
Monadic Second-Order Logic and Bisimulation
Invariance for Coalgebras

Sebastian Enqvist∗†, Fatemeh Seifan∗, Yde Venema∗

∗ILLC, Universiteit van Amsterdam
†Department of Philosophy, Lund University

Sebastian.Enqvist@fil.lu.se, F.Seifan@uva.nl, Y.Venema@uva.nl

Abstract—Generalizing standard monadic second-order logic
for Kripke models, we introduce monadic second-order logic
MSO(T) interpreted over coalgebras for an arbitrary set functor
T. Similar to well-known results for monadic second-order logic
over trees, we provide a translation of this logic into a class
of automata, relative to the class of T-coalgebras that admit a
tree-like supporting Kripke frame. We then consider invariance
under behavioral equivalence of MSO(T)-formulas; more in par-
ticular, we investigate whether the coalgebraic mu-calculus is the
bisimulation-invariant fragment of MSO(T). Building on recent
results by the third author we show that in order to provide such
a coalgebraic generalization of the Janin-Walukiewicz Theorem,
it suffices to find what we call an adequate uniform construction
for the functor T. As applications of this result we obtain a partly
new proof of the Janin-Walukiewicz Theorem, and bisimulation
invariance results for the bag functor (graded modal logic) and
all exponential polynomial functors.

Finally, we consider in some detail the monotone neighborhood
functor M, which provides coalgebraic semantics for monotone
modal logic. It turns out that there is no adequate uniform
construction for M, whence the automata-theoretic approach
towards bisimulation invariance does not apply directly. This
problem can be overcome if we consider global bisimulations
between neighborhood models: one of our main results provides
a characterization of the monotone modal mu-calculus extended
with the global modalities, as the fragment of monadic second-
order logic for the monotone neighborhood functor that is
invariant for global bisimulations.

Keywords-coalgebra; monadic second-order logic; automata;
bisimulation invariance; modal mu-calculus

I. INTRODUCTION

A. Logic, automata and coalgebra

The aim of this paper is to strengthen the link between the

areas of logic, automata and coalgebra. More in particular, we

provide a coalgebraic generalization of the automata-theoretic

approach towards monadic second-order logic (MSO), and we

address the question whether the Janin-Walukiewicz Theorem

can be generalized from Kripke structures to the setting of

arbitrary coalgebras.

The connection between monadic second-order logic and

automata is classic, going back to the seminal work of

Büchi, Rabin, and others. For instance, Rabin’s decidability

result for the monadic second-order theory of binary trees,

or S2S, makes use of a translation of monadic second-order

logic into a class of automata, thus reducing the satisfiability

problem for S2S to the non-emptiness problem for the cor-

responding automata [1]. The link between MSO and automata

over trees with arbitrary branching was further explored by

Walukiewicz [2]. Janin and Walukiewicz considered monadic

second-order logic interpreted over Kripke structures, and

used automata-theoretic techniques to obtain a van Benthem-

like characterization theorem for monadic second-order logic,

identifying the modal μ-calculus as the bisimulation invariant

fragment of MSO [3]. Given the fact that in many applications

bisimilar models are considered to represent the same process,

one has little interest in properties of models that are not
bisimulation invariant. Thus the Janin-Walukiewicz Theorem

can be seen as an expressive completeness result, stating that

all relevant properties in monadic second-order logic can be

expressed in the modal μ-calculus.

Coalgebra enters naturally into this picture. Recall that

Universal Coalgebra [4] provides the notion of a coalgebra as

the natural mathematical generalization of state-based evolving

systems such as streams, (infinite) trees, Kripke models, (prob-

abilistic) transition systems, and many others. This approach

combines simplicity with generality and wide applicability:

many features, including input, output, nondeterminism, prob-

ability, and interaction, can easily be encoded in the coalgebra

type T (formally an endofunctor on the category Set of sets

as objects with functions as arrows). Starting with Moss’

seminal paper [5], coalgebraic logics have been developed

for the purpose of specifying and reasoning about behavior,

one of the most fundamental concepts that allows for a

natural coalgebraic formalization. And with Kripke structures

constituting key examples of coalgebras, it should come as

no surprise that most coalgebraic logics are some kind of

modification or generalization of modal logic [6].

The coalgebraic modal logics that we consider here origi-

nate with Pattinson [7]; they are characterized by a completely

standard syntax, in which the semantics of each modality is

determined by a so-called predicate lifting (see Definition 2

below). Many well-known variations of modal logic in fact

arise as the coalgebraic logic MLΛ associated with a set Λ
of such predicate liftings; examples include both standard

and (monotone) neighborhood modal logic, graded and prob-

abilistic modal logic, coalition logic, and conditional logic.

Extensions of coalgebraic modal logics with fixpoint operators,

needed for describing ongoing behavior, were developed in [8],
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[9].

The link between coalgebra and automata theory is by now

well-established. For instance, finite state automata operating

on finite words have been recognized as key examples of

coalgebra from the outset [4]. More relevant for the purpose

of this paper is the link with precisely the kind of automata

mentioned earlier, since the (potentially infinite) objects on

which these devices operate, such as streams, trees and Kripke

frames, usually are coalgebras. Thus, the automata-theoretic

perspective on modal fixpoint logic could be lifted to the

abstraction level of coalgebra [8], [10]. In fact, many key

results in the theory of automata operating on infinite objects,

such as Muller & Schupp’s Simulation Theorem [11] can in

fact be seen as instances of more general theorems in Universal

Coalgebra [12].

B. Coalgebraic monadic second-order logic

Missing from this picture is, to start with, a coalgebraic

version of (monadic) second-order logic. Filling this gap is

the first aim of the current paper, which introduces a notion

of monadic second-order logic MSOT for coalgebras of type T.

Our formalism combines two ideas from the literature. First

of all, we looked for inspiration to the coalgebraic versions of

first-order logic of Litak & alii [13]. These authors introduced

Coalgebraic Predicate Logic as a common generalisation of

first-order logic and coalgebraic modal logic, combining first-

order quantification with coalgebraic syntax based on predicate

liftings. Our formalism MSOT will combine a similar syntactic

feature with second-order quantification. Second, following the

tradition in automata-theoretic approaches towards monadic

second-order logic, our formalism will be one-sorted. That is,

we only allow second-order quantification in our language,

relying on the fact that individual quantification, when called

for, can be encoded as second-order quantification relativized

to singleton sets. Since predicate liftings are defined as families

of maps on powerset algebras, these two ideas fit together very

well, to the effect that our second-order logic is in some sense

simpler than the first-order formalism of [13].

In section III we will define, for any set Λ of monotone1

predicate liftings, a formalism MSOΛ, and we let MSOT denote

the logic obtained by taking for Λ the set of all monotone

predicate liftings. Clearly we will make sure that this definition

generalizes the standard case, in the sense that the standard

version of MSO for Kripke structures instantiates the logic

MSO{♦} and is equivalent to the coalgebraic logic MSOP (where

P denotes the power set functor).

The introduction of a monadic second-order logic MSOT
for T-coalgebras naturally raises the question, for which T
does the coalgebraic modal μ-calculus for T correspond to

the bisimulation-invariant fragment of MSOT.

Question 1. Which functors T satisfy μMLT ≡ MSOT/�?

1In the most general case, restricting to monotone predicate liftings is not
needed, one could define MSOT as the logic obtained by taking for Λ the set
of all predicate liftings. However, in the context of this paper, where we take
an automata-theoretic perspective on MSO, this restriction makes sense.

C. Automata for coalgebraic monadic second-order logic

In order to address Question 1, we take an automata-

theoretic perspective on the logics MSOT and μMLT, and as

the second contribution of this paper we introduce a class of

parity automata for MSOT.

As usual, the operational semantics of our automata is given

in terms of a two-player acceptance game, which proceeds in

rounds moving from one basic position to another, where a

basic position is a pair consisting of a state of the automaton

and a point in the coalgebra structure under consideration.

In each round, the two players, ∃ and ∀, focus on a certain

local ‘window’ on the coalgebra structure. This ‘window’ takes

the shape of a one-step T-model, that is, a triple (X,α, V )
consisting of a set X , a chosen object α ∈ TX , and a valuation

V interpreting the states of the automaton as subsets of X .

More specifically, during each round of the game it is the task

of ∃ to come up with a valuation V that creates a one-step

model in which a certain one-step formula δ (determined by

the current basic position in the game) is true.

