFMC –

binary trees WMSO AFMC [6]

finite TSs FO ML [2]
WMSO = MSO ? –

transitive TSs WMSO ML [7]
MSO AFMC [3], [8]

Table I
TS stands for ‘transition system’.

or one of its most important fragments: the alternation-free
fragment (AFMC ); and C is some class of models, such as
finite, transitive, or tree models. Table I summarizes some
important results following this pattern1.

Table I suggestively indicates the existence of some open
problems, but let us first address the issue why characterization
results of the form (3) are of interest, apart from their
obvious importance in (finite) model theory. The point is that
the mentioned logics, and the models they are interpreted
in, feature prominently in the area of formal verification
theory. Generally, one is interested in applications where
these models are transition structures representing certain
computational processes, and one usually takes the point of
view that bisimilar models represent the same process. For
this reason, properties of transition structures that are not
bisimulation-invariant are simply irrelevant. Seen in this light,
(3) is an expressive completeness result, stating that all relevant
properties of L (which is generally some kind of expressive
yardstick formalism), can already be expressed in a (usually
computationally more feasible) fragment M. Or, conversely
starting from M, according to (3), one may think of L as
an extension of M that is completely covered by M when it
comes to expressing relevant properties.

In this paper, which is based on an MSc thesis [9] written
by the third author and supervised by the first two authors,
we try to improve our grasp of such ‘expressiveness modulo

1Other interesting results (not included in the Table) are the ones obtained
by Janin and Lenzi in [5]. With an automata-theoretic argument, the authors
show that the relationship between the ground level of the MSO quantifier
alternation hierarchy (that is FO) and the ground level of the MC fixpoint
alternation hierarchy (that is ML) holds up to the second level of the two
hierarchies, but it cannot hold higher.



bisimilarity’ results. We are particularly interested in the
relation between (variants of) monadic second-order logic
and modal fixpoint logics; that is, in variants of the Janin-
Walukiewicz result (2). More concretely, we fill in one of the
three gaps of Table I by providing a natural solution L to the
equation

L/↔ = AFMC (over all TSs). (4)

Naively, one might think that when considering this question
in the context of all transition systems, the situation is the
same as for the class of binary trees [6], so that L = WMSO
would solve (4). But if this were the case, then AFMC would
also be the bisimulation-invariant fragment of WMSO over
trees. However, it turns out that the class of well-founded
trees, which is definable in AFMC by the formula µx.�x, is
not WMSO-definable. The reason comes from topology: the
class of well-founded trees is not Borel, whereas all WMSO-
definable tree languages are Borel. On the other hand, it is
not clear either whether the bisimulation-invariant fragment of
WMSO is included in AFMC (or even in the modal µ-calculus
itself), no matter how reasonable this may seem. The point
is that, contrary to the finitely branching case, WMSO is not
a fragment of MSO over trees of arbitrary branching degree.
(In fact the two logics are incomparable, as a consequence of
the following finite branching property of MSO : every non-
empty MSO definable tree language contains at least a finitely
branching tree [10]. It follows that MSO cannot define the
class of infinitely branching trees, which on the contrary is
clearly WMSO-definable.)

It turns out that in order to solve the equation (4), we need
to introduce a new variant of monadic second-order logic. In
this variant, that we shall call well-founded monadic second-
order logic (WFMSO), the second-order quantifiers range over
special subsets of the transitions system that we call noetherian.
Roughly, a subset S of a transition system T is noetherian if
there are no infinite paths through the set of points from which
S is reachable (a more precise definition follows). Note that a
subset S in a tree model T is noetherian iff S is a subset of
a (conversely) well-founded subtree of T — this explains our
terminology.

Theorem 1. Let L a bisimulation closed class of transition
systems. The following are equivalent.

1) L is AFMC -definable.
2) L is WFMSO-definable.

As in the case of MSO and the modal µ-calculus, the result is
obtained by using automata-theoretic techniques. We will work
with Walukiewicz’ MSO-automata [10], or more specifically,
with variants in which acceptance is defined in terms of a
weak parity or a Büchi condition. Restricting, as usual, to tree
models, we will prove the following result.

Theorem 2. Let L a tree language. The following are
equivalent:

1) L is recognized by a weak MSO-automaton.
2) L is WFMSO-definable.

3) L and its complement L are both recognized by a non-
deterministic Büchi MSO-automaton.

Both our results are generalizations to structures of arbitrary
branching degree, of results known for binary trees (see Arnold
& Niwiński [6] for Theorem 1, and Rabin [11] or Muller,
Saoudi & Schupp [12] for Theorem 2). This should come as
no surprise once we realize that WMSO and WFMSO are
the same logic on finitely branching trees, and therefore a
fortiori on binary trees. The key observation here is that by
König’s Lemma, over the class of finitely branching trees, the
noetherian subsets coincide with the finite ones. Intuitively,
the idea behind noetherian sets is that they somehow bound
the set’s ‘vertical’ dimension, whereas the branching degree
concerns the ‘horizontal’ dimension. Perhaps this separation
of dimensions can be seen as a conceptual contribution of our
paper, which hopefully will further increase our understanding
of the interaction between monadic second-order logics, modal
fixpoint logics, and automata, both on trees and on arbitrary
models.

Finally, we address the question of the relative expressive
power of the logic WFMSO with respect to MSO and WMSO .
It is not hard to see that MSO has more expressive power than
WFMSO . It then follows from Theorem 1 that on the class
of all transition structures and on the class of all trees, MSO
is strictly more expressive than WFMSO , while the logics
WMSO and WFMSO are incomparable. This provides further
evidence that a complete understanding of WMSO-expressivity
on arbitrary trees requires a different, non-obvious variant of
MSO-automata.

II. PRELIMINARIES

A. Transition Systems and Trees.

Throughout this article we fix a set P of elements that will
be called proposition letters and denoted with small Latin
letters p, q, . . . . We denote with C the set ℘(P ) of labels on
P ; it will be convenient to think of C as an alphabet. Given
a binary relation R ⊆ X × Y , for any element x ∈ X , we
indicate with R[x] the set {y ∈ Y | (x, y) ∈ R}, while R+

and R? are defined respectively as the transitive closure of R
and the reflexive and transitive closure of R. The set Ran(R)
is defined as

⋃
x∈X R[x].

