A characterization theorem for the alternation-free fragment of the modal μ -calculus

Alessandro Facchini U. Warsaw Email: facchini@mimuw.edu.pl Yde Venema U. Amsterdam Email: y.venema@uva.nl

Abstract—We provide a characterization theorem, in the style of van Benthem and Janin-Walukiewicz, for the alternation-free fragment of the modal μ -calculus. For this purpose we introduce a variant of standard monadic second-order logic (MSO), which we call well-founded monadic second-order logic (WFMSO). When interpreted in a tree model, the second-order quantifiers of WFMSO range over subsets of conversely well-founded subtrees. The first main result of the paper states that the expressive power of WFMSO over trees exactly corresponds to that of weak MSO-automata. Using this automata-theoretic characterization, we then show that, over the class of all transition structures, the bisimulation-invariant fragment of WFMSO is the alternationfree fragment of the modal μ -calculus. As a corollary, we find that the logics WFMSO and WMSO (weak monadic second-order logic, where second-order quantification concerns finite subsets), are incomparable in expressive power.

I. INTRODUCTION

A seminal result in the theory of modal logic is van Benthem's Bisimulation Theorem [1], stating that every firstorder formula $\alpha(x)$ which is invariant under bisimulations, is actually equivalent to (the standard translation of) a modal formula. Concisely, this result can be formulated as follows:

$$FO/ \Leftrightarrow = ML.$$
 (1)

Over the years, a wealth of variants of the Bisimulation Theorem have been obtained. For instance, Rosen proved that van Benthem's theorem is one of the few preservation results that transfers to the setting of finite models [2]; for a recent, rich source of van Benthem-style characterization results, see Dawar & Otto [3].

Of particular interest to us is the work of Janin & Walukiewicz [4], who extended van Benthem's result to the setting of fixpoint logics, by proving that the modal μ -calculus (MC) is the bisimulation-invariant fragment of monadic second-order logic (MSO):

$$MSO/ \Leftrightarrow = MC.$$
 (2)

The general pattern of these results takes the following shape:

$$\mathcal{L}/ \stackrel{\text{def}}{=} \mathcal{M} \quad (\text{over } \mathcal{C}), \tag{3}$$

stating that \mathcal{M} is the bisimulation-invariant fragment of \mathcal{L} over a class \mathcal{C} of models. Here \mathcal{L} is some yardstick logic such as first-order logic (FO), monadic second-order logic (MSO) or weak monadic second-order logic (WMSO); \mathcal{M} is some variant of modal logic such as the modal μ -calculus

Fabio Zanasi
ENS Lyon, U. Lyon, CNRS, INRIA, UCBL
Email: fabio.zanasi@ens-lyon.fr

Structures (\mathcal{C})	\mathcal{L}	\mathcal{M}	reference	
TSs	FO	ML	[1]	
	MSO	MC	[4]	
	WMSO	?	-	
	?	AFMC	-	
binary trees	WMSO	AFMC	[6]	
finite TSs	FO	ML	[2]	
	WMSO = MSO	?	-	
transitive TSs	WMSO	ML	[7]	
	MSO	AFMC	[3], [8]	

Table I TS stands for 'transition system'.

or one of its most important fragments: the alternation-free fragment (AFMC); and C is some class of models, such as finite, transitive, or tree models. Table I summarizes some important results following this pattern¹.

Table I suggestively indicates the existence of some open problems, but let us first address the issue why characterization results of the form (3) are of interest, apart from their obvious importance in (finite) model theory. The point is that the mentioned logics, and the models they are interpreted in, feature prominently in the area of formal verification theory. Generally, one is interested in applications where these models are transition structures representing certain computational processes, and one usually takes the point of view that bisimilar models represent the same process. For this reason, properties of transition structures that are not bisimulation-invariant are simply irrelevant. Seen in this light, (3) is an *expressive completeness* result, stating that all relevant properties of \mathcal{L} (which is generally some kind of expressive yardstick formalism), can already be expressed in a (usually computationally more feasible) fragment \mathcal{M} . Or, conversely starting from \mathcal{M} , according to (3), one may think of \mathcal{L} as an extension of \mathcal{M} that is completely covered by \mathcal{M} when it comes to expressing relevant properties.

In this paper, which is based on an MSc thesis [9] written by the third author and supervised by the first two authors, we try to improve our grasp of such 'expressiveness modulo

¹Other interesting results (not included in the Table) are the ones obtained by Janin and Lenzi in [5]. With an automata-theoretic argument, the authors show that the relationship between the ground level of the MSO quantifier alternation hierarchy (that is FO) and the ground level of the MC fixpoint alternation hierarchy (that is ML) holds up to the second level of the two hierarchies, but it cannot hold higher.

bisimilarity' results. We are particularly interested in the relation between (variants of) monadic second-order logic and modal fixpoint logics; that is, in variants of the Janin-Walukiewicz result (2). More concretely, we fill in one of the three gaps of Table I by providing a natural solution \mathcal{L} to the equation

$$\mathcal{L}/$$
 $\cong AFMC$ (over all TSs). (4)

Naively, one might think that when considering this question in the context of all transition systems, the situation is the same as for the class of binary trees [6], so that $\mathcal{L} = WMSO$ would solve (4). But if this were the case, then AFMC would also be the bisimulation-invariant fragment of WMSO over trees. However, it turns out that the class of well-founded trees, which is definable in AFMC by the formula $\mu x.\Box x$, is not WMSO-definable. The reason comes from topology: the class of well-founded trees is not Borel, whereas all WMSOdefinable tree languages are Borel. On the other hand, it is not clear either whether the bisimulation-invariant fragment of WMSO is included in AFMC (or even in the modal μ -calculus itself), no matter how reasonable this may seem. The point is that, contrary to the finitely branching case, WMSO is not a fragment of MSO over trees of arbitrary branching degree. (In fact the two logics are incomparable, as a consequence of the following *finite branching property* of MSO: every nonempty MSO definable tree language contains at least a finitely branching tree [10]. It follows that MSO cannot define the class of infinitely branching trees, which on the contrary is clearly WMSO-definable.)

It turns out that in order to solve the equation (4), we need to introduce a *new* variant of monadic second-order logic. In this variant, that we shall call *well-founded* monadic secondorder logic (*WFMSO*), the second-order quantifiers range over special subsets of the transitions system that we call *noetherian*. Roughly, a subset S of a transition system \mathbb{T} is noetherian if there are no infinite paths through the set of points from which S is reachable (a more precise definition follows). Note that a subset S in a tree model \mathbb{T} is noetherian iff S is a subset of a (conversely) well-founded subtree of \mathbb{T} — this explains our terminology.

Theorem 1. Let \mathcal{L} a bisimulation closed class of transition systems. The following are equivalent.

- 1) \mathcal{L} is AFMC-definable.
- 2) \mathcal{L} is WFMSO-definable.

As in the case of MSO and the modal μ -calculus, the result is obtained by using automata-theoretic techniques. We will work with Walukiewicz' MSO-automata [10], or more specifically, with variants in which acceptance is defined in terms of a weak parity or a Büchi condition. Restricting, as usual, to tree models, we will prove the following result.

Theorem 2. Let \mathcal{L} a tree language. The following are equivalent:

- 1) \mathcal{L} is recognized by a weak MSO-automaton.
- 2) \mathcal{L} is WFMSO-definable.

L and its complement *L* are both recognized by a nondeterministic Büchi MSO-automaton.

Both our results are generalizations to structures of arbitrary branching degree, of results known for binary trees (see Arnold & Niwiński [6] for Theorem 1, and Rabin [11] or Muller, Saoudi & Schupp [12] for Theorem 2). This should come as no surprise once we realize that WMSO and WFMSO are the same logic on finitely branching trees, and therefore a fortiori on binary trees. The key observation here is that by König's Lemma, over the class of finitely branching trees, the noetherian subsets coincide with the finite ones. Intuitively, the idea behind noetherian sets is that they somehow bound the set's 'vertical' dimension, whereas the branching degree concerns the 'horizontal' dimension. Perhaps this separation of dimensions can be seen as a conceptual contribution of our paper, which hopefully will further increase our understanding of the interaction between monadic second-order logics, modal fixpoint logics, and automata, both on trees and on arbitrary models.

Finally, we address the question of the relative expressive power of the logic WFMSO with respect to MSO and WMSO. It is not hard to see that MSO has more expressive power than WFMSO. It then follows from Theorem 1 that on the class of all transition structures and on the class of all trees, MSO is strictly more expressive than WFMSO, while the logics WMSO and WFMSO are incomparable. This provides further evidence that a complete understanding of WMSO-expressivity on arbitrary trees requires a different, non-obvious variant of MSO-automata.

