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Abstract

We study Gentzen-style proof theory of the finitary version of the coalgebraic logic in-
troduced by L. Moss. The logic captures the behaviour of coalgebras for a large class of set
functors. The syntax of the logic, defined uniformly with respect to a finitary coalgebraic
type functor 7', uses a single modal operator V of arity given by the functor T itself,
and its semantics is defined in terms of a relation lifting functor T. An axiomatization of
the logic, consisting of modal distributive laws, has been given together with an algebraic
completeness proof in work of C. Kupke, A. Kurz and Y. Venema.

In this paper, following our previous work on structural proof theory of the logic in
the special case of the finitary powerset functor, we present cut-free, one- and two-sided
sequent calculi for the finitary version of Moss’ coalgebraic logic for a general finitary
functor T in a uniform way. For the two-sided calculi to be cut-free we use a language
extended with the boolean dual of the nabla modality.

Keywords: modal logic, coalgebraic logic, sequent system, coalgebra, cover modality,
Gentzen calculus, completeness.

1 Introduction

The theory of coalgebras, introduced by Aczel in the late 1980s [1, 2], is a fast-growing
research area in theoretical computer science which provides a unifying framework for state-
based evolving systems. The unifying power of the coalgebraic theory of systems lies in that
various classes of systems can be formalized as coalgebras of appropriate set (endo)functors T
(representing the type of the given class); hence their theory can be developed parametrically
in T. As a key example, any set functor T canonically induces a notion of observational or
behavioural equivalence between T-coalgebras; this notion generalizes the natural notions of
bisimilarity which were independently developed for each specific type of system.

In order to describe and reason about the behaviour of systems modelled by coalgebras,
specification languages and derivation systems have been introduced, which gave rise to a
research programme in its own right, namely coalgebraic logic. Coherently with the spirit
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of the coalgebraic theory of systems, coalgebraic logic aims at developing logical formalisms
which can be defined and studied uniformly in the functor 7. Since Kripke models and
frames are exactly the P-coalgebras, i.e. the coalgebras of the powerset functor, and since
modal logic is the archetypal bisimulation-invariant logic, the several current proposals for
suitable coalgebraic logics, such as based on the so-called predicate lifting modalities [19, 25],
or equivalently modalities arising from Stone type dualities [7, 14], or a framework making
use of co-equations [3], are set out as generalizations of modal logic in some respects.

In the above mentioned framework of coalgebraic logic based on predicate liftings an ex-
tensive work has been done in the direction of proof theory and its applications by L. Schréder
and D. Pattinson. Namely, in [20] sequent systems have been defined systematically from a
given axiomatization of a logic, and cut admissibility has been proven for strictly one-step
complete logics; in [21, 22] one-step completeness has been related to eliminability of cuts and
a purely syntactic condition on the modal part of a calculus has been given for the calculus
to admit cut elimination.

The research line of the present paper was initiated by Moss [17]; he defined an elegant
generalization of modal logic, using the functor T to define a modal connective Vp which
takes in input elements o € T,,L (where T, is the finitary version of T, and £ denotes the
collection of formulas), and returns formulas Vra.

If T is the powerset functor P, its associated connective V p takes a finite set « of formulas
and returns a single formula V pa. The semantics of Vp is defined as follows, for an arbitrary
Kripke structure S with accessibility relation R:

S,slFVa if forall a € a there is a t € R[s] with S, ¢ I a, and
for all t € R[s] there is an a € o with S, ¢ I a.

(1)
The modal connective V can be seen as a defined connective in the standard modal language:

Va = D(\/ a) A /\<>a, (2)

where Oa denotes the set {<Ca | a € a}. But in fact the following semantic equivalences hold
for V interpreted as in (1):

Sa = Vi{a, T} Oa = VoV Vi{al}, (3)

which show that the language based on V is an alternative formulation of standard modal
logic.

Analogously to the duality between O and <, V admits a dual operator A, which, inter-
estingly, can be defined in the following, negation-free way:

Aa = (4)

VovV{V{a}|aca}VV{Aa, T} ifa#0
V{T} ifa=g

The V-based reformulation of modal logic lends itself naturally to a coalgebraic general-
ization, thanks to the following fundamental observation, due to Moss [17]: the satisfaction
clause (1) is equivalent to

S,slFVpa iff (R[s],a) € P(IF), (5)



where P(IF) denotes the Egli-Milner (i.e. the P-) relation lifting of the satisfaction relation I-
between states and formulas. Hence, for every set-endofunctor T, every T-coalgebra o : X —
TX x P(AtProp) and every state s € X,

o,slFVra iff  (o(s),a) € T(IF), (6)

where T(IF) C TX x TL denotes the T-relation lifting of I C X x L (see also Definition 2.7
for more details and discussion). A well-behaved functorial relation lifting is not available
in general: it is available for a large class of set functors, namely for those preserving weak
pullbacks. (For the same class of functors bisimilarity captures behavioural equivalence.) It
leaves out certain interesting functors, for example the double contravariant powerset functor
p]B, coalgebraically capturing the neighbourhood frames. However, in many cases, such as the
related monotone neighborhood frames, there is an alternative way of defining relation lifting
and subsequently use similar methods to develop a Moss-style logic, as shown in [24, 16].

Moss’ finitary coalgebraic logic, despite its nonstandard syntax and limitation to functors
preserving weak pullbacks, proved to be an interesting field of study and found applications
in logic and automata theory. It is finitely expressive in the sense that it can distinguish
any two non-bisimilar states of two finitely branching coalgebras. Its language allows for a
disjunctive normal form, which in the case of the powerset functor can be recognized already
in the work of K. Fine [8], or in the work of D. Janin and I. Walukiewicz on the automata
theory approach to the completeness of modal u-calculus [9]. The work of D. Janin and I.
Walukiewicz inspired Y. Venema [27] to introduce a finitary version of Moss’ logic extended
with fixpoint operators, and thus to generalize the link between automata theory and fixpoint
logics to the coalgebraic level of generality. C. Kupke and Y. Venema also showed that many
results of automata theory can be seen as theorems of universal coalgebra [12, 13]. A modular
axiomatization of Moss’ logics can be given in a uniform way, parametric in the functor T,
using modal distributive laws. Using this axiomatization an algebraic completeness proof has
been given in [11].

In earlier work [6], we set out to develop the Gentzen-style proof theory of V-style coal-
gebraic logic, and we introduced two sequent calculi: a one-sided sequent calculus for an
expansion of the Boolean propositional language with the modal connective V p; this calculus
was shown to be sound, complete w.r.t. the class of all Kripke models, and cut-free; a sound
and complete two-sided sequent calculus for the negation-free fragment of the same language,
the cut rule of which had been shown to be not eliminable (an example of a sequent with no
cut-free proof has been given, cf. Example 4.12). Both calculi are generalizable to V-style
coalgebraic languages for arbitrary weak pullback-preserving Set-endofunctors 7.

Contributions of the present paper. Our main goal is to present a uniform Gentzen-
style proof theory for Moss’ logic. We introduce one- and two-sided sequent calculi for Moss’
logic in a uniform way, parametric in the functor 7. The calculi share the following structural
properties: most importantly, they are cut-free complete. They consist of a suitable fixed
propositional part extended with modal rules parametric in the functor T'. All the rules
(except weakening) are invertible (the modal rules are invertible in a weaker sense than the
usual invertibility of sequent rules, cf. Lemma 4.5 and 5.2) which allows for a completeness



proof. The two-sided calculi are defined for the language using both V and its boolean dual
A as primitive modalities: this seems to be necessary to obtain a cut-free presentation. The
one-sided calculi are defined in a similar way. For the A-free fragment of the language, i.e.
with V as the only modal operator, one-sided calculi are still available — they moreover
behave better since they satisfy the genuine subformula property.

The present paper extends the earlier work [6] in two directions.

First direction. Focusing on the powerset functor P, we consider the corresponding coalge-
braic language in which both Vp and Ap are taken as primitive, and introduce the cut-free,
two-sided sequent calculus S2p (cf. Definition 4.4). The system S2p is sound and complete
w.r.t. the class of Kripke frames (cf. Theorem 4.8). We also introduce the cut-free, one-sided
sequent calculus S1p for the restricted language £* of £ in which negation can only be applied
to proposition letters, and prove that S1p is sound and complete w.r.t. Kripke frames.

As was the case in [6], the notion of slim redistribution (cf. Definition 3.20) is the main

technical ingredient in the formulation of the proof rules in S1p, which guarantees its being
generalizable to wide classes of functors. In its specific formulation for the power set functor,
a set ® € PPX is a slim redistribution of a set A € PPX (notation: ® € SRD(A)) iff
UA=U®Pand pna # & for all p € & and a € A. However, the technical improvement over
[6] is that we refined the notion of slim redistribution to that of separated slim redistribution
(cf. Definition 3.23), which is the key to our formulation of the cut-free, two-sided system S2p.
Here separated refers to the fact that in the definition, we separate the formulas stemming
from the left- and the right-hand side of the sequent, respectively.
Second direction. Focusing on an arbitrary functor 1" which preserves inclusions and weak
pullbacks, and again considering the corresponding coalgebraic language in which both Vp
and Ap are taken as primitive, we introduce the cut-free, two-sided sequent calculus G2 (cf.
Definition 5.1) and the cut-free, one-sided sequent calculus G1lp (cf. Definition 5.8) for the
corresponding restriction £* defined as above; again, both calculi are shown to be sound and
complete w.r.t. T-coalgebras (cf. Theorem 5.4 and 5.11). As to the relationship between the
calculi for P and for T, we remark that S2p and S1p are not mere instantiations of the more
general G217 and Gl respectively, but are actual simplifications; we refer to Remark 4.2 for
more details on this point. We also define the one-sided calculus Glpy (cf. Definition 5.12)
for the A-free fragment of the language, which is merely the A-free fragment of the calculus
Glrp.

