
Uniform Interpolation for Coalgebraic Fixpoint
Logic
Johannes Marti, Fatemeh Seifan, and Yde Venema

ILLC, Universiteit van Amsterdam, The Netherlands
johannes.marti@gmail.com, F.Seifan@uva.nl, Y.Venema@uva.nl

Abstract
We use the connection between automata and logic to prove that a wide class of coalgebraic
fixpoint logics enjoys uniform interpolation. To this aim, first we generalize one of the central
results in coalgebraic automata theory, namely closure under projection, which is known to hold
for weak-pullback preserving functors, to a more general class of functors, i.e., functors with quasi-
functorial lax extensions. Then we will show that closure under projection implies definability of
the bisimulation quantifier in the language of coalgebraic fixpoint logic, and finally we prove the
uniform interpolation theorem.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases µ-calculus, uniform interpolation, coalgebra, automata

Digital Object Identifier 10.4230/LIPIcs.CALCO.2015.238

1 Introduction

The connection between automata and logic goes back to the early seventies by the works of
Büchi [3] and Elgot [6], who showed that finite automata and monadic second-order logic
have the same expressive power over finite words, and that the transformations from formulas
to automata and vice versa are effective. This connection has found important applications
and landmark results, such as Rabin’s decidability theorem [18]. During the last twenty
years study of the link between automata and logic has been continued and many interesting
results have been obtained, such as results in [10], where Janin and Walukiewicz established
the connection between the modal µ-calculus and parity automata operating on labeled
transition systems.

The coalgebraic perspective on the link between automata and logic has been uniformly
studied in [22], where the author introduces the notion of a coalgebra automaton and
establishes the connection between these automata and coalgebraic fixpoint logic based on
Moss’ modality ∇ [15]. Coalgebraic fixpoint logic is a powerful extension of coalgebraic
modal logic [15] with fixpoint operators. The main contribution of this paper will be to add
uniform interpolation to the list of properties of coalgebraic fixpoint logic.

A logic has interpolation if, whenever we have formulas a and b such that |= a → b

(meaning that the formula a→ b holds in every model), then there is an interpolant formula
c in the common language of a and b (i.e., c may use only propositional letters that appear
both in a and b), such that |= a→ c and |= c→ b. This notion is familiar from first-order
logic, and is known there as Craig interpolation [4] . Some logics enjoy a much stronger
version of interpolation, namely uniform interpolation, which has been introduced by Pitts in
[17]. A logic has uniform interpolation if the interpolant c does not really depend on b itself,
but only on the language that b shares with a. Although it is easy to show that classical
propositional logic has uniform interpolation, not many logics have this property, for instance
first-order logic has interpolation, but it does not enjoy the uniform version [9].

© Johannes Marti, Fatemeh Seifan, and Yde Venema;
licensed under Creative Commons License CC-BY

6th International Conference on Algebra and Coalgebra in Computer Science (CALCO’15).
Editors: Lawrence S. Moss and Pawel Sobocinski; pp. 238–252

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.238
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Marti, F. Seifan, and Y. Venema 239

As a motivation for studying uniform interpolation, let us mention some recent works on
this property. Starting with the seminal work of Pitts [17] who introduced this version of
interpolation and proved that intuitionistic logic has uniform interpolation, the study of this
property for different logics has been actively pursued by various authors. In modal logic,
Shavrukov [21] proved that the Gödel-Löb logic GL has uniform interpolation. Subsequently,
Ghilardi [7] and Visser [23] independently established the property for modal logic K, while [8]
contains negative results for modal logic S4. In the theory of modal fixpoint logic D’Agostino
and Hollenberg proved that the modal µ-calculus has uniform interpolation [5].

In this paper we study uniform interpolation in the context of coalgebraic fixpoint logic.
More specifically, we restrict attention to set functors T that preserve finite sets and that
admit a so-called quasi-functorial lax extension L, that is, a certain kind of relation lifting
satisfying somewhat weaker conditions than the standard Barr extension (see Definition 2.11
for the details). This class of functors includes the ones that preserve weak pullbacks, but
also the monotone neighborhood functor, and it is closed under various natural operations on
functors, see Fact 2.15. For each of these functors we consider a coalgebraic modal fixpoint
logic µLT

L, in the style of [22], where the semantics of the Moss-style modality is given by
the relation lifting L (a definition is given in section 3). Our main result, Theorem 5.3 states
that the resulting logic enjoys the property of uniform interpolation; our proof also applies
to the fixpoint-free fragment of the logic.