II. PRELIMINARIES

A. Transition Systems and Trees.

Throughout this article we fix a set P of elements that will be called *proposition letters* and denoted with small Latin letters p, q, \ldots . We denote with C the set $\wp(P)$ of *labels* on P; it will be convenient to think of C as an *alphabet*. Given a binary relation $R \subseteq X \times Y$, for any element $x \in X$, we indicate with R[x] the set $\{y \in Y \mid (x, y) \in R\}$, while R^+ and R^* are defined respectively as the transitive closure of Rand the reflexive and transitive closure of R. The set Ran(R)is defined as $\bigcup_{x \in X} R[x]$.

A C-transition system is a tuple $\mathbb{T} = \langle T, s_I, R, V \rangle$ where $\langle T, R \rangle$ is a directed graph, $s_I \in T$ is a distinguished node, and $V: T \to C$ is a labeling function. Let p be a proposition letter (not necessarily in P). A *p*-variant of a transition system $\mathbb{T} = \langle T, s_I, R, V \rangle$ is a $\wp(P \cup \{p\})$ -transition system $\mathbb{T}' = \langle T, s_I, R, V \rangle$ such that $V'(s) \setminus \{p\} = V(s)$ for all $s \in T$. Given a set $S \in \wp(T)$, we let $\mathbb{T}[p \mapsto S]$ denote the *p*-variant $\langle T, s_I, R, V' \rangle$ of \mathbb{T} where V'(s) is defined as $V(s) \cup \{p\}$ if s is in S and V'(s) = V(s) otherwise. A path through \mathbb{T} is a sequence $\pi = (u_i)_{i < \alpha}$ of elements of T, where α is either ω or a natural number, and $(u_i, u_{i+1}) \in R$ for all i with $i + 1 < \alpha$.

A *C*-tree is a *C*-transition system $\mathbb{T} = \langle T, s_I, R, V \rangle$ where $\langle T, R \rangle$ is a graph in which every node can be reached from s_I (that is, $R^*[s_I] = T$), and every node, except s_I , has a

unique predecessor; s_I is called the *root* of \mathbb{T} . A *branch* of \mathbb{T} is a maximal path through \mathbb{T} starting at the root; we may identify a branch with the *set* of its nodes. Each node $s \in T$ uniquely defines a subtree of \mathbb{T} with carrier $R^*[s]$ and root s, that we denote with $\mathbb{T}.s$. A tree language over P (or just a tree language if P is clear from the context) is just a class of C-trees.

Given a tree \mathbb{T} , we say that $G \subseteq T$ is a *frontier* of \mathbb{T} if $G \cap E$ is a singleton for every branch E of \mathbb{T} . A set Sis a *prefix* of \mathbb{T} if there exists a frontier G of \mathbb{T} such that $S = \{s \in T \mid sR^*t \text{ for some } t \in G\}$. It is easy to see that every prefix is uniquely determined by a frontier and vice versa; if S is a prefix, we denote with Ft(S) its associated frontier. It is similarly straightforward to verify that the set of prefixes is in 1-1 correspondence with the collections of well-founded subtrees of \mathbb{T} that have the same root as \mathbb{T} . Given two frontiers G_1 and G_2 of \mathbb{T} , we write $G_1 < G_2$ if, for every branch E in \mathbb{T} , given $s_1 \in G_1 \cap E$ and $s_2 \in G_2 \cap E$, we have that $s_1R^+s_2$. Analogously, $G_1 \leq G_2 \text{ holds}$ if, for every branch E in \mathbb{T} , given $s_1 \in G_1 \cap E$ and $s_2 \in G_2 \cap E$, we have that $s_1R^+s_2$.

Given a transition system \mathbb{T} and a subset S of T, let $\Uparrow S$ denote the set of points from which S can be reached by a finite path. More precisely, $\Uparrow S := \{t \in T \mid R^*[t] \cap S \neq \emptyset\}$. Call S noetherian if there is no infinite path through $\Uparrow S$ (that is, no sequence $(u_i)_{i < \omega}$ such that $u_i \in \Uparrow S$ and $u_i R u_{i+1}$, for all i). It is straightforward to verify that in the case of tree models, a subset S is noetherian iff it is a subset of a prefix of the tree iff it is a subset of a well-founded subtree. We let $N(\mathbb{T})$ denote the collection of noetherian subsets of \mathbb{T} . A p-variant $\mathbb{T}[p \mapsto S]$ of \mathbb{T} is noetherian if $S \in N(T)$; similarly, $\mathbb{T}[p \mapsto S]$ is a finite p-variant if $S \subseteq_{\omega} T$ (i.e., if S is a finite subset of T).

Unless explicitly specified otherwise, all transition systems \mathbb{T} are considered to be C-labeled.

Convention. Throughout this paper, we will only consider transition system \mathbb{T} in which R[s] is non-empty, for every node $s \in T$. In particular this means that every tree we consider is *leafless*. All our results, however, can easily be lifted to the general case.

B. Board Games.

We introduce some terminology and background on infinite games. All the games that we consider involve two players called *Éloise* (\exists) and *Abelard* (\forall). In some contexts we refer to player Π , meaning that we want to specify a notion for a generic player in $\{\exists, \forall\}$.

Given a set A, by A^* and A^{ω} we denote respectively the set of words (finite sequences) and streams (or infinite words) over A.

A board game \mathcal{G} is a tuple $(G_{\exists}, G_{\forall}, E, Win)$, where G_{\exists} and G_{\forall} are disjoint sets whose union $G = G_{\exists} \cup G_{\forall}$ is called the board of $\mathcal{G}, E \subseteq G \times G$ is a binary relation encoding the admissible moves, and $Win \subseteq G^{\omega}$ is a winning condition. An initialized board game $\mathcal{G}@u_I$ is a tuple $(G_{\exists}, G_{\forall}, u_I, E, Win)$ where $(G_{\exists}, G_{\forall}, E, Win)$ is a board game and $u_I \in G$ is the *initial position* of the game. When \mathcal{G} is a parity game, i.e. Win is given by a parity function $\Omega : G \to \omega$, we sometimes write $\mathcal{G} = (G_{\exists}, G_{\forall}, E, \Omega).$

Given a board game \mathcal{G} , a match of \mathcal{G} is simply a path through the graph (G, E); a match of $\mathcal{G}@u_I$ is supposed to start at u_I . For a match $\pi = (u_i)_{i < k}$ for some finite $k < \omega$, we call $last(\pi) = u_{k-1}$ the *last position* of the match; the player Π such that $last(\pi) \in G_{\Pi}$ is supposed to move at this position, and if $E[last(\pi)] = \emptyset$, we say that Π gets stuck in π . A match π is called *total* if it is either finite, with one of the two players getting stuck, or infinite. Matches that are not total are called *partial*. Any total match π is won by one of the players: If π is finite, then it is won by the opponent of the player who gets stuck. Otherwise, if π is infinite, the winner is \exists if $\pi \in Win$, and \forall if $\pi \notin Win$.

Given a board game \mathcal{G} and a player Π , let PM_{Π}^G denote the set of partial matches of \mathcal{G} whose last position belongs to player Π . A strategy for Π is a function f of type $PM_{\Pi}^G \to G$. A match $\pi = (u_i)_{i < \alpha}$ of \mathcal{G} is *f*-conform if for each $i < \alpha$ such that $u_i \in G_{\Pi}$ we have that $u_{i+1} = f(u_0, \ldots, u_i)$.

Given a position $u \in G$ and a strategy $f : PM_{\Pi}^G \to G$, consider the following two conditions.

- 1) For each f-conform partial match π of $\mathcal{G}@u$, if $last(\pi)$ is in G_{Π} then $f(\pi)$ is legitimate, i.e., $(last(\pi), f(\pi)) \in E$.
- 2) Π wins each *f*-conform total match of $\mathcal{G}@u$.

If f respects the first condition, we say that f is a surviving strategy for Π in $\mathcal{G}@u$, and if it satisfies both conditions, then we call f a winning strategy for Π in $\mathcal{G}@u$. In the latter case we say that u is a winning position for Π in \mathcal{G} . We denote with $Win_{\Pi}(\mathcal{G})$ the set of positions of \mathcal{G} that are winning for Π . A strategy $f : PM_{\Pi}^G \to G$ is called positional if $f(\pi) = f(\pi')$ for each π and π' in Dom(f) with $last(\pi) =$ $last(\pi')$. A board game \mathcal{G} with board G is determined if $G = Win_{\exists}(\mathcal{G}) \cup Win_{\forall}(\mathcal{G})$, that is, each $u \in G$ is a winning position for one of the two players.