Structure of the present paper. In Section 2, we collect some preliminaries on coalgebras
(Subsection 2.2), relation lifting (Subsection 2.3), and sequent calculi for propositional logics
(Subsection 2.3). Section 3 reviews the finitary version of Moss’ coalgebraic logic in its
syntax (Subsection 3.1) and semantics (Subsection 3.2), and introduces the main technical
ingredients of the paper, namely (separated) slim redistributions (Subsection 3.3). In Section
4, the sequent calculi S2p and S1p are introduced and proven to be sound and complete
(Subsections 4.1 and 4.2 respectively). In Section 5, the sequent calculi G2p and G1lp are
introduced and proven to be sound and complete (Subsections 5.1 and 5.2 respectively). For
the A-free fragment of the Moss’ language, one-sided calculi are introduced (Subsections 4.3.
and 5.3.). In section 6 we briefly discuss finitarity (Subsection 6.1) of the calculi introduced



in this paper, and the subformula property (subsection 6.2).

2 Preliminaries

In this section we list some notions that we consider to be background knowledge in the
remainder of the paper, and we fix notation and terminology.

2.1 Categories and Coalgebras

We assume familiarity with basic notions from category theory (such as categories, functors,
and natural transformations) [15], and from universal coalgebra [23]. We restrict attention
to Set-based coalgebras, where Set denotes the category with sets as objects and functions as
arrows. We let P and P denote, respectively, the co- and contravariant power set functor.

Convention 2.1 Throughout the paper we fix a functor T : Set — Set, which we assume to
preserve inclusions and weak pullbacks.

Remark 2.2 Functors preserving inclusions were called standard in [17, 11] (definition of
standardness is not uniform in the literature, in [4] one more condition is required). However,
the restriction that T preserves inclusions is for reasons of presentation only; given an arbitrary
set functor T', we may find a standard set functor 7" such that the restriction of 7' and 7" to
all non-empty sets and non-empty functions are naturally isomorphic, as has been shown in
[4].

The finitary version T, : Set — Set of T' is given, on objects, by T,,X := | J{TY | Y €
P,X}, where P, denotes the finitary power set functor, and on arrows by T, f := T'f. It can be
proved that T, also preserves inclusions and weak pullbacks. Given an object £ € T, X, we let
Basex (§) denote the smallest finite subset of A such that £ € T'Basex (£); in fact, the family
of operations Basex : 1T,,X — P, X constitutes a natural transformation Base : T,, = P,,.

Definition 2.3 A T-coalgebra is a pair (S, o) where S is a set and o : S — T'S is a function;
the functor T is called the type of the coalgebra. A morphism of T-coalgebras from (S, o) to
(S',0"), written f : (S,0) — (S',0'), is a function f : S — S’ such that Tf oo = o o f, that
is, the following diagram commutes:

s g

Ik

TS ——TS'

<

Example 2.4 Throughout this paper we mostly refer to the class of extended Kripke poly-
nomial functors (or to their finitary versions) obtained by the following grammar:

T :=1Id|C|P|B|D|TooTy |ToxT1 | To+ 1T | TC,



where C'is a constant functor (a set), o, + and x denote the functor composition, coproduct
and product respectively, T¢ denotes exponentiation with respect to a set C.

e P is the covariant powerset functor, it acts on morphisms as the direct image. Kripke
frames can be seen as coalgebras for P, image finite Kripke frames are coalgebras for
its finitary version P,. Kripke models over a set Prop can be seen as coalgebras for the
functor P(Prop) x P(—). Labelled transition systems with a set of labels A are coalgebras
for the functor P(—)4. Various types of automata can be modeled as coalgebras using
this class of functors as well.

e B is the bag, or multiset, functor. It takes a set X to the set of multisets on X — maps
X — N — and acts on morphisms f : X — Y as follows:

(BHuly) = > wx).
f(@)=y

The finitary version B, takes a set X to the set of multisets y on X with finite support:
the set {z | u(z) > 0} is finite.

e D is the probability distribution functor which maps a set X to DX := {0 : X —
[0,1] | > ,ex d(x) = 1}, and acts on morphisms as the bag functor does. Coalgebras
for the distribution functor are probabilistic Kripke frames.

All the extended Kripke polynomial functors preserve weak pullbacks, and inclusions (only
the bag functor has to be ”standardized” by representing every u : X — N by its positive
graph {[z, ju(2)] | u(x) > 0}).

As running examples we will use (finitary versions of) the powerset functor, the bag
functor, and the binary tree functor Id x Id.

The key notion of equivalence in coalgebra is of two states in two coalgebras being behav-
torally equivalent.

Definition 2.5 Two elements (often called states) s, s’ in two coalgebras (S, o) and (S’,0”),
respectively, are behaviorally equivalent iff there are coalgebra morphisms f : S — X and
/' S' = X with a common codomain X such that f(s) = f'(s). <

2.2 Relation lifting

As mentioned, in the theory of Moss’ coalgebraic logic a key role is played by the categorical
notion of relation lifting that we will now briefly discuss.

We consider the categories Set of sets and functions, and Rel of sets and relations. We
treat a relation R from X to Y as an arrow R : X——Y in Rel, but we also deal with it as
with the set R C X x Y in Set whenever convenient.

We introduce some notation for relations and functions. The graph of a function f: X —
Y is the relation Grf : X——Y defined Grf :={(z, f(z)) e X xY |z € X}.

The diagonal relation on a set X is denoted as Idx : X—+—X and defined Idx :=
{(z,z) | x € X}. The converse of a relation R: X——Y is the relation R :Y——X,



defined R := {(y,z) | (z,y) € R}. Given subsets Y C X, Y’ C X', the restriction of R to Y
and Y’ is given as R|yxy’:= RN (Y x Y’). The composition of two relations R : X —— X’
and R : X'—+— X" is denoted by R;R’, whereas the composition of two functions f : X — X’
and f': X' — X" is denoted by f' o f or f’'f. Thus, we have e.g. Gr(f' o f)= Grf; Grf’.

Sets and relations actually form a 2-category Rel: the two-dimensional structure (which
is a preorder) on relations is given by inclusion: a two-cell

R
— > v/
X\%X

denotes the fact that R C S.

It is easy to see that Gr(—) : Set — Rel is a functor (as it clearly preserves identities and
composition).

It has been proved independently by Trnkova in [26] and Barr in [5] that a set functor T'
preserves weak pullbacks if and only if it admits a lifting to a functor T on the category Rel:

Theorem 2.6 For a functor T : Set — Set the following are equivalent:

1. There is a 2-functor T : Rel — Rel such that the square

Rel— L 4 Rel

GT(_J TGr(—) (7)

Set — Set
commutes.
2. The functor T preserves weak pullbacks.

3. there is a distributive law X' : TP — PT of T over, respectively, the monad P, and

the contravariant power set functor P. (In particular, X' is a natural transformation
N.TP - PT and X' : TP = PT.)

The relation lifting arising from the previous theorem is defined as follows:

Definition 2.7 Given a binary relation R : X1 —+— X, we define its T-lifting TR : T X, —+—T X5
as follows: -
TR := {((Tn{")p, (Tx3)p) | p € TR},

where Wﬁ : R — X, denotes the projection functions from R to X;. <

Example 2.8 Fix R: X——X'.

IdR = R

CR = Idc

TooT\R = To(TiR) )
To+ThR = ToRWT\R

ToxTiR = {((§.&), (&.8)) | (&, &) € iR}

TR = {(p,¢") | (p(d),¢'(d)) € TR for each d € D}



Applying relation lifting to the membership relation €, we obtain an interesting operation:
Given a set X, we let €x C X x PX denote the membership relation, restricted to X. We
define the map Xy : TPX — PTX by

Xo(®):={a eTX |aTex ®},

and call elements of X (®) lifted members of ®. The family of maps X, : TPX — PTX,
natural in X, form the distributive law mentioned in the Theorem 2.6 above.

As its role in the distributive law and in what follows in the next section is important,
we illustrate the definition of relation lifting by spelling out the definition of the membership
relation € 4: A—+—PA lifted by some of the functors introduced in Example 2.4.

Example 2.9 For the binary tree functor the definition of the lifted membership relation
Id x Id €: A x A——PA x PA simply says:

(a,a')Id x Id € (A, A") iff a € Aand d' € A'.

Example 2.10 For the powerset functor P the definition of the lifted membership relation
P(€) : PA—+—PPA boils down to the Egli-Milner lifting of the membership relation:

aP(€)® iff (Vaca)(3A€d)acA (9)
and (VA€ ®)(Jaca)ac A

Example 2.11 For the bag functor B the lifted membership relation B €: BA—+—BPA
looks as follows:

aB(e)® iff 3x € B(€) such that Va: ala)= >  xz(2)
{zla=nt (2)} (10)
and VA: ®(A) = > x(u).

{ulA=n3 (u)}

which is

aB(€)® iff 3z € B(€) such that Va: ala)= > x(a,A)
{Alac A} (11)
and VA: ®(A)= > xz(a,A).
{alac A}

It is instructive to imagine a witness x as filling a ”witness square” of the relation €:
columns are labelled by elements of Base(®) and rows by elements of Base(a). We put
z(a, A) = 0 whenever a ¢ A and try to fill the rest of the tab so that the sum of the values
in the column of A € Base(®) is ®(A), and the sum of the values in the row of a € Base(a)
is a(a).

Throughout the paper, we will use properties of the relation lifting T R; unless explicitly
stated otherwise, these can always be derived by elementary means from the following fact,
gathering the consequences of Theorem 2.6 above (the first four are immediate consequences
of the theorem, the rest is not hard to prove.)



Fact 2.12 (Properties of Relation Lifting) The relation lifting T satisfies the following
properties, for all functions f: X — X', all relations R, S C X x X', R' C X' x X", and all
subsets Y C X, Y’ C X':

1. T estends T: T(Grf) = Gr(Tf);
. T preserves the diagonal (identity): T(Idx) = Idrx;
. T distributes over composition (thus is a functor): T(R;S) =T(R);T(S);

2
3
/.
5
6
7.

N

is monotone (preserves inclusions, thus is a 2-functor): if R C S then T(R) C T(S);

N

e
’

commutes with relation converse: T(R)) = (TR)

N

commutes with restriction: T(R lyxyr) = TRITy xTY" -

T, coincides with T: T,R = (TR) |1, xxT, X" -

Remark 2.13 The main reason why we restrict our attention to coalgebra types T that
preserve weak pullbacks is that for these functors, T is a functor, i.e. distributes over rela-
tion composition (Theorem 2.6 and Fact 2.12.3). As a consequence of this fact, behavioral
equivalence can be captured by the notion of a bisimulation.