A C-transition system is a tuple T = 〈T, sI , R, V 〉 where
〈T,R〉 is a directed graph, sI ∈ T is a distinguished node,
and V : T → C is a labeling function. Let p be a proposition
letter (not necessarily in P ). A p-variant of a transition system
T = 〈T, sI , R, V 〉 is a ℘(P ∪ {p})-transition system T′ =
〈T, sI , R, V ′〉 such that V ′(s) \ {p} = V (s) for all s ∈ T .
Given a set S ∈ ℘(T ), we let T[p 7→ S] denote the p-variant
〈T, sI , R, V ′〉 of T where V ′(s) is defined as V (s) ∪ {p} if s
is in S and V ′(s) = V (s) otherwise. A path through T is a
sequence π = (ui)i<α of elements of T , where α is either ω or
a natural number, and (ui, ui+1) ∈ R for all i with i+ 1 < α.

A C-tree is a C-transition system T = 〈T, sI , R, V 〉 where
〈T,R〉 is a graph in which every node can be reached from
sI (that is, R?[sI ] = T ), and every node, except sI , has a



unique predecessor; sI is called the root of T. A branch of
T is a maximal path through T starting at the root; we may
identify a branch with the set of its nodes. Each node s ∈ T
uniquely defines a subtree of T with carrier R?[s] and root s,
that we denote with T.s. A tree language over P (or just a
tree language if P is clear from the context) is just a class of
C-trees.

Given a tree T, we say that G ⊆ T is a frontier of T
if G ∩ E is a singleton for every branch E of T. A set S
is a prefix of T if there exists a frontier G of T such that
S = {s ∈ T | sR?t for some t ∈ G}. It is easy to see that
every prefix is uniquely determined by a frontier and vice
versa; if S is a prefix, we denote with Ft(S) its associated
frontier. It is similarly straightforward to verify that the set
of prefixes is in 1-1 correspondence with the collections of
well-founded subtrees of T that have the same root as T. Given
two frontiers G1 and G2 of T, we write G1 < G2 if, for every
branch E in T, given s1 ∈ G1 ∩E and s2 ∈ G2 ∩E, we have
that s1R

+s2. Analogously, G1 ≤ G2 holds if, for every branch
E in T, given s1 ∈ G1 ∩ E and s2 ∈ G2 ∩ E, we have that
s1R

?s2.
Given a transition system T and a subset S of T , let ⇑S

denote the set of points from which S can be reached by a
finite path. More precisely, ⇑S := {t ∈ T | R?[t] ∩ S 6= ∅}.
Call S noetherian if there is no infinite path through ⇑S (that
is, no sequence (ui)i<ω such that ui ∈ ⇑S and uiRui+1, for
all i). It is straightforward to verify that in the case of tree
models, a subset S is noetherian iff it is a subset of a prefix
of the tree iff it is a subset of a well-founded subtree. We
let N(T) denote the collection of noetherian subsets of T. A
p-variant T[p 7→ S] of T is noetherian if S ∈ N(T ); similarly,
T[p 7→ S] is a finite p-variant if S ⊆ω T (i.e., if S is a finite
subset of T ).

Unless explicitly specified otherwise, all transition systems
T are considered to be C-labeled.

Convention. Throughout this paper, we will only consider
transition system T in which R[s] is non-empty, for every node
s ∈ T . In particular this means that every tree we consider is
leafless. All our results, however, can easily be lifted to the
general case.

B. Board Games.

We introduce some terminology and background on infinite
games. All the games that we consider involve two players
called Éloise (∃) and Abelard (∀). In some contexts we refer
to player Π, meaning that we want to specify a notion for a
generic player in {∃,∀}.

Given a set A, by A∗ and Aω we denote respectively the
set of words (finite sequences) and streams (or infinite words)
over A.

A board game G is a tuple (G∃, G∀, E,Win), where G∃
and G∀ are disjoint sets whose union G = G∃ ∪G∀ is called
the board of G, E ⊆ G×G is a binary relation encoding the
admissible moves, and Win ⊆ Gω is a winning condition. An
initialized board game G@uI is a tuple (G∃, G∀, uI , E,Win)
where (G∃, G∀, E,Win) is a board game and uI ∈ G is the

initial position of the game. When G is a parity game, i.e. Win
is given by a parity function Ω : G→ ω, we sometimes write
G = (G∃, G∀, E,Ω).

Given a board game G, a match of G is simply a path through
the graph (G,E); a match of G@uI is supposed to start at
uI . For a match π = (ui)i<k for some finite k < ω, we call
last(π) = uk−1 the last position of the match; the player Π
such that last(π) ∈ GΠ is supposed to move at this position,
and if E[last(π)] = ∅, we say that Π gets stuck in π. A match
π is called total if it is either finite, with one of the two players
getting stuck, or infinite. Matches that are not total are called
partial. Any total match π is won by one of the players: If π
is finite, then it is won by the opponent of the player who gets
stuck. Otherwise, if π is infinite, the winner is ∃ if π ∈Win ,
and ∀ if π 6∈Win .

Given a board game G and a player Π, let PMG
Π denote

the set of partial matches of G whose last position belongs to
player Π. A strategy for Π is a function f of type PMG

Π → G.
A match π = (ui)i<α of G is f -conform if for each i < α
such that ui ∈ GΠ we have that ui+1 = f(u0, . . . , ui).

Given a position u ∈ G and a strategy f : PMG
Π → G,

consider the following two conditions.

1) For each f -conform partial match π of G@u, if last(π) is
in GΠ then f(π) is legitimate, i.e., (last(π), f(π)) ∈ E.

2) Π wins each f -conform total match of G@u.

If f respects the first condition, we say that f is a surviving
strategy for Π in G@u, and if it satisfies both conditions, then
we call f a winning strategy for Π in G@u. In the latter case
we say that u is a winning position for Π in G. We denote
with WinΠ(G) the set of positions of G that are winning
for Π. A strategy f : PMG

Π → G is called positional if
f(π) = f(π′) for each π and π′ in Dom(f) with last(π) =
last(π′). A board game G with board G is determined if
G = Win∃(G) ∪Win∀(G), that is, each u ∈ G is a winning
position for one of the two players.