As usual in the setting of modal logic, our proof is based on the link between uniform
interpolation and the definability of a certain nonstandard second-order quantifier, the so-
called bisimulation quantifier. More specifically, our aim will be to define, for each proposition
letter p, a map ∃p on µLT

L, and prove that this map satisfies

S, s ∃p.b iff S′, s′ b, for some S′, s′ with S, s↔p S′, s′, (1)

for all pointed coalgebras (S, s). Here ↔p denotes bisimilarity, with respect to the relation
lifting L, up to the proposition letter p.

Our proof follows the automata-theoretic approach by D’Agostino and Hollenberg. That
is, in section 3.2 we define a class of nondeterministic parity automata that closely correspond
to our language, in the sense that there are effective translation transforming a µLT

L-formula
into an equivalent automaton, and vice versa. Our main technical result, generalizing earlier
work by Kupke and the third author [12], is in section 4; it provides a construction revealing
that the class of coalgebra automata associated with our logic, is closed under projection.
From this we may easily derive the definability of bisimulation quantifiers in our logic.

In order to finish the introduction, let us mention some related work. First of all, our
paper should be considered as the publication of results from the first author’s MSc thesis [13]
on uniform interpolation for the fixpoint-free fragment of our language. Pattinson [16]
introduced a variant of Moss-style coalgebraic modal logic which nicely works for all set
functors: the so-called logic of exact covers, and he showed that this logic enjoys uniform
interpolation. Since the modality of this language seems to be inherently non-monotonic, it
is not so clear how to extend his result to the setting with fixpoint operators.

Overview. We first fix notation and terminology and equip the reader with the necessary
background material. In section 3 we introduce coalgebraic fixpoint logic and give a brief
introduction to automata theory. After that, we prove in section 4 our main technical result.
We show that if functor T : Set→ Set has a quasi-functorial lax extension L which preserves
diagonals, then T-automata are closed under projection. Finally in section 5 we combine the

CALCO’15

240 Uniform Interpolation for Coalgebraic Fixpoint Logic

results from section 3 and section 4 in order to prove uniform interpolation for coalgebraic
fixpoint logic µLT

L. We finish the paper in section 6 with an outlook on future results.

2 Preliminaries

This section contains some of the preliminaries and fixes the notation. We presuppose that
reader has made contact with basic concepts from category theory before. For example we
assume familiarity with basic notions such as categories, functors, natural transformations
and isomorphic categories.

We also presupposes knowledge of the theory of coalgebras. An extensive introduction is
given for example in [19].

2.1 Set Functors
We will work in the category Set, that has sets as objects and functions as arrows. For
sets X ′ ⊆ X, the inclusion map from X ′ to X is denoted by iX′,X : X ′ ↪→ X, x 7→ x.
For a function f : X → Y we define the set Rng(f) = {y ∈ Y | ∃x ∈ X, f(x) = y} ⊆ Y .
In the following we assume, if not explicitly stated otherwise, that functors are covariant
endofunctors in the category Set.

We first introduce some of the functors that concern us in this paper. The powerset
functor is the functor P : Set → Set, which maps a set S to the set of all its subsets
PS = {V | V ⊆ S}. A function f : S → T is mapped to Pf : PS → PT , which is defined
for any V ⊆ S by Pf(V) = f [V] = {f(v) | v ∈ V }. The contravariant powerset functor P̆
also maps a set S to P̆S = PS. On functions P̆ is the inverse image map, that is for an
f : S → T we have P̆f : P̆S → P̆T , V 7→ f−1[V]. The neighborhood functor N = P̆P̆ is the
double contravariant powerset functor. Given a set S and an element α ∈ NS, we define

α↑ := {X ∈ PS | Y ⊆ X for some Y ∈ α}

and we say that α is upward closed if α = α↑. The monotone neighborhood functor M
is the restriction of the neighborhood functor to upward closed sets. More concretely the
functor M is given by MS := {β ∈ NS | β is upward closed}, while for f : S → T , we
defineMf :MS →MT byMf(β) := (N f(β))↑.

I Definition 2.1. T : Set→ Set preserves inclusions if TiA,B = iTA,TB for all sets A ⊆ B.

I Proposition 2.2. If T : Set→ Set preserves inclusions, then T(Rng(f)) = RngT(f) for
any function f in Set.

In coalgebraic logic one pays special attention to finitary, finite set preserving functors.

I Definition 2.3. A functor T preserves finite sets if TX is finite whenever X is.
An inclusion preserving functor T is called finitary if it satisfies

TX =
⋃
{TX ′ ⊆ TX | X ′ ⊆ X, X ′ is finite }

for all sets X. The finitary version Tω of an inclusion preserving functor T is defined such
that it maps a set X to TωX =

⋃
{TX ′ | X ′ ⊆ X, X ′ is finite }, and a function f to itself.