Given two T-coalgebras (S,0) and (S’,0"), we call a relation Z C S x 5" a bisimulation
if (s,s') € Z implies (c(s),0'(s")) € TZ, for all pairs (s,s') € S x S'. If two states s and s’
are linked by some bisimulation, we call them bisimilar, notation: S,s < §',s’. Given that
the functor T' preserves weak pullbacks, one may show that the notions of bisimilarity and
behavioral equivalence coincide.

2.3 (Propositional) Logic

Sequent systems We assume the reader to be familiar with sequent calculi. A sequent is
pair (A, B) of finite sets of formulas, usually denoted as A = B, and intuitively correspond-
ing to the formula A A — \/ B. We use standard conventions such as writing A, B instead of
AU B, and a instead of {a}.

A sequent calculus consists of a collection of derivation rules, and in our case these will
take the form of pairs consisting of a set of sequents called the premises of the rule, and a
single sequent called the conclusion of the rule. Such a conclusion will be called an aziom if
the corresponding set of premises is empty. Given such a sequent calculus G, a G-derivation
is a well-founded tree, such that each node is labelled by a sequent. Leafs are labelled by
axioms, and with each parent node we may associate a rule of which the conclusion labels the
parent, and the premises one by one label the children. If the root of such a derivation D is
labelled with a sequent A = B we say that D is a G-derivation of/for A = B. A sequent
A = B is provable in G, notation: ¢ A = B, if there is a G-derivation for it. We will
write - rather than g if this is not likely to cause confusion.

A sequent calculus is finitary if all rules have finitely many premises; clearly any derivation
in such a system is a finite tree. In a one-sided sequent calculus, all sequents are one-sided,
that is, they have the form A = B with B = & (it will be convenient for us to retain the
redundancy in this notation).



Propositional logic It will be convenient for us to base ourselves on a slightly nonstan-
dard version of propositional logic that is based on taking the finitary conjunction (/) and
disjunction symbol (\/) of arity P,, as primitives, together with the unary negation symbol.
That is, given a set Prop of proposition letters, we define the set L£o(Prop) of propositional
formulas over Prop by the following grammar:

a == pl-oal NATVA,
where p € Prop, and A € P,Ly(Prop). We abbreviate L := \/ @, T := Ag and a A b :=
Mas b}.

A propositional sequent A = B is valid if the corresponding formula A A — \/ B is a
propositional tautology. The sequent systems in this paper will all be based on either the
two-sided sequent calculus G2 or the one-sided system G1.

The sequent calculus G2 consists of the (axiom and) rules given in Figure 1.

a—a

A B=C
ANB=C

A= B,C

1 B it R
A A= \/B,C

\/-r

{A=b,C|be B} {A,b=C|be B}

- 1
N == ABcC v AN B = C
. Aa=C A= aqa,C
A= C-a — A-a=C
Weak—rﬁ Weak-lﬁ
A:C7a A,a:c

Figure 1: Sequent system G2

It is well known that this calculus is a sound, complete and (obviously) cut-free derivation
system for the set of propositionally valid sequents.

Turning to one-sided sequent calculi for propositional logic, we first need to redesign the
language by restricting the use of the negation symbol to proposition letters. That is, given a
set Prop of proposition letters, we define the set L(Prop) of propositional formulas in negation
normal form, briefly: nnf-formulas, as follows:

a == p|-p|ANA|VA,
where p € Prop, and A € B,Ly(Prop). A literal is a formula of the form p or —p, with
p € Prop. Clearly every formula in L£o(Prop) is equivalent to a formula in negation normal
form. The one-sided sequent calculus G'1 consists of the axiom scheme rules given in Figure 2.

This calculus is a sound, complete and (obviously) cut-free derivation system for the set of
propositionally valid one-sided L{-sequents.
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p,p =9

A B=— o
ANB= @

(A b= o |be B} A o
weak-] —/—————
A\B= g Aja= @

A1 V-1

Figure 2: Sequent system G1

3 Moss’ coalgebraic logic

In this section we introduce the finitary version of Moss’ coalgebraic language. In the sequel,
we deal with syntax mainly, and hence we are mostly concerned with the finitary versions of
the coalgebra functors. In order not to clutter up our notation too much, we often write T
instead of T,, for brevity.

3.1 Syntax

The formulas of our language are inductively given as follows.

Definition 3.1 Given a set Prop of variables, the set L(Prop) of Moss formulas in Prop is
given by the following grammar:

a == p|-a|NA|VA|Va|Aa,

where p € Prop, A € P,L(Prop) and « € T,,L(Prop). The fragment L£*(Prop) of L-formulas
in negation normal form is defined as follows:

a 5= p|-p| AMA|VA| Va|Aa,
that is, we only allow negations in front of proposition letters. <

We will omit explicit reference to the set of proposition letters, for instance writing £
rather than L£(Prop), if Prop is either well known or not important.

Remark 3.2 In fact there are quite substantial differences between the language we just
defined and Moss’ original language. First of all, Moss’ language does not have explicit
proposition letters. Second, it is infinitary in nature, not only allowing infinite disjunctions
but also expressions of the form Va with a an element of T'L rather than of T,,£. And finally,
in his original language the modality A does not occur. We feel justified to still refer to our
syntax as (a variant of) Moss’ language because of the characteristic role of the V modality.

The connective A should be understood as the Boolean dual of V, in the same sense that
/\ and \/ are Boolean duals. For this purpose, consider the negation connective as a map
= : L — L mapping formulas to formulas. Applying the functor to this map we obtain a
function T— : TL — TL, so that for any a € L, the expressions V(T—)a and A(T—-)«a are
well-formed formulas. The point is now that the formula A« will be equivalent to the formula
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-V (T-)a — following the analogy, observe that A A = =\/(P—)A. The A is discussed in
detail in [10].

Despite its unconventional appearance, the language £ admits fairly standard definitions
of most syntactic notions. The point of restricting Moss’ modality to the set T,,L is that the
formulas Va and A« have a finite, clearly defined set of immediate subformulas. To see this,
recall from the preliminaries, that if « belongs to the set T,L, then the set Base(a) € B,L
is the smallest (finite) subset X C £ such that o € T,,X. This observation underlies the
following syntactic definitions.

Definition 3.3 The set Sfor(a) of subformulas of a Moss formula a is inductively defined as
follows:

Sfor(p) = {p}
Sfor(—a) = {-a} U Sfor(a)
Sfor(®A) = {GA}U gA Sfor(a) (©e{A,V}
Sfor(QVa) = {Qa}u eBU ( )Sfor(a). (©e{V,A})

The elements of Base(a) C Sfor(Va) will be called the immediate subformulas of Va.
The (modal) depth d(a) of a Moss formula a is inductively defined as follows:

d(p) == 0
d(—-a) = d(a)
d(®©A) = max(d[A]) (©e{A;V})
d(Qa) := 1+ max (d[Base(a)]) (©e{V,A})

<

It is not hard to see that Sfor(a) is a finite set and that d : £L — w is well-defined map
assigning to each formula a a natural number d(a).

Convention 3.4 Since in this paper we will not only be dealing with formulas and sets of
formulas, but also with elements of the sets T,,L, P, 1,,L and T, P,L, it will be convenient to
use the naming convention of Figure 3. Observe that, similar to taking negation as a map

Set Elements
Prop P,q,. ..
L a,b, ...
T,L a,B,...
P,C A B, ...
T.P,L| U, ...
PT,L| I0O,...

Figure 3: Naming convention

- : L — L, we may see the boolean connectives \/ and /\ as maps from finite sets of formulas
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to formulas, \/, A\ : P,L — L. Applying the functor to these maps, we obtain functions
T\, TN\ : T,P,L — TL. In particular, for any object ® € T,P,L, we obtain well-formed
formulas of the form V(7"\/)® and V(T'\)®.

3.2 Semantics

Since we included explicit proposition letters in our language, we have to interpret our formu-
las in T'-models, that is, T-coalgebras that are endowed with a valuation function interpreting
the proposition letters.

Definition 3.5 A wvaluation on a T-coalgebra (S,0) is a valuation V' : Prop — PS; the
induced structure (S, 0, V) will be called a T-model or coalgebraic model. For such a model,
the satisfaction relation Iy C S x £ is defined by the following induction on the complexity

of formulas:
slkey p if seV(p),

sl —a it slfova,

slkev NA if slk,y aforallac A,
slkevy VA if  slk,y a for some a € A,
slkey Va  if  (o(s),a) € T(IFqv),
slkoy Aaif  (0(s),a) € T(Fov),

If s I,y a we say that a is true, or holds at s in S, and we usually write S, s I- a, where S
denotes the T-model (S,0,V). When no confusion is likely we may write s |- a instead of
S, sk a. <

Remark 3.6 For those readers that are worried about the correctness of this definition we
note that given the properties of relation lifting, the clause for the V modality may be replaced
with the following:

S ||—07V Va if (U(S), Oé) S T(H—Uy rSXBase(a) ),

which reveals the inductive nature of the definition: in order to know whether Va is true at
a point s, we only need to know the meaning of the immediate subformulas of Va. A similar
observation can be made about A.

The semantics of the A-operator is perhaps easier to understand by observing that the
formula Aa is false at a state s iff the pair (o(s), @) belongs to the lifted version TIf* of the
complement |ff of the satisfaction relation.

Example 3.7 For the binary tree functor Id x Id, the semantics of nabla is as follows: given
a = (ap,a1), a coalgebra o : X — X x X and a state s with o(s) = (to, 1)

sk V(ao,al) iff to I+ aq and t1 I aj.

Example 3.8 For the powerset functor P, the semantics of nabla in a coalgebrac : X — PX

and a state s is
sk Va iff Vaea)(Fteo(s)) slka

¢
and (Vt € o(s))(Ja € a) sl a. (12)
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Example 3.9 For the bag (multiset) functor B nabla works as follows. Recall from the
previous section that we may represent a multiset o : £ — N by its positive graph, it is a
usefull notation to write it as follows: {a®(® | a € £}. Given a coalgebra o : X — BX and a
state s, the condition for s I, Vo unravels as follows (for the definition of lifting in this case
see Example 2.11):

slke Vao iff 3z € B(IF) such that  Vt: o(s)(t) = > z(t,a)
{a | tlra}
and Va: ala)= >, =x(t,a).
{t | tla}
For example, if o(s)(t1) =5, o(s)(t2) =3 and o(s)(t3) = 2 and t1 I a and to,t3 IF b, it is
easy to see that

(13)

sk V{a® b°}.