Fact 1 (Positional Determinacy of Parity Games, [13], [14]).
For each parity game G, there are positional strategies f∃ and
f∀ respectively for player ∃ and ∀, such that for every position
u ∈ G there is a player Π such that fΠ is a winning strategy
for Π in G@u.

From now on, we always assume that each strategy we work
with in parity games is positional.

C. Monadic Second-Order Logics.

We define three variants of monadic second-order logic: (stan-
dard) monadic second-order logic (MSOP ), weak monadic
second-order logic (WMSOP ) and well-founded monadic
second-order logic (WFMSOP ). We omit the subscript P
when the set of proposition letters is clear from the context.
These logics share the same syntax: formulas of the monadic
second-order language on P are defined by the following
grammar:

ϕ ::= p v q | S(p) | R(p, q) | ¬ϕ | ϕ ∨ ϕ | ∃p.ϕ,



where p and q are letters from P . We adopt the standard
convention that no letter is both free and bound in ϕ.

The three logics are distinguished by their semantics. Given
a transition system T = 〈T, sI , R, V 〉, the interpretation of
the atomic formulas and the boolean connectives is fixed and
standard, e.g.:

T |= p v q iff ∀s ∈ T.p ∈ V (s)⇒ q ∈ V (s)
T |= R(p, q) iff ∀s ∈ T.p ∈ V (s)⇒ ∃t ∈ R[s].q ∈ V (t)
T |= S(p) iff ∀s ∈ T.p ∈ V (s)⇒ s = sI .

The interpretation of the existential quantifier is that T |= ∃p.ϕ
if and only if

(MSO) T[p 7→ S] |= ϕ for some S ⊆ T
(WMSO) T[p 7→ S] |= ϕ for some finite S ⊆ T
(WFMSO) T[p 7→ S] |= ϕ for some noetherian S ⊆ T .
Let ϕ ∈ MSO be a formula. We denote with ‖ϕ‖P the set

of C-transition structures T such that T |= ϕ. The subscript P
is omitted when the set P of proposition letters is clear from
the context. A class L of transition systems is MSO-definable
if there is a formula ϕ ∈ MSO such that ‖ϕ‖ = L. We define
the analogous notions for WMSO and WFMSO in the same
way.

D. The Modal µ-Calculus.

The language of the modal µ-calculus (MC ) on P is given by
the following grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | µq.ϕ | νq.ϕ,

where p, q ∈ P , and in the clauses for µq.ϕ and νq.ϕ, q does
not occur in the scope of ¬.

The semantics of this language is completely standard. Let
T = 〈T, sI , V,R〉. We inductively define the meaning ‖ϕ‖T
which includes the following clauses for the least (µ) and
greatest (ν) fixpoint operators:

‖µp.ψ‖T :=
⋂
{S ⊆ T | S ⊇ ‖ψ‖T[p 7→S]}

‖νp.ψ‖T :=
⋃
{S ⊆ T | S ⊆ ‖ψ‖T[p 7→S]}

We say that ϕ is true in T - notation T |= ϕ - if sI ∈ ‖ϕ‖T.
As for the case of MSO , ‖ϕ‖P denotes the class of C-transition
systems T where ϕ is true.

Formulae of the modal µ-calculus are classified according to
their alternation depth, which roughly is given as the maximal
length of a chain of nested alternating least and greatest fixpoint
operators [15]. In particular, we are interested in the alternation-
free fragment of the modal µ-calculus (AFMC ) which is the
collection of MC -formulae without nesting of least and greatest
fixpoint operators. It is well known that over transition systems
there is a MC -formula ϕ such that ‖ϕ‖P is not AFMC -
definable [16].

E. Bisimulation.

Bisimulation is a notion of behavioral equivalence between
processes. For the case of transition systems, it is formally
defined as follows.

Definition 1. Given C-transition systems T = 〈T, sI , R, V 〉
and T′ = 〈T ′, s′I , R′, V ′〉, a bisimulation is a relation Z ⊆
T × T ′ such that for all (t, t′) ∈ Z the following holds:
• V (t) = V ′(t′);
• for all s ∈ R[t] there is s′ ∈ R′[t′] such that (s, s′) ∈ Z;
• for all s′ ∈ R′[t′] there is s ∈ R[t] such that (s, s′) ∈ Z.
The transition systems T and T′ are bisimilar if there is a

bisimulation Z ⊆ T×T ′ containing (sI , s
′
I). We write T↔ T′

to indicate that T and T′ are bisimilar.

The tree unraveling of a transition system T is denoted by
Te. The following fact will allow us to provide a proof of
Theorem 1 for tree languages only.

Fact 2. T and Te are bisimilar, for every transition system T.

A class of transition systems L is bisimulation closed if
T ↔ T′ implies that T ∈ L ↔ T′ ∈ L for each T and T′. A
formula ϕ is bisimulation-invariant if T ↔ T′ implies that
T |= ϕ↔ T′ |= ϕ for each T and T′.

Fact 3. Each MC -definable class of transition systems is
bisimulation closed.

The Janin-Walukiewicz theorem can be formulated as
follows.

Fact 4 ([4]). Let L be a bisimulation closed class of transition
systems. The following are equivalent.

1) L is MC -definable.
2) L is MSO-definable.

III. AUTOMATA FOR WFMSO

A. Automata over trees.

In this section we work with a restricted class of MSO-
automata, called weak MSO-automata. Intuitively, an MSO-
automaton is weak if the reachability relation on its states
induced by the transition function ‘respects’ the parity map.

First, we present a first-order logic on a signature given by
a set of unary predicates A that will be used to define the
transition function of automata. We define For+(A) as the
set of monadic first-order formulae with identity (≈), where
negation can only occur in front of atomic formulae of the
kind x ≈ y. Given a subset S of A, we introduce the notation

τ+
S (x) :=

∧
a∈S

a(x).

