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We discuss the use of relation lifting in the theory of set-based coalgebra and coalgebraic 
logic. On the one hand we prove that the neighborhood functor does not extend to a 
relation lifting of which the associated notion of bisimilarity coincides with behavioral 
equivalence. On the other hand we argue that relation liftings may be of use for many other 
functors that do not preserve weak pullbacks, such as the monotone neighborhood functor. 
We prove that for any relation lifting L that is a lax extension extending the coalgebra 
functor T and preserving diagonal relations, L-bisimilarity captures behavioral equivalence. 
We also show that a finitary T admits such an extension iff it has a separating set of 
finitary monotone predicate liftings. Finally, we present the coalgebraic logic, based on a 
cover modality, for an arbitrary lax extension.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There are at least two reasons why the notion of relation lifting plays an important role in the theory of (set-based) 
coalgebras: to characterize bisimulations, and to define the semantics of Moss-type coalgebraic logics. In both cases, coalge-
braists generally have the Barr extension T in mind, which, for a functor T and a relation R ⊆ X × Y , is the relation given 
by

T R := {(
TπX (ρ), TπY (ρ)

) ∈ T X × T Y
∣∣ ρ ∈ T R

}
,

where πX : R → X and πY : R → Y are the two projections. This relation lifting characterizes a bisimulation between two 
coalgebras ξ : X → T X and υ : Y → T Y as a relation R ⊆ X × Y such that (ξ(x), υ(y)) ∈ T R whenever (x, y) ∈ R . It is well 
known, however, that these applications only work properly in case the functor T satisfies the category-theoretic property 
of preserving weak pullbacks. The key observation here is that T distributes over relation composition iff T preserves weak 
pullbacks. As an example, the above characterization of bisimilarity only coincides with that of behavioral equivalence (that 
is the relation of identifiability of two states by morphisms sharing their codomain) if T has this property. For this reason 
relation liftings are often thought to be of interest only in a setting of coalgebras for a weak pullback preserving functor.

On the other hand, the monotone neighborhood functor M is an important example of a coalgebra functor which does 
not preserve weak pullbacks, but which has a relation lifting M̃ that is essentially different from the Barr extension M and 
whose notion of bisimilarity exactly captures behavioral equivalence [4]. And recently it has been shown that this notion of 
relation lifting can also be used to define the semantics of a Moss-style coalgebraic modality [15].

For this reason we study the notions of relation lifting that can be associated with a set functor T from a more general 
perspective. Here we take a relation lifting for a set functor T to be a collection of relations LR for every relation R , such 
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that LR ⊆ T X × T Y if R ⊆ X × Y (in the sequel we will give a more precise definition). Such studies have already been 
undertaken in the past. In [18] Thijs introduced a class of relation liftings, which he calls ‘relators’, to generalize different 
notions of coalgebraic simulation. Later, Baltag used Thijs’ framework in [3] to give a semantics for the coalgebraic cover 
modality nabla. In [6] Hughes and Jacobs defined a generalization of the Barr extension for functors that carry an order. Very 
recently, Levy investigated the relation between the concept of similarity given by a relation lifting and final coalgebras [10].

In this paper we focus mainly on the question when such a relation lifting captures behavioral equivalence, in the sense 
that L-bisimilarity (defined in the obvious way) coincides with behavioral equivalence for any pair of T -coalgebras. Our 
work is concerned with similar notions as Levy’s paper [10]. The difference is that, whereas Levy looks for endofunctors in 
some suitable order-category such that the notion of behavioral equivalence for its coalgebras (in his case: identification in 
the final coalgebra) coincides with similarity for a fixed relation lifting, we go the other way round and try to find relation 
liftings, whose notion of bisimilarity captures behavioral equivalence for a fixed functor.

Our main results can be summarized as follows. On the negative side, we prove that there is no way to capture behavioral 
equivalence between coalgebras for the (arbitrary) neighborhood functor N by means of relation lifting (Theorem 12). On 
the positive side, an important notion studied here is that of a lax extension of a functor T [17]. We will see that if such a 
lax extension preserves diagonals, then it indeed captures behavioral equivalence (Theorem 11) – this takes care of all cases 
known to us. Furthermore, we will provide some additional evidence that this combination of properties (lax extension 
preserving diagonals) is a natural one: in Theorem 14 we will prove that any finitary functor T has such an extension iff it 
admits a separating set of finitary monotone predicate liftings. The notion of a predicate lifting is familiar from coalgebraic 
modal logic [13]. Our theorem helps to clarify the relation between coalgebraic modal logic using a cover modality, and 
coalgebraic modal logic for a separating set of predicate liftings.

This paper is an extension of the earlier paper [12], which itself contained some of the results from the MSc thesis [11], 
authored by the first author and supervised by the second. We added a part on the logic that results when one uses 
lax extensions that preserve diagonals to give a semantics for the coalgebraic cover modality in the style of [3]. Also in 
this context the properties of lax extensions are exactly what is needed to have well-behaved logic. To compare the cover 
modality to more standard coalgebraic logics we also investigate translations between different coalgebraic logics. In this 
we follow [8], but we work on the more concrete level of formulas rather than equivalence classes.

2. Preliminaries

This paper presupposes knowledge of the theory of coalgebras [14]. In this section we recall some of the central defini-
tions in this section, mainly to fix the notation.

2.1. Relations

In the following we consider relations to be arrows in the category of sets and relations. That is, we think of a relation 
R : X → Y between sets X and Y as not just a subset of X × Y but as also specifying its codomain X and domain Y . 
Nevertheless, we often write R = R ′ , R ⊆ R ′ , R ∪ R ′ , R ∩ R ′ : X → Y or (x, y) ∈ R as if the relations R, R ′ : X → Y were sets. 
We use R gr ⊆ X × Y if we want to make explicit that we mean the set of pairs, considered as an object in the category of 
sets and functions, that stand in a relation R : X → Y .

We write R ; S : X → Z for the composition of two relations R : X → Y , S : Y → Z , and R◦ : Y → X for the converse of 
R : X → Y with (y, x) ∈ R◦ iff (x, y) ∈ R . The graph of any function f : X → Y is a relation f : X → Y between X and Y
for which we also use the symbol f . It will be clear from the context in which a symbol f occurs whether it is meant as 
an arrow in the category of sets and functions or as an arrow in the category of relations. The composition of relations is 
written the other way round than the composition of functions. So we have for functions f : X → Y and g : Y → Z that 
g ◦ f = f ; g .

Identity elements in the category of sets and relations are the diagonal relations �X : X → X with (x, x′) ∈ �X iff x = x′ . 
Note that �X = idX , if we consider the identity function idX : X → X as a relation. Given sets X ′ ⊆ X and Y ′ ⊆ Y we define 
the restriction R �X ′×Y ′ : X ′ → Y ′ of the relation R : X → Y as R �X ′×Y ′= R ∩ (X ′ × Y ′).

2.2. Set functors

In the following we assume, if not explicitly stated otherwise, that functors are covariant endofunctors in the category 
of sets and functions.

We first introduce some of the functors that concern us in this paper. The powerset functor P maps a set X to the set 
of all its subsets P X . A function f : X → Y is sent to P f : P X → PY , U 	→ f [U ]. The contravariant powerset functor P̆ also 
maps a set X to P̆ X = P X . On functions P̆ is the inverse image map, that is for an f : X → Y we have P̆ f : P̆Y → P̆ X , 
V 	→ f −1[V ].

The neighborhood functor or double contravariant powerset functor N = P̆P̆ maps a set X to N X = P̆P̆ X and a function 
f : X → Y to N f = P̆P̆ f :N X →N Y or more concretely for all ξ ∈N X = P̆P̆ X we have

N f (ξ) = {
V ⊆ Y

∣∣ f −1[V ] ∈ ξ
}
.
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For any cardinal α there is an α-ary variant αN of N that maps a set X to αN X = P̆((P̆ X)α). This means that the 
elements ξ ∈ αN X are sets of α-tuples of subsets of X . For an object U ∈ (P̆ X)α and a β ∈ α we write Uβ for U (β)

that is the β-th component of U . So if α is a finite number, that is α = n ∈ ω, then we have that U = (U0, U1, . . . , Un−1). 
A function f : X → Y is mapped by αN to αN f : αN X → αN Y such that for all ξ ∈ αN X = P̆((P̆ X)α)

αN f (ξ) = {
V ∈ (P̆Y )α

∣∣ (
f −1[Vβ ])

β∈α
∈ ξ

}
.

A restriction of the neighborhood functor N is the monotone neighborhood functor M. It maps a set X to the collection 
MX of objects ξ in N X that are upsets, meaning that for all U , U ′ ⊆ X , if U ′ ⊆ U and U ′ ∈ ξ then also U ∈ ξ . On functions 
M is the same as N . So we have for f : X → Y that

M f : MX → MY ,

ξ 	→ {
V ⊆ Y

∣∣ f −1[V ] ∈ ξ
}
.

It is straightforward to check that this is well-defined. There is also an α-ary version αM of M that is defined analogously 
to αN where the monotonicity requirement becomes that if U ′

β ⊆ Uβ for all β ∈ α and U ′ ∈ ξ then also U ∈ ξ .

The next two functors F 3
2 and Pn are interesting examples for us, because they, like the monotone neighborhood functor, 

do not preserve weak pullbacks but still allow for a relation lifting that captures behavioral equivalence.
The functor F 3

2 maps a set X to

F 3
2 X = {

(x0, x1, x2) ∈ X3
∣∣ ∣∣{x0, x1, x2}

∣∣ ≤ 2
}

the set of all triples over X that consist of at most two distinct elements. On functions the functor F 3
2 is defined exactly 

as (−)3, that is a function f : X → Y is mapped by F 3
2 such that F 3

2 f (x0, x1, x2) = ( f (x0), f (x1), f (x2)).
The restricted powerset functor Pn for an n ∈ ω maps a set X to the set Pn X = {U ⊆ X | |U | < n} of all its subsets of 

cardinality smaller than n. On functions it has the same definitions as P , that is Pn f (U ) = f [U ].
In the context of coalgebraic logic one pays special attention to functors that preserve finite sets and are finitary. A func-

tor T preserves finite sets if T X is finite whenever X is. All the functors mentioned above restrict to finite sets.
For the definition of finitary functors we use ιX ′,X : X ′ → X, x 	→ x for the inclusion of a subset X ′ ⊆ X into X . A functor 

T is finitary if all sets X

T X =
⋃{

T ιX ′,X
[
T X ′] ⊆ T X

∣∣ X ′ ⊆ X, X ′ is finite
}
.