Generally, our automata will have the shape A =
(A,Δ,Ω, aI) where A is a finite carrier set with initial state

aI ∈ A, and Ω and Δ are the parity and transition map of

A, respectively. The flavour of such an automaton is largely

determined by the co-domain of its transition map Δ, the

so-called one-step language which consists of the one-step

formulas that feature in the acceptance game as described.

Each one-step language L induces its own class of automata

Aut(L). For instance, the class of automata corresponding to

the coalgebraic fixpoint logic μMLΛ can be given as Aut(MLΛ),
where MLΛ is the set of positive modal formulas of depth one

that use modalities from Λ [10]. Basically then, the problem

of finding the right class of automata for the coalgebraic

monadic second-order logic MSOΛ consists in the identification

of an appropriate one-step language. Our proposal comprises

a one-step second-order logic which uses predicate liftings to

describe the chosen object of the one-step model.

Finally, note that similar to the case of standard MSO,

the equivalence between formulas in MSOT and automata in

Aut(SO) is only guaranteed to hold for coalgebras that are

‘tree-like’ in some sense (to be defined further on).

Theorem 1 (Automata for coalgebraic MSO). For any set Λ
of monotone predicate liftings for T there is an effective con-
struction mapping any formula ϕ ∈ MSOΛ into an automaton
Aϕ ∈ Aut(SOΛ), which is equivalent to ϕ over T-tree models.

The proof of Theorem 1 proceeds by induction on the com-

plexity of MSOT-formulas, and thus involves various closure
properties of automata, such as closure under complementa-

tion, union and projection. In order to establish these results,

it will be convenient to take an abstract perspective, revealing

how closure properties of a class of automata are completely

determined at the level of the one-step language.

D. Bisimulation Invariance

With automata-theoretic characterizations in place for both

coalgebraic MSO and the coalgebraic μ-calculus μML, we can
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address Question 1 by considering the following question:

Question 2. Which functors T satisfy Aut(ML) ≡ Aut(SO)/�?

Continuing the program of the third author [14], we will

approach this question at the level of the one-step languages,

SO and ML. To start with, observe that any translation (from

one-step formulas in) SO to (one-step formulas in) ML naturally

induces a translation from SO-automata to ML-automata. A

new observation we make here is that any so-called uniform
construction on the class of one-step models for the functor

T that satisfies certain adequacy conditions, provides (1) a

translation (·)∗ : SO → ML, together with (2) a construction

(·)∗ transforming a pointed T-model (S, s) into a tree model

(S∗, s∗) which is a coalgebraic pre-image of (S, s) satisfying

A accepts (S∗, s∗) iff A∗ accepts (S, s).

From this it easily follows that an SO-automaton A is bisim-

ulation invariant iff it is equivalent to the ML-automaton A
∗.

On the basis of these observations we can prove the follow-

ing generalisation of the Janin-Walukiewicz Theorem.

Theorem 2 (Coalgebraic Bisimulation Invariance). If the set
functor T admits an adequate uniform construction, then

μMLT ≡ MSOT/�.
In our eyes, the significance of Theorem 2 is twofold.

First of all, the proof separates the ‘clean’, abstract part of

bisimulation-invariance results from the more functor-specific

parts. As a consequence, Theorem 2 can be used to obtain

immediate results in particular cases. Examples include the

power set functor (standard Kripke structures), where the

adequate uniform construction roughly consists of taking ω-

fold products (see Example 1), the bag functor (Example 2),

and all exponential polynomial functors (Corollary 3). Second,

in case the functor does not admit an adequate uniform con-

struction, Theorem 2 may still be of use in proving alternative

characterization results for the functor.

Instantiating the latter phenomenon is the monotone neigh-
borhood functor M (see the next section for its definition).

The importance of this functor lies, among other things, in

it providing a coalgebraic semantics for monotone modal

logic [15]. The coalgebraic monadic second-order language

MSOM is equivalent to a natural second-order language for

reasoning about monotone neighborhood structures that we

shall denote by MMSO, and μMLM is equivalent to the fixpoint-

extension of monotone modal logic, denoted μMML. As we

shall see in Proposition 12 below, M does not admit an

adequate uniform construction.2 This, however, is not the end

of the story. It turns out that we can find an adequate uniform

construction for a variant M� of the functor M (see Propo-

sition 14). As a corollary, we obtain a characterization of the

fragment of MMSO that is invariant under global bisimulations

2This does not mean that the monotone μ-calculus μMLM does not
correspond to the bisimulation-invariant fragment of MSOM, but it does mean
that a proof of such a result will necessarily involve techniques that differ
from the ones employed here.

(bisimulations that are full on both domain and codomain).

This fragment turns out to be exactly the extension of the

monotone μ-calculus with the global modalities (for precise

definitions we refer to section VI), which we shall denote

μMMLg .

In this notation, our final contribution is the following

characterization result:

Theorem 3. A formula in MMSO is invariant for global neigh-
borhood bisimulations if, and only if, it is equivalent to a
formula of the logic μMMLg .

II. SOME TECHNICAL BACKGROUND

In this paper we assume familiarity with the basic theory of

modal (fixpoint) logic, monadic second-order logic, coalgebra,

coalgebraic modal (fixpoint) logic, and parity games. Here we

fix some notation and terminology.

A. Kripke models and their logics

We restrict to the theory of modal logic with one modality

(and hence, one accessibility relation). Let Var be a fixed

infinite supply of variables. A Kripke model is a structure S =
(S,R, V ) where S is a set, R ⊆ S × S and V : Var →
P(S) is a Var -valuation. Associated with such a valuation

V , we define the conjugate coloring V † : S → P(Var) by

V †(s) := {p ∈ Var | s ∈ V (p)}. Given a subset T ⊆ S, the

valuation V [p 	→ T ] is as V except that it maps the variable

p to T . A pointed Kripke model is a structure (S, u) where S

is a Kripke model and u is a point in S. Turning to syntax,

we define the formulas of monadic second-order logic MSO

through the following grammar:

ϕ ::= sr(p) | p ⊆ q | R(p, q) | ¬ϕ | ϕ ∨ ϕ | ∃p.ϕ,
with p, q ∈ Var . Formulas are evaluated over pointed Kripke

models by the following induction:

• (S,R, V, u) � sr(p) iff V (p) = {u}
• (S,R, V, u) � p ⊆ q iff V (p) ⊆ V (q)
• (S,R, V, u) � R(p, q) iff for all v ∈ V (p) there is w ∈
V (q) with vRw

• standard clauses for the boolean connectives

• (S,R, V, u) � ∃p.ϕ iff (S,R, V [p 	→ T ], u) � ϕ for some

T ⊆ S.

We present the language of the modal μ-calculus μML in

negation normal form, by the following grammar:

ϕ ::= p | ¬p | ⊥ | � | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ♦ϕ | ηp.ϕ
where p ∈ Var , η ∈ {μ, ν}, and in the formula ηp.ϕ no free

occurrence of the variable p may be in the scope of a negation.

The satisfaction relation between pointed Kripke models and

formulas in μML is defined by the usual induction, with, e.g.

• (S,R, V, u) � μp.ϕ iff u ∈ ⋂{Z ⊆ S | ϕp(Z) ⊆ Z}
where ϕp(Z) denotes the truth set of the formula ϕ in

the model (S,R, V [p 	→ Z]).

We assume familiarity with the notion of bisimilarity be-

tween two (pointed) Kripke models, and say that a formula of
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MSO is bisimulation invariant if it has the same truth value in

any pair of bisimilar pointed Kripke models.

Fact 1. [3] A formula ϕ of MSO is equivalent to a formula of
μML iff ϕ is invariant for bisimulations.

B. Coalgebras and models

Our basic semantic structures consist of coalgebras together

with valuations. We only consider coalgebras over the base

category Set with sets as objects and functions as arrows. The

co- and contravariant power set functors will be denoted by

P and Q : Set→ Setop, respectively. Covariant endofunctor

on Set will be called set functors.

Definition 1. Let T be a set functor. A T-coalgebra is a pair

(S, σ) consisting of a set S, together with a map σ : S → TS.

A T-model is a structure S = (S, σ, V ) where (S, σ) is a

T-coalgebra and V : Var → PS. A pointed T-model is a

structure (S, s) where S is a T-model and s ∈ S.

The usual notion of a p-morphism between Kripke models

can be generalized as follows: Let S1 = (S1, σ1, V1) and S2 =
(S2, σ2, V2) be two T-models and let f : S1 → S2 be any map.