Two important observations about finitary Moss’ logic are that it is adequate with respect
to behavioral equivalence (or, equivalently, bisimilarity), and ezpressive when we confine
attention to finitely branching coalgebras. For this purpose, given two T-models S and S/,
with states s and s’, respectively, we write S,s =, §', s’ to indicate that for all £-formulas a
we have S s I a iff §',s' IF a. We call a coalgebra (S, o) finitely branching if o : S — TS,
that is, the range of o is included in the set 7,,S.

Fact 3.10 Let S = (S,0,V) and S’ = (5',0', V') be two T-models with states s and s,
respectively.

1. L is adequate: if S,s € S',s' then S,s =, &, s

2. L is finitely expressive: if S,s =y S, s’ then S,s & §', s, provided that o and o' are
finitely branching.

The same holds for the A-free fragment of the language.

Definition 3.11 We say that a formula a entails a formula b, notation: a < b, if for every
coalgebraic model S = (S, 0,V), and any s € S, we have that whenever S, s |- a then S, s I b.
We say that two formulas a and b are equivalent, notation: a = b, if a < b and b < a. A
formula a is valid, notation: = a, if it holds at every state of every coalgebraic model. <

Example 3.12 It is easy to prove that nabla is a monotone modality in the following sense:
aT(<)B entails Va < VB.
This is the rule V1 of the the derivation system M [11].

Example 3.13 Recall from the discussion in Convention 3.4 that for every ® € T,,FP,L, we
may consider the (correctly defined) formula V(7T\/)®. For such a ® it is straightforward to
verify that the set X'(®) € PTL actually belongs to the set P,T, L, so that ® has finitely
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many lifted members, all belonging to the set T,,£. This means that the expression \/{Va |
a € X'(®)} is actually a well-formed formula. It happens to be the case that

V(IV)® = \/{Va|ae X (D)} (14)

The corresponding equation is, under the name (V3), a key axiom of the derivation system
M [11].

For a good understanding of the semantics of our language, and of the sequent calculi
to be defined later on, we need to discuss the relation between V and A in somewhat more
detail. We already mentioned that A can be seen as the Boolean dual of V — this can now
be made precise, see Fact 3.15. In addition however, perhaps surprisingly, the semantics of
A can also be expressed in terms of V without the use of the negation. For this purpose, we
need the following definition.

Definition 3.14 For « in T,L, we put

D(a) := {® € TPBase(a) | (a,®) ¢ T¢},
Lr(e) = {(TN)®|® c D)},
Rr(a) = {(TV)®|®eD(a)}.

<

Fact 3.15 [10] LetS = (S,0,V) be a coalgebraic model, and s a state in' S. For any o € T,,L
the following equivalences hold:

S,sl-Aa iff S,sl-=V(T-)a iff S,slkVp for some 8 € Ly(«a) (15)

and

S,sl-Va iff S,slk=A(T-)a iff S,slkAB forall p € Rr(a). (16)

While for the powerset functor we consequently simplify the definition of Ly and Ry,
for the other functors the ”double negation” definition of the set D(a)) might seem cryptic.
Therefore, recalling the definition of the relation lifting, we illustrate the above definition
with the bag functor B:

Example 3.16 Consider a multiset {a"}. Then
Rp({a"}) ={(B\))® | ®: PlaVvd} - N, ~({a"}B(¢)®)},
where the condition for ® actually means that either ®(&) # n or ®({a}) > 0. Thus

Rp({a"}) = {{L*}k # n} U {{a™}m > 0}.
Observe that the set Rp((a)”) in this example is infinite.
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Remark 3.17 Clearly, on the basis of the previous fact, we may see A as a definable con-
nective in the language with V as the only modality, by putting A« := -V (T'-)a.

The reader may also be tempted to conclude, that we can define A in terms of the
connectives V, /A and \/ alone (that is, without using negation), via Aa := \/{V3 | 8 €
Lr(a)}. The problem is, however, that unless the functor T restricts to finite sets, the
sets D(«v) and Lr(a) may be infinite (as Rp({a™}) in the example above); in that case, the
proposed defining expression \/{V 3 | 5 € Ly(«)} is not a well-formed formula of our language.
Nevertheless, in case T' does restrict to finite sets, the formulas Aa and \/{V3 | 8 € Lr(a)}
are equivalent, and so are Va and A{AS | 8 € Rr(a)}.

We now turn to the notion of a valid sequent, which we define in a completely standard
way. Intuitively, a sequent A = B is valid iff the formula A A — \/ B holds in every state
of every coalgebraic model.

Definition 3.18 A sequent A = B is valid, notation: = A = B, if for every coalgebraic
model S = (S,0,V), and any s € S, the following holds: whenever S, s I- a for all formulas
a € A, then there is at least one formula b € B such that S, s I b. If the above condition fails
we say that the sequent A = B is refuted at s in S, and we say that A = B is refutable if
it can be refuted somewhere. <

Clearly then a sequent is not valid iff it is refutable.

3.3 Slim redistributions

An important role in this paper is played by the notion of a slim redistribution, and its
variant of a separated slim redistribution. Slim redistributions are the key to understand how
V interacts with A; and as we will see, separated slim redistributions enable us to use the
same idea in a setting of two-sided sequent systems.

Remark 3.19 Formulated specifically for the power set functor, that is, in the case that
T = P, aset ® € TPX is a slim redistribution of a set I' € PTX iff I' = (J® and
Fna#oforal Fe®andyel. (Wekeep T and P separated in the notation in order to
facilitate the abstraction to the general case.) Borrowing some intuition from topology, these
two conditions tell us that on the one hand every given v € T" is ‘covered’ by ® (in the sense
that v C |J®) in such a way that every F' € ® has nonempty intersection with 7. On the
other hand, the requirement that | J® C [T is a minimality condition on ®, taking care that
every such ® can be effectively constructed from I' by scrambling and suitably reorganizing
its ‘ingredients’.

The above relation between ® and I' can be reformulated in terms of the lifted membership
relation T€. Recall that v € TX is a lifted member of ® € TPX if y C|J® and YN F # &
for all I € ®. Hence we will say that ® is a redistribution of I if ' € A\¥'(®) (every element of
I is a lifted member of ®), and that ® is slim if ® C TP(|JTI') (@ is built from the ingredients
of I'). It is this formulation that can be generalized to the case of an arbitrary set functor.
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Definition 3.20 A set ® € TPX is a redistribution of ' € PTX if I C X (®). In case
I' € P,/1,X, we call a redistribution ® slim if ® € T,,F,,({J,cr Base(a)). The set of slim
redistributions of I' is denoted as SRD(T).

For brevity, in the sequel we will often write B(I') instead of (J, < Base(7). <

Example 3.21 Consider the powerset functor: the following are simple examples of the set
of slim redistributions

e SED({{ao}-.-{an}}) = {{ao,. .., an}}
e SRD({{a}}) = {{a}}

» SRD({2}) = {2}

e SRD({o,2}) =@ ifa# @

e SRD(@) =

It holds in general that
SRD(@) =T@.

Example 3.22 To see how slim redistributions are involved in the interaction between V and
/\, consider an arbitrary collection of formulas A{V~y | v € I'} for some finite set I' C T, L.
A straightforward argument suffices to show that the following holds, for any T-model S and
any state in S:

S,slFVyforally e Tiff S, s Ik V(TA)® for some ® € SRD(T"). (17)

In the case that T restricts to finite sets, the set SRD(I") is finite, and we may formulate (17)
as an equivalence of formulas:

NV ver}t=\/{V(TN)® | ® c SRD(T)}.

Formulated as the derivation rule (V2), the equivalence (17) provides one of the key principles
underlying the derivation system M [11].

In the setting of two-sided sequent calculi, we need to slightly modify the notion of a
slim redistribution. For an intuitive explanation of the required modification, suppose that
we are dealing with a sequent of the form {Vy | v € I'} = {Af | § € O}, and that we
want to introduce a proof rule to reduce this sequent. Using the fact that A is the Boolean
dual of V, we may think of this sequent as the one-sided {Vy | v € I'},{V(T-)0 | 0 €
©} = &, corresponding to the conjunction /\ ({V7 | v e TYU{V(T)0 | 6 € G)}) A
natural way to reduce this sequent would be to use the equivalence (17), working with the set
SRD(T' U (T-)[6]). However, this leads to problems in case the sets I' and (7-)[0] overlap:
we need to remember which side of the sequent the objects v (left) or (7—)6 (right) originally
came from. Formally, our way of dealing with this kind of sequent is the following.
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Definition 3.23 Given I';© € P,T,,L, let
BU(T) = {(a,0) | a € BT)}, B(O):={(b,1) | be BO)},

and let the assignments a — (a,0) and b + (b,1) define the maps fo : B(I') — B%(T) and
f1: B(©) — B(O) respectively. We identify the disjoint union B(I")wB(0) with B°(I')UB*(0)
with fo, f1 as the injection maps. Then define the set of separated slim redistributions of I’
and © as follows:

SSRD(T, 0) := {@ € TP(B(L) W B(O)) | Ya €T (T'fo)a Te 3)
&VB e O (TH)STe @)}.

Given a ® € SSRD(T', ©), any A € Base(®) is a subset of B(I') W B(0), and so we may define
the sets Ay, Ar € P,L by putting

Ap = (Pfy)A and Ag := (Pf1)A, (18)
where P denotes the contravariant power set functor. <

In order to provide some intuition concerning the above definition of the sets Ay, and Ag,
we mention (without proof) that for any ® € SSRD(I, ©), the sets (TP fy)® and (TPf,)®
are slim redistributions of I' and ©, respectively, and for any A € Base(®), the sets Ay, and
Ap are elements of Base((T'Pfo)®) and Base((T'Pf,)®), respectively. As a consequence, we
find that A;, C B(I') and Ag C B(0); in particular, if we think of the sequent A;, = Apg as
being formed by {Va | a € '} = {Af | B € O}, we may observe that material originating
from the given side (left or right) of the latter sequent will end again on that same side.

The definition of SSRD and its intuition coming from dealing with sequents which have
two sides is further motivated by the following key example:

Example 3.24 A key example of a separated slim redistribution of sets I', © € T, P, L arises
semantically. Fix a model S and a state s in S. Consider, for any state ¢ of S, the set

Qi = {foa | a € B(T') and S, ¢ |- a} U {fib| b€ B(O) and S, |f b}.