The idea behind this definition is that finitary functors have the property that in order to describe an element ξ ∈ T X one 
has to use only a finite amount of information from the possibly infinite set X . From the functors introduced above only F 3

2
and Pn for n ∈ ω are finitary. However one can define for every set functor T its finitary version Tω that maps a set X to

Tω X =
⋃{

T ιX ′,X
[
T X ′] ⊆ T X

∣∣ X ′ ⊆ X, X ′ is finite
}
.

A function f : X → Y is mapped by Tω to the function

Tω f : Tω X → TωY ,

ξ 	→ T ι f [X ′],Y ◦ T f X ′
(
ξ ′),

where ξ ′ ∈ T X ′ is such that ξ = T ιX ′,X (ξ ′) for a finite X ′ ⊆ X and f X ′ is the function f X ′ : X ′ → f [X ′], x′ 	→ f (x′). This is 
well-defined, that means independent of the choice of X ′ , because the following diagram commutes for all X ′, X ′′ ⊆ X

X ′ ιX ′,X

f X ′

X

f

X ′′ιX ′′,X

f X ′′

f [X ′] ι f [X ′ ],Y
Y f [X ′′]ι f [X ′′ ],Y

It is immediate from the definition that there is an inclusion τX : Tω X ⊆ T X for all sets X and that this actually defines 
a natural transformation τ : Tω ⇒ T . If the functor T is already finitary then T identical is to Tω and τ is the identity. 
Therefore we will often write Tω when we work with an arbitrary functor that we assume to be finitary.

An example of a finitary version of a functor that we make use of is Pω . One can see by instantiating the above definition 
that this functor maps a set X to the set of all its finite subsets.

A last property of functors that is important in coalgebraic logic is preservation of inclusions. A functor T preserves 
inclusions if T ιX ′,X = ιT X ′,T X for any inclusion ιX ′,X : X ′ → X of some subset X ′ ⊆ X . In [2, Chapter III, p. 132] it is proved 
that for every set functor T there is a functor T ′ that preserves inclusions and that is naturally isomorphic to it with the 
only possible exception of the empty set. In fact a stronger result is showed and one can check the proof that if one only 
wants T ′ to preserve inclusions then T ′ can in fact be constructed to be isomorphic to T , even on the empty set.
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In the last two sections on coalgebraic logic we will presuppose that we are working with a functor that preserves 
inclusions. In all other parts of the paper we explicitly mention if preservation of inclusions is used as an assumption for 
some result.

2.3. Coalgebras

A T -coalgebra for a covariant functor T on a set X is a function ξ : X → T X . The elements of X are called the states of ξ
and the function ξ is called the transition structure. A T -coalgebra morphism from a T -coalgebra ξ : X → T X to a T -coalgebra 
ζ : Z → T Z is a function f : X → Z such that ζ ◦ f = T f ◦ ξ .

The T -coalgebras together with the T -coalgebra morphisms are a category where the identity arrows, and composition 
of arrows is the same as for the underlying set functions. This category is cocomplete and all colimits are computed as for 
the underlying sets.

The central notion of equivalence between states in coalgebra is behavioral equivalence. Two states, x0 in a T -coalgebra 
ξ : X → T X and y0 in T -coalgebra υ : Y → T Y , are behaviorally equivalent if there exists a T -coalgebra ζ and coalgebra 
morphisms f from ξ to ζ and g from υ to ζ such that f (x0) = g(y0).

2.4. Predicate liftings

A notion from coalgebraic modal logic that we are using later are predicate liftings. Predicate liftings for a functor T
were originally introduced in [13], but see also [16], to define a modal logic for T -coalgebras that resembles the standard 
modal logic with boxes and diamonds on Kripke frames.

An n-ary predicate lifting for T is a natural transformation λ : P̆n ⇒ P̆T . We write ar(λ) for the arity of a predicate lifting 
λ : P̆n ⇒ P̆T . The transposite λ� : T ⇒ nN = P̆P̆n of predicate lifting λ for a functor T is a natural transformation that is 
defined at a set X as

λ
�
X : T X → nN X = P̆(P̆ X)n,

ξ 	→ {
U ∈ (P̆ X)n

∣∣ ξ ∈ λX (U )
}
.

An n-ary predicate lifting λ : P̆n ⇒ P̆T is monotone if Ui ⊆ U ′
i for all i ∈ n implies that λ(U ) ⊆ λ(U ′) for any 

U , U ′ ∈ (P̆ X)n . The following observation about monotone predicate liftings is crucial for the proof of Theorem 14. The 
routine proof is left to the reader.

Proposition 1. If λ : P̆n ⇒ P̆T is a monotone n-ary predicate lifting for T then the codomain of its transposite λ� : T ⇒ nN can be 
restricted to nM. That means λ� : T ⇒ nM defined as above is well-defined.

When dealing with multiple predicate liftings of possibly different finite arity it can be useful to compose them with the 
injective natural transformation en : nN ⇒ ωN defined by

en
X : nN X → ωN X,

ξ 	→ {
U ∈ (P̆ X)ω

∣∣ (U0, U1, . . . , Un−1) ∈ ξ
}
.

This natural transformation restricts to the monotone neighborhood functor to En : nM ⇒ ωM which we use if the predi-
cate liftings are monotone.

A last concept that is relevant when working with predicate lifting is the one of separating sets. It comes in many 
interdependent versions of which we here introduce the ones that we are going to need later. A family of sets F ⊆ P X is 
separating if for all x, x′ ∈ X with x �= x′ there is an U ∈ F such that either x ∈ U and x′ /∈ U or x /∈ U and x′ ∈ U . A tuple 
S = (S0, S1, . . . , Sn−1) ∈ (P̆ X)n is separating if for all x, x′ ∈ X with x �= x′ there is an i < n such that either x ∈ Si and x′ /∈ Si
or x /∈ Si and x′ ∈ Si .

A set Λ of predicate liftings for a functor T is separating if in every component the union of their images is separating. 
That means that for all sets X and all ξ, ξ ′ ∈ T X with ξ �= ξ ′ there is a λ ∈ Λ and an U ∈ (P̆ X)ar(λ) such that either ξ ∈ λX (U )

and ξ ′ /∈ λX (U ) or ξ /∈ λX (U ) and ξ ′ ∈ λX (U ). Intuitively, a set of natural transformations for a functor T is separating if it 
is expressive enough to recognize every difference between elements in T X .

A family F of functions from X to Y is jointly injective if given any x, x′ ∈ X we have that f (x) = f (x′) for all f ∈ F
implies that x = x′ . It can be checked that a set of predicate liftings is separating if and only if the family of functions 
{e ◦ λ

�
X : T X → ωN X}λ∈Λ is jointly injective at every set X .

A set of predicate liftings is finitely separating if it is separating in the above sense but only for finite sets X . That means 
for instance that for all finite sets X the set {λX (U ) ⊆ T X | λ ∈ Λ, U ∈ (P̆ X)ar(λ)} is separating.

The reader can check that if Λ is a finitely separating set of predicate liftings for a functor T then {P̆τ ◦λ | λ ∈ Λ}, where 
τ : Tω ⇒ T is the inclusion, is a separating set of predicate liftings for Tω . For the case where T is finitary we have that τ
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is the identity and obtain the following:

Proposition 2. Every finitely separating set of predicate liftings Λ for a finitary functor Tω is separating.

2.5. Relation liftings and bisimilarity

Fix a covariant set functor T . A relation lifting L for T associates with every relation R : X → Y a relation LR : T X → T Y . 
Throughout this paper we shall require relation liftings to preserve converses, this means that L(R◦) = (LR)◦ for all rela-
tions R . This restriction simplifies the presentation and is not essential for our results because behavioral equivalence, the 
notion we want to capture with relation liftings, is symmetrical.

Given a relation lifting L for a set functor T and two T -coalgebras ξ : X → T X and υ : Y → T Y , an L-bisimulation between
ξ and υ is a relation R : X → Y such that (ξ(x), υ(y)) ∈ LR for all (x, y) ∈ R . The relation ↔L

ξ,υ : X → Y of L-bisimilarity 
between ξ and υ is defined as the union of all L bisimulations between ξ and υ . We sometimes omit the subscripts and 
just write x ↔L y if the coalgebras to which x and y are clear from the context. We also write ↔L

ξ = ↔L
ξ,ξ : X → X for 

bisimilarity on one single coalgebra ξ : X → T X .
A relation lifting L for T captures behavioral equivalence if for any pair of states x and y in T -coalgebras x ↔L y holds iff 

x and y are behaviorally equivalent.

3. Lax extensions

In this section we introduce lax extensions. These are relation liftings satisfying certain conditions that make them 
well-behaved in the context of coalgebra. We summarize some general properties of lax extensions and show that they 
capture behavioral equivalence if they preserve diagonals. For some additional discussion of lax extensions, although in a 
different context, we refer to [17].

Definition 3. A relation lifting L for a functor T is a lax extension of T if it satisfies the following conditions for all relations 
R, R ′ : X → Z and S : Z → Y , and all functions f : X → Z :

(L1) R ′ ⊆ R implies LR ′ ⊆ LR ,
(L2) LR ; L S ⊆ L(R ; S),
(L3) T f ⊆ L f .

A lax extension L preserves diagonals if it additionally satisfies:

(L4) L�X ⊆ �T X .

Condition (L3) in [17] additionally requires that (T f )◦ ⊆ L( f ◦). For us this follows automatically from the preservation of 
converses.

Only one inclusion is needed in (L4) for a lax extension to preserve diagonals. This is enough because, as shown in 
Proposition 5 below, together with condition (L3) condition (L4) implies that L�X = �T X .

Remark 4. In [6] a generalization of the Barr extension is defined with the name ‘lax relation lifting’. This lax relation lifting 
is in general not a lax extension in our sense, even if we would not require preservation of converses, because it does not 
satisfy (L2). The lax relation lifting of [6] always satisfies LR ; L S ⊇ L(R ; S) which is exactly the condition that distinguishes 
lax extension that preserve diagonals from the Barr extension and makes them useful for functors that do not preserve 
weak pullbacks.

Lax extensions have already been studied in the context of coalgebra under the name ‘monotone relator’ in [18, Sec-
tion 2.1] and very recently in [10, Definition 6], where they are just called ‘relators’. In [18] it is additionally required that 
composition of relation is preserved, that means = instead of ⊆ in our condition (L2) of Definition 3, but it is noted that the 
⊇-inclusion can be omitted for most of the proofs. Both [18] and [10] use a different set of conditions in their definitions, 
but it can be checked that they are equivalent to our Definition 3. Instead of (L3) [18] requires that

(R3) �T X ⊆ L�X ,
(R4) T f ; LR ; (T g)◦ ⊆ L( f ; R ; g◦).