Then f is said to be a T-model homomorphism if:

1) for each variable p and each u ∈ S1, we have u ∈ V1(p)
iff f(u) ∈ V2(p);

2) the map f is a coalgebra morphism, i.e. we have

σ2 ◦ f = Tf ◦ σ1.
Two pointed coalgebras (S, s) and (S′, s′) are behaviorally
equivalent, notation: S, s � S

′, s′, if s and s′ can be identified

by coalgebra morphisms f : S→ T and f ′ : S′ → T such that

f(s) = f ′(s′).
A coalgebraic logic consists of a set L of formulas together

with, for each coalgebra (S, σ), a truth or satisfaction relation

� ⊆ S × L. A formula ϕ is called bisimulation invariant3 if

S, s � ϕ ⇐⇒ S
′, s′ � ϕ whenever S, s � S

′, s′.
Kripke frames are coalgebras for the (covariant) power set

functor P . A functor of particular interest in this paper is the

monotone neighborhood functor M, usually defined as the

subfunctor of Q ◦ Q given by setting MX ⊆ QQX to be:

{N ∈ QQX | ∀Z,Z ′ : Z ∈ N & Z ⊆ Z ′ ⇒ Z ′ ∈ N}
This functor comes equipped with the following notion of

bisimilarity. A neighborhood bisimulation between M-models

S1 and S2 is a relation R ⊆ S1×S2 such that, if s1Rs2 then:

• V †1 (s1) = V †2 (s2);
• for all Z1 in σ1(s1) there is Z2 in σ2(s2) such that for

all t2 ∈ Z2 there is t1 ∈ Z1 with t1Rt2;

• for all Z2 in σ2(s2) there is Z1 in σ1(s1) such that for

all t1 ∈ Z1 there is t2 ∈ Z2 with t1Rt2.

3Strictly speaking, behavioral equivalence and bisimilarity are distinct
concepts. However, in many concrete cases, behavioural equivalence and
bisimilarity coincide, so we shall be content to use the more common
parlance of “bisimulation invariance” rather than “invariance for behavioural
equivalence”.

C. Coalgebraic μ-calculus & coalgebra automata

The modal μ-calculus is just one in a family of logical

systems that may collectively be referred to as the coalgebraic
μ-calculus [9]. These logics essentially make use of predicate
liftings.

Definition 2. Given a set functor T, an n-place predicate
lifting for T is a natural transformation

λ : Q(−)n → Q ◦ T,
where Q(−)n denotes the n-fold product of Q with itself. A

predicate lifting λ is said to be monotone if

λX(Y1, ..., Yn) ⊆ λX(Z1, ..., Zn),

whenever Yi ⊆ Zi for each i. The Boolean dual λd of λ is

defined by

(Z1, ..., Zn) 	→ TX \ (λX(X \ Z1, ..., X \ Zn)).

Given a set functor T, the language μMLT of the coalgebraic

μ-calculus for T is defined thus:

ϕ ::= p | ¬p | ⊥ | � | λ(ϕ1, ..., ϕn) | ϕ ∨ ϕ | ϕ ∧ ϕ | ηp.ϕ
where p ∈ Var , λ is any monotone n-place predicate lifting

for T, η ∈ {μ, ν}, and, in ηp.ϕ, no free occurrence of the

variable p is in the scope of a negation. If we restrict the

formulas λ(ϕ1, ..., ϕn) so that λ must come frome some dis-

tinguished set of liftings Λ, then we denote the corresponding

sublanguage of μMLT by μMLΛ.

The semantics of formulas in a pointed T-model is defined

as follows:

• (S, s) � p iff s ∈ V (p) and (S, s) � ¬p iff s /∈ V (p)
• (S, s) � λ(ϕ1, ..., ϕn) iff σ(s) ∈ λS(‖ϕ1‖, ..., ‖ϕn‖),

where ‖ϕi‖ = {t ∈ S | (S, t) � ϕi} denotes the “truth

set” of ϕi in S

• standard clauses for the boolean connectives

• (S, s) � μp.ϕ iff s ∈ ⋂{X ⊆ S | ϕp(X) ⊆ X}, where

ϕp(Z) denotes the truth set of the formula ϕ in the T-

model (S, σ, V [p 	→ Z]).

It is routine to prove that all formulas in μMLT are bisimu-

lation invariant.

Turning to the parity automata corresponding to the lan-

guage μMLΛ, we first define the modal one-step language ML1Λ.

Its set ML1Λ(A) of modal one-step formulas over a set A of

variables is given by the following grammar:

ϕ ::= ⊥ | � | λ(ψ1, ..., ψn) | ϕ ∨ ϕ | ϕ ∧ ϕ
where ψ1, ..., ψn are formulas built up from variables in A
using disjunctions and conjunctions.

Definition 3. Given a functor T and a set of variables A, a

one-step model over A is a triple (X,α, V ) where X is any

set, α ∈ TX and V : A→ P(X) is a valuation.

The semantics of formulas in the modal one-step language

in a one-step model is given as follows:

• standard clauses for the boolean connectives,
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• (X,α, V ) �1 λ(ψ1, ..., ψn) iff α ∈ λX(‖ψ1‖, ..., ‖ψn‖),
where ‖ψi‖ ⊆ X is the (classical) truth set of the formula

ψi under the valuation V .

We can now define the class of automata used to characterize

the coalgebraic μ-calculus.

Definition 4. Let P be a finite set of variables and Λ a set of

predicate liftings. Then a (P -chromatic) modal Λ-automaton
is a tuple (A,Δ,Ω, aI) where A is a finite set of states with

aI ∈ A,

Δ : A× P(P )→ ML1Λ(A)

is the transition map of the automaton, and Ω : A → ω is

the parity map. The class of these automata is denoted as

Aut(MLΛ).

The acceptance game for an automaton A = (A,Δ,Ω, aI)
and a T-model (S, σ, V ) is given by the following table:

Position Pl’r Admissible moves

(a, s) ∈ A× S ∃ {U ∈ (PS)A | (S, σ(s), U) �1 Δ(a, V †(s))}
U : A → PS ∀ {(b, t) | t ∈ U(b)}

The loser of a finite match is the player who got stuck, and

the winner of an infinite match is ∃ if the greatest parity that

appears infinitely often in the match is even, and the winner is

∀ if this parity is odd. The automaton A accepts the pointed

model (S, s) if ∃ has a winning strategy in the acceptance game

from the starting position (aI , s). We say that an automaton

A is equivalent to a formula ϕ ∈ μMLΛ if, for every pointed

T-model (S, s), we have that A accepts (S, s) iff (S, s) � ϕ.

Fact 2. [10] Let T be a set functor, and Λ a set of monotone
predicate liftings for T, closed under Boolean duals. Then

μMLΛ ≡ Aut(MLΛ).

That is, there are effective transformations of formulas in μMLΛ
into equivalent automata in Aut(MLΛ), and vice versa.

III. COALGEBRAIC MSO

We now introduce coalgebraic monadic second-order logic

for a set functor T and a set of liftings Λ and show how MSO

can be recovered as a special case. We define the syntax of the

monadic second-order logic MSOT by the following grammar:

ϕ ::= ⊥ | sr(p) | p ⊆ q | λ(p, q1, .., qn) | ϕ ∨ ϕ | ¬ϕ | ∃p.ϕ
where λ is any n-place monotone predicate lifting and

p, q, q1, ..., qn ∈ V ar. More generally, restricting to a set

Λ of monotone liftings for T, we define the sublanguage

MSOΛ ⊆ MSOT by the same grammar except that we require

the liftings to be in Λ.

For the semantics, let (S, s) be a pointed T-model. We

define the satisfaction relation � ⊆ S × MSOT as follows:

• (S, u) � sr(p) iff V (p) = {u},
• (S, u) � p ⊆ q iff V (p) ⊆ V (q),
• (S, u) � λ(p, q1, ..., qn) iff σ(v) ∈ λS(V (q1), .., V (qn))

for all v ∈ V (p),
• standard clauses for the Boolean connectives

• (S, u) � ∃p.ϕ iff (S, σ, V [p 	→ Z], u) � ϕ, some Z ⊆ S.

We introduce the following abbreviations:

• p = q for p ⊆ q ∧ q ⊆ p,

• Em(p) for ∀q.(q ⊆ p→ q = p),
• Sing(p) for ¬Em(p) ∧ ∀q(q ⊆ p→ (Em(q) ∨ q = p))

expressing, respectively, that p and q are equal, that p denotes

the empty set, and that p denotes a singleton.