Fact 1 (Positional Determinacy of Parity Games, [13], [14]). For each parity game \mathcal{G} , there are positional strategies f_{\exists} and f_{\forall} respectively for player \exists and \forall , such that for every position $u \in G$ there is a player Π such that f_{Π} is a winning strategy for Π in $\mathcal{G}@u$.

From now on, we always assume that each strategy we work with in parity games is positional.

C. Monadic Second-Order Logics.

We define three variants of monadic second-order logic: (standard) monadic second-order logic (MSO_P), weak monadic second-order logic ($WMSO_P$) and well-founded monadic second-order logic ($WFMSO_P$). We omit the subscript Pwhen the set of proposition letters is clear from the context. These logics share the same syntax: formulas of the monadic second-order language on P are defined by the following grammar:

$$\varphi \quad ::= \quad p \sqsubseteq q \mid S(p) \mid R(p,q) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists p.\varphi,$$

where p and q are letters from P. We adopt the standard convention that no letter is both free and bound in φ .

The three logics are distinguished by their semantics. Given a transition system $\mathbb{T} = \langle T, s_I, R, V \rangle$, the interpretation of the atomic formulas and the boolean connectives is fixed and standard, e.g.:

$$\begin{split} \mathbb{T} &\models p \sqsubseteq q & \text{iff} \quad \forall s \in T. p \in V(s) \Rightarrow q \in V(s) \\ \mathbb{T} &\models R(p,q) & \text{iff} \quad \forall s \in T. p \in V(s) \Rightarrow \exists t \in R[s]. q \in V(t) \\ \mathbb{T} &\models S(p) & \text{iff} \quad \forall s \in T. p \in V(s) \Rightarrow s = s_I. \end{split}$$

The interpretation of the existential quantifier is that $\mathbb{T} \models \exists p.\varphi$ if and only if

(MSO) $\mathbb{T}[p \mapsto S] \models \varphi \text{ for some } S \subseteq T$

(WMSO) $\mathbb{T}[p \mapsto S] \models \varphi$ for some finite $S \subseteq T$

(WFMSO) $\mathbb{T}[p \mapsto S] \models \varphi$ for some noetherian $S \subseteq T$.

Let $\varphi \in MSO$ be a formula. We denote with $\|\varphi\|_P$ the set of *C*-transition structures \mathbb{T} such that $\mathbb{T} \models \varphi$. The subscript *P* is omitted when the set *P* of proposition letters is clear from the context. A class \mathcal{L} of transition systems is *MSO-definable* if there is a formula $\varphi \in MSO$ such that $\|\varphi\| = \mathcal{L}$. We define the analogous notions for *WMSO* and *WFMSO* in the same way.

D. The Modal μ -Calculus.

The language of the modal μ -calculus (*MC*) on *P* is given by the following grammar:

$$\varphi \ ::= \ p \ | \ \neg p \ | \ \varphi \lor \varphi \ | \ \varphi \land \varphi \ | \ \Diamond \varphi \ | \ \Box \varphi \ | \ \mu q.\varphi \ | \ \nu q.\varphi,$$

where $p,q \in P$, and in the clauses for $\mu q.\varphi$ and $\nu q.\varphi$, q does not occur in the scope of \neg .

The semantics of this language is completely standard. Let $\mathbb{T} = \langle T, s_I, V, R \rangle$. We inductively define the *meaning* $\|\varphi\|^{\mathbb{T}}$ which includes the following clauses for the least (μ) and greatest (ν) fixpoint operators:

$$\begin{aligned} \|\mu p.\psi\|^{\mathbb{T}} &:= & \bigcap\{S \subseteq T \mid S \supseteq \|\psi\|^{\mathbb{T}[p \mapsto S]}\} \\ \|\nu p.\psi\|^{\mathbb{T}} &:= & \bigcup\{S \subseteq T \mid S \subseteq \|\psi\|^{\mathbb{T}[p \mapsto S]}\} \end{aligned}$$

We say that φ is *true* in \mathbb{T} - notation $\mathbb{T} \models \varphi$ - if $s_I \in ||\varphi||^{\mathbb{T}}$. As for the case of MSO, $||\varphi||_P$ denotes the class of C-transition systems \mathbb{T} where φ is true.

Formulae of the modal μ -calculus are classified according to their *alternation depth*, which roughly is given as the maximal length of a chain of nested alternating least and greatest fixpoint operators [15]. In particular, we are interested in the *alternationfree fragment* of the modal μ -calculus (*AFMC*) which is the collection of *MC*-formulae without nesting of least and greatest fixpoint operators. It is well known that over transition systems there is a *MC*-formula φ such that $\|\varphi\|_P$ is not *AFMC*definable [16].

E. Bisimulation.

Bisimulation is a notion of behavioral equivalence between processes. For the case of transition systems, it is formally defined as follows. **Definition 1.** Given C-transition systems $\mathbb{T} = \langle T, s_I, R, V \rangle$ and $\mathbb{T}' = \langle T', s'_I, R', V' \rangle$, a bisimulation is a relation $Z \subseteq T \times T'$ such that for all $(t, t') \in Z$ the following holds:

- V(t) = V'(t');
- for all $s \in R[t]$ there is $s' \in R'[t']$ such that $(s, s') \in Z$;
- for all $s' \in R'[t']$ there is $s \in R[t]$ such that $(s, s') \in Z$.

The transition systems \mathbb{T} and \mathbb{T}' are bisimilar if there is a bisimulation $Z \subseteq T \times T'$ containing (s_I, s'_I) . We write $\mathbb{T} \cong \mathbb{T}'$ to indicate that \mathbb{T} and \mathbb{T}' are bisimilar.

The tree unraveling of a transition system \mathbb{T} is denoted by \mathbb{T}^e . The following fact will allow us to provide a proof of Theorem 1 for tree languages only.

Fact 2. \mathbb{T} and \mathbb{T}^e are bisimilar, for every transition system \mathbb{T} .

A class of transition systems \mathcal{L} is *bisimulation closed* if $\mathbb{T} \hookrightarrow \mathbb{T}'$ implies that $\mathbb{T} \in \mathcal{L} \hookrightarrow \mathbb{T}' \in \mathcal{L}$ for each \mathbb{T} and \mathbb{T}' . A formula φ is *bisimulation-invariant* if $\mathbb{T} \hookrightarrow \mathbb{T}'$ implies that $\mathbb{T} \models \varphi \hookrightarrow \mathbb{T}' \models \varphi$ for each \mathbb{T} and \mathbb{T}' .

Fact 3. Each MC-definable class of transition systems is bisimulation closed.

The Janin-Walukiewicz theorem can be formulated as follows.

Fact 4 ([4]). Let \mathcal{L} be a bisimulation closed class of transition systems. The following are equivalent.

- 1) \mathcal{L} is MC-definable.
- 2) \mathcal{L} is MSO-definable.

III. AUTOMATA FOR WFMSO

A. Automata over trees.

In this section we work with a restricted class of *MSO*automata, called *weak MSO*-automata. Intuitively, an *MSO*automaton is weak if the reachability relation on its states induced by the transition function 'respects' the parity map.

First, we present a first-order logic on a signature given by a set of unary predicates A that will be used to define the transition function of automata. We define $For^+(A)$ as the set of monadic first-order formulae with identity (\approx), where negation can only occur in front of atomic formulae of the kind $x \approx y$. Given a subset S of A, we introduce the notation

$$\tau_S^+(x) := \bigwedge_{a \in S} a(x)$$

The formula $\tau_S^+(x)$ is called a *(positive)* A-type. We use the convention that, if S is the empty set, then $\tau_S^+(x)$ is \top and we call it an *empty* A-type. Given a set $Y \subseteq For^+(A)$ of formulae, $Disj(Y) = \{ \bigvee X \mid X \subseteq_{\omega} Y \}$ is the collection of all finite disjunctions of formulae in Y. We indicate with $FO^+(A)$ the set of *sentences* from $For^+(A)$. A sentence $\varphi \in FO^+(A)$ is in *basic form* if it is of shape

$$\varphi = \exists x_1 \dots \exists x_k \left(diff(\bar{x}) \land \bigwedge_{1 \le i \le k} \tau_{B_i}^+(x_i) \land \forall z \left(diff(\bar{x}, z) \to \bigvee_{1 \le l \le j} \tau_{C_l}^+(z) \right) \right),$$

where each $\tau_{B_i}^+(x_i)$ and $\tau_{C_l}^+(z)$ is an A-type, $diff(y_1,\ldots,y_n) := \bigwedge_{1 \leq m < m' < n} (y_m \not\approx y_{m'})$, and the subformula of shape $\psi \to \chi$ is defined as $\neg \psi \lor \chi$. We denote with $BF^+(A)$ the set of all sentences from $FO^+(A)$ that are in basic form. A sentence $\varphi \in BF^+(A)$ is in *functional basic* form if, for each non-empty A-type $\tau_S^+(x)$ occurring in it, S is a singleton. If φ is in functional basic form and no empty type occurs in it then we say that φ is in special basic form. We denote with $FBF^+(A)$ and $SBF^+(A)$ respectively the set of all sentences in $BF^+(A)$ which are in functional basic form and in special basic form.