The formula τ+
S (x) is called a (positive) A-type. We use the

convention that, if S is the empty set, then τ+
S (x) is > and we

call it an empty A-type. Given a set Y ⊆ For+(A) of formulae,
Disj (Y ) = {

∨
X | X ⊆ω Y } is the collection of all finite

disjunctions of formulae in Y . We indicate with FO+(A) the
set of sentences from For+(A). A sentence ϕ ∈ FO+(A) is
in basic form if it is of shape

ϕ = ∃x1 . . . ∃xk
(

diff (x̄) ∧
∧

1≤i≤k

τ+
Bi

(xi)

∧ ∀z (diff (x̄, z)→
∨

1≤l≤j

τ+
Cl

(z))
)
,



where each τ+
Bi

(xi) and τ+
Cl

(z) is an A-type,
diff (y1, . . . , yn) :=

∧
1≤m<m′<n(ym 6≈ ym′), and the

subformula of shape ψ → χ is defined as ¬ψ ∨ χ. We denote
with BF +(A) the set of all sentences from FO+(A) that are
in basic form. A sentence ϕ ∈ BF +(A) is in functional basic
form if, for each non-empty A-type τ+

S (x) occurring in it, S
is a singleton. If ϕ is in functional basic form and no empty
type occurs in it then we say that ϕ is in special basic form.
We denote with FBF +(A) and SBF +(A) respectively the
set of all sentences in BF +(A) which are in functional basic
form and in special basic form.

Turning to the semantics, given a set X , a function m : A→
℘(X) and a valuation v : Var → X , we define the notion of a
formula ϕ ∈ For+(A) being true in (X,m, v) in the obvious
way. In this setting, we call the function m a marking.

Definition 2. An MSO-automaton on alphabet C is a tuple
A = 〈A, aI ,∆,Ω〉 where:

• A is a finite set of states, aI ∈ A is the initial state,
• ∆ : A× C → Disj (FO+(A)),
• Ω : A→ ω is a parity function,

Let A be an MSO-automaton. Given two states a, b ∈ A, we
say that b is reachable from a if there is a sequence a0, . . . , an
of states in A such that a0 = a, an = b and for every i < n,
ai+1 occurs in ∆(ai, c), for some c ∈ C. An MSO-automaton
is called weak if for every a, b ∈ A, a is reachable from b
and b is reachable from a, then Ω(a) = Ω(b). It is called
non-deterministic if ∆ has type A× C → Disj (FBF +(A)).

Given a tree T, the acceptance game A(A,T) of A on T
is the parity game defined according to the rules of table II.
Finite matches of A(A,T) are lost by the player who gets
stuck. An infinite match of A(A,T) is won by ∃ if and only if
the minimum parity occurring infinitely often is even. The tree
T is accepted by A if and only if ∃ has a winning strategy in
A(A,T)@(aI , sI). The tree language accepted by A is denoted
by L(A).

Remark 1. It is easy to see that every weak MSO-automaton
can be seen as having a parity function ranging only over
priorities {0, 1}. Intuitively, states with priority 0 are the
accepting states, whereas states with priority 1 are the rejecting
state. This is because a weak MSO-automaton accepts a tree
iff in the corresponding acceptance game, Éloise can always
force a play to finally stay in an even (i.e. accepting) strongly
connected component of the automaton.

Fact 5 ([10]). For every ϕ ∈ MSO , there is an effectively
constructible MSO-automaton Aϕ such that on tree languages
‖ϕ‖ = L(Aϕ).

In what follows, we show that the analogon of the previous
theorem also holds for WFMSO and weak MSO-automata.
The argument proceeds by induction on ϕ. We focus on the
inductive case of WFMSO existential quantification, which
is the only non-trivial part of the proof. For this purpose, we
define a closure operation on tree languages corresponding to
the semantics of WFMSO existential quantification.

Definition 3. Let T be a tree and p a propositional letter (not
necessarily in P ). Let L be a tree language. The noetherian
projection of L over p is the language ∃W p.L defined as
the class of trees T such that there is a noetherian p-variant
T′ of T, with T′ ∈ L.

A class C of tree languages is closed under noetherian
projection over p if, for any language L in C, also the language
∃W p.L is in C.

B. The Two-Sorted Construction.

Our goal is to provide a projection construction that, given a
weak MSO-automaton A, provides a weak MSO-automaton
∃W p.A recognizing ∃W p.L(A).

The idea is to proceed by analogy with the construction
showing that the tree languages recognized by MSO-automata
are closed under projection. In the case of MSO-automata, the
proof crucially uses the fact that every MSO-automaton can
be simulated by a non-deterministic MSO-automaton.

Fact 6 (Simulation Theorem [10], [17]). For every MSO-
automaton A, there is an effectively constructible non-
deterministic MSO-automaton An which is equivalent to A.

Unfortunately, the proof of this result does not transfer to
the setting of weak MSO-automata, in the sense that starting
with a weak automaton A one does not necessarily end up
with an automaton An which is also weak. This means that we
cannot use the full power of non-determinism in the projection
construction for weak MSO-automata. This notwithstanding, in
the sequel we show how a restricted version of non-determinism
suffices for our purposes.

Let A be a weak MSO-automaton, T a tree and f a winning
strategy for ∃ in GA = A(A,T)@(aI , sI). It is not difficult to
verify that non-determinism corresponds to the property that
any marking suggested by f assigns at most one state to the
successors of the node under consideration. If this is the case,
we say that f is functional. The nice thing about this property
is that it propagates, in the sense that if ∃ plays a functional
strategy f in A(A,T)@(aI , sI), then for any node s in T there
is at most one state a of the automaton such that the position
(a, s) can be reached, in any match that is consistent with f .
This is particularly helpful when, in order to define a p-variant
of T that is accepted by the projection construction over A,
we need to decide whether such a node s should be labeled
with p or not.

Now, in the case of weak MSO-automata we are interested
only in noetherian p-variants: the main idea is that guessing a
noetherian p-variant only requires f to be functional in a finite
initial segment (i.e. a partial match) πF of each f -conform
match π of GA. This amounts to say that A behaves as a non-
deterministic automaton as far as the match is played along
πF . We call this behavior the non-deterministic mode of A.
During the remaining part of the match, in which f is no
longer required to be functional, we say that A has entered
the alternating mode. This distinction induces a well-founded
subtree W of T, consisting of the nodes from which f is



Position Player Admissible moves Parity
(a, s) ∈ A× S ∃ {m : A→ ℘(R[s]) | (R[s],m) � ∆(a, V (s))} Ω(a)
m : A→ ℘(R[s]) ∀ {(b, t) | t ∈ m(b)} Max(Ω[A])

Table II
Acceptance game for MSO-automata

functionally defined. A noetherian p-variant of T is built by
allowing only nodes in W to be labeled with p.