Clearly, standard MSO is the logic MSO{♦}, where ♦ is the

predicate lifting corresponding to the usual diamond modality

over Kripke models. Obviously then, MSOP contains MSO. In

order to see that the languages are in fact equivalent in ex-

pressive power, we need the notion of expressive completeness,

which plays an important role in this paper.

Definition 5. A set of monotone liftings Λ for a set functor

T is said to be expressively complete if, for every finite

set of variables A and every monotone predicate lifting

λ : Q(−)A → Q◦T, there exists a formula ϕ ∈ ML1Λ(A) such

that, for every one-step model (X,α, V ) with V : A→ Q(X),
we have

(X,α, V ) �1 ϕ iff α ∈ λX(V ).

If Λ is expressively complete, then clearly μMLΛ is equiv-

alent in expressive power to the full language μMLT. It is not

much harder to show that, under the same conditions, MSOΛ
is equivalent in expressive power to the full language MSOT.

Furthermore, expressive completeness can often be obtained

fairly easily if we make use of an application of the Yoneda

lemma to represent n-place predicate liftings as subsets of

T(2n), a method developed in [16]. In particular, since the

liftings {�,♦} for P are expressively complete and � is

clearly definable in MSO{♦}, one can show that MSO = MSO{♦}
is equivalent in expressive power to the full coalgebraic

logic MSOP . Furthermore, μMLP is equivalent to μML{�,♦}.
As a second example, involving the monotone neighborhood

functor M, let � here be the predicate lifting defined by

α ∈ �X(Z) iff Z ∈ α, and let ♦ be its dual. Then the

language MSOM is equivalent to MSO{�,♦}, and also μMLM
is equivalent to μML{�,♦}.

Finally, as mentioned in the introduction, the key question

in this paper will be to compare the expressive power of coal-

gebraic monadic second-order logic to that of the coalgebraic

μ-calculus. The following observation, of which the (routine)

proof is omitted, provides the easy part of the link.

Proposition 1. Let Λ be a set of monotone predicate lfitings
for the set functor T. There is an inductively defined trans-
lation (·)� mapping any formula ϕ ∈ μMLΛ to an equivalent
formula ϕ� ∈ MSOΛ.

IV. AUTOMATA FOR COALGEBRAIC MSO

In this section we introduce automata for coalgebraic

monadic second-order logic.

A. A general perspective on parity automata

Standard monadic second-order formulas can be translated

to equivalent automata over trees, but this equivalence is not
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guaranteed to extend to arbitrary Kripke models. In the case

of general coalgebra, we should expect having to introduce a

coalgebraic concept of “tree-like” models.

Definition 6. Given a set S and α ∈ TS, a subset X ⊆ S
is said to be a support for α if there is some β ∈ TX with

TιX,S(β) = α. A supporting Kripke frame for a T-coalgebra

(S, σ) is a binary relation R ⊆ S×S such that, for all u ∈ S,

R(u) = {v | uRv} is a support for σ(u).

Definition 7. A T-tree model is a structure (S, R, u) where

S = (S, σ, V ) is a T-model and u ∈ S, such that R
is a supporting Kripke frame for the coalgebra (S, σ), and

furthermore (S,R) is a tree rooted at u, so that there is a

unique R-path from u to w for each w ∈ S.

Our goal is to translate formulas in MSOT to equivalent

automata over T-tree models. We start by introducing a very

general type of automaton, originating with [14].

Definition 8. Given a finite set A, a generalized predicate
lifting over A comprises an assignment of a map

ϕX : (QX)A → QTX.

to every set X . Concepts like Boolean dual and monotonicity
apply to these liftings in the obvious way.

The difference with respect to standard predicate liftings is

that the components of a generalized predicate lifting do not

need to form a natural transformation.4

Definition 9. A one-step language L consists of a collection

L(A) of generalized predicate liftings for every finite set A.

The semantics of a generalized predicate lifting ϕ in a one-step

model (X,α, V ) is given by

(X,α, V ) �1 ϕ iff α ∈ ϕX(V ).

Our automata will be indexed by a (finite) set of variables

involved, corresponding to the set of free variables of the

MSOT-formula.

Definition 10. Let P ⊆ Var be a finite set of variables and

let L be a one-step language for functor T. A (P -chromatic)
L-automaton is a structure (A,Δ,Ω, aI) where

• A is a finite set, with aI ∈ A,

• Ω : A→ ω is a parity map, and

• Δ : A× P(P )→ L(A) is the transition map of A.

The acceptance game of A with respect to a T-tree model

(T,R, σ, V, u) is given by Table I. We say that the automaton

A accepts the model (T,R, σ, V, u) if ∃ has a winning strategy

in this game (initialized at position (aI , u)).

4In the style of abstract logic, it would make sense to require a general
predicate lifting to be natural with respect to certain maps, in particular,
bijections. For the purpose of this paper such a restriction is not needed,
however.

B. Closure properties

This abstract level is useful for establishing some simple

closure properties of automata, based on properties of the

one-step language. The first, easy, results establish sufficient

conditions for closure under union and complementation.

Proposition 2. If the one-step language L is closed under
disjunction, then the class of L-automata is closed under
union.

Proposition 3. If the monotone fragment of the one-step
language L is closed under Boolean duals, then the class of
L-automata is closed under complementation.

The most interesting property concerns closure under exis-

tential projection. The following terminology is taken from [3],

but instead of relying on a particular syntactic shape of one-

step formulas, we define the concepts in purely semantic terms.

Definition 11. A predicate lifting ϕ over A is said to be

special basic if, for every one-step model (X,α, V ) such that

(X,α, V ) �1 ϕ

there is a valuation V ∗ : A→ Q(X) such that

• V ∗(a) ⊆ V (a) for each a ∈ A,

• V ∗(a) ∩ V ∗(b) = ∅ whenever a �= b, and

• (X,α, V ∗) �1 ϕ.

Call an L-automaton non-deterministic if every lifting Δ(a, c)
is special basic.

It is easy to see that if the language L is closed under

disjunctions, then so is its fragment of special basic liftings.

From this we obtain the following.

Proposition 4. If the one-step language L is closed under
disjunction, then the class of non-deterministic L-automata is
closed under existential projection over T-tree models.

Proof: Suppose A = (A,Δ, aI ,Ω) is a non-deterministic

L-automaton for the variable set P . Define the P \q-chromatic

automaton ∃q.A = (A,Δ∗, aI ,Ω) by setting

Δ∗(a, c) = Δ(a, c) ∨Δ(a, c ∪ {q}).
It is easy to see that every T-tree model accepted by A is

also accepted by ∃p.A. Conversely, suppose ∃p.A accepts

some T-tree model (S,R, σ, V, sI). For each winning position

(a, s) in the acceptance game, let V(a,s) be the valuation

chosen by ∃ according to some given winning strategy χ. Note

that we can assume that χ is a positional winning strategy,

since ∃p.A is a parity automaton. It is not difficult to see

that the automaton ∃p.A is a non-deterministic automaton,

and so for each winning position (a, s) there is a valuation

V ∗(a,s) : A → P(R(s)), which is an admissible move for

∃, such that V ∗(a,s)(b) ⊆ V(a,s)(b) and such that for all

b1 �= b2 ∈ A we have V ∗(a,s)(b1) ∩ V ∗(a,s)(b2) = ∅. Define

the strategy χ∗ by letting ∃ choose the valuation V ∗(a,s) at

each winning position (a, s) - this is still a winning strategy,

since the valuations chosen by ∃ are smaller and so no new
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Position Player Admissible moves Parity

(a, s) ∈ A× T ∃ {U : A→ P(R(s)) | (R(s), σ(s), U) �1 Δ(a, V †(s))} Ω(a)
U : A→ P(T ) ∀ {(b, t) | t ∈ U(b)} 0

TABLE I
ACCEPTANCE GAME FOR PARITY AUTOMATA.

choices for ∀ are introduced. Furthermore, χ∗ is clearly still

a positional winning strategy.

From these facts it follows by a simple induction on the

depth of the nodes in the supporting tree that the strategy

χ∗ is scattered, i.e. that for every s ∈ S there is at most

one automaton state a such that (a, s) appears in a χ∗-guided

match of the acceptance game. So we can define a valuation

V ′ like V except we evaluate q to be true at all and only the

states s such that

(R(s), σ(s), V ∗(as,s)
) �1 Δ(as, c ∪ {q}),

where as is a necessarily unique automaton state such that

(a, s) appears in some χ∗-guided match, and c is the color

consisting of the variables true under V at s. It is not hard to

show that A accepts (S,R, σ, V ′, sI).