This defines a map @ : S — P(B(I') ¥ B(©)), and hence applying the functor we obtain a
map 7TQ : TS — TP(B(I')WB(©)) Then for the object @5 := (T'Q)(c(s)) € TP(B(I')wWB(O))
one may prove

&, € SSRD(I',0) iff S, s - Va for all « € " and S, s If AS for all g € ©. (19)
We do not prove this fact here since it resembles the proof of Lemma 5.2.

Example 3.25 For the binary tree functor Id x Id, consider a nonempty set of pairs, e.g.
I' = {(ao,a1), (bo,b1)}, then SRD(T") = {(A, B) | {ao,bo} C A,{a1,b1} C B} where A,B €
P, (Base(a) U Base(f3)).

Similarly for SSRD(T', ¥) in case one of the sets is nonempty. SRD (@) = SSRD(2, ) =
X I =d.
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Example 3.26 We list some simple examples of SSRD for the powerset functor, some of
them appear later in the examples of proofs:

e SSRD(0,2) = Po

e SSRD({w},{o}) = {9}

e SSRD({«,2},%) = @ whenever a # &, or ¥ # & and X # {J}
(

o SSRD(2,{{a}}) = {{(a, )}}

Example 3.27 For the bag functor B we compute SSRD({a® b%},{L1"}) where n # 10: it
is empty, there is no such SSRD. For suppose there is some @ : P,{(a,0), (b,0)(L,1)} - N
with {(a,0)%, (b,0)°} B€ ® and at the same time {(L,1)"} B& ®. This would mean we
have at the same time witnesses z¢ and z; in B(€) for these two facts. Imagine we are
filling the ”witness squares” simultaneously: the bases of the two multisets are disjoint,
thus for each A € P,{(a,0),(b,0)(L,1)} not containing (L,1) we have to fill z1(a, A) = 0
and z1(b, A) = 0, and for each A not containing (a,0) nor (b,0) we similarly have to fill
zo(L,A) = 0, and consequently for any of these sets we must have ®(A) = 0. Now for
the rest of sets A € P,{(a,0),(b,0)(L,1)} — those containing (L,1) and at the same time
containing (a,0) or (b,0) — it holds that

> wo(L,A) =D mi(a, A)+ ) mi(h,A) =10 =) B(A)

which gives 3" ®(A) = 10 contradicting the fact that {(1,1)"} B€ ® and n # 10.

4 The case of the power set functor

Throughout this section we assume that 7" = P, that is we are dealing with the power set
functor. As a consequence, T}, is the finitary power set functor F,,.

We will first introduce a two-sided sequent system S2p for the full language Lp, and
then a one-sided system S1p for the variant £} of the language where the use of negation is
restricted to atomic formulas. These two systems are simplified versions of the corresponding
instances of the proof systems G2, G1p, which we will define in the next section.

4.1 The sequent calculus 5S2p

In order to define the two-sided calculus S2p, we introduce the following variants of the sets
Lr(a) and Rr(a) of Definition 3.14.

Definition 4.1 For every a € T,L let us define

Lo = {{{ﬁ}u{{a}!aea}u{{/\a,T}}} ?fowé@ (20)
{{T}} ifa=0
, JH{eru{{at lacatu{{Va, 1}}} ifa#to

PO = L (21)
{{L}} ifo=o

<
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Remark 4.2 Note that L';(a) and R5(«) are not the sets we obtain by instantiating 7' = P
in the definition of Lr(«) and Rp(«) of Definition 3.14. We leave it for the reader to verify
that L’»(a) € Lp(«), and that in general it is a proper subset. It is in this sense that the
system S2p simplifies the calculus G27 defined in the next section.

The importance of these notions is that they allow us to interdefine V and A, without
the use of the negation operator.

Lemma 4.3 For every a,8 € T,L,
Aa=\/{VB|B € Lra} Va= \{AB|B < Rpa}.
Proof. We omit the proof of this Lemma, which is a routine verification. QED

We are now ready to introduce the calculus S2p. It extends the propositional calculus G2
with two kinds of modal proof rules. The rules A-1 and V-r can be seen as the incarnation of
the previous lemma into proof rules. For a motivation of the last rule of the system, P(VA),
which reduces the modal depth of sequents, we refer to the subsection on separated slim
redistributions.

Definition 4.4 The sequent calculus S2p for the language Lp is defined as the extension of
the propositional calculus G2 with the following modal rules:

M{A,W:Blﬂeﬂpa} _ {A= AB,B| B € Rpa}
i} A, Aa — B ) A= Va,B

{A? = A% | ® € SSRD(T', %)}
[Valacll = [Af[fcx) Ve AT c@®

P(VA)

The rule P(VA) is to be read as follows: given I''’Y € P, T, L, if for every ® € SSRD(T', X)
there exists some A® € ® such that A? = A%, then {Va|a e T} = {AB| B €T} <

The following lemma states soundness of the P(VA) rule: whenever the side condition is
satisfied and the resulting assumptions are valid sequents, the conclusion is a valid sequent
as well. But it also states a form of invertibility of the rule: whenever the conclusion is valid
we can find suitable valid assumption sequents fulfilling the side condition. The lemma is for
convenience stated as a contraposition:

Lemma 4.5 The following are equivalent for all I',% € P,1,L and all finite sets C,D of
proposition letters:

1. the sequent {Va |a €T'},C = D,{AB | € £} is not valid.
2. the sequent C' = D is not valid, and for some ® € SSRD(I',Y), A, = Apg is not
valid for every A € .
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Proof. Let us show that (1) implies (2): By assumption, C = D is not valid and there exists
amodel S and a state s in S such that S, s IF Va for every o € I'and S, s If AS for every 5 € X.
For every t € R[s], let Ay :={foa |a € YT and S,tIFa} U{fib|be|JX and S,t I b}, and
let 5 = {A; | t € R[s]}. By definition, A, = Ap is not valid for all A € ®,, and we have
already checked that &5 € SSRD(I",X) (see Example 3.24).

Conversely, assume that C = D is not valid (hence, C N D = @) and that there exists
some ® € SSRD(I', %) such that for every A € &, A, = Apg is not satisfied at some state
s4 in some model S4. Then consider the model S which consists of the disjoint union of the
models S4 plus one extra point s such that R[s] = {sa | A€ P}andpe V(s)iff pe C. It is
routine to verify that S, s satisfies {Va |a e TTUCU{-AB | e X} U{-p|pe D}. QED

Theorem 4.8 below states the soundness and completeness of S2p (with respect to the
standard semantics). Since S2p is formulated without the cut rule, once completeness has
been established, it immediately follows that the cut rule is redundant.

To be able to perform an inductive argument we introduce a measure on sequents. The
measure is induced by the modal depth of formulas as given in Definition 3.3, and by a
measure of left and right formula occurrences in the sequent.

Definition 4.6 By induction on the complexity of a formula a in £p we define the following
measures ki(a), ky(a):

kip) =1 k(p) =1

ki(—a) = 1+ k.(a) kr(—=a) = 14 k(a)

k(@A) = 1+ ZAk‘l(a) k(©A) = 1+ ZAk‘l(a) ©@e{N\,V}
W(Va) = 2 k(Va) == 3

ki(Aa) = 3 kr(Aa) = 2

Finally, given a sequent A = B, we let

m(A = B) = (max(d[A UB),Y kia)+ Y kr(b)>

acA beB

denote its measure. <

Intuitively, k;(a) and kr(a) measure the boolean complexity of a occurring on the left
side (right side) of a sequent, where formulas of the form Va and A« count as proposition
letters with a slightly enlarged weight. The full measure of a sequent being a pair of natural
numbers, we will order the set w X w lexicographically, that is:

(m,n) < (m,n’) if m<m' orm=mnandn<n'.

As we will see in the proof below, with this definition we ensure that for each rule the
complexity of any of its assumptions is strictly less than that of its conclusion.

Lemma 4.7 For each rule of the calculus S2p, the measure of any of its assumptions is
strictly less than that of its conclusion.
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Proof. Let us denote m(A = B) by (k,l). We show that in a backward application of the
P(V,A) rule, k strictly decreases, and that for all the other rules k£ does not increase, while
[ strictly decreases.
Leaving the propositional rules as an exercise for the reader, we consider the modal rules
explicitly. For the A-1 rule, denote Y ki(a) + > kr(b) =n. Now m(Aa, A= B) =3+n
acA beB

while m(VB,A = B) = 2 + n. Since the modal depth clearly remains unchanged, this
suffices for the A-l rule. Clearly, the case of the V-r rule is similar.

Consider a backward application of the P(V, A) rule. From the definition of ® € SSRD(T", ¥)
and of A? and A% it is clear that the modal depth of each assumption (that is, max(d[A} U
A%))) is strictly less then that of the conclusion. QED

Theorem 4.8 (Soundness and Completeness of S2p) For every Lp-sequent A —> B,
Fs2p, A= B iff E A= B.

Proof. The proof of soundness is standard, by induction on the depth of the derivation of
A = B. The only cases of interest are when the last rule applied is (a) A-1, (b) V-r or (c)
P(VA). The cases (a) and (b) readily follow from Lemma 4.3. Case (c) follows from the
implication (1 = 2) of Lemma 4.5.

As for completeness, it is shown by induction on the m(A = B). If m(A = B) = (0,0)
then A = B = @ and the sequent is not valid (and by soundness it is also not provable.)

The induction step for a sequent A = B with m(A = B) # (0, 0) distinguishes two cases:
either the sequent is of the form {Va | a € T'},C = D,{Ap | p € ¥} where C, D are sets
of proposition letters (which we call a reduced form), or it is not.

Case 1. The sequent A = B is not of the reduced form. Observe that the propositional
rules and the V-r and A-l rules are invertible, that is, they preserve validity backwards (the
latter two by Lemma 4.3). Moreover, with each backwards application of any of the mentioned
rules, the value of m(A = B) strictly decreases by Lemma 4.7. It is then clear then we
can apply the mentioned rules backwards until no such rule is applicable, and this procedure
terminates in a set of sequents {A; = B; | i € I}, each of them (a) being of the reduced
form, (b) having a strictly smaller measure than the sequent we started with, and (c) being
valid. To show that the sequent A = B is provable, we apply the induction hypothesis to
the sequents A; = B;, and finish the proof with the applications of the appropriate rules
forward.