To formalize this argument, which goes back to [12], we first
show that every weak MSO-automaton A can be turned into
an equivalent weak MSO-automaton A2S , which we call two-
sorted since its carrier is split into an initial non-deterministic
and a subsequent alternating part. For the precise definition
of the non-deterministic part of A2S we need the following
proposition.

Proposition 1. For every MSO-automaton A = 〈A, aI ,∆,Ω〉,
there is an effectively constructible automaton A] =
〈A], a]I ,∆],NBT 〉 which is non-deterministic, i.e. ∆] has
type A] × C → Disj (FBF +(A])), is based on the set
A] = ℘(A×A) of binary relations over A, takes the singleton
set a]I = {(aI , aI)} as its starting state, and has the property
that for any binary relation Q ⊆ A×A, and any tree T:

A]Q accepts T iff Aa accepts T, for all a ∈ Ran(Q),

where Aa = 〈A, a,∆,Ω〉 denotes the variant of the automaton
A that takes a as its starting state, and similarly for A]Q.

In particular, the automaton A] itself is equivalent to A.

We call A] the refined powerset construct over A. Note that
A] is almost a non-deterministic MSO-automaton, the only
difference being that the acceptance condition is not given by
a parity condition.

We now turn to the definition of the automaton A2S , which
we call two-sorted, because it roughly consists of a copy of
A] ‘followed by’ a copy of A. As we observed, A] is a non-
deterministic automaton, whereas A generally is not. Thus,
given a tree T, the idea is to make any match π of A(A2S ,T)
consist of two parts:

• (Non-deterministic mode) During finitely many steps, π
can be seen as a match of the acceptance game of A] on
T, where any winning strategy for ∃ can be assumed to
be functional;

• (Alternating mode) At a certain stage, π abandons the
non-deterministic part of A2S and turns into a match of
the acceptance game of A on T.

The definition of A2S will guarantee the correctness of this
construction, making A2S equivalent to the original automaton
A.

Definition 4. Let A = 〈A, aI ,∆,Ω〉 be a weak
MSO-automaton and A] = 〈A], a]I ,∆],NBT 〉 its refined
powerset construct. The weak MSO-automaton A2S =

〈A2S , a2S
I ,∆2S ,Ω2S〉 is defined as follows.

A2S := A ∪A]

a2S
I := a]I

∆2S(a, c) := ∆(a, c)

∆2S(R, c) := ∆](R, c) ∨
∧

a∈Ran(R)

∆(a, c)

Ω2S(a) := Ω(a)

Ω2S(R) := 1

Here a and R denote arbitrary states in A and A], respectively.
The automaton A2S is called the two-sorted construct over A.

Then we can prove a version of a simulation theorem that
will suffice for our purposes.

Proposition 2. Let A = 〈A, aI ,∆,Ω〉 be a weak MSO-
automaton and A2S the two-sorted construct on A. Then
L(A2S) = L(A).

C. Closure under noetherian projection.

We are now ready to show the main result of this section: the
class of tree languages recognized by weak MSO-automata is
closed under noetherian projection. The argument is analogous
to the one showing that MSO-automata are closed under
projection, but we use the two-sorted construction instead
of the refined powerset construction. The p-variant induced by
the projection automaton will be guaranteed to be noetherian
because all nodes labeled with p are visited when the automaton
is in non-deterministic mode.

Definition 5. Let A = 〈A, aI ,∆,Ω〉 be a weak MSO-
automaton on alphabet ℘(P ∪ {p}). Let A2S denote its
two-sorted construct. We define the automaton ∃W p.A =
〈A2S , a2S

I , ∆̃,Ω2S〉 on alphabet C by putting

∆̃(a, c) := ∆2S(a, c)

∆̃(R, c) := ∆2S(R, c) ∨∆2S(R, c ∪ {p}).

The automaton ∃W p.A is called the two-sorted projection
construct of A over p.

Proposition 3. For each weak MSO-automaton A on alphabet
℘(P ∪ {p}), we have that L(∃W p.A) = ∃W p.L(A).

As mentioned, the above proposition takes care of the only
non-trivial induction case in the inductive proof of the following
analogon of Fact 5:

Theorem 3. For every ϕ ∈WFMSO , there is an effectively
constructible weak MSO-automaton Aϕ such that on tree
languages ‖ϕ‖ = L(Aϕ).



Remark 2. Given any non-deterministic MSO-automaton
A = 〈A, aI ,∆,Ω〉 where ∆ : A × C → Disj (FBF +(A))
we can construct an equivalent non-deterministic MSO-
automaton A′ = 〈A′, aI ,∆′,Ω′〉 with ∆′ of type A′ × C →
Disj (SBF +(A′)). That is, we may replace an arbitrary ‘FBF -
automaton’ A with an equivalent ‘SBF -automaton’ A′. This
automaton A′ is based on carrier A∪{a>}, where a> 6∈ A acts
as a ‘bin state’ always leading to the acceptance of the input
tree. For each a ∈ A and c ∈ C, we can replace the empty
A-types τ+

S (x) = > occurring in ∆(a, c) with a>(x). This
leads to the definition of a transition function ∆′ associated
only with sentences in special basic form. It is readily seen that
any winning strategy for ∃ in the acceptance game for A′ and
some input tree T can be assumed to mark each node of T with
exactly one state of A′. This strengthening of the functionality
condition conveniently simplifies the constructions presented
in the next section.

IV. FROM WEAK MSO -AUTOMATA TO WFMSO

In this section we discuss the converse statement of Theorem
3. Using an argument going back to Rabin [11], we will prove
that for every weak MSO-automaton A there is a formula
ϕA ∈WFMSO which is equivalent to A.

A. From Weak MSO to Büchi Automata.

The first idea would be to construct, for a weak MSO-
automaton A, a formula ϕA that expresses, when interpreted
in a given tree T, the existence of a winning strategy f for ∃
in A(A,T)@(aI , sI). This encoding would go smoothly if we
could assume that f marks each node with exactly one state
of A.