C. Second-order automata

We now introduce a more concrete one-step language for a

given set functor T and a given set of (natural) liftings Λ, and

show that MSOΛ can be translated into the corresponding class

of automata.

Let Λ be a set of monotone predicate liftings for T. The set

of second-order one-step formulas over any set of variables A
and relative to the set of liftings Λ is defined by the grammar:

ϕ ::= a ⊆ b | λ(a1, ..., an) | ¬ϕ | ϕ ∨ ϕ | ∃a.ϕ,
where a, b, a1, ..., an ∈ A and λ is any predicate lifting in Λ.

Fixing an infinite set of “one-step variables” V ar1, and given a

finite set A, the set of second-order one-step sentences over A,

denoted SO1Λ(A), is the set of one-step formulas over A∪V ar1,

with all free variables belonging to A. We write SO1T(A) when

Λ comprises all monotone liftings for T.

The semantics of a one-step second-order A-formula in a

one-step model (X,α, V ) (with V : A → P(X)) is defined

by the following clauses:

• (X,α, V ) �1 p ⊆ q iff V (p) ⊆ V (q),
• (X,α, V ) �1 λ(p1, ..., pn) iff α ∈ λX(V (p1), ..., V (pn)),
• standard clauses for the Boolean connectives,

• (X,α, V ) �1 ∃p.ϕ iff (X,α, V [p 	→ S]) �1 ϕ for some

S ⊆ X .

Any one-step second-order A-sentence ϕ can be regarded

as a generalized predicate lifting over A, with

ϕX(V ) = {α ∈ TX | (X,α, V ) �1 ϕ}.
Note that the syntax of SO1T allows negations, implying that

not all these predicate liftings are monotone.

Definition 12. Let Λ be a set of monotone predicate liftings

for T. A second-order Λ-automaton is an L-automaton for L

being the assignment of the one-step second-order A-sentences

SO1Λ(A) to every set of variables A. We write Aut(SOΛ) to

denote this class, and Aut(SOT) in case Λ is the set of all
monotone predicate liftings for T.

Our aim is to prove that every formula of MSOΛ can be

translated into an equivalent second-order Λ-automaton (over

rooted T-tree models), and the main problem here is to obtain

closure under existential projection.

The key to this step is a simulation theorem.

First, a useful trick due to Walukiewicz [2] allows us

to transform any second-order automaton into one in which

all the one-step formulas are monotone, when regarded as

generalized predicate liftings. We call such an automaton a

monotone automaton.

Proposition 5. Let Λ be any set of monotone predicate liftings.
Every automaton A ∈ Aut(SOΛ) is equivalent to a monotone
second-order A ∈ Aut(SOΛ).

Proof: Enumerate A as {a1, ..., ak}, and just replace each

formula Δ(a, c) by

∃Z1...∃Zk.Z1 ⊆ a1 ∧ ... ∧ Zk ⊆ ak ∧Δ(a, c)[Zi/ai]

where Δ(a, c)[Zi/ai] is the result of substituting the variable

Zi for each open variable ai in Δ(a, c). This new formula is

monotone in the variables A and the resulting automaton is

equivalent to A.

The intuition behind the simulation theorem is the same

as that behind the standard “powerset construction” for word

automata: the states of the new non-deterministic automaton

An are “macro-states” representing several possible states of

A at once. Formally, the states of An will be binary relations

over A, and given a macro-state R, its range gives an exact

description of the states in A that are currently being visited

simultaneously. In fact, it is safe to think of the macro-states as

subsets of A: the only reason that we have binary relations over

A as states rather than just subsets is to have a memory device

so that we can keep track of traces in infinite matches. For each

macro-state R and each colour c we want to be able to say

that the one-step formulas corresponding to each state in the

range of R hold, so we want to translate the one-step formulas

over A into one-step formulas over the set of macro-states. In

order to translate a formula Δ(a, c) to a new one-step formula

with macro-states as variables, we have to replace the variable

b in Δ(a, c) with a new variable that acts as a stand-in for b.
For this purpose we introduce a new, existentally quantified

variable Zb, together with a formula stating explicitly that Zb

is to represent the union of the values of all those macro

states that contain b. Furthermore we want all the one-step
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formulas to be special basic, and for this purpose we simply

add a conjunct “disj” to each one-step formula, stating that

the values of any pair of distinct variables appearing in the

formula are to be disjoint. Finally, in order to turn An into

a parity automaton, we use a stream automaton to detect bad

traces (see for instance [17] for the details in a more specific

case). We omit the details of the proof.

Theorem 4 (Simulation). Let Λ be a set of monotone predicate
liftings for T. For any monotone automaton A ∈ Aut(SOΛ)
there exists an equivalent non-deterministic A

′ ∈ Aut(SOΛ).

Combining Proposition 4 with Theorem 4, we easily obtain

the following closure property.

Proposition 6. Let Λ be a set of monotone predicate liftings
for a set functor T. Over T-tree models, the class of second-
order Λ-automata is closed under existential projection.

We can now use the closure properties we have established

for second-order automata to give the desired translation of

MSOT into second-order automata.

Proposition 7. For every formula ϕ ∈ MSOΛ with free
variables in P , there exists a P -chromatic automaton Aϕ ∈
Aut(SOΛ) which is equivalent to ϕ over T-tree models.

Proof: Proceeding by a straightforward induction on the

complexity of ϕ, we leave it to the reader to construct

appropriate automata for the atomic formulas. The inductive

cases for disjunction and negation follow by the Propositions 2

and 3, together with the easy observation that the one-step

language SOΛ is closed under disjunction and Boolean duals.

The case of existential quantification is taken care of by

Proposition 6.

Theorem 1 is immediate from this, as is the following.

Corollary 1. Suppose Λ is any set of monotone predicate
liftings for T such that MSOT ≡ MSOΛ. Then for every formula
of MSOT, there exists an equivalent second-order Λ-automaton
over T-tree models. In particular, this holds whenever Λ is
expressively complete.

V. BISIMULATION INVARIANCE

This section continues the program of [14], making use of

the automata-theoretic translation of MSOT we have just estab-

lished. The gist of our approach is that, in order to characterize

a coalgebraic fixpoint logic μMLT as the bisimulation-invariant

fragment of MSOT, it suffices to establish a certain type of

translation between the corresponding one-step languages.

First we need some definitions.

Definition 13. Given sets X,Y , a mapping h : X → Y and a

valuation V : A→ Q(Y ), we define the valuation V[h] : A→
Q(X) by setting V[h](b) = h−1[V (b)] for each b ∈ A.

The most important concept that we take from [14] is that of

a uniform translation (called uniform correspondence in [14]).

For this we need a few auxiliary definitions:

Definition 14. A one-step frame is a pair (X,α) with α ∈
TX . A homomorphism of one-step frames h : (X ′, α′) →
(X,α) is a map h : X ′ → X with Th(α′) = α. A one-step

frame (X ′, α′) together with a homomorphism h : (X ′, α′)→
(X,α) is called a cover of (X,α).

We can now define the notions of uniform translations and

uniform constructions:

Definition 15. Given a functor T, a uniform construction F
for T is an assignment of a cover hα : (X∗, α∗)→ (X,α) to

every one-step frame (X,α).

Definition 16. We say that the second-order one-step language

SO1Λ(A) admits uniform translations if, given any natural

number k, there exists a uniform construction F and an

assignment of a monotone (natural) predicate lifting

ϕ∗ : Q(−)A → Q ◦ T
to each monotone one-step formula ϕ ∈ SO1Λ with free

variables A and quantifier depth at most k, such that for any

one-step model (X,α, V ), we have

(X,α, V ) �1 ϕ
∗ iff (X∗, α∗, V[hα]) �1 ϕ.

Remark 1. It is easy to see that every monotone predicate

lifting λ : Q(−)A → Q ◦ T is equivalent to an atomic

formula of ML1T(A). In the following we shall not take care to

distinguish between such a monotone predicate lifting and the

corresponding atomic formula.

Definition 17. Any translation (·)∗ : SO1Λ → ML1T induces

a construction on automata, transforming a second-order Λ-

automaton A = (A,Δ, aI ,Ω) into the modal automaton A
∗ =

(A,Δ∗, aI ,Ω), with Δ∗ given by Δ∗(a, c) := (Δ(a, c))∗.

Since the proof of the following result closely follows that

of the main result in [14], we omit the details. The main

difference with [14] is that here we need an “unravelling”-

like component.