Case 2. The sequent A = B is of the reduced form, say {Va | a € I'},C = D,{Af |
g € ¥} where C, D are sets of atoms. From the assumptions and the implication (2 = 1) of
Lemma 4.5, we obtain one of the following two subcases.

Subcase 2a. The propositional sequent C' = D is valid, in which case p € C'N D for some
proposition letter p. Then we can start a derivation with the axiom p = p as its only leaf
followed by applications of the weakening rules to derive the full sequent A = B.

Subcase 2b. For each ® € SSRD(T', ¥) there exists some set A® € ® such that the sequent
A? = A% is valid. Since by Lemma 4.7 we have m(A? = A%) < m(A = B), we
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can apply the induction hypothesis and conclude that for each ® € SSRD(T', X)) the sequent
A% = A% is provable. Then we may obtain a derivation for our sequent by prolonging all
these derivations with an application of P(VA), so as to obtain a proof of {Va | o € I'} =
{ApB | p € X}, followed by applications of left and right weakening rules to add the elements
in C and D respectively. QED

Example 4.9 We illustrate the modal rules of the calculus with the following simple proof
of one of the original nabla axioms:

P(V,A ——— P(V,A
( ’V) o= A{l},Az (V. 4) o= A{T} (V.4) o= A{T, L}
B o 2= AULY{T}
-r

o= Vo, V{T}
Here the following is needed to see that the above is a correct proof:
o Rip(@) ={{L}} for the last inference
o RL,({T}) ={a,{T} {T,L}} for the one but last inference
e SSRD(@,{{L},2}) =0
o SSRD(2,{{TH) = {(T, )}
o If ® € SSRD(@,{{T,L}}) then either {(T,1)} € ® or {(T,1),(L,1)} € ®

Example 4.10 As another example we prove the sequent V{a}, V{b} = V{a,b}. In this
case we use the fact that R({a,b}) = {@, {a},{b},{a Vb, L}}. To derive this sequent we
have to prove the following four sequents:

First,

%)
V{a},V{b} = Ao

is provable because SSRD({{a},{b}},{@}) = @.
Second,

P(V,A)

a,b=a
V{a}, V{b} = A{a}

) isdprovable because the only member of SSRD({{a}, {b}}, {{a}}) is {{(a,0), (b,0), (a,1)}}.
Third,

P(V,A)

a,b=05
V{a}, V{b} = A{b}

P(V,A)

similarly as above.

And fourth,
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a,b=—=aVb a,b=aVb, L
V{a},V{b} = A{a Vb, L}
is correct because for each ® € SSRD({{a}, {b}}, {{aVb, L}}) we have either {(a, 0), (b,0), (aV
b,1)} € Base(®) or {(a,0), (b,0),(aVb,1),(L,1)} € Base(®P), thus fulfilling the side condition
of the rule.

Example 4.11

P(V,A)

1%/ a=a a=—=a,l
Vo = Af{a, 1} PV, &) Vi{a} = A{a, L}
Vo Vv Vi{a} = A{a, L}
where in the left branch the set SSRD({@},{{a,L}}) = @. In the other branch ob-
serve that for each ® € SSRD({{a}},{{a,L}}) we have either {(a,0), (a,1)} € Base(®) or
{(@,0), (a,1), (L, 1)} € Base(®).

P(V,A)

Example 4.12 As the last example we give a cut free proof of the sequent, which has been
shown in Remark 27. of [6] to have no cut free proof in the calculus introduced there. The
following four proof trees prove four assumptions of the last V-r inference:

@ @ @
V{pVq} = Ao Vi{pVq} = A, A{q, T} Vi{pVq¢} = Ag,A{q}
v Vi{pVq} = A2, V{q}
o
Vi{pVq} = Ao pVqg=p,q pVqg=p,q, 1 pVg=p,q pVg=p, T
V{pVq} = Ao, A{p} VipVa} = A{p}, A{g} V{pVq} = A{p},A{q, T}
_ Vi{rVa} = Alp}. V{g}
@
Vi{pVq} = Ao pVqg=— T,q pVqg=—T,q
o, Virvat =42, AT}  Vipva = MTHAg  Vipve = A{T} Ag T}
VipVa} = A{T} V{g}
1] pVqg=—=TVp,q pVqg=— T Vp,q
V{pVq} = Ao pVg=— TVp,q, L pVg= TVp,q,L

VipVg} = Ag,A{pVT,L} VipVva} = A{pVv T, L}, A{q} VipVva} = A{pVv T, 1},A{q, L}

VipVver = A{pVv T, 1}, V{q}

where in the last proof tree we use a compact notation for space reasons: the two top
sequents in the middle constitute the two assumptions of the inference, the same applies to
the two top sequents on the right.

Next, one V-r inference applied to the four conclusions of the four proof trees above yields:

VipVvat = Vip, T}, V{q}.
The conditions are not hard to check, e.g.

Re({p, T}) ={@. {p}.{TH{pV T, 1}}
and in the last proof tree each ® € SSRD({{pV q}},{{pV T, L}, {q, L}}) must contain either
{(pVq,0),(TVp1),(¢1)}or{(pVvq0),(TVp1),(q1), (L 1)}
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4.2 The sequent calculus S1p

Let us now introduce the cut free, one-sided sequent proof system S1p, which arises from
the classical propositional left-sided calculus G1 (introduced in Section 2) by adding modal
rules.

The language for this calculus is the restriction £* of £ where negations can only be
applied to proposition letters. Every formula in £ is semantically equivalent to some formula
of £L*. One way to see this is to recall that the nabla operator is interdefinable with the
standard modal operators O and <, and that every formula of the basic modal language is
equivalent to a formula in which negations can only be applied to proposition letters. Sequents
for this calculus are of form A = &, where A is a finite set of formulas in £*.

Definition 4.13 The calculus S1p, operating on L%-sequents, is obtained by extending
the calculus G'1 with the following modal rules:

{A,VB = @ | B € Lha}

o Ao A — o

{A* = o | ® € SRD(I")}

P(V) Valaell—=o VP.A® €

The rule P(V) is to be read as follows: given I' € P, T, L, if for every & € SRD(I") there
exists some A® € ® such that A* = @, then {Va |a €T} = @. <

Recall that a sequent A = & is wvalid if A is not satisfiable, i.e. for every model S and
every state s in S, there exists some a € A such that S, s Iff a. Then the next lemma provides
the soundness and a form of semantic invertibility of the rule P(V):

Lemma 4.14 The following are equivalent for every I' € P,T,L and every collection C' of
literals:

1. {Va |a eT}UC is satisfiable;

2. C is satisfiable and there is some ® € SRD(T') such that every A € ® is satisfiable.

Proof. The proof of this lemma can be verified directly, or by unravelling the meaning of
equation (17) in Example 3.22 for the case T'= P. QED

The following theorem states the soundness and completeness of S1p.

Theorem 4.15 (Soundness and completeness for S1p) For each L*-sequent A — &,
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Proof. The soundness follows from the soundness of the calculus S2p, because the one-sided
rules are in fact just instances of the corresponding two-sided rules.

As for completeness, we use the measure m(A = &) defined previously, and reason
by induction on this measure. It obviously decreases with each backward application of a
one-sided rule.

If m(A = @) = (0,0), then A = @ and the sequent is not valid (and by soundness also
not derivable.)

Suppose that m(A = @) > (0,0). As in the two-sided case, the propositional rules and
the A-l1 rule are invertible. Thus the only interesting case is to consider a sequent which
is of the form {Va | @« € T} UC = @ where C is a finite collection of literals. From
the assumptions it follows that the set {Va | @ € I'} U C is not satisfiable, and to by the
implication (2 = 1) of Lemma 4.14, there are two possibilities: either C' is not satisfiable,
or for every ® € SRD(T") there exists some A® € ® which is not satisfiable.

If C is not satisfiable, then there is some atom p € C with -p € C. We produce a
derivation, starting with the axiom p,—p = &, and continuing with applications of the
weakening rule to derive {Va |a e T}UC = @.

On the other hand, suppose that C is satisfiable and that for every ® € SRD(T") there
exists some A® € @ such that = A® = @. Then by induction hypothesis we have
Fs1, A® = @ for every ® € SRD(I'). Then a derivation for our sequent consists of
the prolongation of all these derivations, taken together, with an application of P(V), so as
to obtain a proof of {Va | @ € I'} = @, followed by applications of weakening to add the
elements in C. QED

Example 4.16 We illustrate the modal rules of the one-sided calculus with a simple proof:

1l =0

PVA T3 =5

where the only member of SRD({{L}}) is {{L}}.

4.3 The A-free fragment

Since the modality Ap is definable in the A p-free fragment of £* (recall Lemma 4.3) it makes
sense to restrict ourselves to this fragment without loosing expressive power. The setting
we have used so far is modular: we can obtain a complete one-sided calculus S1py for the
Delta-free fragment of the language simply omitting the A-1rule in the previous calculus S1p:

Definition 4.17 The calculus S1py, operating on Ap-free L}-sequents, is obtained by ex-
tending the calculus G1 with the following modal rule:

{A* = o | ® € SRD(I)} o
{Valael} = o ve.A" € ®

P(V)
<

The proof of the following theorem is then immediately obtained from the earlier proofs:
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Theorem 4.18 (Soundness and completeness for Slpy) For each A-free L*-sequent
A= g,

o1, A= 2 iff F A= 0.

5 The general case

We have now arrived at the main section of our paper, where we will discuss sequent calculi
for finitary Moss’ coalgebraic language in the case of a general finitary coalgebra functor
T (satisfying our default constraints of preserving inclusions and weak pullbacks). More
specifically, we will define two-sided sequent system G2r for the full language, and a one-
sided system G1p for the version of the language where negation may only occur in front of
proposition letters.

5.1 The two-sided sequent calculus G2

For the introduction of the two-sided system G27, the reader should recall that we defined the
sets Lra and Ry« in Definition 3.14 (and explained the intuition behind them in Fact 3.15),
and that we discussed the notion of a separated slim redistribution at the end of section 3.