Turning to the semantics, given a set X, a function $m : A \rightarrow \varphi(X)$ and a valuation $v : Var \rightarrow X$, we define the notion of a formula $\varphi \in For^+(A)$ being *true* in (X, m, v) in the obvious way. In this setting, we call the function m a *marking*.

Definition 2. An MSO-automaton on alphabet C is a tuple $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$ where:

- A is a finite set of states, $a_I \in A$ is the initial state,
- $\Delta: A \times C \to Disj(FO^+(A)),$
- $\Omega: A \to \omega$ is a parity function,

Let \mathbb{A} be an *MSO*-automaton. Given two states $a, b \in A$, we say that *b* is reachable from *a* if there is a sequence a_0, \ldots, a_n of states in *A* such that $a_0 = a$, $a_n = b$ and for every i < n, a_{i+1} occurs in $\Delta(a_i, c)$, for some $c \in C$. An *MSO*-automaton is called *weak* if for every $a, b \in A$, *a* is reachable from *b* and *b* is reachable from *a*, then $\Omega(a) = \Omega(b)$. It is called *non-deterministic* if Δ has type $A \times C \rightarrow Disj(FBF^+(A))$.

Given a tree \mathbb{T} , the acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{T})$ of \mathbb{A} on \mathbb{T} is the parity game defined according to the rules of table II. Finite matches of $\mathcal{A}(\mathbb{A}, \mathbb{T})$ are lost by the player who gets stuck. An infinite match of $\mathcal{A}(\mathbb{A}, \mathbb{T})$ is won by \exists if and only if the *minimum* parity occurring infinitely often is even. The tree \mathbb{T} is accepted by \mathbb{A} if and only if \exists has a winning strategy in $\mathcal{A}(\mathbb{A}, \mathbb{T}) @(a_I, s_I)$. The tree language accepted by \mathbb{A} is denoted by $\mathcal{L}(\mathbb{A})$.

Remark 1. It is easy to see that every weak MSO-automaton can be seen as having a parity function ranging only over priorities $\{0, 1\}$. Intuitively, states with priority 0 are the accepting states, whereas states with priority 1 are the rejecting state. This is because a weak MSO-automaton accepts a tree iff in the corresponding acceptance game, Éloise can always force a play to finally stay in an even (i.e. accepting) strongly connected component of the automaton.

Fact 5 ([10]). For every $\varphi \in MSO$, there is an effectively constructible MSO-automaton \mathbb{A}_{φ} such that on tree languages $\|\varphi\| = \mathcal{L}(\mathbb{A}_{\varphi}).$

In what follows, we show that the analogon of the previous theorem also holds for *WFMSO* and weak *MSO*-automata. The argument proceeds by induction on φ . We focus on the inductive case of *WFMSO* existential quantification, which is the only non-trivial part of the proof. For this purpose, we define a closure operation on tree languages corresponding to the semantics of *WFMSO* existential quantification.

Definition 3. Let \mathbb{T} be a tree and p a propositional letter (not necessarily in P). Let \mathcal{L} be a tree language. The noetherian projection of \mathcal{L} over p is the language $\exists_W p.\mathcal{L}$ defined as the class of trees \mathbb{T} such that there is a noetherian p-variant \mathbb{T}' of \mathbb{T} , with $\mathbb{T}' \in \mathcal{L}$.

A class C of tree languages is closed under noetherian projection over p if, for any language \mathcal{L} in C, also the language $\exists_W p.\mathcal{L}$ is in C.

B. The Two-Sorted Construction.

Our goal is to provide a *projection construction* that, given a weak MSO-automaton \mathbb{A} , provides a weak MSO-automaton $\exists_W p.\mathbb{A}$ recognizing $\exists_W p.\mathcal{L}(\mathbb{A})$.

The idea is to proceed by analogy with the construction showing that the tree languages recognized by MSO-automata are closed under projection. In the case of MSO-automata, the proof crucially uses the fact that every MSO-automaton can be simulated by a *non-deterministic* MSO-automaton.

Fact 6 (Simulation Theorem [10], [17]). For every MSOautomaton \mathbb{A} , there is an effectively constructible nondeterministic MSO-automaton \mathbb{A}^n which is equivalent to \mathbb{A} .

Unfortunately, the proof of this result does not transfer to the setting of *weak* MSO-automata, in the sense that starting with a weak automaton \mathbb{A} one does not necessarily end up with an automaton \mathbb{A}^n which is also weak. This means that we cannot use the full power of non-determinism in the projection construction for weak MSO-automata. This notwithstanding, in the sequel we show how a restricted version of non-determinism suffices for our purposes.

Let \mathbb{A} be a weak MSO-automaton, \mathbb{T} a tree and f a winning strategy for \exists in $\mathcal{G}_A = \mathcal{A}(\mathbb{A}, \mathbb{T})@(a_I, s_I)$. It is not difficult to verify that non-determinism corresponds to the property that any marking suggested by f assigns *at most one* state to the successors of the node under consideration. If this is the case, we say that f is *functional*. The nice thing about this property is that it propagates, in the sense that if \exists plays a functional strategy f in $\mathcal{A}(\mathbb{A}, \mathbb{T})@(a_I, s_I)$, then for any node s in \mathbb{T} there is at most one state a of the automaton such that the position (a, s) can be reached, in any match that is consistent with f. This is particularly helpful when, in order to define a p-variant of \mathbb{T} that is accepted by the projection construction over \mathbb{A} , we need to decide whether such a node s should be labeled with p or not.

Now, in the case of weak MSO-automata we are interested only in *noetherian* p-variants: the main idea is that guessing a noetherian p-variant only requires f to be functional in a finite initial segment (i.e. a partial match) π_F of each f-conform match π of \mathcal{G}_A . This amounts to say that \mathbb{A} behaves as a nondeterministic automaton as far as the match is played along π_F . We call this behavior the *non-deterministic mode* of \mathbb{A} . During the remaining part of the match, in which f is no longer required to be functional, we say that \mathbb{A} has entered the *alternating mode*. This distinction induces a well-founded subtree \mathbb{W} of \mathbb{T} , consisting of the nodes from which f is

Position	Player	Admissible moves	Parity
$(a,s) \in A \times S$	Ξ	$\{m: A \to \wp(R[s]) \mid (R[s], m) \vDash \Delta(a, V(s))\}$	$\Omega(a)$
$m: A \to \wp(R[s])$	\forall	$\{(b,t) \mid t \in m(b)\}$	$Max(\Omega[A])$

Table II Acceptance game for MSO-automata

functionally defined. A noetherian *p*-variant of \mathbb{T} is built by allowing only nodes in \mathbb{W} to be labeled with *p*.

To formalize this argument, which goes back to [12], we first show that every weak MSO-automaton \mathbb{A} can be turned into an equivalent weak MSO-automaton \mathbb{A}^{2S} , which we call *twosorted* since its carrier is split into an initial non-deterministic and a subsequent alternating part. For the precise definition of the non-deterministic part of \mathbb{A}^{2S} we need the following proposition.

Proposition 1. For every MSO-automaton $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$, there is an effectively constructible automaton $\mathbb{A}^{\sharp} = \langle A^{\sharp}, a_I^{\sharp}, \Delta^{\sharp}, NBT \rangle$ which is non-deterministic, i.e. Δ^{\sharp} has type $A^{\sharp} \times C \rightarrow Disj(FBF^+(A^{\sharp}))$, is based on the set $A^{\sharp} = \wp(A \times A)$ of binary relations over A, takes the singleton set $a_I^{\sharp} = \{(a_I, a_I)\}$ as its starting state, and has the property that for any binary relation $Q \subseteq A \times A$, and any tree \mathbb{T} :

$$\mathbb{A}_Q^{\sharp}$$
 accepts \mathbb{T} iff \mathbb{A}_a accepts \mathbb{T} , for all $a \in Ran(Q)$,

where $\mathbb{A}_a = \langle A, a, \Delta, \Omega \rangle$ denotes the variant of the automaton \mathbb{A} that takes a as its starting state, and similarly for \mathbb{A}_Q^{\sharp} .