Proposition 8. Assume that SO1Λ admits a uniform translation
(·)∗, and let A be a second-order Λ-automaton. Then for each
pointed T-model (S, s) there is a T-tree model (T, R, t), with
a T-model homomorphism f from T to S, mapping t to s, and
such that

A accepts (T, R, t) iff A∗ accepts (S, s).

Furthermore, given that S = (S, σ, V ), if the map hσ(s) :
S∗ → S is surjective, so is f .

From this, a routine argument yields the following result.

Theorem 5 (Characterization Theorem 1). Let Λ be an
expressively complete set of monotone predicate liftings for
a set functor T, and assume that SOΛ(A) (for any set of
variables A) admits uniform translations. Then μMLΛ is the
bisimulation-invariant fragment of MSOΛ.

The existence of uniform translations for the one-step

language [14] involves two components: a translation on the
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syntactic side and a uniform construction on the semantic side.

However, as we shall now see, we can focus entirely on finding

a suitable uniform construction for the one-step models; the

syntactic translation will come for free.

Definition 18. Let ϕ be any formula of SO1Λ(A) of quantifier

depth ≤ k, and let F be a uniform construction for k. Then, we

define the generalized predicate lifting ϕ∗ : Q(−)A → Q ◦ T
by setting, for a given set X and valuation V : A→ Q(X):

ϕ∗X(V ) := {α ∈ TX | (X∗, α∗, V[hα]) �1 ϕ}.
The following is obvious:

Proposition 9. If ϕ is a monotone formula then ϕ∗ is a
monotone generalized predicate lifting.

Note that, in order for SO1Λ(A) to admit a uniform transla-

tion, it suffices that there exists for any k a uniform construc-

tion F such that, for every formula ϕ of quantfier depth ≤ k,

the generalized lifting ϕ∗ is natural. An equivalent formulation

of this condition is the following.

Proposition 10. Let ϕ be any one-step formula in SO1Λ(A)
and let F be a uniform construction. Then the lifting ϕ∗ is
natural if, for any pair of sets X,Y , any map f : X → Y
and any valuation V : A→ Q(Y ), we have

(�) (X∗, α∗, V[f◦hα]) �1 ϕ iff (Y∗, β∗, V[hβ ]) �1 ϕ

provided that Tf(α) = β.

The following diagram clarifies condition (�):

(X∗, α∗, V[f◦hα])

(X,α, V[f ])

(Y∗, β∗, V[hβ ])

(Y, β, V )

ϕ⇐⇒

f
��

hα

��
hβ

��

Definition 19. A uniform construction F is said to be

adequate for k, and with respect to the liftings Λ, if the

equivalence (�) holds for all (monotone) formulas in SO1Λ(A)
of quantifier depth ≤ k (for any finite set of variables A).

Since we could of course take the quantifier depth k and the

set of liftings as extra inputs for the uniform construction, we

shall simply say that the functor T admits an adequate uniform

construction if there is an adequate uniform construction for T
with respect to every k and every set of monotone liftings. If

Λ is an expressively complete set of liftings, this is equivalent

to requiring an adequate uniform construction with respect to

Λ, for every k.

The following theorem, from which we obtain Theorem 2 by

taking for Λ the set of all monotone liftings for T, summarizes

the results of this section.

Theorem 6. Let Λ be any expressively complete set of
monotone predicate liftings for the set functor T. If T admits
an adequate uniform construction, then

μMLΛ ≡ MSOΛ/�.

Example 1. As a first application, the standard Janin-

Walukiewicz characterization of the modal μ-calculus can be

seen as an instance of the result by taking Λ = {�,♦}
and T = P , recalling that MSO = MSO{♦} ≡ MSO{�,♦}.
The adequate uniform construction for P is given as follows:

consider a pair (X,α) with α ∈ P(X). We take this to

X∗ = α∗ = α × ω, and we let hα : α × ω → α be the

projection map.

It turns out that several other applications of this result can

be obtained in a particularly simple way. Say that a uniform

construction F is strongly adequate if, for any mapping f :
X → Y and any α ∈ TX , β ∈ TY with Tf(α) = β, there

is a bijection g : X∗ → Y∗ such that Tg(α∗) = β∗ and

f ◦ hα = hβ ◦ g. Since it is easy to check that any strongly

adequate uniform construction is adequate, we get:

Corollary 2. If there is a strongly adequate uniform construc-
tion for T, then μMLT ≡ MSOT/�.

Example 2. As a first example, consider the finitary multiset

(“bags”) functor B, which sends a set X to the set of mappings

f : X → ω such that the set {u ∈ X | f(u) = 0} is cofinite.

The action on morphisms is given by letting, for f ∈ BX
and h : X → Y , the multiset Bh(f) : Y → ω be defined by

w 	→∑
h(v)=w f(v). Given a pair X,α where α : X → ω has

finite support, we define

X∗ =
⋃
{{u} × α(u) | u ∈ X}.

Here, we identify each each n ∈ ω with the set {0, ..., n− 1}.
The mapping α∗ : X∗ → ω is defined by setting α∗(w) =
1 for all w ∈ X∗. The map hα : X∗ → X is defined by

(u, i) 	→ u. It is easy to check that the construction F is

strongly adequate, hence μMLB ≡ MSOB/�.

As a final application, consider the set of all exponential
polynomial functors [18] defined by the “grammar”

T ::= C | Id | T× T |
∐

i∈I
Ti | T(−)C

where C is any constant functor for some set C, and Id
is the identity functor on Set. These functors cover many

important applications: streams, binary trees, deterministic

finite automata and deterministic labelled transition systems

are all examples of coalgebras for exponential polynomial

functors, as is the so called game functor whose coalgebras

provide the semantics for “Coalition Logic” [6]. For this last

instance, the “game functor” G for n agents can be written in

the form of an exponential polynomial functor as follows:

∐

〈S0,...,Sn−1〉∈(P(ω)\{∅})n
{〈S0, ..., Sn−1〉} × Id(S0×...×Sn−1)

Then, for a given set X , an element of GX will be a pair

consisting of a vector 〈S0, ..., Sn−1〉 of available strategies for

each player, together with an “outcome map” f assigning an

element of X to each strategy profile in S0 × ...× Sn−1.
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Proposition 11. Every exponential polynomial functor admits
a strongly adequate uniform translation.

Corollary 3. For every exponential polynomial functor T, we
have μMLT ≡ MSOT/�.

The following diagram illustrates the connection between

the results that have been presented in this section:

MSOΛ

Aut(SO1Λ)

μMLΛ

Aut(ML1Λ)

/ � ≡

/ � ≡

trees all models

The cases where we can find a strongly adequate uniform

construction are the most straightforward applications of The-

orem 6 that we know of. The Janin-Walukiewicz theorem is a

less direct application: there is no strongly adequate uniform

construction for the powerset functor, but there is an adequate

uniform construction. In the next section, we shall study an

example of a functor where there is no adequate uniform

construction at all.

VI. THE MONOTONE NEIGHBORHOOD FUNCTOR

The final section of our paper concerns the monotone

neighborhood functor M. Our main result concerns a char-

acterization of the fragment of MSOM that is invariant under

global neighborhood bisimulations, to be introduced below.

Our proof applies the method of section V, but not directly:

we will first see that the functor M itself does not admit an

adequate uniform construction.

A. No adequate uniform construction for M
We first consider the negative result.

Proposition 12. There is no adequate uniform construction
for the monotone neighborhood functor M.

Proof: To arrive at a contradiction assume that F is

adequate. Fix some a ∈ A and consider the formula ϕ =
∀Z.(a ⊆ Z) expressing that a has empty extension.

Let Y be the set {u, v} and let β ∈ MY be the

neighborhood structure {{u}, {u, v}}. Let V be any valuation

with V (a) = {v}. First, we prove that (Y, β, V ) �1 ϕ∗:
to see this, consider the one-step model (Y ′, β′, V ′) where

β′ = {{u}} and we recall that Y ′ = {u}, and where V ′

is simply the restriction of V to Y ′. It is easy to show that

(Y ′∗ , β
′
∗, V

′
[hβ′ ]

) �1 ϕ, and hence (Y ′, β′, V ′) �1 ϕ
∗. Since the

generalized predicate lifting ϕ∗ is natural by assumption and

MιY ′,Y (β
′) = β, we get (Y, β, V ) �1 ϕ

∗ as required.