Definition 5.1 The sequent calculus G27 for the language £ is the extension of the propo-
sitional calculus G2 with the following modal rules:

{AVE=B|felra}  {A= AB B|BE Rra}

Ar-l Ao, A— B T A— Vo, B

{A* = B% | ® € SSRD(T',©)}

TVA) GaTacl) = (A3 B e O}

V®.A? € Base(®)

Here the rule T(VA) is to be read as follows: if, for every ® € SSRD(T",0), we can find an
A® € Base(®) such that the sequent AT = A%, is derivable, then we may also derive the
sequent {Va |a €T} = {AS | B € ©}. <

Clearly G27 is a cut-free system. Our contribution here will be to show that it provides
a sound and complete system for the valid L-sequents.

As in the special case of the power set functor, the following lemma embodies the soundness
and invertibility of the rules Vp-r and Ap-1.

Lemma 5.2 The following are equivalent, for all T';© € P,T,L and all finite sets P,Q of
proposition letters:

1. the sequent {Va |a €T}, P = Q,{AB | B € O} is refutable;
2. the sequent P = @ is refutable, and there is some ® € SSRD(I",©) such that for every
A € Base(®), the sequent A, = Apg is refutable.
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Proof. The direction (1 = 2) can be proved exactly as the analogous statement of Lemma 4.5.
For the opposite direction, assume that P = @ is refutable (implying that P N Q = 9),
and that there exists some ® € SSRD(T', 0), such that for every A € Base(®), the sequent
A = Ap is refuted at some state t4 in some model Sy = (S4,04,V4). Let X denote the
set {ta | A € Base(®)}, then we may see ¢t as a map ¢ : Base(®) — X.
Define the coalgebraic model S := (5,0, V') by taking some fresh root r and putting

S = {1y | Sa
A€ Base(®P)

(&) = oalx) ifx e Sy,
ST @) fr=r
Vip) == |J Wap)u{ripeP}.

A€Base(P)

It easily follows from the theory of universal coalgebra that for all A € Base(®), the
inclusion map 14 : S4 — S is a coalgebra homomorphism (in other words, (S4,04) is a
subcoalgebra of (S,0)), so that for all formulas a it holds that

if s€ Sy, then Sy, sl-aiff S, sk a. (22)

We claim that the sequent {Va | a € '}, P = Q,{Af | 8 € ©} is refuted at 7 in S.
Since P N Q = @, it is immediate by the definition of V' that

S,7lFpforallpe Pand S,r Iff q for all ¢ € Q. (23)

We now verify that
S,r Ik Va for each ae € T'. (24)

For this purpose, observe that for each a € B(I'), and each A € Base(®), it follows from
the definition of the map t : Base(®) — X that foa € A implies Sa,t4 IF a. Hence by (22)
and the definition of Ay, for all a € B(I') we obtain that fy(a) € A implies S,t4 IF a. This
condition can be formulated concisely as follows:

Gr(fo);€; Gr(t) C IF. (25)
From this it follows by the properties of relation lifting (see Fact 2.12) that
Gr(Tfo);Te; Gr(Tt) C TIF. (26)

In diagrams in Rel the above reasoning is illustrated as follows: the diagram

B(r) IV B(ryw BO©) —5— P(B(T) w B(O)) T4 5
N . w

/
I
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lifts, by the properties of the relation lifting, to

Gr(T fo) Te Gr(Tt)
TB(IT) —+=TBT)wWwB(©O)) ——TP(B(IT)WB(O)) ——S
(\) (B(I) ) —1 (B( (©) 2

TI+

Now observe that since a € T and ® € SSRD(T,0), we have (T fy)a T€ @, while by
definition of o we have (Tt)® = o(r). This means that the pair («,o(r)) belongs to the
relation Gr(Tfo) ; T€ ; Gr(Tt), and so by (26) we find that o(r) TIF . Hence by definition
of the satisfaction relation we obtain that S,r I Va, as required.

It remains to check that

S,r I Ap for each 8 € O, (27)

but we leave this as an exercise for the reader, the proof being completely analogous to that
of (24). QED

Moving to our soundness and completeness result, we first note that the definition of a
measure of an Lr-sequent can be defined in exactly the same way as in the special case where
T = P, see Definition 4.6. With a little more work than in the special case, we can prove
that our proof rules (read backwards) decrease complexity.

Lemma 5.3 For each rule of the calculus G27, the measure of any of its assumptions is
strictly less than that of its conclusion.

Proof. Consider a backward application of a G2p-rule R, with conclusion A = B, and
denote m(A = B) = (k,1).

As in the special case of the power set functor, it is easy to see that if R is a Boolean
rule (that is, a rule of the system G2), then k will not increase, and [ strictly decreases. The
propositional rules, and the modal rules A-l1 and V-r can be treated exactly as in the proof
of Lemma 4.7, so we omit the details.

This leaves the case of the rule T(VA). Assume that the conclusion of this rule is the
sequent {Va | a € T} = {Af | B € O}, and take some ® € SSRD(I',0) and some
C € Base(®). In the paragraph below Definition 3.23 we observed that C;, C B(I') and
Cr C B(©). From this it is straightforward to derive that for each formula a in C, we have
d(a) < max (d[{V~y |~ €T}]), and similarly for formulas b € C. Then it easily follows that
for each C' € Base(®) we have m(C, = Cr) < m({Va | a € I'} = {Ap | p € ©}), as
required. QED

On the basis of the Lemmas 5.2 and 5.3 above, the proof of our soundness and completeness
theorem is now straightforward (in fact, it is completely analogous to that of Theorem 4.8).

Theorem 5.4 (Soundness and completeness of G27) For every L-sequent A — B,

FA= B iff FA= B.
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Proof. As before, the soundness proof is standard, by induction on the G2p-derivation of
A = B. In case the last rule applied was Ap-1, the result follows from Fact 3.15; the case
of Vp-r follows by symmetry. The soundness of the rule T(VA) follows from the implication
1 = 2 of Lemma 5.2.

We may prove completeness by induction on the complexity of the sequent A — B,
exactly as in the proof of Theorem 4.8. We leave the details to the reader. QED

Remark 5.5 It is straightforward to check that the above proofs also work for the negation-
free variant G2, of G27. This sequent system, tailored towards the negation-free fragment
L~ of the language, is obtained simply by omitting the proof rules for the negation (—-1 and
—-r) from the system G2p. In other words, we have a soundness and completeness result for
G2, stating that every negation-free sequent is derivable in G2, iff it is valid. Note that
in the case of the power set functor, the negation-free fragment of the logic corresponds to
positive modal logic, see [18].

We illustrate the proof system with presenting it for two concrete examples of functors -
the binary tree functor Id x Id and the multiset functor B.

The binary tree functor. Consider T'= Id x Id.

Example 5.6 The following is an example of a proof of the sequent V(a,b),V(c,d) =
V(a A e,bAd) in the calculus. For each x,y € P, {a A ¢,b A d} such that a A ¢ € = consider
the following proof

a,c=>alc
a,c =\ =z

TV A) G5 Ve d = AV V)

For each z,y € P,{a A ¢,b A d} such that b A d € y consider the following proof

b,d = bAd
b,d=\vy
V(a,b),V(c,d) = AV z,Vy)

T(V,A)
Now one application of the T'(V, A) rule yields the sequent:
V(a,b),V(c,d) = V(aAec,bAd).
In the above proofs, unraveling the definition, we obtain
Rr(aNe,bAd) = {(\/x,\/y) | z,y € Py{aAc,bAd}, and aANc€ xor bAdE y}.
Moreover, each ® € SSRD({(a,b), (c,d)},{(V z,\/y)} is of the form (A, B) where

{(a,0),(¢,0),(\/ 2, 1)} € A and {(b,0), (d,0), (\/v,1)} € B.

Thus, modulo weakening inferences if necessary, the above sequents provide the required
proof.
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The bag (multiset) functor. Consider T is B.
Example 5.7 Recall examples of SSRD in Example 3.27 and Rp in Example 3.16. We have

%)
V{a®,b*} = A{L"}

n # 10

where SSRD(T", X)) = @, reasoning is similar to that in Example 3.27.

%]
Vi{a®, b} = A{(aV D)™}

m # 10

where similar reasoning applies.

a,b=aVbd
Vi{a®, b} = A{(aV b)™}

m = 10

where any ® € SSRD(T', X)) isof type @ : P({aVb}w{a,b}) — N, and from it being a separated
slim redistribution we obtain that it contains in its base either of the sets {(a,0), (b,0), (a V
b,1)},{(a,0),(aVb,1)},{(b,0),(aVb, 1)}, we have illustrated the proof w.l.o.g. using the set
{a,b,aVb}. (If ® sends all of the above mentioned sets to zero, it is not possible that {a’, 7}
and {(a Vv b)!°} are lifted members of ® at the same time.).
Now the sequent
V{a®, b’} = V{(aVb)'"}

is provable from the sequents above using a V-r inference: observe that
Rp((av)'®)={(B\))® | ®: P{avb} - N, ~((aVb)'"B(¢)P)},

where the condition for ® actually means that either ®(&) # 10 or ®({a Vv b}) > 0. Thus
Rp({(a Vv b)) = {{L"}n # 10} U {{(a vV b)™}|m > 0}. Each of the required sequents is
proved as in one of the cases above — we have split the case m > 0 in two according to
whether m = 10 or not.

5.2 The one-sided sequent calculus G1p

As in the special case of the power set functor, we are also interested in a one-sided version
of the sequent calculus G27. As before we need to restrict the use of negation to atomic
formulas, working with the language £* instead of with £. Using the fact that V and A are
each other’s Boolean duals, it is not difficult to see that every formula a in £ can be rewritten
into an equivalent formula a* € L£*.

The one-sided sequent system for this language is defined as follows.

Definition 5.8 The sequent calculus G1lp for the language L£* is obtained by extending
the calculus G1 with the following modal rules:

| {A,V8 = @ | 5 € Lra}

A Ao, A — o
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{A?* = o | ® € SRD(I)}
{Va|ael} =2

T(V) A® € Base(®)
The rule T(V) is to be read as follows: given I' € B,T,,L, if for every ® € SRD(I") there
exists some A® € ® such that A®* = @, then {Va |a €T} = 2. <

As in the special case of the power set functor, Lemma 5.10 below expresses the soundness
and a form of semantic invertibility of the rule T'(V). We use the following lemma to simplify
the task of proving the Lemma 5.10: instead of proving it directly, we link the current case
to the previous case of the two-sided calculus:

Lemma 5.9 For any I' € P,T1,L, the map TP fy restricts to a bijection between the sets
SRD(T') and SSRD(T", &).