In [10] condition (R4) has = instead of just ⊆. This is redundant, because we can show that (R3) and (R4) imply (L3). Hence 
every relator is a lax extension and the equality in (R4) follows from Proposition 5(ii) below. To see that (R3) and (R4) imply 
(L3) consider for any function f : X → Z

T f = T f ; �T Z ; (T idZ )◦ ⊆ T f ; L�Z ; (T idZ )◦ (R3)

⊆ L
(

f ; � ; id◦ ) = L f . (R4)
Z Z
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That every lax extension is a monotone relator, that is every lax extension satisfies (R3) and (R4) follows from our next 
proposition that summarizes some basic properties of lax extensions.

Proposition 5. If L is a lax extension of T then for all functions f : X → Z , g : Y → Z and relations R : X → Z , S : Z → Y :

(i) �T X ⊆ L�X ,
(ii) T f ; L S = L( f ; S) and LR ; (T g)◦ = L(R ; g◦),

and if L preserves diagonals then

(iii) �T X = L�X and T f = L f ,
(iv) T f ; (T g)◦ = L( f ; g◦).

Proof. For (i) recall that we identify a function with the relation of its graph. So we have that �X = idX and we can 
calculate

�T X = idT X = T idX T functor

⊆ LidX = L�X . (L3)

The ⊆-inclusion of T f ; L S = L( f ; S) in (ii) holds because T f ; L S ⊆ L f ; L S ⊆ L( f ; S) where the first inclusion is condition 
(L3) and the second inclusion is (L2). For the ⊇-inclusion consider

L( f ; S) ⊆ T f ; (T f )◦ ; L( f ; S) �T X ⊆ T f ; (T f )◦

⊆ T f ; (L f )◦ ; L( f ; S) (L3)

⊆ T f ; L f ◦ ; L( f ; S) preservation of converses

⊆ T f ; L
(

f ◦ ; f ; S
)

(L2)

⊆ T f ; L S. f ◦ ; f ⊆ �Y and (L1)

The other claim LR ; (T g)◦ = L(R ; g◦) follows from T f ; L S = L( f ; S) because L preserves converses.
For (iv) and (iii) first notice that if L preserves diagonals then �T X = L�X because of (L4) and (i).
The equation T f = L f from (iii) holds because of

T f = T f ; L�X �T X = L�X

= L( f ; �X ) = L f . (ii)

For claim (iv) consider

T f ; (T g)◦ = T f ; L�X ; (T g)◦ �T X = L�X

= L
(

f ; �X ; g◦) = L
(

f ; g◦). (ii) twice �
The following proposition states that lax extensions of inclusion preserving functors commute with restrictions of rela-

tions. This property is useful in coalgebraic logic in Section 6.

Proposition 6. Let L be a lax extension of a functor T that preserves inclusions. Then for all relations R : X → Y and subsets X ′ ⊆ X
and Y ′ ⊆ Y it holds that

L(R �X ′×Y ′) = (LR) �T X ′×T Y ′ .

Proof. We can write the restriction of a relation R : X → Y to the sets X ′ ⊆ X and Y ′ ⊆ Y as R �X ′×Y ′= ιX ′,X ; R ; ι◦Y ′,Y where 
ιX ′,X : X ′ → X and ιY ′,Y : Y ′ → Y are inclusions. Then we compute that

L(R �X ′×Y ′) = L
(
ιX ′,X ; R ; ι◦Y ′,Y

)
= T ιX ′,X ; LR ; (T ιY ′,Y )◦ Proposition 5 (ii)

= ιT X ′,T X ; LR ; ι◦T Y ′T Y T preserves inclusions

= (LR) �T X ′×T Y ′ . �
Example 7.

(i) For any functor T there is a trivial lax extension C that maps any relation R : X → Y to the maximal relation C R =
T X × T Y : T X → T Y . For most functors this lax extension does not preserve diagonals.
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(ii) The Egli–Milner lifting P is a lax extension of the covariant powerset functor P that preserves diagonals. It is defined 
such that PR :P X →PY for any R : X → Y and (U , V ) ∈PR iff
• for all u ∈ U there is a v ∈ V such that (u, v) ∈ R (forth condition), and
• for all v ∈ V there is a u ∈ U such that (u, v) ∈ R (back condition).
More concisely we can write PR = −→PR ∩ ←−PR where we use the abbreviations

−→PR = {
(U , V ) ∈ P X ×PY

∣∣ ∀u ∈ U .∃v ∈ V .(u, v) ∈ R
}
,

←−PR = {
(U , V ) ∈ P X ×PY

∣∣ ∀v ∈ V .∃u ∈ U .(u, v) ∈ R
}
.

(iii) The Egli–Milner lifting from item (ii) is an instances of a relation lifting that is definable for arbitrary functors T . The 
Barr extension T of a functor T on a relation R : X → Y with projections πX : R → X and πY : R → Y is

T R = {(
TπX (ρ), TπY (ρ)

) ∣∣ ρ ∈ T R gr}.
It is easy to see that the Barr extension T of a functor T satisfies (L1). One can also show that T f = T f for all function 
f : X → Y . This means that T satisfies (L3) and (L4). For proofs of this basic properties of the Barr extension consult 
for instance [7].
Condition (L2) is more difficult. It is the case that T R ; T S = T (R ; S) for all relations R : X → Z and S : Z → Y iff T
preserves weak pullbacks [7, Fact 3.6]. So we have that the Barr extension T of a weak pullback preserving functor T
is a lax extension that preserves diagonals.
Also note that the condition T R ; T S = T (R ; S) for all relations R : X → Z and S : Z → Y is very strong. Together with 
T f = T f for all function f : X → Y it means that T is a functor from Rel to Rel that extends T . Such an extension of 
a functor T is unique if it exists because for every relation R : X → Y with projections πX : R gr → X and πY : R gr → Y
we have that

T R = T
(
π◦

X ; πY
)

R = π◦
X ; πY

= Tπ◦
X ; TπY T R ; T S = T (R ; S)

= T
(
π◦

X

) ; TπY . T f = T f

(iv) Even though one can show that the Barr extension M of the monotone neighborhood functor does not satisfy (L2), 
there is a lax extension M̃ of M that preserves diagonals. For this definition recall the notation 

−→PR and 
←−PR from 

item (ii). The lax extension M̃ is defined on a relation R : X → Y as

M̃R : MX →MY

M̃R = −→P←−PR ∩ ←−P−→PR.

One can also define the α-ary version of M̃ that maps an R : X → Y to

α̃MR : αMX → αMY

α̃MR = {
(ξ,υ)

∣∣ ∀U ∈ ξ.∃V ∈ υ.∀β ∈ α.(Uβ, Vβ) ∈ ←−PR
}

∩ {
(ξ,υ)

∣∣ ∀V ∈ υ.∃U ∈ ξ.∀β ∈ α.(Uβ, Vβ) ∈ −→PR
}
.

It is easy to check the conditions (L1) and (L2) for M̃. To check (L3) we show that (ξ, M f (ξ)) ∈ M̃ f for all functions 
f : X → Y and ξ ∈MX . For (ξ, M f (ξ)) ∈ −→P←−P f observe that (U , f [U ]) ∈ ←−P f and f [U ] ∈M f (ξ) for any U ∈ ξ because 
ξ is an upset. To get (ξ, M f (ξ)) ∈ ←−P−→P f take any V ∈ M f (ξ). By the definition of M on morphisms this means that 
f −1[V ] ∈ ξ and for this we have ( f −1[V ], V ) ∈ −→P f . To check condition (L4) we prove that ξ ⊆ ξ ′ for any (ξ, ξ ′) ∈ M̃�X . 
A similar argument shows ξ ⊇ ξ ′ and hence (ξ, ξ ′) ∈ �MX . So let (ξ, ξ ′) ∈ M̃�X and take any U ∈ ξ . It follows that 
there exists a U ′ ∈ ξ ′ such that (U , U ′) ∈ ←−P�X . This means that U ⊇ U ′ and because ξ ′ is an upset, we get that U ∈ ξ ′ . 
Completely analogously one can verify that α̃M is a lax extension of αM that preserves diagonals.

(v) The F 3
2 functor has a lax extension L3

2 that preserves diagonals. L3
2 is defined componentwise for any relation R : X → Y :

L3
2 R : F 3

2 X → F 3
2 Y ,

L3
2 R = {(

(x0, x1, x2), (y0, y1, y2)
) ∣∣ (x0, y0), (x1, y1), (x2, y2) ∈ R

}
.

There is an easy counterexample to (L2) for the Barr extension F 3
2 of F 3

2 .
(vi) There is a lax extension P̃n of the restricted powerset functor Pn that preserves diagonals. It is defined in the same 

way as the Egli–Milner lifting P of P , that is P̃n R = −→PR ∩ ←−PR for any relation R : X → Y . Nevertheless, P̃n is distinct 
from the Barr extension Pn of Pn . As for F 3

2 one can given a counterexample to (L2) for Pn provided that n > 3.
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Remark 8. In Example 7(iii) we noticed that the properties LR ; L S = L(R ; S) and T f = L f together uniquely determine a 
relation lifting. It seems likely that this is no longer the case if we loosen the latter condition and consider lax extensions 
that preserve diagonals. But we do not know of an example of a functor that has two distinct lax extensions that both 
preserve diagonals.

There is a large class of relations whose lifting by a lax extensions that preserve diagonals is unique: Because of Proposi-
tion 5(iv) lax extensions that preserve diagonals are uniquely determined on all relations R : X → Y that arise as a pullback 
in the category of sets, that is they can be written as R = f ; g◦ for functions f : X → Z and g : Y → Z .

The conditions (L1), (L2) and (L3) of a lax extension L directly entail useful properties of L-bisimulations. The condition 
(L1) ensures that the union of L-bisimulations is again an L-bisimulation, (L2) yields that the composition of L-bisimulations 
is an L-bisimulation and because of (L3) coalgebra morphisms are L-bisimulations. Note also that our requirement that 
relation liftings preserve converses immediately implies that the converse of a bisimulation is a bisimulation. This facts are 
summarized in the following proposition whose easy proof is left to the reader.