With this in mind, let X be the set {u∗, v∗, w∗} and let

α ∈MX be the neighborhood structure

{{u∗, v∗}, {u∗, w∗}, {u∗, v∗, w∗}}
Define the map f : X → Y by setting u∗ 	→ u, v∗ 	→ v
and w∗ 	→ u. It can easily be checked that Mf(α) = β. By

naturality of the formula ϕ∗, it follows that (X,α, V[f ]) �1 ϕ
∗.

Hence we must have

(X∗, α∗, V[f◦hα]) �1 ϕ

hence V[f◦hα](a) = ∅. Since v∗ ∈ V[f ](a), this means that

we have v∗ /∈ hα[X∗]. But since Mhα(α∗) = α, this means

hα[X∗] must be a support for α. But it is easy to show that

α cannot have a support S with v∗ /∈ S, so we have now

reached a contradiction showing that F cannot be an adequate

construction.

B. The functor M�

In this section, as a step towards our main characterization

result, we shall consider the language μMLM� , where the

functorM� is a slight variation of the monotone neighborhood

functor M. The functor M� is obtained as the subfunctor of

M×P given by

X 	→ {(α, Y ) ∈MX × PX | Y supports α}
This is indeed a subfunctor of M×P , because given a map

h : X → Y , if Z is a support for α ∈ MX , then h[Z]
is a support for Mh(α). Given α ∈ M�X , we will write

α = (Nα, Sα).

Definition 20. For the functor M� we define the unary

predicate liftings � and E by

�X(Z) := {α ∈M�X | Z ∈ Nα}
EX(Z) := {α ∈M�X | Z ∩ Sα �= ∅},

and we let ♦ be the dual of � and let Ed be the dual of E.

The set of liftings {�,♦, E,Ed} is denoted as Θ.

The set Θ is an expressively complete set of liftings for

M�. We shall omit the proof of this fact here, and merely

state it as the following proposition:

Proposition 13. Every monotone natural predicate lifting λ :
Q(−)A → Q ◦M� is equivalent to a formula in MLΘ(A).

The main technical result of this section states the existence,

for all k, of a uniform construction F that is adequate for k
and with respect to the set of liftings {�, E}.
Definition 21. Fix a natural number k. Given a set X , and

object α ∈M�X , put

X∗ := {(u, i, Z, j) ∈ (X × 2k × P(Sα)× ω) | u ∈ Z},
and let πX be the projection map from X∗ to X . Define α∗ =
(Nα∗ , Sα∗) ∈ M�(X∗) by setting Sα∗ = X∗, and set Z ∈
Nα∗ for Z ⊆ Sα∗ iff �Y, j� ⊆ Z for some Y ∈ α, Y ⊆ Sα

and some j < ω, where

�Y, j� := {(u, i, Y, j) | u ∈ Y, i < 2k}.
The sets of the form �Z, j� will be called the basic members
of Nα∗ .

The main goal of this section is to prove the following:
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Proposition 14. The construction given in Definition 21 is an
adequate, uniform construction for k.

It is easy to check that, for all sets X and α ∈ M�X , we

have M�πX(αF ) = α.

Our main goal in this section is to prove the following result,

from which Proposition 14 now follows:

Lemma 1. Let X,Y be any sets, α ∈M�X , β ∈M�Y and
V : A → Q(Y ). Suppose that we have a map h : X → Y
such that M�h(α) = β. Then we have

(X∗, α∗, V[h◦πX ]) ≡k (Y∗, β∗, V[πY ])

Here, and throughout this section, we write (X,α, V ) ≡k

(Y, β, U) to say that two one-step models satisfy the same

formulas of MSO1{�,E}(A) with at most n nested quantifiers.

Let us keep the data X,Y, α, β, V and h fixed throughout the

proof, and assume that M�h(α) = β. We will also assume,

from now on, that Nα and Nβ are both non-empty sets: if one

of them is empty then both of them are, and in this case the

lemma can be proved essentially using an easier version of

the argument we use below.

Definition 22. Given a finite set of variables A, a propositional

A-type τ is a subset of A. Given a set X and a valuation

V : A→ Q(X), the propositional A-type of v ∈ X is defined

to be V †(v) = {a ∈ A | v ∈ V (a)}.
Definition 23. Given a basic member �Z, j� either in Nα∗ or

in Nβ∗ , a valuation V : A → Q(X∗) or V : A → Q(Y∗),
and a natural number m, the m-signature of �Z, j� over

variables A and relative to the valuation V is the mapping

σ : P(A) → {0, ...,m} defined by setting σ(t) to be n < m
if �Z, j� contains exactly n elements of type t under the

valuation V , or σ(t) = m if �Z, j� contains at least m
elements of type t.

Definition 24. Let B be any set of variables containing A,

and let V1 : B → Q(X∗) and V2 : B → Q(Y∗). Then for any

natural number n we write

(X∗, α∗, V1) ≈n (Y∗, β∗, V2)

and say that these one-step models match up to depth n, if:

for every n-signature σ over variables B, either the number

of basic elements of signature σ in Nα∗ and Nβ∗ respectively

are both finite and the same, or both infinite.

Lemma 2. (X∗, α∗, V[h◦πX ]) ≈2k (Y∗, β∗, V[πY ]).

We are going to show, by induction on a natural number

m ≤ k, that if two one-step models of the form (X∗, α∗, V1)
and (Y∗, β∗, V2) match up to depth 2m, then they satisfy the

same formulas of quantifier depth m. For the basis case of

20 = 1, we need the following result:

Lemma 3. Let B be a set of variables containing A, and let
V1 : B → Q(X∗) and V2 : B → Q(F β(Y )) be valuations
such that

(X∗, α∗, V1) ≈1 (Y∗, β∗, V2)

Then these two one-step models satisfy the same atomic
formulas of the one-step language MSO1{�,E}.

To clinch the proof of Proposition 14, we now only need

the following lemma:

Lemma 4. Let B be a finite set of variables containing A, let
0 < m ≤ k and let V1 : B → Q(X∗) and V2 : B → Q(Y∗)
be valuations such that

(X∗, α∗, V1) ≈2m (Y∗, β∗, V2)

Let q be any fresh variable. Then for any valuation V ′1
extending V1 with some value for q, there exists a valuation
V ′2 extending V2, such that

(X∗, α∗, V ′1) ≈2(m−1)

(Y∗, β∗, V ′2)

and vice versa.

Proof: We only prove one direction since the other

direction can be proved by a symmetric argument. Let V ′1
be given. By the hypothesis, for any 2m-signature σ over the

variables B, either the number of basic elements of signature

σ in Nα∗ and Nβ∗ relative to V1 and V2 are both finite and the

same, or both infinite. Let σ1, ..., σk be a list of all the distinct

2m-signatures over B such that the set of basic elements of

Nα∗ and Nβ∗ of signature σi, with 1 ≤ i ≤ k, is non-empty

but finite, and let σk+1, ..., σl be a list of all the 2m-signatures

such that, for k + 1 ≤ i ≤ l, there are infinitely many basic

elements of Nα∗ and of Nβ∗ of signature σi. Then, for each

i ∈ {1, ..., l}, let α∗[σi] denote the set of basic elements in

Nα∗ of signature σi, and similarly let β∗[σi] denote the set of

basic elements of Nβ∗ of signature σi.
Given the extended valuation V ′1 in X∗ defined on variables

B ∪ {q}, we similarly let τ1, ..., τk∗ be a list of all the 2m−1-

signatures over B ∪ {q} such that, for 1 ≤ i ≤ k∗, the set of

basic elements of Nα∗ of 2m−1-signature τi is non-empty but

finite. We let τk∗+1, ..., τl∗ be a list of all the 2m−1-signatures

over B ∪ {q} such that, for each i with k∗ + 1 ≤ i ≤ l∗,
the set of basic elements of Nα∗ of 2m−1-signature τi is

infinite. Let α∗[τi] denote the set of basic elements of Nα∗
of 2m−1-signature τi, so that the collection α∗[τ1], ..., α∗[τl∗ ]
constitutes a second partition of the set of basic elements of