In particular, the automaton \mathbb{A}^{\sharp} itself is equivalent to \mathbb{A} .

We call \mathbb{A}^{\sharp} the *refined powerset construct* over \mathbb{A} . Note that A^{\sharp} is *almost* a non-deterministic *MSO*-automaton, the only difference being that the acceptance condition is not given by a parity condition.

We now turn to the definition of the automaton \mathbb{A}^{2S} , which we call *two-sorted*, because it roughly consists of a copy of \mathbb{A}^{\sharp} 'followed by' a copy of \mathbb{A} . As we observed, \mathbb{A}^{\sharp} is a nondeterministic automaton, whereas \mathbb{A} generally is not. Thus, given a tree \mathbb{T} , the idea is to make any match π of $\mathcal{A}(\mathbb{A}^{2S}, \mathbb{T})$ consist of two parts:

- (Non-deterministic mode) During finitely many steps, π can be seen as a match of the acceptance game of A[♯] on T, where any winning strategy for ∃ can be assumed to be functional;
- (Alternating mode) At a certain stage, π abandons the non-deterministic part of A^{2S} and turns into a match of the acceptance game of A on T.

The definition of \mathbb{A}^{2S} will guarantee the correctness of this construction, making \mathbb{A}^{2S} equivalent to the original automaton \mathbb{A} .

Definition 4. Let $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$ be a weak MSO-automaton and $A^{\sharp} = \langle A^{\sharp}, a_I^{\sharp}, \Delta^{\sharp}, NBT \rangle$ its refined powerset construct. The weak MSO-automaton $\mathbb{A}^{2S} =$

 $\langle A^{2S}, a_I^{2S}, \Delta^{2S}, \Omega^{2S} \rangle$ is defined as follows.

$$\begin{array}{rcl} A^{2S} & := & A \cup A^{\sharp} \\ & a_I^{2S} & := & a_I^{\sharp} \\ \Delta^{2S}(a,c) & := & \Delta(a,c) \\ \Delta^{2S}(R,c) & := & \Delta^{\sharp}(R,c) \lor \bigwedge_{a \in Ran(R)} \Delta(a,c) \\ & \Omega^{2S}(a) & := & \Omega(a) \\ & \Omega^{2S}(R) & := & 1 \end{array}$$

Here a and R denote arbitrary states in A and A^{\sharp} , respectively. The automaton \mathbb{A}^{2S} is called the two-sorted construct over \mathbb{A} .

Then we can prove a version of a simulation theorem that will suffice for our purposes.

Proposition 2. Let $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$ be a weak MSOautomaton and \mathbb{A}^{2S} the two-sorted construct on \mathbb{A} . Then $\mathcal{L}(\mathbb{A}^{2S}) = \mathcal{L}(\mathbb{A}).$

C. Closure under noetherian projection.

We are now ready to show the main result of this section: the class of tree languages recognized by weak MSO-automata is closed under noetherian projection. The argument is analogous to the one showing that MSO-automata are closed under projection, but we use the two-sorted construction instead of the refined powerset construction. The *p*-variant induced by the projection automaton will be guaranteed to be noetherian because all nodes labeled with *p* are visited when the automaton is in non-deterministic mode.

Definition 5. Let $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$ be a weak MSOautomaton on alphabet $\wp(P \cup \{p\})$. Let \mathbb{A}^{2S} denote its two-sorted construct. We define the automaton $\exists_W p.\mathbb{A} = \langle A^{2S}, a_I^{2S}, \tilde{\Delta}, \Omega^{2S} \rangle$ on alphabet C by putting

$$\begin{split} \widetilde{\Delta}(a,c) &:= \quad \Delta^{2S}(a,c) \\ \widetilde{\Delta}(R,c) &:= \quad \Delta^{2S}(R,c) \lor \Delta^{2S}(R,c \cup \{p\}). \end{split}$$

The automaton $\exists_W p.\mathbb{A}$ is called the two-sorted projection construct of \mathbb{A} over p.

Proposition 3. For each weak MSO-automaton \mathbb{A} on alphabet $\wp(P \cup \{p\})$, we have that $\mathcal{L}(\exists_W p.\mathbb{A}) = \exists_W p.\mathcal{L}(\mathbb{A})$.

As mentioned, the above proposition takes care of the only non-trivial induction case in the inductive proof of the following analogon of Fact 5:

Theorem 3. For every $\varphi \in WFMSO$, there is an effectively constructible weak MSO-automaton \mathbb{A}_{φ} such that on tree languages $\|\varphi\| = \mathcal{L}(\mathbb{A}_{\varphi})$.

Remark 2. Given any non-deterministic MSO-automaton $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$ where $\Delta : A \times C \to Disj(FBF^+(A))$ we can construct an equivalent non-deterministic MSOautomaton $\mathbb{A}' = \langle A', a_I, \Delta', \Omega' \rangle$ with Δ' of type $A' \times C \rightarrow$ $Disj(SBF^+(A'))$. That is, we may replace an arbitrary 'FBFautomaton' \mathbb{A} with an equivalent 'SBF-automaton' \mathbb{A}' . This automaton \mathbb{A}' is based on carrier $A \cup \{a^{\top}\}$, where $a^{\top} \notin A$ acts as a 'bin state' always leading to the acceptance of the input tree. For each $a \in A$ and $c \in C$, we can replace the empty A-types $\tau_S^+(x) = \top$ occurring in $\Delta(a,c)$ with $a^{\top}(x)$. This leads to the definition of a transition function Δ' associated only with sentences in *special* basic form. It is readily seen that any winning strategy for \exists in the acceptance game for \mathbb{A}' and some input tree \mathbb{T} can be assumed to mark each node of \mathbb{T} with *exactly one* state of \mathbb{A}' . This strengthening of the functionality condition conveniently simplifies the constructions presented in the next section.

IV. FROM WEAK MSO-AUTOMATA TO WFMSO

In this section we discuss the converse statement of Theorem 3. Using an argument going back to Rabin [11], we will prove that for every weak MSO-automaton \mathbb{A} there is a formula $\varphi_{\mathbb{A}} \in WFMSO$ which is equivalent to \mathbb{A} .

A. From Weak MSO to Büchi Automata.

The first idea would be to construct, for a weak MSOautomaton \mathbb{A} , a formula $\varphi_{\mathbb{A}}$ that expresses, when interpreted in a given tree \mathbb{T} , the existence of a winning strategy f for \exists in $\mathcal{A}(\mathbb{A}, \mathbb{T})@(a_I, s_I)$. This encoding would go smoothly if we could assume that f marks each node with *exactly one* state of \mathbb{A} .

For this purpose, by Theorem 6 we can construct a nondeterministic MSO-automaton \mathbb{A}^n which is equivalent to \mathbb{A} . However, as observed already, the automaton \mathbb{A}^n is not generally weak. This means that different parities can occur infinitely often in the same match of $\mathcal{A}(\mathbb{A}^n, \mathbb{T})$. Intuitively, this implies that we cannot give an account of the winning conditions of this acceptance game by referring only to wellfounded subtrees of \mathbb{T} . The quantification of WFMSO is too restrictive and it would seem that we need instead the full generality of MSO quantifiers.

We overcome this difficulty by showing that, because it is weak, \mathbb{A} can be turned into an equivalent non-deterministic *Büchi* automaton (abbreviated *NDB*), i.e. a non-deterministic *MSO*-automaton \mathbb{B} where the parity map $\Omega_B : B \to \omega$ can be assumed to range only over $\{0, 1\}$. The acceptance game associated with such a \mathbb{B} turns out to be essentially simpler than the one for arbitrary *MSO*-automata. The states of \mathbb{B} can be divided into accepting states - the ones with parity 0 - and rejecting states - the ones with parity 1. It should be clear that \exists wins a match if and only if at least one accepting state occurs infinitely often along the play. This constitutes a Büchi acceptance condition, and in fact we can simply describe \mathbb{B} as an automaton where the acceptance condition is given by a set *F* of accepting states, instead of a parity map Ω . It turns out that Büchi acceptance conditions can be described in terms of well-founded trees, so that we can express them by means of WFMSO-formulae without requiring the full expressiveness of MSO quantifiers. This is the key observation leading to the logical characterization of non-deterministic Büchi automata and weak MSO-automata.