For this purpose, by Theorem 6 we can construct a non-
deterministic MSO-automaton An which is equivalent to
A. However, as observed already, the automaton An is not
generally weak. This means that different parities can occur
infinitely often in the same match of A(An,T). Intuitively,
this implies that we cannot give an account of the winning
conditions of this acceptance game by referring only to well-
founded subtrees of T. The quantification of WFMSO is too
restrictive and it would seem that we need instead the full
generality of MSO quantifiers.

We overcome this difficulty by showing that, because it is
weak, A can be turned into an equivalent non-deterministic
Büchi automaton (abbreviated NDB ), i.e. a non-deterministic
MSO-automaton B where the parity map ΩB : B → ω can
be assumed to range only over {0, 1}. The acceptance game
associated with such a B turns out to be essentially simpler
than the one for arbitrary MSO-automata. The states of B can
be divided into accepting states - the ones with parity 0 - and
rejecting states - the ones with parity 1. It should be clear
that ∃ wins a match if and only if at least one accepting state
occurs infinitely often along the play. This constitutes a Büchi
acceptance condition, and in fact we can simply describe B as
an automaton where the acceptance condition is given by a set
F of accepting states, instead of a parity map Ω. It turns out
that Büchi acceptance conditions can be described in terms of

well-founded trees, so that we can express them by means of
WFMSO-formulae without requiring the full expressiveness
of MSO quantifiers. This is the key observation leading to the
logical characterization of non-deterministic Büchi automata
and weak MSO-automata.

Definition 6 (Büchi powerset construction). Let A =
〈A, aI ,∆,Ω〉 be a weak MSO-automaton. We can assume that
Ran(Ω) is a subset of {0, 1}. Let A] = 〈A], a]I ,∆],NBT 〉
be the refined powerset construct over A. We define an NDB
automaton AB = 〈A], a]I ,∆], FΩ〉 by putting

FΩ := {R ∈ A] | Ω(a) = 0 for all a ∈ Ran(R)}.

We say that AB is the Büchi powerset construct over A.

We can now verify the following.

Proposition 4. Let A be a weak MSO-automaton and AB the
Büchi powerset construct over A. We have that L(A) = L(AB).

B. The Bounded Information Property.

We now formalize two key intuitions about non-deterministic
Büchi automata:

1) checking whether a non-deterministic Büchi automaton
B accepts a tree T reduces to verifying a condition on
prefixes of T (Proposition 5);

2) checking whether the intersection of the languages of
two non-deterministic Büchi automata is non-empty can
proceed via the construction of a finite sequence of well-
founded trees with certain properties (Proposition 6).

The idea is that a run of a non-deterministic Büchi automaton
on a tree T can be split into several tasks concerning well-
founded subtrees (and prefixes, which are just a particular kind
of well-founded subtrees) of T, and there is never the need to
consider T as a whole.

Definition 7. Let B = 〈B, bI ,∆, F 〉 be a non-deterministic
Büchi automaton and T a tree. Let f be a surviving strategy
for ∃ in A(B,T)@(bI , sI). Let γ ≤ ω be an ordinal. A γ-
accepting sequence for f over B and T is a sequence (Ei)i<γ
such that, for all i < γ:

1) Ei is a prefix of T;
2) Ft(Ei) < Ft(Ei+1);
3) for each s in the frontier of Ei, there is a unique a ∈ A

such that f is defined on position (a, s); in addition, a
is in F .

Intuitively, for k < ω, a k-accepting sequence for a surviving
strategy f witnesses the fact that f ‘behaves as’ a winning
strategy for ∃ in the prefix Ek of T. For each prefix Ei in
the sequence, the condition that each s ∈ Ft(Ei) is associated
with a unique accepting state is motivated by the fact that f
can be assumed to be functional, B being non-deterministic.

Proposition 5. Let B = 〈B, bI ,∆, F 〉 be a non-deterministic
Büchi automaton and T a tree. The following are equivalent.

• Player ∃ has a winning strategy in A(B,T)@(bI , sI).



• Player ∃ has a surviving strategy f in A(B,T)@(bI , sI)
and there is an ω-accepting sequence for f over B and
T.

For non-deterministic Büchi automata B1 and B2 and a tree
T ∈ L(B1)∩L(B2), let (G1

i )i<ω and (G2
i )i<ω be ω-accepting

sequences respectively for B1 and B2 on T. We introduce the
notion of k-trap for B1 and B2. The idea is that a k-trap is a
finite sequence (Ei)i≤k witnessing some kind of interleaving
of the sequences (G1

i )i<ω and (G2
i )i<ω up to level k.

To this aim, we first introduce the following auxiliary notion.
Let B be a NDB -automaton and T a tree. Given a set of
nodes N ⊂ T , we say that a strategy f for player ∃ in
A(B,T)@(bI , sI) is surviving in N if, for each basic position
(b, s) ∈ B ×N that is reached in some f -conform match, the
marking m suggested by f makes ∆(b, V (s)) true in R[s].

Definition 8. Let B1 = 〈B1, b
1
I ,∆1, F1〉 and B2 =

〈B2, b
2
I ,∆2, F2〉 be NDB automata and let T be a tree. Given

some fixed k < ω, let (Ei)i≤k be a sequence of prefixes of T
such that E0 = {sI} and Ei  Ei+1 for all i ≤ k.

We say that T and (Ei)i≤k constitute a k-trap for B1 and
B2 if there exist

1) a strategy f1 for ∃ in A(B1,T)@(b1I , sI) which is
surviving in Ek,

2) a strategy f2 for ∃ in A(B2,T)@(b2I , sI) which is
surviving in Ek,

3) a k-accepting sequence (G1
i )i≤k for f1 over B1 and T,

4) a k-accepting sequence (G2
i )i≤k for f2 over B2 and T,

such that, for all i < k, the following conditions hold:
• Ft(Ei) ≤ Ft(G1

i ) < Ft(Ei+1);
• Ft(Ei) ≤ Ft(G2

i ) < Ft(Ei+1).
We say that the strategies f1 and f2 witness the k-trap for B1

and B2.