These definitions can be simply generalized to the class of all set functors.
An example of a finitary version of a functor is Pω, that maps a set X to the set of all its

finite subsets. An other important class of set functors in the context of coalgebraic modal
logic is the class of intersection preserving functors.

J. Marti, F. Seifan, and Y. Venema 241

I Definition 2.4. A set functor T preserves finite intersections if for all sets A and B,
T(A ∩B) = TA ∩ TB.

2.2 Coalgebras
In the following part of this section, we will briefly recall the basic notions from the theory
of coalgebras that we will use later. For a detailed introduction into coalgebras see e.g. [19].

I Definition 2.5. Given a set functor T, a T-coalgebra is a pair S = (S, σ) with σ : S → TS.
A pointed T-coalgebra is a pair consisting of a T-coalgebra together with an element of
(the carrier set of) that coalgebra. A T-coalgebra morphism from T-coalgebra S = (S, σ) to
S′ = (S′, σ′), written f : S→ S′, is a function f : S → S′ such that T(f) ◦ σ = σ′ ◦ f . The
collection of T-coalgebras with their morphisms form a category denoted by Coalg(T).

I Definition 2.6. Let T be an endofunctor on the category Set, and C an arbitrary set
of objects that we shall call colors. We let TC denote the functor TCS = TS × C; that
is, TC maps a set S to the set TS × C (and a function f : S → S′ to the function
Tf × idC : TS × C → TS′ × C). TC-coalgebras will also be called C-colored T-coalgebras.
We will usually denote TC -coalgebras as triples S = (S, σ, γ), with σ : S → TS the coalgebra
map and γ : S → C the coloring (marking).

I Convention 2.7. From now on in all our investigations, without lose of generality, we can
assume set functor T preserves inclusions and finite intersections. Indeed given any T we
can find a naturally isomorphic T′ that preserves inclusions and finite intersections. The
details can be found in [1]. The important point for us is that the category of Coalg(T) and
Coalg(T′) are isomorphic.

2.3 Relation Lifting and Bisimulation
In the remaining part of this section we introduce the notion of relation lifting to define a very
general notion of bisimulation for coalgebras. First we recall some central definitions and fix
mathematical notation and terminology. Given sets X and Y , we denote a relation R between
X and Y by R : X → Y to specify its domain X and codomain Y . We write R;S : X → Z

for the composition of two relations R : X → Y and S : Y → Z and R◦ : Y → X for the
converse of R : X → Y with (y, x) ∈ R◦ iff (x, y) ∈ R. The graph of any function f : X → Y

is a relation f : X → Y between X and Y for which we also use the symbol f . It will be
clear from the context in which a symbol f occurs whether it is meant as a function or a
relation. Note that the composition of functions is denoted the other way round than the
composition of relations, so we have g ◦ f = f ; g for functions f : X → Y and g : Y → Z.
For a relation R : X → Y we define the sets

Dom(R) = {x ∈ X | ∃y ∈ Y, (x, y) ∈ R} ⊆ X,
Rng(R) = {y ∈ Y | ∃x ∈ X, (x, y) ∈ R} ⊆ Y.

The relation R : X → Y is full on X if Dom(R) = X and is full on Y if Rng(R) = Y .
Given sets X ′ ⊆ X and Y ′ ⊆ Y , we define the restriction R |X′×Y ′ : X ′ → Y ′ of the relation
R : X → Y as R |X′×Y ′= R ∩ (X × Y). For any set X let ∈X : X → PX be the membership
relation between elements of X and subsets of X. Given a set X we define the diagonal
relation ∆X : X → X with (x, x′) ∈ ∆X iff x = x′. Note that ∆X = idX , where idX is the
graph of the identity function.

CALCO’15

242 Uniform Interpolation for Coalgebraic Fixpoint Logic

I Definition 2.8. A relation lifting L for a set functor T is a collection of relations LR for
every relation R, such that LR : TX → TY if R : X → Y . We require relation liftings to
preserve converse, this means that L(R◦) = (LR)◦ for all relations R.

I Example 2.9.
(i) The Egli-Milner lifting P is a relation lifting for covariant power set functor P that is

defined for any R : X → Y such that PR = −→PR ∩←−PR, where:
−→
PR := {(U, V) ∈ PX × PY | ∀u ∈ U ∃v ∈ V s.t. (u, v) ∈ R},

←−
PR := {(U, V) ∈ PX × PY | ∀v ∈ V ∃u ∈ U s.t. (u, v) ∈ R}.