Definition 6 (Büchi powerset construction). Let $\mathbb{A} = \langle A, a_I, \Delta, \Omega \rangle$ be a weak MSO-automaton. We can assume that $Ran(\Omega)$ is a subset of $\{0, 1\}$. Let $A^{\sharp} = \langle A^{\sharp}, a_I^{\sharp}, \Delta^{\sharp}, NBT \rangle$ be the refined powerset construct over \mathbb{A} . We define an NDB automaton $\mathbb{A}^B = \langle A^{\sharp}, a_I^{\sharp}, \Delta^{\sharp}, F_{\Omega} \rangle$ by putting

$$F_{\Omega} := \{R \in A^{\sharp} \mid \Omega(a) = 0 \text{ for all } a \in Ran(R)\}$$

We say that \mathbb{A}^B is the Büchi powerset construct over \mathbb{A} .

We can now verify the following.

Proposition 4. Let \mathbb{A} be a weak MSO-automaton and \mathbb{A}^B the Büchi powerset construct over \mathbb{A} . We have that $\mathcal{L}(\mathbb{A}) = \mathcal{L}(\mathbb{A}^B)$.

B. The Bounded Information Property.

We now formalize two key intuitions about non-deterministic Büchi automata:

- checking whether a non-deterministic Büchi automaton B accepts a tree T reduces to verifying a condition on prefixes of T (Proposition 5);
- checking whether the intersection of the languages of two non-deterministic Büchi automata is non-empty can proceed via the construction of a finite sequence of wellfounded trees with certain properties (Proposition 6).

The idea is that a run of a non-deterministic Büchi automaton on a tree \mathbb{T} can be split into several tasks concerning wellfounded subtrees (and prefixes, which are just a particular kind of well-founded subtrees) of \mathbb{T} , and there is never the need to consider \mathbb{T} as a whole.

Definition 7. Let $\mathbb{B} = \langle B, b_I, \Delta, F \rangle$ be a non-deterministic Büchi automaton and \mathbb{T} a tree. Let f be a surviving strategy for \exists in $\mathcal{A}(\mathbb{B}, \mathbb{T})@(b_I, s_I)$. Let $\gamma \leq \omega$ be an ordinal. A γ accepting sequence for f over \mathbb{B} and \mathbb{T} is a sequence $(E_i)_{i < \gamma}$ such that, for all $i < \gamma$:

- 1) E_i is a prefix of \mathbb{T} ;
- 2) $Ft(E_i) < Ft(E_{i+1});$
- for each s in the frontier of E_i, there is a unique a ∈ A such that f is defined on position (a, s); in addition, a is in F.

Intuitively, for $k < \omega$, a k-accepting sequence for a surviving strategy f witnesses the fact that f 'behaves as' a winning strategy for \exists in the prefix E_k of \mathbb{T} . For each prefix E_i in the sequence, the condition that each $s \in Ft(E_i)$ is associated with a *unique* accepting state is motivated by the fact that f can be assumed to be functional, \mathbb{B} being non-deterministic.

Proposition 5. Let $\mathbb{B} = \langle B, b_I, \Delta, F \rangle$ be a non-deterministic Büchi automaton and \mathbb{T} a tree. The following are equivalent.

• Player \exists has a winning strategy in $\mathcal{A}(\mathbb{B}, \mathbb{T})@(b_I, s_I)$.

• Player \exists has a surviving strategy f in $\mathcal{A}(\mathbb{B}, \mathbb{T})@(b_I, s_I)$ and there is an ω -accepting sequence for f over \mathbb{B} and \mathbb{T} .

For non-deterministic Büchi automata \mathbb{B}_1 and \mathbb{B}_2 and a tree $\mathbb{T} \in L(\mathbb{B}_1) \cap L(\mathbb{B}_2)$, let $(G_i^1)_{i < \omega}$ and $(G_i^2)_{i < \omega}$ be ω -accepting sequences respectively for \mathbb{B}_1 and \mathbb{B}_2 on \mathbb{T} . We introduce the notion of *k*-trap for \mathbb{B}_1 and \mathbb{B}_2 . The idea is that a *k*-trap is a finite sequence $(E_i)_{i \le k}$ witnessing some kind of interleaving of the sequences $(G_i^1)_{i < \omega}$ and $(G_i^2)_{i < \omega}$ up to level *k*.

To this aim, we first introduce the following auxiliary notion. Let \mathbb{B} be a *NDB*-automaton and \mathbb{T} a tree. Given a set of nodes $N \subset T$, we say that a strategy f for player \exists in $\mathcal{A}(\mathbb{B},\mathbb{T})@(b_I,s_I)$ is *surviving in* N if, for each basic position $(b,s) \in B \times N$ that is reached in some f-conform match, the marking m suggested by f makes $\Delta(b, V(s))$ true in R[s].

Definition 8. Let $\mathbb{B}_1 = \langle B_1, b_I^1, \Delta_1, F_1 \rangle$ and $\mathbb{B}_2 = \langle B_2, b_I^2, \Delta_2, F_2 \rangle$ be NDB automata and let \mathbb{T} be a tree. Given some fixed $k < \omega$, let $(E_i)_{i \le k}$ be a sequence of prefixes of \mathbb{T} such that $E_0 = \{s_I\}$ and $E_i \subsetneq E_{i+1}$ for all $i \le k$.

We say that \mathbb{T} and $(E_i)_{i \leq k}$ constitute a k-trap for \mathbb{B}_1 and \mathbb{B}_2 if there exist

- 1) a strategy f_1 for \exists in $\mathcal{A}(\mathbb{B}_1, \mathbb{T})@(b_I^1, s_I)$ which is surviving in E_k ,
- 2) a strategy f_2 for \exists in $\mathcal{A}(\mathbb{B}_2, \mathbb{T})@(b_I^2, s_I)$ which is surviving in E_k ,
- 3) a k-accepting sequence $(G_i^1)_{i \leq k}$ for f_1 over \mathbb{B}^1 and \mathbb{T} ,

4) a k-accepting sequence $(G_i^2)_{i\leq k}$ for f_2 over \mathbb{B}^2 and \mathbb{T} ,

such that, for all i < k, the following conditions hold:

- $Ft(E_i) \le Ft(G_i^1) < Ft(E_{i+1});$
- $Ft(E_i) \leq Ft(G_i^2) < Ft(E_{i+1}).$

We say that the strategies f_1 and f_2 witness the k-trap for \mathbb{B}_1 and \mathbb{B}_2 .

Proposition 6 ([11]). Let \mathbb{B}_1 and \mathbb{B}_2 be NDB-automata and let m be the product of the cardinalities of their carriers. If there exists an m-trap for \mathbb{B}_1 and \mathbb{B}_2 then $\mathcal{L}(\mathbb{B}_1) \cap \mathcal{L}(\mathbb{B}_2) \neq \emptyset$.

C. Non-Deterministic Büchi Automata versus WFMSO.

We are now ready to prove the main result of this section.

Theorem 4. For any weak MSO-automaton \mathbb{A} there is a formula $\varphi \in WFMSO$ such that over tree languages $\|\varphi\| = \mathcal{L}(\mathbb{A})$.

Proof: Let \mathbb{A} be a weak *MSO*-automaton and \mathbb{B} an *NDB*automaton which is equivalent to \mathbb{A} , as in Proposition 4. Clearly then it suffices to come up with a formula φ in *WFMSO* that holds in a tree \mathbb{T} if and only if \mathbb{B} accepts \mathbb{T} . Since weak *MSO*-automata are closed under complementation, we are also provided with a weak *MSO*-automaton $\overline{\mathbb{A}}$ recognizing the complement of $\mathcal{L}(\mathbb{A})$, and consequently with an *NDB*automaton $\overline{\mathbb{B}}$ which is equivalent to $\overline{\mathbb{A}}$. Our formula $\varphi = \varphi_{\mathbb{B},\overline{\mathbb{B}}}$ depends on both \mathbb{B} and $\overline{\mathbb{B}}$.

More concretely, let m be the product of the cardinalities of B and \overline{B} . The formula $\varphi_{\mathbb{B},\overline{\mathbb{B}}} \in WFMSO$ will express the existence of a strategy f for \exists and an m+1-accepting sequence $(E_i)_{i \leq m+1}$ such that f is functional and surviving in E_{m+1} . The key observation is that the encoding of $(E_i)_{i \leq m+1}$ and the associated surviving strategy into a formula only requires variables for noetherian sets of nodes. For this, the expressive power of *WFMSO* will suffice.