Proof. We first prove that T'Pfy maps slim redistributions of I' to separated slim redistri-
butions of (I',@). For this purpose, fix a ® € SRD(I"). Then by definition, ® is an ele-
ment of TP(B(I')), so that we immediately find Base(®) C P(B(I')). Since Base : T,, =
P, is a natural transformation, this means that Base((T'Pfo)®) = (PPfy)(Base(®)) C
(PPfy)(PB(I')) C P(B(I') W B(w)), as a straightforward verification reveals. From this it
is immediate that (T'Pfy)® € TP(B(I") W B(9)), as required.

Thus in order to prove that (T'Pfy)® € SSRD(I', @), it suffices to check that for every
v € T we have (T'fo)y Te€ (TPfy)®. Fix such a 7; then by ® € SRD(T) we obtain that
v € X'(®), and since X' : TP -+ PT is a natural transformation, we have X ((TPf)®) =
(PT fo)(X'(®)). From this it is immediate that (T fo)y € X ((T'Pfy)®)), which means that
(Tfo)y T€ (TPfy)® indeed. This finishes the proof that TP fy maps slim redistributions of
I" to separated slim redistributions of (I, &).

It remains to prove the statement of the Lemma. First note that since fj restricts to a
bijection between the sets B(I') and B(I') W B(2), it has an inverse ¢ : B(I') w B(@) — B(T').
We leave it for the reader to verify that for any = € SSRD(I", &), the object (T'Pg)Z is a
slim redistribution of I'. Given the fact that TP fj restricts to a bijection from T, P,B(I") and
T,P,B(I') W B(2), the statement of the Lemma follows. QED

Lemma 5.10 The following are equivalent for every I' € P,T,L and every collection C of
literals:

1. {Va |a eT}UC is satisfiable;
2. C is satisfiable and for some ® € SRD(T'), every B € Base(®) is satisfiable.

Proof. Fix a collection I' € P,T,,L and a set C of literals. Let P, be the unique sets of
proposition letters such that C' = PU {—q | ¢ € Q}. We will prove the Lemma by showing
both statements 1 and 2 above to be equivalent to the statements 3 and 4 below:

3. {Vy |y €T}, P= Q is refutable;
4. P = (@ is refutable, and there is some ® € SSRD(T, ) such that for every A €
Base(®), the sequent A;, = Ap is refutable.
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The equivalence (1 < 3) is immediate, and the equivalence (3 < 4) is an instantiation of
Lemma 5.2 above. It remains to prove the equivalence of the statements 2 and 4.

(2 = 4) Suppose that statement 2 holds, then clearly the sequent P = @ is refutable.
Define = := (T'Pfy)®, then we have = € SSRD(I',@) by Lemma 5.9, and Base(Z) =
(PPfy)Base(®) since Base : T,, — P, is a natural transformation. Hence an arbitrary
A € Base(E) is of the form (Pfy)B with B € Base(®). Then it is easy to see that A, = B
and Ap = @, so that the refutability of A is immediate by the satisfiability of B (which holds
by assumption).

(4 = 2) If statement 4 holds, then the set C is obviously satisfiable. By Lemma 5.9 there is
a slim redistribution ® of I" such that = = (T'P fo)®. We claim that every B € Base(®P) is sat-
isfiable. To see this, fix a set B € Base(®). As before we have Base(Z) = (PP fo)Base(®), so
that we find (P fo)B € Base(E). Then by assumption the sequent ((Pfo)B)r = ((Pfo)B)r
is refutable; but it is easy to see that ((Pfy)B)r = B and ((Pfy)B)r = 9. Now the satisfia-
bility of B is immediate by the refutability of the sequent B = &. QED

On the basis of the Lemmas above, the proof of the following soundness and completeness
result is a straightforward variation of earlier proofs. We omit the details.

Theorem 5.11 (Soundness and completeness for G17) For each L*-sequent A — &,

Faip, A= 90 iff FA=— @.

5.3 The A-free fragment

For the functors preserving finite sets, the modality A7 is definable in the Ap-free fragment
of £*, while for other functors it is not (recall Fact 3.15 and the discussion below in Remark
3.17). However, since already the A-free fragment of Moss’ logic is expressive (recall Fact
3.10), it makes sense to restrict ourselves to this fragment of the Moss’ language even in the
case of a general functor T', without loosing expressive power.

Again, by modularity of the calculi defined so far, we can obtain a complete one-sided
calculus Glpy for the A-free fragment of the language simply omitting the A-l rule in the
previous calculus Glp:

Definition 5.12 The sequent calculus Glpy for the A-free fragment of the language L£* is

obtained by extending the calculus G'1 with the following modal rule:

{A®* = o | ® € SRD(I)}
{Va|ael'} = o

T(V) A® € Base(®)

<

The proof of the following theorem is a variation of the previous proof, we omit the details
here as well.

Theorem 5.13 (Soundness and completeness for Glrv) For each L*-sequent A = &
not containing A,

Falipg A= 2 iff FA= 2.
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6 Concluding remarks

We have presented structurally well-behaved proof systems for the finitary Moss logics. By
structurally well behaved we mainly mean that the calculi are complete without the cut rule.
There are two issues we have touched in the paper which are worth mentioning separately:
the finitarity vs. infinitarity of the rules in various cases, and the subformula property which
often follows merely from the absence of the cut rule.

6.1 Finitarity

The sources of possible infinitary behaviour of the calculi are the rules Vp-r, Ap-1 and T'(VA)
whose arities are bounded by cardinality of the sets Ry, L7 and SSRD. The question is, when
are the following sets finite?:

e Rp(a) for a given a € T,,L
o Ly(a) for a given a € T,,L

e SSRD(T',X) for given I', ¥ € P, T,,L

One clear answer is that for all functors T preserving finite sets, all the above sets are
finite and therefore both the two- and one-sided calculi G17 and G2r are finitary (the same
holds for the axiomatization given in [11].) This includes the calculi S1p and S2p.

Preservation of finite sets is actually quite rare: from the functors we consider in examples,
the finitary powerset functor as well as the binary tree functor preserve finite sets, while the
bag functor and the probabilistic distribution functors do not, but not even the polynomial
functors do in general (e.g. functors involving an infinite set constant functor or an infinite
sum, often included in the definition of polynomial functors, do not preserve finite sets).

The Bag functor. Let’s have a closer look at the finitary bag functor B. Consider a
finite multiset ® € BP,L. Then |J Base(®) is finite — those are members of £ occurring in
some A € P,L with ®(A) > 0. Imagine you are to fill the "witness square” of the relation
€C |J Base(®) x ®. There are only finitely many ways of filling this square (because there are
only finitely many ways how to write a natural number as a finite sum of natural numbers).
Therefore there are only finitely many lifted members of ®.

Fix a finite set I' € P, BL. We can show, that for each o € I" there are only finitely many
® such that o BE ® by a similar argument as given above. This shows that the set SRD(T")
is finite, and consequently the one-sided calculus for the A-free fragment G1ly g is finitary.

Example 3.16 shows that the sets Rgp and Lp are often infinite, therefore the calculi
involving A are infinitary in general.

The probabilistic distribution functor. It is not hard to create an analogous example
which shows that the two sets Rp_, and Lp_, might be infinite in the case of the functor D,,.
But even the set of slim redistribution might be infinite in this case: consider SRD({a®?,5%5})
— since there are infinitely many possibilities how to write 0.5 as a sum there are infinitely
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many possible witnesses z € D(€) for infinitely many ® such that {a%°,%5}D € ®. Therefore
all the calculi for D,, are infinitary.

6.2 Subformula property

Given our notion of subformulas (recall Definition 3.3), all the propositional rules as well as
the T'(VA) rules satisfy the subformula property: the assumptions of a rule contain only
genuine subformulas of the conclusion. Thus the A-free calculi Glpry and S1py enjoy the
subformula property.

It is, however, not the case of the calculi containing rules Vp-r, Ap-1, since they involve
the sets Ry («) and Ly (a) which use the operations T' A and T'\/ on objects ® in TP Base(«).
This, on one hand, means that the calculi containing those rules do not enjoy the genuine
subformula property, but, on the other hand, this means that the material which can occur
in a proof of a sequent is not arbitrary — it is at least bounded by the sets Ry («) and Lr(3)
for formulas Va and AS occurring on the right (resp. left) context of sequents in the proof,
modulo negations.

Let us have a closer look: consider e.g. a proof of a sequent I' = ¥, Va. If Va was not
introduced by weakening, it had to be introduced by a Vp-r rule, with immediate predecessors
A(T\/)® with ® in TP Base(«). Those of A(T'\/)® not introduced by weakening had to be
introduced by a T'(VA) rule where the assumption may contain formulas from Base((T'\/)®).
It is not hard to see that Base((T'\/)®) contains only finite disjunctions of formulas from
Base(a): denote by Base(a)Y the set of finite disjunctions of formulas from Base(a). Now

\/ : PBase(a) — Base(a)",

therefore
T\/ : TPBase(a) — T Base(a)”,

and (T'\/)® is in fact in T'Base(a)" and since

Base : T Base(a)Y — PBase(a)"

we conclude that Base((T'\/)®) is in PBase(a)Y, which means it contains only finite disjunc-
tions of subformulas of Va. If we pursuit this reasoning further we may conclude that any
provable sequent is provable from axioms containing only (atomic) subformulas of the given
sequent.

The main goal of this paper has been to introduce a uniform proof theory for the finitary
Moss’ logic, parametric in the functor T'. We succeeded in defining cut-free, one- and two-
sided calculi for the logics. For the two-sided cacluli, using the full language with both V
and A seems necessary to obtain a cut-free presentation. An advantage of the two-sided
presentation is, apart from its naturality, the fact that we can use its negation free fragment
to capture proof theory of the positive fragment of the Moss’ logic. The one-sided calculi
for the A-free fragment are in general better behaved — they enjoy the genuine subformula
property and are finitary for some functors for which the general calculi are infinitary (e.g.
the bag functor.)
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Since, in this paper, we mainly concentrated on a uniform approach parametric in the
functor, we have not touched decidability and complexity issues. We do not expect results
concerning decidability and complexity can be obtained in a uniform way for all the functors
we consider, we think that a finer case-analysis will be necessary. We leave those issues for
further research.
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