Proposition 6 ([11]). Let B1 and B2 be NDB -automata and
let m be the product of the cardinalities of their carriers. If
there exists an m-trap for B1 and B2 then L(B1)∩L(B2) 6= ∅.

C. Non-Deterministic Büchi Automata versus WFMSO .

We are now ready to prove the main result of this section.

Theorem 4. For any weak MSO-automaton A there is a
formula ϕ ∈WFMSO such that over tree languages ‖ϕ‖ =
L(A).

Proof: Let A be a weak MSO-automaton and B an NDB -
automaton which is equivalent to A, as in Proposition 4. Clearly
then it suffices to come up with a formula ϕ in WFMSO that
holds in a tree T if and only if B accepts T. Since weak
MSO-automata are closed under complementation, we are
also provided with a weak MSO-automaton A recognizing
the complement of L(A), and consequently with an NDB -
automaton B which is equivalent to A. Our formula ϕ = ϕB,B
depends on both B and B.

More concretely, let m be the product of the cardinalities
of B and B. The formula ϕB,B ∈WFMSO will express the
existence of a strategy f for ∃ and an m+1-accepting sequence

(Ei)i≤m+1 such that f is functional and surviving in Em+1.
The key observation is that the encoding of (Ei)i≤m+1 and
the associated surviving strategy into a formula only requires
variables for noetherian sets of nodes. For this, the expressive
power of WFMSO will suffice.

Proposition 5 will help showing one direction of the
equivalence, namely that, given a tree T and a winning strategy
f for ∃ in A(B,T), the formula ϕB,B is true in T. For the
converse direction, we use the automaton B accepting the
complement of the language of B. The idea is to suppose by way
of contradiction that B accepts a tree T where ϕB,B is true. Then
by Proposition 5 there is an ω-accepting sequence (Eδi )i<ω
witnessing the fact that T is in L(B). The ω-accepting sequence
(Eδi )i<ω contains an m + 1-accepting sequence (Eδi )i≤m+1.
By the fact that ϕB,B is true, we also have an m+ 1-accepting
sequence (Ei)i≤m+1. Then we can show that the two sequences
witness a trap for B and B as in Definition 8. But by Proposition
6 this means that the intersection of L(B) and L(B) is non-
empty, contradicting the fact that B accepts the complement
of L(B).

The definition of ϕB,B essentially follows the same line of
reasoning as in [11]. Given any state b ∈ B, we define by
induction on i < ω a formula Kb

i (x) ∈ WFMSO , where no
variable different from x occurs free. For the base case, we
put Kb

0(x) := >. Inductively, Kb
i+1(x) is given as a formula

expressing the following situation (relative to a tree T):
• Given a node s on which x is being evaluated, for each

prefix E of T.s, there is a prefix E′ of T.s including
E, and a function mp : B → ℘(E), such that ∃ has
a functional strategy f in A(B,T.s)@(s, b), which is
surviving in E′ and has the following properties:

– from each basic position (b′, t) on which it is defined,
the strategy f suggests to ∃ the restriction of mp to
a marking mp,t : B → ℘(R[t]);

– for each node t on the frontier of E′, let bt ∈ B be
the unique state in B such that (bt, t) is a reachable
position in an f -conform match. Then bt is an
accepting state in F , and the formula Kbt

i (y) is true
in T for y evaluated on t.

Given a formula Root(y) stating that y is the root of the
tree, we define ϕB,B as ∃y (Root(y) ∧KbI

m+1(y)). Then the
key lemma underlying the proof of Theorem 4 states that

L(B) = ‖ϕB,B‖.

This finishes the proof (sketch) of Theorem 4.

As an immediate corollary we obtain the following charac-
terization of WFMSO which generalizes Rabin’s automata-
theoretic characterization of WMSO on binary trees [11].

Corollary 1. A tree language L is WFMSO-definable if and
only if there are non-deterministic Büchi automata B and B
such that L = L(B) and L = L(B).

D. Proof of Theorem 2
Finally, Theorem 2 is now immediate by the Theorems 3

and 4 and Corollary 1.



V. A CHARACTERIZATION THEOREM FOR AFMC

Fact 4 states that over transition systems, the modal µ-calculus
(MC ) is as expressive as the bisimulation-invariant fragment
of MSO . In this section we consider the same question
for the bisimulation-invariant fragment of WFMSO . It turns
out that WFMSO is still weaker than MSO in this respect,
being as expressive as the alternation-free fragment of the
modal µ-calculus (AFMC ). This outcome is coherent with the
perspective on WFMSO and weak MSO-automata. Indeed,
there is a tight connection between fixpoint operators of the
µ-calculus and parities occurring infinitely often in parity
games [18]. The absence of alternation in formulae of AFMC
intuitively corresponds to at most one parity occurring infinitely
often along infinite matches of a parity game (cf. Remark 1).

Turning to the proof of our main result, Theorem 1, we once
again use an automata-theoretic argument. Roughly, the idea is
that automata for AFMC over trees are the weak counterpart
of automata for MC , just as automata for WFMSO are the
weak version of MSO-automata. Then the argument, used by
Janin & Walukiewicz [4] to show that automata for MC and
MSO have the same expressive power modulo bisimulation,
can be restricted to show an analogous result for the weak
counterparts.

In the sequel we use the translation introduced in [4], which
transforms sentences in special basic form into sentences of
FO+(A) without equality. These will provide the first-order
language associated with automata for MC .

Definition 9 (Modal Translation). Given a set A of unary
predicates, let ϕ ∈ SBF +(A) be a sentence in special basic
form of shape

ϕ = ∃x1 . . . ∃xk
(

diff (x̄) ∧
∧

1≤i≤k

ai(xi)

∧ ∀z(diff (x̄, z)→
∨

1≤l≤j

bl(z))
)
.

We define its modal translation ϕ∇ by putting

ϕ∇ := ∃x1 . . . ∃xk
∧

1≤i≤k

ai(xi) ∧ ∀z
∨

1≤l≤j

bl(z).

We denote with SBF∇(A) the set {ϕ∇ | ϕ ∈ SBF +(A)}.