Proposition 5 will help showing one direction of the equivalence, namely that, given a tree \mathbb{T} and a winning strategy f for \exists in $\mathcal{A}(\mathbb{B},\mathbb{T})$, the formula $\varphi_{\mathbb{B},\overline{\mathbb{B}}}$ is true in \mathbb{T} . For the converse direction, we use the automaton $\overline{\mathbb{B}}$ accepting the complement of the language of \mathbb{B} . The idea is to suppose by way of contradiction that $\overline{\mathbb{B}}$ accepts a tree \mathbb{T} where $\varphi_{\mathbb{B},\overline{\mathbb{B}}}$ is true. Then by Proposition 5 there is an ω -accepting sequence $(E_i^{\delta})_{i<\omega}$ witnessing the fact that \mathbb{T} is in $\mathcal{L}(\overline{\mathbb{B}})$. The ω -accepting sequence $(E_i^{\delta})_{i<\omega}$ contains an m + 1-accepting sequence $(E_i^{\delta})_{i\leq m+1}$. By the fact that $\varphi_{\mathbb{B},\overline{\mathbb{B}}}$ is true, we also have an m + 1-accepting sequences witness a trap for \mathbb{B} and $\overline{\mathbb{B}}$ as in Definition 8. But by Proposition 6 this means that the intersection of $\mathcal{L}(\mathbb{B})$ and $\mathcal{L}(\overline{\mathbb{B}})$ is non-empty, contradicting the fact that $\overline{\mathbb{B}}$ accepts the complement of $\mathcal{L}(\mathbb{B})$.

The definition of $\varphi_{\mathbb{B},\overline{\mathbb{B}}}$ essentially follows the same line of reasoning as in [11]. Given any state $b \in B$, we define by induction on $i < \omega$ a formula $K_i^b(x) \in WFMSO$, where no variable different from x occurs free. For the base case, we put $K_0^b(x) := \top$. Inductively, $K_{i+1}^b(x)$ is given as a formula expressing the following situation (relative to a tree \mathbb{T}):

- Given a node s on which x is being evaluated, for each prefix E of T.s, there is a prefix E' of T.s including E, and a function m_p : B → ℘(E), such that ∃ has a functional strategy f in A(B, T.s)@(s, b), which is surviving in E' and has the following properties:
 - from each basic position (b', t) on which it is defined, the strategy f suggests to ∃ the restriction of m_p to a marking m_{p,t} : B → ℘(R[t]);
 - for each node t on the frontier of E', let $b_t \in B$ be the unique state in B such that (b_t, t) is a reachable position in an f-conform match. Then b_t is an accepting state in F, and the formula $K_i^{b_t}(y)$ is true in T for y evaluated on t.

Given a formula Root(y) stating that y is the root of the tree, we define $\varphi_{\mathbb{B},\mathbb{B}}$ as $\exists y \ (Root(y) \land K^{b_I}_{m+1}(y))$. Then the key lemma underlying the proof of Theorem 4 states that

$$\mathcal{L}(\mathbb{B}) = \|\varphi_{\mathbb{B},\overline{\mathbb{B}}}\|.$$

This finishes the proof (sketch) of Theorem 4.

As an immediate corollary we obtain the following characterization of *WFMSO* which generalizes Rabin's automatatheoretic characterization of *WMSO* on binary trees [11].

Corollary 1. A tree language \mathcal{L} is WFMSO-definable if and only if there are non-deterministic Büchi automata \mathbb{B} and $\overline{\mathbb{B}}$ such that $\mathcal{L} = \mathcal{L}(\mathbb{B})$ and $\overline{\mathcal{L}} = \mathcal{L}(\overline{\mathbb{B}})$.

D. Proof of Theorem 2

Finally, Theorem 2 is now immediate by the Theorems 3 and 4 and Corollary 1.

V. A CHARACTERIZATION THEOREM FOR AFMC

Fact 4 states that over transition systems, the modal μ -calculus (MC) is as expressive as the bisimulation-invariant fragment of MSO. In this section we consider the same question for the bisimulation-invariant fragment of WFMSO. It turns out that WFMSO is still weaker than MSO in this respect, being as expressive as the alternation-free fragment of the modal μ -calculus (AFMC). This outcome is coherent with the perspective on WFMSO and weak MSO-automata. Indeed, there is a tight connection between fixpoint operators of the μ -calculus and parities occurring infinitely often in parity games [18]. The absence of alternation in formulae of AFMC intuitively corresponds to at most one parity occurring infinitely often along infinite matches of a parity game (cf. Remark 1).

Turning to the proof of our main result, Theorem 1, we once again use an automata-theoretic argument. Roughly, the idea is that automata for AFMC over trees are the weak counterpart of automata for MC, just as automata for WFMSO are the weak version of MSO-automata. Then the argument, used by Janin & Walukiewicz [4] to show that automata for MC and MSO have the same expressive power modulo bisimulation, can be restricted to show an analogous result for the weak counterparts.

In the sequel we use the translation introduced in [4], which transforms sentences in special basic form into sentences of $FO^+(A)$ without equality. These will provide the first-order language associated with automata for MC.

Definition 9 (Modal Translation). Given a set A of unary predicates, let $\varphi \in SBF^+(A)$ be a sentence in special basic form of shape

$$\varphi = \exists x_1 \dots \exists x_k \left(diff(\bar{x}) \land \bigwedge_{1 \le i \le k} a_i(x_i) \land \forall z(diff(\bar{x}, z) \to \bigvee_{1 \le l \le i} b_l(z)) \right).$$

We define its modal translation φ^{∇} by putting

$$\varphi^{\nabla} := \exists x_1 \dots \exists x_k \bigwedge_{1 \le i \le k} a_i(x_i) \land \forall z \bigvee_{1 \le l \le j} b_l(z).$$

We denote with $SBF^{\nabla}(A)$ the set $\{\varphi^{\nabla} \mid \varphi \in SBF^+(A)\}$.

Remark 3. Our terminology stems from the observation that the formula φ^{∇} corresponds to the modal formula $\bigwedge_{1 \leq i \leq k} \Diamond a_i \land \Box \bigvee_{1 \leq l \leq j} b_l$.

The modal μ -calculus is characterized by a class of automata which are defined as non-deterministic *MSO*-automata but for the transition function, which ranges over sentences from $Disj(SBF^{\nabla}(A))$ instead of from $Disj(SBF^+(A))$ [19]. If we restrict to the alternation-free fragment, then a weaker version of these automata suffices [20]. We use the name *modal nondeterministic Büchi automata* to emphasize their connection with non-deterministic Büchi automata. **Definition 10.** A modal non-deterministic Büchi automaton on alphabet C is an MSO-automaton $\mathbb{B} = \langle B, b_I, \Delta, \Omega \rangle$ with $\Delta : B \times C \to Disj(SBF^{\nabla}(B))$ and $\Omega : B \to \{0, 1\}.$

In [20] an automata-theoretic characterization of *AFMC* in terms of modal non-deterministic Büchi automata is provided.

Fact 7 ([20]). Let \mathcal{L} be a tree language. The following are equivalent.

- There exists $\varphi \in AFMC$ such that $\mathcal{L} = \|\varphi\|$.
- There are modal non-deterministic Büchi automata M and M such that L = L(M) and L = L(M).

We introduce a translation from *NDB*-automata to modal *NDB*-automata. Let \mathbb{B} be a *NDB*-automaton. In analogy with Janin and Walukiewicz's argument, we are going to show that, if $L(\mathbb{B})$ is closed under bisimulation, then the modal *NDB* automaton \mathbb{B}^{∇} that we obtain from \mathbb{B} through the translation is such that $\mathbb{B} \equiv \mathbb{B}^{\nabla}$. This is the content of Proposition 7.

Definition 11. Let $\mathbb{B} = \langle B, b_I, \Delta, \Omega \rangle$ be an NDB automaton. We define an automaton $\mathbb{B}^{\nabla} = \langle B, b_I, \Delta^{\nabla}, \Omega \rangle$ by putting

$$\Delta^{\nabla}(a,c) := \bigvee \{ \varphi^{\nabla} \mid \varphi \text{ is a disjunct of } \Delta(a,c) \}.$$

By Definition 9 the transition function Δ^{∇} has type $B \times C \to Disj(SBF^{\nabla}(B))$, meaning that \mathbb{B}^{∇} is a modal NDB-automaton.

Proposition 7. Let \mathbb{B} be an NDB automaton and \mathbb{B}^{∇} the modal NDB automaton constructed from \mathbb{B} as in Definition 11. If $\mathcal{L}(\mathbb{B})$ is closed under bisimulation, then $\mathcal{L}(\mathbb{B}) = \mathcal{L}(\mathbb{B}^{\nabla})$.

This proposition provides the key result to prove that AFMC is at least as expressive as the bisimulation-invariant fragment of WFMSO. The converse statement is in fact the easy direction of Theorem 1, being essentially a corollary of the automata-theoretic characterization of AFMC over trees provided in [20].