Proposition 9. For a lax extension L of T and T -coalgebras ξ : X → T X, υ : Y → T Y and ζ : Z → T Z it holds that

(i) The graph of every coalgebra morphism f from ξ to υ is an L-bisimulation between ξ and υ .
(ii) If R : X → Z respectively S : Z → Y are L-bisimulations between ξ and ζ respectively ζ and υ then their composition R ; S :

X → Y is an L-bisimulation between ξ and υ .
(iii) Every union of L-bisimulations between ξ and υ is again an L-bisimulation between ξ and υ .

Corollary 10. Let L be a lax extension of T and ξ : X → T X and υ : Y → T Y be two T -coalgebras. The relation of L-bisimilarity ↔L
ξ,υ

between ξ and υ is itself an L-bisimulation between ξ and υ . Moreover L-bisimilarity ↔L
ξ : X → X on one single coalgebra ξ is an 

equivalence relation.

We are now ready to prove that lax extensions that preserve diagonals capture behavioral equivalence. Note that in the 
proof the preservation of diagonals is only used for the application of Proposition 5(iv) at the end of the direction from 
bisimilarity to behavioral equivalence.

Theorem 11. If L is a lax extension of T that preserves diagonals then L captures behavioral equivalence.

Proof. We have to show that a state x0 in a T -coalgebra ξ : X → T X and a state y0 in a T -coalgebra υ : Y → T Y are 
behaviorally equivalent iff they are L-bisimilar.

For the direction from left to right assume that x0 and y0 are behaviorally equivalent. That means that there are a 
T -coalgebra ζ : Z → T Z and coalgebra morphisms f from ξ to ζ and g from υ to ζ such that f (x0) = g(y0). To see that x0
and y0 are L-bisimilar observe that by Proposition 9(i) and (ii) the relation f ; g◦ : X → Y is an L-bisimulation between ξ
and υ because it is the composition of graphs of coalgebra morphisms. This implies that x0 and y0 are L-bisimilar because 
(x0, y0) ∈ f ; g◦ .

In the other direction we have to show that for any pair (x, y) ∈ R , for an L-bisimulation R : X → Y between ξ and υ , 
the states x and y are behaviorally equivalent. Without loss of generality we can consider the case of two states z and z′
in one single coalgebra ζ : Z → T Z with an L-bisimulation S : Z → Z on ζ such that (z, z′) ∈ S . This is because otherwise 
we let ζ be the coproduct of ξ and υ with injections i X and iY and then consider the relation S = i◦X ; R ; iY which, using 
Proposition 9, can be shown to be an L-bisimulation on ζ .

Now consider the relation ↔L
ζ : Z → Z of L-bisimilarity on ζ which by Corollary 10 is both an equivalence relation 

and an L-bisimulation. Our goal is to put a transition structure δ : Z/↔L
ζ → T (Z/↔L

ζ ) on the quotient Z/↔L
ζ such that the 

projection p : Z → Z/↔L
ζ , z 	→ [z] becomes a coalgebra morphism from ζ to δ. Since we assume that z ↔L

ζ z′ it then follows 
that p(z) = p(z′) which witnesses that z and z′ are behaviorally equivalent.

We intend to define the transition function δ on Z/↔L
ζ such that

δ
([z]) = T p ◦ ζ(z).

This definition clearly satisfies δ ◦ p = T p ◦ ζ which means that p is a coalgebra morphism from ζ to δ as required. But we 
have to show that δ is well-defined. To prove this we need that T p ◦ ζ(z) = T p ◦ ζ(z′) for arbitrary z, z′ ∈ Z with z ↔L

ζ z′ . 
Because ↔L

ζ is an L-bisimulation it follows that (ζ(z), ζ(z′)) ∈ L↔L
ζ and moreover

L↔L
ζ = L

(
p ; p◦) ↔L

ζ = p ; p◦

= T p ; (T p)◦. Proposition 5(iv)

Hence (ζ(z), ζ(z′)) ∈ T p ; (T p)◦ and so T p ◦ ζ(z) = T p ◦ ζ(z′), as required. �
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4. (No) bisimulations for neighborhood frames

Already [5] examines relation liftings for the neighborhood functor N , and the notions of bisimilarity they give rise to. 
It is found that none of the proposed relation liftings captures behavioral equivalence. In this section we show that actually 
no relation lifting for the neighborhood functor captures behavioral equivalence. Nevertheless, it should be mentioned that, 
for the simpler case of behavioral equivalence on one single coalgebra, already the Barr extension N of the neighborhood 
functor captures behavioral equivalence [5, Proposition 3.20].

Theorem 12. There is no relation lifting for the neighborhood functor N that captures behavioral equivalence.

Proof. For the proof we need the fact that for any two functions f : X → Z and g : Y → Z we have that N f ({∅}) �=N g(∅). 
This holds because otherwise we would get by unfolding the definition of N on functions that

∅ ∈ {
W ⊆ Z

∣∣ f −1[W ] ∈ {∅}} f −1[∅] = ∅
= N f

({∅}) definition of N
= N g(∅) assumption

= {
W ⊆ Z

∣∣ g−1[W ] ∈ ∅}
definition of N

= ∅, V /∈ ∅ for all V

which is clearly impossible.
Now suppose for a contradiction that there is a relation lifting L for N that captures behavioral equivalence. Consider 

an example with the coalgebras ξ : X → N X , where X = {x1, x2, x3} with x1 	→ {{x2}}, x2, x3 	→ {∅}, υ : Y → N Y where 
Y = {y1} with y1 	→ ∅, and ζ : Z → N Z with Z = {z1, z2} with z1 	→ ∅, z2 	→ {∅}. For these coalgebras, one can verify, that 
the functions f : X → Z , x1 	→ z1, x2, x3 	→ z2 and g : Y → Z , y1 	→ z1 are coalgebra morphisms from ξ to ζ and from υ
to ζ . Because f (x1) = g(y1) this shows that x1 and y1 are behaviorally equivalent. The situation is depicted in the figure:

∅

{{x2}} x1
f

z1 y1
g ∅

{∅} x2
f

z2

x3

f

{∅}
It follows from the assumption that L captures behavioral equivalence that there is an L-bisimulation R : X → Y between 

ξ and υ such that (x1, y1) ∈ R . Moreover we can show that (x2, y1), (x3, y1) /∈ R . We do this only for (x2, y1) since the 
argument for (x3, y1) is similar. Suppose for a contradiction that x2 and y1 are L-bisimilar. Because L captures behavioral 
equivalence, it follows that there is a coalgebra ζ ′′ : Z ′′ → N Z ′′ and coalgebra morphisms j from ξ ′ to ζ ′′ and l from υ to 
ζ ′′ such that j(x2) = l(y1). Using that j and l are coalgebra morphisms we get following contradiction to what we showed 
above:

N j
({∅}) = N j ◦ ξ(x2) = ζ ′′ ◦ j(x2) = ζ ′′ ◦ l(y1) = N l ◦ υ(y1) = N l(∅).

So it follows that R = {(x1, y1)} and because R is an L-bisimulation we find that ({{x2}}, ∅) = (ξ(x1), υ(y1)) ∈ LR .
Next we replace ξ with the coalgebra ξ ′ : X → N X, x1 	→ {{x2}}, x2 	→ {∅}, x3 	→ ∅. We still have that (ξ ′(x1), υ(y1)) =

({{x2}}, ∅) ∈ LR which entails that R = {(x1, y1)} is an L-bisimulation linking x1 in ξ ′ and y1 in υ . Because L captures 
behavioral equivalence it follows that there is a coalgebra ζ ′ : Z ′ →N Z ′ and there are coalgebra morphisms h from ξ to ζ ′
and k from υ to ζ ′ such that h(x1) = k(y1). Because h and k are coalgebra morphism this implies that

Nh
({{x2}

}) = Nh ◦ ξ ′(x1) = ζ ′ ◦ h(x1) = ζ ′ ◦ k(y1) = Nk ◦ υ(y1) = Nk(∅).

By writing out the definition of N one can see that this means

h−1[C] ∈ {{x2}
}

iff k−1[C] ∈ ∅, for all C ⊆ Z ′.

Because the right hand side is never true it follows that h−1[C] �= {x2} for all C ⊆ Z ′ . In the special case C = {h(x2)}
this means h−1[{h(x2)}] �= {x2}. Certainly x2 ∈ h−1[{h(x2)}] so it must be that x1 ∈ h−1[{h(x2)}] or x3 ∈ h−1[{h(x2)}]. Thus
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h(x2) = h(x1) or h(x2) = h(x3). Using that h and k are coalgebra morphisms we can calculate in the former case that

Nh
({∅}) = Nh ◦ ξ ′(x2) = ζ ′ ◦ h(x2) = ζ ′ ◦ h(x1) = ζ ′ ◦ k(y1) = Nk ◦ υ(y1)

= Nk(∅)

and in the latter case that

Nh
({∅}) = Nh ◦ ξ ′(x2) = ζ ′ ◦ h(x2) = ζ ′ ◦ h(x3) = Nh ◦ ξ ′(x3) = Nh(∅).

Both cases lead to the situation N f ({∅}) =N g(∅) which, we argued above, is a contradiction. �
As a corollary we obtain that the neighborhood functor has no lax extension that preserves diagonals, since we know 

from Theorem 11 that such a relation lifting would capture behavioral equivalence.

Corollary 13. There is no lax extension that preserves diagonals for the neighborhood functor N .

5. Lax extensions and predicate liftings

In the previous section we saw that the neighborhood functor does not have a lax extension that preserves diagonals. If 
we add the requirement that the neighborhoods are monotone, that is we look at the monotone neighborhood functor M, 
then we have the lax extension M̃ that preserves diagonals. In this section we show that some sense of monotonicity is 
exactly what is needed from a functor in order to have a lax extension that preserves diagonals. Our goal is to prove the 
following theorem:

Theorem 14. A finitary functor Tω has a lax extension that preserves diagonals iff Tω has a separating set of monotone predicate 
liftings.

Proof. This is the overview of the proof which uses results that we establish in the remainder of this section.
For the direction from left to right assume that Tω has a lax extension L that preserves diagonals. We use the canonical 

presentation of Tω from Example 21 together with the natural transformation λL : TωP̆ ⇒ P̆T from Definition 18 to con-
struct the Moss liftings for Tω defined as in Definition 23. In Proposition 24 we prove that the Moss liftings are monotone 
and in Proposition 25 that the set of all Moss liftings is finitely separating. Since Tω is finitary we can use Proposition 2 to 
obtain that the Moss liftings are in fact separating for Tω .