Nα∗. It will be useful to introduce the abbreviation D1 for the

finite set α∗[σ1]∪ ...∪α∗[σk], and the abbreviation D2 for the

finite set α∗[τ1] ∪ ... ∪ α∗[τk∗ ].
For each i with 1 ≤ i ≤ k, there is a bijection between the

set α∗[σi] and β∗[σi], and we can paste all these bijections

together into a bijective map

f : α∗[σ1] ∪ ... ∪ α∗[σk]→ β∗[σ1] ∪ ... ∪ β∗[σk]
Since every basic element of Nα∗ not in D1 belongs to a 2m-

signature of which there are infinitely many basic elements in

β∗, and since D1 ∪D2 is finite, it is easy to see that we can

extend the map f to a map g which is an injection from the set

D1 ∪D2 into the set of basic elements of Nβ∗ , such that for

each basic element �Z, j� in D1 ∪ D2, �Z, j� and g(�Z, j�)
have the same 2m-signature over B, and such that g �D1 = f .
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Each basic element of Nβ∗ not in the image of g must then

be of one of the 2m-signatures σk+1, ..., σl, and so we can

partition the set of basic elements of Nβ∗ outside the image

of g into the cells β∗[σk+1]\g[D2], ..., β∗[σl]\g[D2]. For each

i with k + 1 ≤ i ≤ l, let γi1, ..., γ
i
r list all infinite sets of the

form α∗[σi] ∩ α∗[τj ] for k∗ + 1 ≤ j ≤ l∗. The list γi1, ..., γ
i
r

must be non-empty, and so since the set β∗[σi] \ g[D2] is also

infinite, we may partition it into r many infinite cells and list

these as δi1, ..., δ
i
r. Now, for each basic element �Z, j� of βF ,

we define a map W
Z,j� from B∪{q} to P(�Z, j�) by a case

distinction as follows:

Case 1: �Z, j� = g(�Z ′, j′�) for some �Z ′, j′� ∈ D1 ∪D2.

Then �Z, j� and �Z ′, j′� have the same 2m-signature over B.

Using this fact we define the valuation W
Z,j� so that, for

each p ∈ B, we have W
Z,j�(p) = V2(p) ∩ �Z, j�, and so

that �Z ′, j′� and �Z, j� have the same 2m−1-signature over

B ∪ {q} with respect to the valuations V ′1 and W
Z,j�. We

leave the details of this construction to the reader.

Case 2: �Z, j� is not in the image of g. Then there must be

some i ∈ {k∗+1, ..., l∗} such that �Z, j� ∈ β∗[σk+1] \ g[D2],
and this set is partitioned into δi1, ..., δ

i
r. Let �Z, j� ∈ δij , and

pick some arbitary element �Z ′, j′� of the set γij . Then �Z ′, j′�
and �Z, j� have the same 2m-signature over B and we can

proceed as in Case 1.

We define the valuation V ′2 by setting V ′2(q) to be the union

of the sets W
Z,j�(q) for �Z, j� a basic element in NF
β . It is

now fairly straightforward to check that

(X∗, α∗, V ′1) ≈2(m−1)

(Y∗, β∗, V ′2)

as required. We omit the details.

Lemma 1 can now be deduced by combining the last three

lemmas, by a straightforward argument using Ehrenfeucht-

Fraı̈ssé games for the one-step language.

C. Global neighborhood bisimulations

Since the set of liftings {�,♦} can be shown to be expres-

sively complete for M, and since ♦ is just the dual of �,

the monadic second order language MSOM is equivalent to the

logic MMSO which has its syntax given by

ϕ ::= sr(p) | p ⊆ q | �(p, q) | ∃p.ϕ | ¬ϕ | ϕ ∨ ϕ.
The semantics of an atomic formula �(p, q) in a neighborhood

model S is given, concretely, by the clause: (S, σ, V, u) �
�(p, q) if, for all v ∈ V (p), there is Z ∈ σ(v) such that

Z ⊆ V (q).
Using the techniques in this paper, we cannot characterize

the fragment of the language MMSO that is invariant for arbitrary

neighborhood bisimulations. However, the situation changes

if we consider global bisimulations between neighborhood

models.

Definition 25. A global neighborhood bisimulation between

M-models S1 and S2 is a neighborhood bisimulation R that

additionally satisfies the conditions:

Forth For every u ∈ S1 there is some v ∈ S2 with uRv
Back For every v ∈ S2 there is some u ∈ S1 with uRv

We now ask: what is the fragment of MMSO that is in-

variant for global neighborhood bisimulations? Since global

bisimulations are the natural equivalence relation for modal

logic with the global modalities, the most reasonable candidate

would be: the monotone modal μ-calculus extended with the

global modalities. To be precise, let the monotone modal
μ-calculus with global modalities, denoted μMMLg , be the

language defined by the grammar:

ϕ ::= p | ¬p | ⊥ | � | �ϕ | ♦ϕ | [∀]ϕ | [∃]ϕ
| ϕ ∨ ϕ | ϕ ∧ ϕ | μp.ϕ | νp.ϕ

where the formula ϕ in μp.ϕ and νp.ϕ must be positive

in the variable p. The new operators [∀] and [∃] are the

global universal and existential modalities, with their standard

semantics: (S, u) � [∀]ϕ if (S, v) � ϕ for all v ∈ S, and

(S, u) � [∃]ϕ if (S, v) � ϕ for some v ∈ S.

Given anM�-model S, let SM be the underlyingM-model.

Conversely, given an M-model S = (S, σ, V ), define the M�-

model S
G = (S, σG, V ) by setting σG(s) = (σ(s), S). The

main result of this section is the following.

Theorem 7. A formula in MMSO is invariant for global neigh-
borhood bisimulations if, and only if, it is equivalent to a
formula of the logic μMMLg .

Proof: Clearly μMMLg translates into MMSO and is invariant

for global bisimulations.

Conversely, suppose ϕ ∈ MMSO is invariant for global neigh-

borhood bisimulations. First observe that ϕ can be regarded

as a formula in MSOM� as well. More precisely, there is a

formula ϕ∗ ∈ MSOM� such that

(T, t) � ϕ∗ iff (TM, t) � ϕ (1)

for any M�-model (T, t). By Corollary 1 there is a second-

order {�, E}-automaton Aϕ such that

Aϕ ≡ ϕ∗ (on all M�-tree models). (2)

Now we use the existence of an adequate, uniform construc-

tion for M� (Proposition 14). Let A
t
ϕ be the corresponding

modal Λ-automaton given by Proposition 8, where Λ is the

collection of all monotone, natural predicate liftings for M�.

By Proposition 13 we may in fact assume that A
t
ϕ is a Θ-

automaton, where Θ = {�,♦, E,Ed}. Let ψ = ψAt
ϕ

be the

corresponding formula in μMLΘ. We claim that, for any pointed

neighborhood model (S, s) we have

S, s � ϕ iff SG, s � ψ. (3)

To prove this, consider the M�-tree model (T, R, r) given

by Proposition 8, applied to the pointed M�-model (SG, s).
Then there is a surjective M�-coalgebra morphism f :
(T, r) → (SG, s), and so in particular, f is the graph of a

global neighborhood bisimulation between TM and S relating

r to s. Gathering some facts we obtain the following chain of
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equivalences:

S, s � ϕ iff TM, r � ϕ (assumption on ϕ)

iff T, r � ϕ∗ (1)

iff T, R, r � Aϕ (2)

iff SG, s � A
t
ϕ (Proposition 8)

iff SG, s � ψ (assumption on ψ)

which proves (3) indeed.

Finally, let ψ∀ ∈ μMMLg be the formula we obtain from ψ by

replacing every occurrence of E with [∃] and every occurrence

of Ed with [∀]. It is a routine check to verify that

S
G, s � ψ iff S, s � ψ∀. (4)

But then the equivalence of ϕ ∈ MMSO and ψ∀ ∈ μMMLg is

immediate from (3) and (4).

VII. FUTURE WORK

For a concise formulation of the contributions of this

publication we refer to the abstract.

Here we mention some questions for future research:

1) Is there a good categorical characterization of those set

functors T that admit an adequate uniform construction,

for instance, in terms of T preserving certain limits or

colimits?

2) Can we generalize our work in section VI, to the effect

that every set functor T has a companion T� that admits

an adequate uniform construction? Can we then use this

companion functor to prove invariance results for T-

logics, similar to Theorem 7? Relating this to the previous

question, we would like to understand why M� admits

an adequate uniform construction, and M does not.

3) We intend to further explore the relation between MSOT
and the first-order logic of Litak & alii [13] for T-

coalgebras. For instance, an interesting question would be

whether (on T-tree models) MSOT is equivalent to some

extension of this first-order language with certain fixpoint

operators.

Finally we note that after submitting the manuscript of the

current publication, we could settle the main open question

concerning the monotone neighborhood functor M in the

positive. Based on Theorem 7 we can prove that

μMML ≡ MMSO/�
indeed. That is, a formula in MMSO is invariant under neighbor-

hood bisimulations if, and only if, it is equivalent to a formula

of the monotone μ-calculus μMML. We will report on this result

in a future publication.
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