Remark 3. Our terminology stems from the observation
that the formula ϕ∇ corresponds to the modal formula∧

1≤i≤k ♦ai ∧�
∨

1≤l≤j bl.

The modal µ-calculus is characterized by a class of automata
which are defined as non-deterministic MSO-automata but
for the transition function, which ranges over sentences from
Disj (SBF∇(A)) instead of from Disj (SBF +(A)) [19]. If we
restrict to the alternation-free fragment, then a weaker version
of these automata suffices [20]. We use the name modal non-
deterministic Büchi automata to emphasize their connection
with non-deterministic Büchi automata.

Definition 10. A modal non-deterministic Büchi automaton on
alphabet C is an MSO-automaton B = 〈B, bI ,∆,Ω〉 with
∆ : B × C → Disj (SBF∇(B)) and Ω : B → {0, 1}.

In [20] an automata-theoretic characterization of AFMC in
terms of modal non-deterministic Büchi automata is provided.

Fact 7 ([20]). Let L be a tree language. The following are
equivalent.
• There exists ϕ ∈ AFMC such that L = ‖ϕ‖.
• There are modal non-deterministic Büchi automata M

and M such that L = L(M) and L = L(M).

We introduce a translation from NDB -automata to modal
NDB -automata. Let B be a NDB -automaton. In analogy with
Janin and Walukiewicz’s argument, we are going to show that,
if L(B) is closed under bisimulation, then the modal NDB
automaton B∇ that we obtain from B through the translation
is such that B ≡ B∇. This is the content of Proposition 7.

Definition 11. Let B = 〈B, bI ,∆,Ω〉 be an NDB automaton.
We define an automaton B∇ = 〈B, bI ,∆∇,Ω〉 by putting

∆∇(a, c) :=
∨
{ϕ∇ | ϕ is a disjunct of ∆(a, c)}.

By Definition 9 the transition function ∆∇ has type B ×
C → Disj (SBF∇(B)), meaning that B∇ is a modal NDB -
automaton.

Proposition 7. Let B be an NDB automaton and B∇ the
modal NDB automaton constructed from B as in Definition
11. If L(B) is closed under bisimulation, then L(B) = L(B∇).

This proposition provides the key result to prove that AFMC
is at least as expressive as the bisimulation-invariant fragment of
WFMSO . The converse statement is in fact the easy direction
of Theorem 1, being essentially a corollary of the automata-
theoretic characterization of AFMC over trees provided in
[20].

Fact 8 ([20]). Let ϕ ∈ AFMC be a sentence. There is a
weak MSO-automaton Aϕ such that on tree languages ‖ϕ‖ =
L(Aϕ).

Proof of Theorem 1: Because of Fact 2, it is enough
to prove the claim for tree languages. Thus, let L be a tree
language that is closed under bisimulation. The direction (1⇒
2) follows by Proposition 8 and Theorem 4. The proof of
direction (2 ⇒ 1) is obtained as follows. Assume that there
is a formula ϕ ∈WFMSO such that ‖ϕ‖ = L. By Theorem
2, there are NDB -automata B,B such that L(B) = L and
L(B) = L. By Proposition 7, this implies that there are modal
NDB -automata B∇,B∇ such that L(B∇) = L and L(B∇) =
L. Finally, Proposition 7 yields a formula ϕ1 ∈ AFMC such
that ‖ϕ1‖ = L.

As a corollary of Theorem 1, we obtain an incomparability
result for WFMSO and WMSO . We can see this as a
strengthening of the incomparability between WMSO and
MSO , WFMSO being strictly weaker than MSO .



Corollary 2. The collection of WMSO-definable classes of
transition systems and the collection of WFMSO-definable
classes of transition systems are incomparable.

VI. CONCLUSION

A. Overview.

In this work we have presented two main contributions. The first
one concerns the connection between automata and logic and
establishes a logical characterization of weak MSO-automata
on trees of arbitrary branching degree. For this purpose we
introduce a new variant of MSO which we call well-founded
monadic second-order logic (WFMSO), and prove that for tree
languages, being WFMSO-definable and being accepted by a
weak MSO-automata coincide. The proof passes through non-
deterministic Büchi automata, that generalize Rabin’s ‘special
automata’ [11] working on binary trees. We give a second
characterization for WFMSO in connection with this class
of automata: a tree language L is WFMSO-definable if and
only if both L and its complement are recognized by non-
deterministic Büchi automata. This generalizes an analogous
result of Rabin for WMSO on binary trees [11].

The second main contribution is the modal characterization
of the bisimulation-invariant fragment of WFMSO , which is
proven to be as expressive as the alternation-free fragment
of the modal µ-calculus. This result somehow completes the
net of correspondences between WFMSO and MSO , the
bisimulation-invariant fragment of MSO being as expressive
as the modal µ-calculus [4]. As expected, this implies that
WFMSO and WMSO have incomparable expressive power.

B. Future Work.

The original driving motivation of our work was the observation
that weak MSO-automata do not characterize WMSO on all
trees, meaning that AFMC is not the bisimulation-invariant
fragment of WMSO . A natural continuation would be thence
to provide a different class of automata, which characterizes
WMSO . The crux of the matter is to understand how to define
these automata, in such a way that their expressive power is
incomparable with respect to MSO-automata. In particular
they should lack the finite branching property. But then a
problem arises, for all the projection constructions that we
considered so far are tightly connected to such property. In order
to give a projection construction corresponding to WMSO-
quantification, essentially different methods seem to be needed.

A second natural line of research concerns the bisimulation-
invariant fragment of WMSO . This investigation is motivated
by the fact that all WMSO-definable tree languages are Borel.
If the bisimulation-invariant fragment of WMSO is strictly
weaker than the modal µ-calculus, then it would correspond to
a sort of ‘Borelian’ fragment, providing a better understanding
of the topological complexity of modal fixpoint logics. In fact
there are reasons to believe that this is the case. To the best
of our knowledge, all examples of tree languages that are
WMSO-definable but not MSO-definable are not bisimulation
closed. This motivates the conjecture that the bisimulation-
invariant fragment of WMSO ‘collapses inside’ the modal

µ-calculus, and particularly its alternation-free fragment for
the intuitive reason that WMSO is not stronger than WFMSO
in expressing properties on the vertical dimension of trees.
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