For the direction from right to left assume we have a separating set Λ of monotone predicate liftings for Tω . By Propo-
sition 1 the monotonicity of each λ ∈ Λ entails that we can take λ� : Tω → nN to have codomain nM. We can then apply 
the initial lift construction from Definition 15 to the set of natural transformations Γ = {e ◦ λ� : Tω ⇒ ωM}λ∈Λ , where 
e : nM ⇒ ωM is the embedding as defined in Section 2.4, and obtain a relation lifting (ω̃M)Γ for the functor Tω . We 
show in Proposition 16 that the relation lifting (ω̃M)Γ is a lax extension for T that preserves diagonals, since ω̃M is a lax 
extension for ωM that preserves diagonals and the set of functions {e X ◦λ

�
X : Tω X ⇒ ωMX}λ∈Λ is jointly injective at every 

set X because Λ is assumed to be separating. �
The only part where the assumption that Tω is finitary is actually used is the application of Proposition 2 in the left to 

right direction. The construction of the Moss liftings in the left to right direction could be generalized to arbitrary accessible 
functors if we had allowed for predicate liftings of infinite arity. Thus, one would obtain a version of Theorem 14 for 
accessible functors.

We now describe the two constructions, initial lift and Moss liftings, that are used in the proof of Theorem 14. The initial 
lift of a lax extension along a set of natural transformations is taken from [17]. In the proof of Theorem 14 we use it to 
build a lax extension for T from the lax extension ω̃M and a separating set of predicate liftings.

Definition 15. Let L be a relation lifting for T , and Λ = {λ : T ′ ⇒ T }λ∈Λ a set of natural transformations from another 
functor T ′ to T . Then we can define a relation lifting LΛ for T ′ called the initial lift of L along Λ as

LΛR =
⋂
λ∈Λ

(
λX ; LR ; λ◦

Y

)
, for all sets X, Y and R : X → Y .

Equivalently to the above Definition, one can define LΛ R : T ′ X → T ′Y for an R : X → Y such that

(ξ,υ) ∈ LΛR iff
(
λX (ξ), λY (υ)

) ∈ LR, for all λ ∈ Λ.

Next we show that the initial lift construction preserves laxness and, which is essential for Theorem 14, it also preserves 
condition (L4), if the set of natural transformations is jointly injective for every set.
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Proposition 16. Let Λ = {λ : T ′ ⇒ T }λ∈Λ be a set of natural transformations from a functor T ′ to a functor T and let L be a relation 
lifting for T . Then LΛ is a lax extension for T ′ if L is a lax extension of T . Moreover, LΛ preserves diagonals, if L preserves diagonals and 
{λX : T ′ X → T X}λ∈Λ is jointly injective at every set X.

Proof. It is routine to verify that all the conditions (L1), (L2) and (L3) are preserved by the initial lift construction. That the 
elements of Λ are natural transformations is only used for the preservation of (L3).

Here we give the proof for the claim that LΛ preserves diagonals, if L does, and {λX : T ′ X → T X}λ∈Λ is jointly injective 
at every set X . We first show that if {λX : T ′ X → T X}λ∈Λ is jointly injective at every set X then⋂

λ∈Λ

(
λX ; λ◦

X

) = �T ′ X . (1)

For the ⊆-inclusion take ξ, ξ ′ ∈ T ′ X with (ξ, ξ ′) ∈ ⋂
λ∈Λ(λX ; λ◦

X ). This means that λX (ξ) = λX (ξ ′) for every λ ∈ Λ. Because 
the λX for λ ∈ Λ are jointly injective this implies that ξ = ξ ′ and hence (ξ, ξ ′) ∈ �T ′ X . The ⊇-inclusion follows from the 
fact that f ; f ◦ ⊇ �Y for any function f : X → Y .

Now assume that L satisfies (L4) that is L�X ⊆ �T X for every set X . It follows that LΛ�X ⊆ �T ′ X because

LΛ�X =
⋂
λ∈Λ

(
λX ; L�X ; λ◦

X

)
definition

⊆
⋂
λ∈Λ

(
λX ; �T X ; λ◦

X

)
assumption

=
⋂
λ∈Λ

(
λX ; λ◦

X

)
�T X neutral element

= �T ′ X . (1)

This shows that LΛ satisfies (L4). �
Proposition 16 can be applied with a natural isomorphism between two set functors to show that naturally isomorphic 

functors possess corresponding lax extensions. We also obtain a lax extension Lω = L{τ } of the finitary version Tω of a 
functor T with lax extension L. Because the inclusion τ : Tω ⇒ T is injective Lω preserves diagonals whenever L does.

Example 17. Consider the natural transformations �, � : P ⇒M with

�X (U ) = {V ⊆ X | U ∩ V �= ∅}, �X (U ) = {V ⊆ X | U ⊆ V }.
These natural transformation are clearly injective at every set X and hence it follows with Proposition 16 that M̃{�} and 
M̃{�} are lax extensions of the powerset functor P that preserve diagonals. Indeed, one can easily verify that they are both 
equal to the Barr extension P of P .

For the left-to-right direction of Theorem 14 we use the so called Moss liftings. It is shown in [8] that if we consider the 
Barr extension of a weak pullback preserving functor then the Moss liftings are monotone predicate liftings. Here we check 
that the argument also works for arbitrary lax extensions.

The first step in the construction of the Moss liftings is to use the lax extension L of T to define a distributive law 
between T and the contravariant powerset functor P̆ .

Definition 18. Given a lax extension L of a functor T we define for every set X the function

λL
X : TωP̆ X → P̆T X,

Ξ 	→ {
ξ ∈ T X

∣∣ (
ξ, τP̆ X (Ξ)

) ∈ L∈X
}
,

where ∈X : X →P X denotes the membership relation between elements of X and subsets of X .

One might wonder why we define the type of λL with Tω in its domain but T in its codomain. The reason for this is 
that we are going to use λL in Section 7 to define a semantics for a coalgebraic modal logic. There it connects the finitary 
syntactic side, hence Tω , with the unrestricted semantic side. For the purpose of this section and Theorem 14, where we 
are only concerned with finitary functors, one can disregard any complications arising from the possible difference between 
T and Tω .

Proposition 19. For a lax extension L the mapping λL : TωP̆ ⇒ P̆T from Definition 18 is a natural transformation.
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Proof. We verify that following diagram commutes for any f : X → Y :

TωP̆ X
λL

X P̆T X

TωP̆Y

TωP̆ f

λL
Y P̆T Y

P̆T f

(2)

First observe that

L∈X ; τ ◦
P̆ X

; (TωP̆ f )◦ = T f ; L∈Y ; τ ◦
P̆Y

. (3)

This is shown by the calculation

L∈X ; τ ◦
P̆ X

; (TωP̆ f )◦ = L∈X ; (T P̆ f )◦ ; τ ◦
P̆Y

τ natural

= L
(∈X ; (P̆ f )◦

) ; τ ◦
P̆Y

Proposition 5(ii)

= L( f ; ∈Y ) ; τ ◦
P̆Y

direct verification

= T f ; L∈Y ; τ ◦
P̆Y

. Proposition 5(ii)

To check the commutativity of (2) take an Υ ∈ TωP̆Y . We need to show that P̆T f ◦ λL
Y (Υ ) = λL

X ◦ TωP̆ f (Υ ). This holds 
because for any ξ ∈ T X we have that

ξ ∈ λL
X ◦ TωP̆ f (Υ ) iff

(
ξ, τP̆ X ◦ TωP̆ f (Υ )

) ∈ L∈X definition of λL

iff (ξ,Υ ) ∈ L∈X ; τ ◦
P̆ X

; (TωP̆ f )◦ basic set theory

iff (ξ,Υ ) ∈ T f ; L∈Y ; τ ◦
P̆Y

(3)

iff
(
T f (ξ), τP̆Y (Υ )

) ∈ L∈Y basic set theory

iff T f (ξ) ∈ λL
Y (Υ ) definition of λL

iff ξ ∈ P̆T f ◦ λL
Y (Υ ). definition of P̆ �

To define the Moss liftings we need, apart from the natural transformation λL : TωP̆ ⇒ P̆T , a finitary presentation of the 
functor Tω . For more about presentations of set functors consult [2]. For more recent work on presentations in a general 
coalgebraic setting see [1,19].

Definition 20. A finitary presentation (Σ, E) of a functor T is a functor Σ of the form

Σ X =
∐
n∈ω

Σn × Xn,

where the Σn for any n ∈ ω are sets, together with a surjective natural transformation E : Σ ⇒ Tω .

One can show, as we do in Example 21, that every finitary functor has a finitary presentation. A finitary presentation of 
Tω allows us to capture all the information in the sets Tω X for a possibly very complex functor Tω by means of a relatively 
simple polynomial functor Σ . This is, because for every ξ ∈ Tω X there is some (r, u) ∈ Σn × Xn for an n ∈ ω for which 
ξ = E X (r, u) and that behaves in a similar way as ξ , since E is a natural transformation. In order to define predicate liftings 
for an arbitrary functor T it is necessary that we can somehow decompose it into pieces of the form Xn . This is exactly 
what the polynomial functor of a finitary presentation does.

Example 21. The next example shows that every finitary functor has a finitary presentation. The canonical presentation of a 
finitary functor Tω is defined such that Σn = Tωn for every cardinal n ∈ ω and E is defined at a set X as

E X :
∐
n∈ω

Tωn × Xn → Tω X,

(ν, u) 	→ Tωu(ν), where ν ∈ Tωn and u ∈ Xn for an n ∈ ω.

In this definition we take u ∈ Xn to be a function u : n → X . It is routine to check that this definition indeed provides a 
finitary presentation of Tω , meaning that E is a natural transformation and surjective at every set X .
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For the next lemma recall from the preliminaries that we use the notation τ : Tω ⇒ T for the inclusion of the finitary 
version of a functor. The lemma shows how a lax extension of T interacts with a finitary presentation of T . This lemma
is similar to the forth direction of [8, Lemma 6.3] where this result is proved for the Barr extension. One can use the lax 
extension L3

2 of F 3
2 to construct an example which shows that the back direction of [8, Lemma 6.3] does not hold for lax 

extensions in general.

Lemma 22. Let (Σ, E) be a finitary presentation of a functor T with lax extension L, and let R : X → Y be any relation. Then it holds 
for all n ∈ ω, r ∈ Σn, u ∈ Xn and v ∈ Y n that (τX ◦ E X (r, u), τY ◦ EY (r, v)) ∈ LR if ui R vi for all i ∈ n.