Fact 8 ([20]). Let $\varphi \in AFMC$ be a sentence. There is a weak MSO-automaton \mathbb{A}_{φ} such that on tree languages $\|\varphi\| = \mathcal{L}(\mathbb{A}_{\varphi})$.

Proof of Theorem 1: Because of Fact 2, it is enough to prove the claim for tree languages. Thus, let \mathcal{L} be a tree language that is closed under bisimulation. The direction $(1 \Rightarrow 2)$ follows by Proposition 8 and Theorem 4. The proof of direction $(2 \Rightarrow 1)$ is obtained as follows. Assume that there is a formula $\varphi \in WFMSO$ such that $||\varphi|| = \mathcal{L}$. By Theorem 2, there are NDB-automata $\mathbb{B}, \overline{\mathbb{B}}$ such that $\mathcal{L}(\mathbb{B}) = \mathcal{L}$ and $\mathcal{L}(\overline{\mathbb{B}}) = \overline{\mathcal{L}}$. By Proposition 7, this implies that there are modal NDB-automata $\mathbb{B}^{\nabla}, \overline{\mathbb{B}}^{\nabla}$ such that $\mathcal{L}(\mathbb{B}^{\nabla}) = \mathcal{L}$ and $\mathcal{L}(\overline{\mathbb{B}}^{\nabla}) =$ $\overline{\mathcal{L}}$. Finally, Proposition 7 yields a formula $\varphi_1 \in AFMC$ such that $||\varphi_1|| = \mathcal{L}$.

As a corollary of Theorem 1, we obtain an incomparability result for *WFMSO* and *WMSO*. We can see this as a strengthening of the incomparability between *WMSO* and *MSO*, *WFMSO* being strictly weaker than *MSO*.

Corollary 2. The collection of WMSO-definable classes of transition systems and the collection of WFMSO-definable classes of transition systems are incomparable.

VI. CONCLUSION

A. Overview.

In this work we have presented two main contributions. The first one concerns the connection between automata and logic and establishes a logical characterization of weak MSO-automata on trees of arbitrary branching degree. For this purpose we introduce a new variant of MSO which we call well-founded monadic second-order logic (WFMSO), and prove that for tree languages, being WFMSO-definable and being accepted by a weak MSO-automata coincide. The proof passes through nondeterministic Büchi automata, that generalize Rabin's 'special automata' [11] working on binary trees. We give a second characterization for WFMSO in connection with this class of automata: a tree language \mathcal{L} is WFMSO-definable if and only if both \mathcal{L} and its complement are recognized by nondeterministic Büchi automata. This generalizes an analogous result of Rabin for WMSO on binary trees [11].

The second main contribution is the modal characterization of the bisimulation-invariant fragment of WFMSO, which is proven to be as expressive as the alternation-free fragment of the modal μ -calculus. This result somehow completes the net of correspondences between WFMSO and MSO, the bisimulation-invariant fragment of MSO being as expressive as the modal μ -calculus [4]. As expected, this implies that WFMSO and WMSO have incomparable expressive power.

B. Future Work.

The original driving motivation of our work was the observation that weak MSO-automata do not characterize WMSO on all trees, meaning that AFMC is not the bisimulation-invariant fragment of WMSO. A natural continuation would be thence to provide a different class of automata, which characterizes WMSO. The crux of the matter is to understand how to define these automata, in such a way that their expressive power is incomparable with respect to MSO-automata. In particular they should lack the finite branching property. But then a problem arises, for all the projection constructions that we considered so far are tightly connected to such property. In order to give a projection construction corresponding to WMSOquantification, essentially different methods seem to be needed.

A second natural line of research concerns the bisimulationinvariant fragment of WMSO. This investigation is motivated by the fact that all WMSO-definable tree languages are Borel. If the bisimulation-invariant fragment of WMSO is strictly weaker than the modal μ -calculus, then it would correspond to a sort of 'Borelian' fragment, providing a better understanding of the topological complexity of modal fixpoint logics. In fact there are reasons to believe that this is the case. To the best of our knowledge, all examples of tree languages that are WMSO-definable but not MSO-definable are not bisimulation closed. This motivates the conjecture that the bisimulationinvariant fragment of WMSO 'collapses inside' the modal μ -calculus, and particularly its alternation-free fragment for the intuitive reason that *WMSO* is not stronger than *WFMSO* in expressing properties on the vertical dimension of trees.

ACKNOWLEDGMENT

The first author is supported by the *Expressiveness of Modal Fixpoint Logics* project realized within the 5/2012 Homing Plus programme of the Foundation for Polish Science, co-financed by the European Union from the Regional Development Fund within the Operational Programme Innovative Economy ("Grants for Innovation"). The third author is supported by the project ANR 12IS02001 PACE.

REFERENCES

- [1] J. van Benthem, "Modal correspondence theory," Ph.D. dissertation, Universiteit van Amsterdam, 1977.
- [2] E. Rosen, "Modal logic over finite structures," Journal of Logic, Language and Information, vol. 6, pp. 427–439, 1997.
- [3] A. Dawar and M. Otto, "Modal characterisation theorems over special classes of frames," *Ann. Pure Appl. Logic*, vol. 161, no. 1, pp. 1–42, 2009.
- [4] D. Janin and I. Walukiewicz, "On the expressive completeness of the propositional μ-calculus with respect to monadic second order logic," in *Proceedings of the 7th International Conference on Concurrency Theory*, ser. CONCUR '96. London, UK: Springer-Verlag, 1996, pp. 263–277. [Online]. Available: http://portal.acm.org/citation.cfm?id=646731.703838
- [5] D. Janin and G. Lenzi, "Relating levels of the mu-calculus hierarchy and levels of the monadic hierarchy," in *LICS*. IEEE Computer Society, 2001, pp. 347–356.
- [6] A. Arnold and D. Niwinski, "Fixed point characterization of weak monadic logic definable sets of trees," in *Tree Automata and Languages*, 1992, pp. 159–188.
- [7] B. ten Cate and A. Facchini, "Characterizing EF over infinite trees and modal logic on transitive graphs," in *MFCS*, 2011, pp. 290–302.
- [8] L. Alberucci and A. Facchini, "The modal μ-calculus over restricted classes of transition systems," J. Symb. Log., vol. 74, no. 4, pp. 1367– 1400, 2009.
- [9] F. Zanasi, "Expressiveness of monadic second order logics on infinite trees of arbitrary branching degree," Master's thesis, ILLC, Universiteit van Amsterdam.
- [10] I. Walukiewicz, "Monadic second order logic on tree-like structures," in STACS, 1996, pp. 401–413.
- [11] M. O. Rabin, "Weakly definable relations and special automata," in Proceedings of the Symposium on Mathematical Logic and Foundations of Set Theory (SMLFST'70), Y. Bar-Hillel, Ed. North-Holland, 1970, pp. 1–23.
- [12] D. E. Muller, A. Saoudi, and P. E. Schupp, "Alternating automata, the weak monadic theory of trees and its complexity," *Theor. Comput. Sci.*, vol. 97, no. 2, pp. 233–244, 1992.
- [13] E. A. Emerson and C. S. Jutla, "Tree automata, μ-calculus and determinacy (extended abstract)," in *FOCS*, 1991, pp. 368–377.
- [14] A. Mostowski, "Games with forbidden positions," University of Gdansk, Tech. Rep. 78, 1991.
- [15] D. Niwinski, "On fixed-point clones (extended abstract)," in *ICALP*, ser. Lecture Notes in Computer Science, L. Kott, Ed., vol. 226. Springer, 1986, pp. 464–473.
- [16] D. Park, "On the semantics of fair parallelism," in *Proceedings of the Abstract Software Specifications, 1979 Copenhagen Winter School.* London, UK, UK: Springer-Verlag, 1980, pp. 504–526. [Online]. Available: http://dl.acm.org/citation.cfm?id=647448.727229
- [17] S. Safra, "On the complexity of ω-automata," in *Proceedings of the 29th Annual Symposium on Foundations of Computer Science*, ser. SFCS '88. Washington, DC, USA: IEEE Computer Society, 1988, pp. 319–327. [Online]. Available: http://dx.doi.org/10.1109/SFCS.1988.21948
- [18] T. Wilke, "Alternating tree automata, parity games, and modal μ-calculus," *Bull. Soc. Math. Belg*, vol. 8, 2001.
 [19] D. Janin and I. Walukiewicz, "Automata for the modal μ-calculus and
- [19] D. Janin and I. Walukiewicz, "Automata for the modal μ-calculus and related results," in *MFCS*, 1995, pp. 552–562.
- [20] O. Kupferman and M. Y. Vardi, " $\Pi_2 \cap \Sigma_2 \equiv AFMC$," in *ICALP*, 2003, pp. 697–713.