Proof. Let πY : R → X and πY : R → Y be the projections of R . For these it holds that R = π◦
X ; πY . Because (ui, vi) ∈ R

for all i ∈ n we have that ρ = (r, ((u0, v0), (u1, v1), . . . , (un−1, vn−1))) ∈ Σ R gr . With the definition of Σ on morphisms it 
holds that ΣπX (ρ) = (r, u) and ΣπY (ρ) = (r, v). Since τ ◦ E is a natural transformation from Σ to T we also get that 
τX ◦ E X (r, u) = τX ◦ E X (ΣπX (ρ)) = TπX (τR ◦ E R(ρ)) and τY ◦ EY (r, v) = τY ◦ EY (ΣπY (ρ)) = TπY (τR ◦ E R(ρ)). It is entailed 
by these identities that (τX ◦ E X (r, u), τR ◦ E R(ρ)) ∈ (TπX )◦ and that (τR ◦ E R(ρ), τY ◦ EY (r, v)) ∈ TωπY . So we obtain(

τX ◦ E X (r, u), τY ◦ EY (r, v)
) ∈ (TπX )◦ ; (TπY ) ⊆ Lπ◦

X ; LπY (L3)

⊆ L
(
π◦

X ; πY
) = LR. (L2)

Which is what we had to show. �
We can now define the Moss lifting for a functor T by composing the finitary presentation of Tω with the natural 

transformation λL .

Definition 23. Given a functor T and a lax extension L for T take any finitary presentation (Σ, E) of Tω according to 
Definition 20 and let λL : TωP̆ ⇒ P̆T be the natural transformation of Definition 18. For every r ∈ Σn of any n ∈ ω the Moss 
lifting of r is an n-ary predicate lifting for T that is defined as

μr : P̆n ⇒ P̆T ,

μr = λL ◦ EP̆ (r, ·).
This definition yields the following diagram for every set X :

(P̆ X)n
EP̆ X (r,·)

μr
X

TωP̆ X

λL
X

P̆T X

We use Lemma 22 to show that the Moss liftings are monotone.

Proposition 24. The Moss liftings of a functor T with finitary presentation (Σ, E) and lax extension L are monotone.

Proof. Take any Moss lifting μr = λL ◦ EP̆ (r, ·) : P̆n ⇒ P̆T of an r ∈ Σn for an n ∈ ω. Now assume we have U , U ′ ∈ (P̆ X)n

for any set X such that Ui ⊆ U ′
i for all i < n. To prove that μr is monotone we need to show that μr

X (U ) ⊆ μr
X (U ′).

So pick any ξ ∈ μr
X (U ) = λL

X ◦ EP̆ X (r, U ). By the definition of λL this means that (ξ, τP̆ X ◦ EP̆ X (r, U )) ∈ L∈X . Moreover, 
we get from the assumption that Ui ⊆ U ′

i for all i ∈ n and Lemma 22 that (τP̆ X ◦ EP̆ X (r, U ), τP̆ X ◦ EP̆ X (r, U ′)) ∈ L(⊆). 
Putting this together yields(

ξ, τP̆ X ◦ EP̆ X

(
r, U ′)) ∈ L∈X ; L(⊆) ⊆ L(∈X ; ⊆) (L2)

⊆ L∈X . (L1)

For the last inequality we need that (∈X ; ⊆) ⊆ ∈X which is immediate from the definition of subsets. So we have that 
(ξ, τP̆ X ◦ EP̆ X (r, U ′)) ∈ L∈X and hence by the definition of λL that ξ ∈ λL

X ◦ τP̆ X ◦ EP̆ X (r, U ′) = μr
X (U ′). �

The last thing we have to show is that the set of all Moss liftings is separating. This is the only place in the construction 
of the Moss liftings where we actually need that the lax extension L preserves diagonals.

Proposition 25. If L is a lax extension of a functor T that preserves diagonals and let (Σ, E) be a finitary presentation of T . Then the 
set of all Moss liftings M = {μr : P̆n ⇒ P̆T | r ∈ Σn, n ∈ ω} is finitely separating.
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Proof. To show that M is separating assume for arbitrary ξ, ξ ′ ∈ T X of any finite set X that (μr)
�
X (ξ) = (μr)

�
X (ξ ′) for all 

r ∈ Σn of all n ∈ ω. We need to prove that ξ = ξ ′ . First note that the embedding τX : Tω X → T X is surjective because X is 
finite.

By the definition of the transposite of a natural transformation it follows from the assumption that for all n ∈ ω and 
r ∈ Σn{

U ∈ (P̆ X)n
∣∣ ξ ∈ μr

X (U )
} = {

U ∈ (P̆ X)n
∣∣ ξ ′ ∈ μr

X (U )
}
.

This is equivalent to

ξ ∈ μr
X (U ) iff ξ ′ ∈ μr

X (U ), for all U ∈ (P̆ X)n.

Unfolding the definitions of μr = λL ◦ EP̆ (r, ·) and λL(Ξ) = {ξ ∈ T X | (ξ, τP̆ X (Ξ)) ∈ L∈X } yields that for all n ∈ ω, r ∈ Σn

and U ∈ (P̆ X)n(
ξ, τP̆ X ◦ EP̆ X (r, U )

) ∈ L∈X iff
(
ξ ′, τP̆ X ◦ EP̆ X (r, U )

) ∈ L∈X .

Because τP̆ X ◦ EP̆ X is surjective, and the variables n, r and U quantify over the full domain of EP̆ X : ∐n∈ω(Σn × (P̆ X)n) →
T P̆ X , it follows that

(ξ,Ξ) ∈ L∈X iff
(
ξ ′,Ξ

) ∈ L∈X , for all Ξ ∈ TP X . (4)

To get ξ = ξ ′ from (4) consider the map

sX : X → P X,

x 	→ {x}.
Because of (L3) we have that (ξ, T sX (ξ)) ∈ T sX ⊆ LsX . Moreover we clearly have that sX ⊆ ∈X and because of (L1) it follows 
that (ξ, T sX (ξ)) ∈ L∈X . With (4) we get that (ξ ′, T sX (ξ)) ∈ L∈X . Then we compute(

ξ, ξ ′) ∈ LsX ; L�X ⊆ L(sX ; �X ) (L2)

= L�X sX ; �X = �X

⊆ �T X . (L4)

From this it follows that ξ = ξ ′ , which finishes the proof. �
6. The logic of a lax extension

In this section we show how to define a semantics for the cover modality on T -coalgebras, using a lax extension L
of T . For this purpose we fix a lax extension L of a functor T that from now on is assumed to preserve inclusions. This 
assumption guarantees that the usual definitions and proofs by induction on the complexity of formulas work well for a 
syntax that is based on the functor T . We do not lose any generality by making this assumption because as we discussed 
in the preliminaries every set functor is isomorphic to one that preserves inclusions. We also fix a countable set P of 
propositional variables.

The language of the cover modality is defined as follows:

Definition 26. The language LL is defined as the set of all formulas that are generated by the grammar:

a ::= p | ¬a |
∨

A | ∇α

where p ∈ P, A ∈PωLL and α ∈ TωLL .
We use 

∧
A, for an A ∈PωLL , as an abbreviation for ¬ 

∨{¬a | a ∈ A}.

The set LL only depends on the functor T and not on the lax extensions L of T . We keep the subscript L however 
because we think of the LL as a formal language together with its semantics on T -coalgebras which depends on the lax 
extension L. To define a semantics for the language LL on T -coalgebras we first have to give an interpretation for the 
propositional variables. This is done by adding a valuation to T -coalgebras yielding T -models.

Definition 27. A T -model X = (ξ, VX) is a T -coalgebra ξ : X → T X together with a valuation VX , that is a function 
VX : P → P X . Morphisms and bisimulations between T models have to preserve the values of propositional variables. 
A morphism f from a T -model X = (ξ, VX) to a T -model Y = (υ, VY) is a T -coalgebra morphism f from ξ to υ such that 
f −1[VY(p)] = VX(p) for all p ∈ P. An L-bisimulation between X and Y is an L-bisimulation R : X → Y between ξ and υ
such that whenever (x, y) ∈ R we have that

x ∈ VX(p) iff y ∈ VY(p), for all p ∈ P.
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We use the lax extension L to define a semantics of LL on T -models.

Definition 28. Using the fixed lax extension L for the functor T we can define the semantics for the language LL on 
T -models. For a T -model X = (ξ, VX) define the satisfaction relation �X : X →LL by recursion as

x �X p iff x ∈ VX(p), p ∈ P

x �X ¬a iff not x �X a, a ∈ LL

x �X

∨
A iff x �X a for some a ∈ A, A ∈ PωLL

x �X ∇α iff
(
ξ(x),α

) ∈ L�X. α ∈ TωLL

If x �X a holds then we also say that the formula a is satisfied or true at the state x of the model X. Since the model X is 
usually clear from the context we can omit the subscript X and just write x � a if a is true at x.

We also define the extension �a� of a formula as the set of states, in some given model X, where a is true. More 
precisely:

�·� : LL → P X,

a 	→ {x ∈ X | x �X a}.

Remark 29. The clauses in Definition 28 are not stated in a correct recursive way. In the recursive clause for the cover 
modality we make use of the unrestricted satisfaction relation �X that has yet to be defined. We can only suppose that 
�X �X×S is already defined, where S ⊆LL is a set of formulas of less complexity than ∇α with ∇α ∈ T S ⊆ TLL . The actual 
recursive definition is that x �X ∇α iff (ξ(x), α) ∈ L(�X �X×S). We need a little argument why this is equal to the clause 
given above. Because T preserves inclusions we can use Proposition 6 to get that (ξ(x), α) ∈ L(�X �X×S) = (L�X) �T X×T S

which is equivalent to (ξ(x), α) ∈ L�X .

Remark 30. We give the semantics for LL in a direct way with a recursive definition of the satisfaction relation. Alternatively 
one can also use an initial algebra approach where the natural transformation λL from Definition 18 plays a crucial role. See 
for instance [7] for this approach. The crucial observation there is that the semantics of the cover modality can be given by

�∇α� = P̆ξ ◦ λL
X ◦ (

Tω �·�)
(α). (5)

We will later make use of this fact later so let us see why it holds:

x ∈ �∇α� iff x �X ∇α Definition of �·�
iff

(
ξ(x),α

) ∈ L�X semantics of ∇
iff

(
ξ(x),α

) ∈ L
(∈X ; �·�◦) ∈X ; �·�◦ = �X

iff
(
ξ(x),α

) ∈ L(∈X ) ; (
T �·�)◦

Proposition 5 (ii)

iff
(
ξ(x), τLL (α)

) ∈ L(∈X ) ; (
T �·�)◦

α ∈ TωLL ⊆ TLL

iff
(
ξ(x), T �·� ◦ τLL (α)

) ∈ L(∈X ) set theory

iff
(
ξ(x), τP̆ X ◦ Tω�·�(α)

) ∈ L(∈X ) τ natural trans.

iff ξ(x) ∈ λL
X

((
T �·�)

(α)
)

Definition 18

iff x ∈ P̆ξ ◦ λL
X ◦ (

T �·�)
(α). Definition of P̆

Now we are going to look at the expressive power of LL with respect to states in T -models. For this we start with a 
definition.

Definition 31. Two states x in a T -model X = (ξ, VX) and y in a T -model Y = (υ, VY) are modally equivalent iff they satisfy 
the same formulas, that is:

x �X a iff y �Y a, for all a ∈ LL .

The next proposition shows that whenever two states are L-bisimilar then they are modally equivalent. One can also 
prove a partial converse to this: Whenever two states in Tω-coalgebras are modally equivalent then they are bisimilar. 
Because the proof of this result is technically a bit tedious we omit it here and refer the interested reader to [11].

Proposition 32 (Adequacy). Given a state x0 in a T -model X = (ξ, VX) and a state y0 in a T -model Y = (υ, VY), if x0 and y0 are 
L-bisimilar then x0 and y0 are modally equivalent.
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Proof. Let R be an L-bisimulation between X and Y with (x0, y0) ∈ R and let Φ ⊆ LL be the set of formulas on which 
bisimilar points agree, that is

Φ := {
a ∈ LL

∣∣ x �X a iff y �Y a, for all (x, y) ∈ R
}
.

With this definition of Φ it is obvious that

R ;�Y �Y ×Φ ⊆ �X �X×Φ,

and in the other direction that

R◦ ;�X �X×Φ ⊆ �Y �Y ×Φ. (6)

We are now going to prove that Φ = LL . This entails that for every pair (x, y) ∈ R the state x satisfies the same formulas 
as the state y. So in particular x0 and y0 satisfy the same formulas because (x0, y0) ∈ R .

We show with induction on the complexity of a formula a ∈ LL that a ∈ Φ . The base case a = p ∈ P follows directly 
from the condition that R is an L-bisimulation between the T -models X and Y and hence preserves the values of proposi-
tional variables. The Boolean cases are standard so we focus on the case where a = ∇α for some α ∈ TωLL . The induction 
hypothesis is that α ∈ TωΦ . We have to show that x �X ∇α iff y �Y ∇α for all (x, y) ∈ R .

So assume that x �X ∇α. By the definition of the satisfaction relation that means (ξ(x), α) ∈ L�X and because 
α ∈ TωΦ ⊆ T Φ in particular that (ξ(x), α) ∈ (L�X) �T X×T Φ= L(�X �X×Φ) where the last equality holds by Proposition 6. 
Because R is an L-bisimulation we have that (υ(y), ξ(x)) ∈ LR◦ , and so we get(

υ(y),α
) ∈ LR◦ ; L(�X �X×Φ) ⊆ L

(
R◦ ;�X �X×Φ

)
(L2)

⊆ L(�Y �Y ×Φ) (6) and (L1)

= (L�Y) �T Y ×T Φ Proposition 6

⊆ L�Y.

This shows that y �Y ∇α. The other direction from y �Y ∇α to x �X ∇α is proved analogously. �
7. Translating the logics of lax extensions and predicate liftings

In this section we investigate how LL relates to coalgebraic languages given by a set of predicate liftings. We show 
that LL is intertranslatable with the logical language associated to its Moss liftings and that if L preserves diagonals and T
preserves finite sets then every language of any set of predicate liftings can be translated into LL . We first define the syntax 
and semantics of the logic LΛ of a set of predicate liftings.

Definition 33. Given a set of predicate liftings Λ for the functor T we define the language LΛ by the grammar:

a ::= p | ¬a |
∨

A | [λ]a
where p ∈ P, A ∈PωLL , λ ∈ Λ, and a = (a0, . . . , aar(λ)−1) ∈ (LΛ)ar(λ) .

The semantics of LΛ is given by the predicate liftings in Λ:

Definition 34. The semantics for the language LΛ on a T -model X = (ξ, VX) is given by the satisfaction relation �X :
X → LΛ that is defined recursively with the same clauses as in Definition 28 for propositional variables and Boolean 
connectives and the following clause for the modality of λ ∈ Λ:

x �X [λ]a iff ξ(x) ∈ λX
(�a0 �, . . . , �aar(λ)−1 �)

a ∈ (LΛ)ar(λ)

where as above �·� is the extension of a formula:

�·� : LΛ → P X,

a 	→ {x ∈ X | x �X a}.
The semantics of [λ] could be defined directly over the map �·� as

�[λ]a� = P̆ξ ◦ λX
(�a0 �, . . . , �aar(λ)−1 �)

.

We are interested in translations between the different languages LL , for a lax extension L of a functor T , and LΛ for a 
set of predicate liftings Λ for T .
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Definition 35. Let T be a fixed functor and let L1 and L2 be any of the languages LL , for a lax extension L of T , or LΛ , 
for a set Λ of predicate liftings of T . A translation from L1 to L2 is a function τ : L1 → L2 such that for all a ∈ L1 the 
formulas a and τ (a) are equivalent, which means that for all states x of all T -models X we have that

x �X a iff x �X τ (a).

For a translation τ :L1 →L2 we also call L1 the source language and L2 the target language.

Since the Boolean part is the same in all the coalgebraic logics that we discuss the only difficulty for constructing 
translations is to translate the modalities of source language into a formula of the target language. But this can already be 
done on a one-step level where only one layer of modalities is considered.

Definition 36. The set of Boolean formulas Bool(C) over a set of formulas C is a build with the grammar:

a ::= c | ¬a |
∨

A

where c ∈ C and A ∈PωBool(C).
A one-step formula of the language LL is an element of

L1
L = Bool

({∇α
∣∣ α ∈ TωBool(P)

})
.

These formulas are modal formulas that contain only one layer of modalities and where every propositional variable is in 
the scope of one modality.

Similarly an one-step formula of the language LΛ is an element of

L1
Λ = Bool

({[λ]a ∣∣ a ∈ Bool(P)ar(λ), λ ∈ Λ
})

.

Definition 37. The Boolean semantics of formulas in Bool(C) in a set X for a valuation V : P →P X is given by the function:

Bool(V ) : Bool(C) → P X,

Bool(V )(p) = V (p),

Bool(V )(¬a) = X \ Bool(V )(a),

Bool(V )
(∨

A
)

=
⋃{

Bool(V )(a)
∣∣ a ∈ A

}
.

The one-step semantics of a one-step formula a ∈ L1
L in a set X for a valuation V : P → PT X is defined as �a�1

V =
Bool(h)(a) ∈PT X , where

h : {∇α
∣∣ α ∈ TωBool(P)

} → PT X,

h(∇α) = λL
X ◦ (

TωBool(V )
)
(α).

Similarly, one defines the one-step semantics for a one-step formula a ∈ L1
Λ in a set X for a valuation V is defined as 

�a�1
V = Bool(h)(a) ∈PT X , where

h : {[λ]a ∣∣ a ∈ Bool(P)ar(λ), λ ∈ Λ
} → PT X,

h
([λ]a) = λX

(
Bool(V )(a0), . . . ,Bool(V )(aar(λ)−1)

)
.

Two one-step formulas a and b, from either L1
L or L1

Λ , are one-step equivalent if �a�1
V = �b�1

V for all sets X and valuations 
V : P →P X .

A one-step translation from LL to a language L assigns a one-step formula b ∈ L to every ∇α with α ∈ TωP such that b
is one-step equivalent to ∇α.

A one-step translation from LΛ to a language L assigns a one-step equivalent one-step formula b ∈ L to every formula 
of the form [λ](p0, . . . , par(λ)−1), where p0, . . . , par(λ)−1 are propositional variables.

One can easily check that the one-step semantics corresponds with the actual semantics of LL and LΛ respectively in 
the sense that for every one-step formula a from either LL or LΛ and every T -model (ξ, V )

�a� = P̆ξ
(�a�1

V

)
.

Let us see a way how we can construct a translation from the full source language from a one-step translation of its 
modalities. For this we first put the formulas of the source language in bijective correspondence σ : P ∼= L with the set 
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of propositional letters. Now, given a one-step translation from LL to another language L one can define a translation 
τ :LL →L recursively by:

τ (p) = p, τ (¬a) = ¬τ (a),

τ
(∨

A
)

= ∨
Pωτ(A), τ (∇α) = b[τ ◦ σ ]

where b is the one-step translation of ∇Tωσ−1(α) and b[τ ◦ σ ] the formula b where all propositional letters p have been 
simultaneously substituted with τ ◦ σ(p). It is clear that one can check that this translation preserves truth.

Similarly, we can construct a translation from LΛ to L given a one-step translation for formulas of the form [λ]a for 
λ ∈ Λ and a ∈ Par(λ) . The crucial modal step becomes

τ
([λ]a) = b[τ ◦ σ ],

where b is the one-step translation of the formula [λ](σ−1(a0), . . . , σ−1(aar(λ)−1)).
We now show that the logic LL is intertranslatable with the logic of the Moss lifting of Λ and any finitary presentation 

of T as defined in Definition 23 in the previous section. This translation is completely straightforward and does not involve 
any Boolean connectives. So one can see the logic of the Moss liftings LM to be just a different, more standard, syntactic 
presentation of LL .

Proposition 38. The language LL is intertranslatable, on a one-step level, with the language LM where M is the set of Moss liftings 
for L and any finitary presentation (Σ, E) of Tω .

Proof. Recall from Definition 23 that the Moss lifting μr for an r ∈ Σn of a finitary presentation (Σ, E) was defined as 
μr = λL ◦ EP̆ (r, ·).

If we are now given a modality [μr](p0, . . . , pn−1) in LM of an r ∈ Σn we translate it to the formula ∇EP(r, (p0, . . . ,
pn−1)). Conversely if we are given a ∇α in LL, for some α ∈ TωP, we translate it to [μr](p0, . . . , pn−1) for some 
(r, (p0, . . . , pn−1)) ∈ ΣP with EP(r, (p0, . . . , pn−1)) = α. Such an object always exists because E is surjective. To show that 
this defines a one-step translation in either direction we need to show that

�[
μr](p0, . . . , pn−1)

�1
V = �∇EP

(
r, (p0, . . . , pn−1)

)�1
V

for all valuations V : P →P X . This is the case because of
�[

μr
]
(p0, . . . , pn−1)

�1
V = μr

X

(
V (p0), . . . , V (pn−1)

)
Definition 37

= λL
X ◦ EP̆ X

(
r,

(
V (p0), . . . , V (pn−1)

))
Definition 23

= λL
X ◦ (TωV ) ◦ EP

(
r, (p0, . . . , pn−1)

)
E natural

= �∇EP
(
r, (p0, . . . , pn−1)

)�1
V . Definition 37 �

The next proposition states that the one step-semantics of a one-step formula is essentially just a predicate lifting.

Proposition 39. Every Boolean formula a(p0, . . . , pn−1) ∈ Bool(P) over n propositional variables induces a natural transformation 
ϕa : P̆n ⇒ P̆ such that for all valuations V : P →P X with V (pi) = Ui for i < n

ϕa
X (U0, . . . , Un−1) = Bool(V )(a).

Every one-step formula a(p0, . . . , pn−1) ∈L1
Λ with n propositional variables induces a natural transformation ρa : P̆n ⇒ P̆T such 

that for all valuations V : P →P X with V (pi) = Ui for i < n

ρa
X (U0, . . . , Un−1) = �a�1

V .

Proof. One needs to check that the assignments for ϕa
X and ρa

X are well-defined, which is obvious, and that they are natural. 
Naturality for ϕa is the fact that the Boolean operations on set algebras are preserved under inverse images of functions. 
For the naturality of ρa we additionally need that the modalities of LΛ are preserved under inverse images, which is the 
case because their semantics is given by predicate liftings. �

By Yoneda’s Lemma predicate liftings can be shown to correspond to subsets of T 2n , where 2 = {�, ⊥} is the two 
element set. This crucial observation was first published in [16].

Proposition 40. The n-ary predicate liftings for a functor T are in bijective correspondence to the elements of P̆T 2n. A predicate lifting 
λ : P̆n ⇒ P̆T corresponds to the set ϕ2n (π−1[{�}])i<n = ϕ ˘ ({S ⊆ n | i ∈ S})i<n.
i Pn
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Proof. First observe that there is a natural isomorphism:

i X : (P̆ X)n ∼= (
2X)n ∼= 2X×n ∼= (

2n)X = Hom
(

X,2n).
Precomposing a predicate lifting with the inverse of i shows that predicate liftings can be seen as natural transformations 
from the contravariant hom-functor Hom(−, 2n) to the functor P̆T . Now the statement follows from an application of 
Yoneda’s Lemma for contravariant functors [9, Section III.2] and the observation that (π−1

i [{�}])i<n ∈ (P̆2n)n is the image 
of the identity id2n under the inverse of i2n . �

Our goal is to prove Theorem 43 which states that every predicate lifting can be translated into a one-step formula in 
the language LΛ of a separating set of predicate liftings for a functor that preserves finite sets. We first prove two lemmas.

Lemma 41. Let S ∈ (P X)n be separating. Then for any U ⊆ X there is a Boolean formula a(p0, . . . , pn−1) ∈ L0 such that for the 
induced ϕa : P̆n ⇒ P̆ it holds that ϕa

X (S) = U .

Proof. Because the tuple S is separating we have for any x ∈ U and x′ ∈ X \ U an ix′
x < n such that either x ∈ S(ix′

x ) and 
x′ /∈ S(ix′

x ) or that x /∈ S(ix′
x ) and x′ ∈ S(ix′

x ). Let ±S(ix′
x ) be S(ix′

x ) in the former case and X \ S(ix′
x ) in the latter. Hence we 

have that x ∈ ±S(ix′
x ) and x′ /∈ ±S(ix′

x ).
Now define the formulas lx′

x for all x ∈ U and x′ ∈ X \ U by

lx′
x =

{
pix′

x
if x ∈ S(ix′

x ) and x′ /∈ S(ix′
x ),

¬pix′
x

if x ∈ X \ S(ix′
x ) and x′ /∈ X \ S(ix′

x ).

Because the ix′
x < n for all x ∈ U and x′ ∈ X \ U there are only finitely many distinct literals lx′

x . Hence, the following is a 
well-defined Boolean formula:

a =
∨
x∈U

∧
x′∈X\U

lx′
x .

This formula induces a natural transformation ϕa : P̆ ⇒ P̆ for which instantiated at the set X we have that

ϕa
X (S) =

⋃
x∈U

⋂
x′∈X\U

±S
(
ix′
x

) = U .

This is what we had to show. �
Lemma 42. The tuple (π−1

i [{�}])i<n ∈ (P̆2n)n is separating.

Proof. Pick any two distinct sequences σ , σ ′ ∈ 2n . Because they are distinct we can without loss of generality assume 
that πi(σ ) = σi = � whereas πi(σ

′) = σ ′
i = ⊥ for some i < n. Hence σ ∈ π−1

i [{�}] and σ ′ /∈ π−1
i [{�}]. This shows that 

(π−1
i [{�}])i<n ∈ (P̆2n)n is separating. �

Theorem 43. Let Λ be a finitely separating set of predicate liftings for a finite set preserving functor T . Every n-ary predicate lifting 
δ : P̆n → P̆T is induced by a one-step formula a in the language LΛ.

Proof. We construct the one-step formula a in the language LΛ such that ρa
2n (π

−1
i [{�}])i<n = δ2n (π−1

i [{�}])i<n ∈ P̆T 2n

which by Proposition 40 ensures that the predicate lifting ρa is equal to δ.
That Λ is finitely separating entails at the point 2n that the set

Q = {
λ2n(U ) ∈ P̆T 2n

∣∣ λ ∈ Λ, U ∈ (
P̆2n)ar(λ)} ⊆ PT 2n

is separating. This set Q is finite because it is a subset of PT 2n which is finite by the assumption that T preserves finite 
sets. Hence there is a finite number m and finitely many λ(i) ∈ Λ and U (i) ∈ (P̆2n)ar(λ(i)) for all i < m such that

Q = {
λ

(i)
2n

(
U (i)) ∈ P̆T 2n

∣∣ i < m
}
.

So we can consider the tuple S = (λ
(0)
2n (U (0)), . . . , λ(m−1)

2n (U (m−1))) which is separating because Q is. Thus it follows from 
Lemma 41 that there is a Boolean formula b such that ϕb

n (S) = δ2n (π−1[{�}])i<n .
2 i
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Next consider the U (i) = (U (i)
0 , . . . , U (i)

ar(λ(i))−1
) ∈ (P̆2n)ar(λ(i)) for all i < m. For every j < ar(λ(i)) we can use Lemma 41

and Lemma 42 to get a Boolean formula c(i)
j with

(
ϕ

c(i)
j
)

2n

(
π−1

i

[{�}])i<n = U (i)
j .

Now define the one-step formula

a = b
([

λ(0)
](

c(0)
0 , . . . , c(0)

ar(λ′)−1

)
, . . . ,

[
λ(m−1)

](
c(m−1)

0 , . . . , c(m−1)

ar(λ(m−1))−1

))
.

Putting all the equalities from above together we obtain for the natural transformation induced by a that ρa
2n (π

−1
i [{�}])i<n =

δ2n (π−1
i [{�}])i<n . This concludes the proof. �

In the notation of the theorem it is clear that the formula a is one-step equivalent to [ρ](p0, . . . , pn−1) because the 
induced natural transformation ϕa is equal to ρ . Hence a ∈LΛ provides a one-step translation of [ρ](p0, . . . , pn−1) and we 
obtain the following corollary

Corollary 44. Let Θ and Λ be sets of predicate liftings for a finite set preserving functor T such that Λ is separating. Then there is a 
translation from LΘ to LΛ .

We can combine this result with the observation from Proposition 38 that LL for a lax extension L is intertranslatable 
with LM where M is the set of Moss liftings for L. By Proposition 25 these Moss lifting are finitely separating if L preserves 
diagonals. So we obtain the following two corollaries.

Corollary 45. If L is a lax extension that preserves diagonals of a functor T that preserves finite sets then LL′ , for any other lax 
extensions L′ of T , and LΛ , for any set of predicate liftings Λ for T , can be translated to LL .

Corollary 46. If L and L′ are two lax extensions of T that preserve diagonals and T preserves finite sets then LL and LL′ are inter-
translatable.

8. Conclusions and open questions

In this paper we showed that lax extensions that preserve diagonals can be used in the theory of coalgebra to give a 
relational characterization of behavioral equivalence. This together with the fact that lax extensions can be used to define 
the semantics of an adequate cover modality indicates that lax extensions provide an adequate generalization for the role 
that the Barr extension of weak pullback preserving functors has played so far in the theory of coalgebras and coalgebraic 
modal logic. In this way the use of relation liftings in the theory of coalgebras can be extended to set functors that do not 
preserve weak pullbacks but nevertheless admit a lax extension that preserves diagonal relations.

The importance of lax extensions that preserve diagonals would motivate the study of their properties in their own right. 
A pressing question, that we were unable to answer, concerns the uniqueness of such lax extensions. We do not know of 
an example of a functor with two distinct lax extension that preserve diagonals. It would be interesting to find such an 
example or otherwise prove that any set functor has at most one lax extensions that preserve diagonals.

A negative result of this paper is that the neighborhood functor does not allow for a relation lifting that captures 
behavioral equivalence. This shows that there are limits to the use of relation liftings in the theory of coalgebras. A goal for 
further research would be to determine which functors have a relation lifting that captures behavioral equivalence. All the 
examples of such functors that we know of also have a lax extension that preserves diagonals. So it might turn out that, 
whenever a functor allows for a relational characterization of behavioral equivalence it has a lax extension that preserves 
diagonals.

A further, probably easier, problem would be to characterize the functors that have a lax extension that preserves diago-
nals. Our Theorem 14 is a first step in this direction but it only applies to finitary functors and the condition it gives, namely 
that the functor has a separating set of monotone predicate liftings, is not more fundamental than what it is supposed to 
characterize. It might be interesting to look for a more elementary definition for the kind of monotonicity a functor needs 
to posses in order to allow for a separating set of monotone predicate liftings or, respectively, for a lax extension preserving 
diagonals. Moreover, it would be nice to have a canonical way for obtaining a lax extension that preserves diagonals for all 
functors that possess one, similar to the definition of the Barr extension for weak pullback preserving functors.

We also presented the logic of a lax extension and showed that if the lax extension preserves diagonals and if the set 
functor preserves finite sets then other standard coalgebraic logics can be translated into it. We plan to write a follow-up 
paper in which we study some of the logical properties of the cover modality of a lax extension and prove a uniform 
interpolation for its logic. Some of these results can already be found in [11].
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