(ii) For the constant functor D of a fixed set D define a relation lifting D for any R : X → Y

such that DR = ∆D.
(iii) Recall the notion of −→PR from (i) we can define a relation lifting M̃ for the monotone

neighborhood functorM on a relation R : X → Y as follows:

M̃R := −→P←−PR ∩←−P−→PR.

An important use of relation liftings is to yield a notion of bisimulation.

I Definition 2.10. Let L be a relation lifting for T and S = (S, σ) and S′ = (S′, σ′) be
two T-coalgebras. An L-bisimulation between S and S′ is a relation R : S → S′ such that
(σ(s), σ′(s′)) ∈ LR, for all (s, s′) ∈ R. Two states s ∈ S and s′ ∈ S′ are L-bisimilar if there
is an L-bisimulation R between S and S′ with (s, s′) ∈ R. We write ↔L for the notion of
L-bisimilarity between fixed coalgebras. Given two C-colored T-coalgebras S = (S, σ, γ) and
S′ = (S′, σ′, γ′) and a relation lifting L for T, a relation R : S → S′ is an LC-bisimulation
between S and S′, whenever (σ(s), σ′(s′)) ∈ LR and γ(s) = γ′(s′) for all (s, s′) ∈ R.

Now we will give the definition of lax extensions, which are relation liftings satisfying
certain conditions that make them well-behaved in the context of coalgebra.

I Definition 2.11. A relation lifting L for a functor T is called a lax extension of T if it
satisfies, for all relations R,R′ : X → Z and S : Z → Y and all functions f : X → Z:
(L1) R′ ⊆ R implies LR′ ⊆ LR,
(L2) LR;LS ⊆ L(R;S),
(L3) Tf ⊆ Lf.
We say that a lax extension L preserves diagonals if it additionally satisfies:
(L4) L∆X ⊆ ∆TX .

We call a lax extension L of T functorial, if it distributes over composition, i.e., if LR;LS =
L(R;S), and quasi-functorial, if

LR;LS = L(R;S) ∩ (Dom(LR)×Rng(LS))

for all relations R : X → Z and S : Z → Y .

I Example 2.12. The relation lifting M̃ which has been defined in Example 2.9, is quasi-
functorial.

I Proposition 2.13. Let T be a set functor and let L be a quasi-functorial lax extension for
T. Then we have:
(1) L preserves fullness: If R : X → Z is full on both sides, then so is LR : TX → TZ;

J. Marti, F. Seifan, and Y. Venema 243

(2) If R : X → Z is full on X and i : Z ↪→ Z ′ is the inclusion map between Z and Z ′ then
L(R; i) is full on TX;

(3) If L preserves diagonals then for any function f , Tf = Lf .

Let us now summarize some facts that we will use about L-bisimulations in the sequel.

I Proposition 2.14. For a lax extension L of T and T-coalgebras S, S′ and Q the following
hold:
(1) The graph of a coalgebra morphism f from S to S′ is an L-bisimulation between S and

S′;
(2) if R : S → Q respectively R′ : Q→ S′ are L-bisimulations between S and Q respectively

Q and S′, then R;R′ : S → S′ is an L-bisimulation between S and S′.

For the proof we refer to [14, Proposition 3].
We will finish this section with a remark on some of the closure properties of the class of

functors with a quasi-functorial lax extension:

I Fact 2.15. The collection of functors with a quasi-functorial lax extension (FQL) has the
following properties:
1. the identity functor I : Set→ Set is in FQL;
2. for each set D, the constant functor D : Set→ Set is in FQL;
3. the product X 7→ T1(X)× T2(X) of two FQLs T1 and T2 is in FQL;
4. the coproduct X 7→ T1(X) + T2(X) of two FQLs T1 and T2 is in FQL;
5. the composition X 7→ (T1 ◦ T2)(X) of a FQL functor T1 and a functor T2 which has a

functorial lax extension, is in FQL.

3 Coalgebraic Fixpoint Logic and Automata

3.1 Coalgebraic Fixpoint Logic
In this section we show how to define the syntax and semantics of a coalgebraic fixpoint
logic, using a quasi-functorial lax extension L of T. For this purpose from now on we fix
a functor T with a quasi-functorial lax extension L. Recall that by our convention 2.7, T
preserves all inclusions and finite intersections. We also fix a set P of propositional letters
and assume that L preserves diagonals.

I Definition 3.1. Given a functor T, we define for every set X the function

Base : TωX → PωX, α 7→
⋂
{X ′ ⊆ X | α ∈ TX ′}.

The point of this notion is that Base(α) ∈ PωX is the least set U ∈ PωX such that α ∈ TU .
The language of the coalgebraic fixpoint logic is defined as follows:

I Definition 3.2. For P as the set of propositional letters, define the language µLT
L(P) by

the following grammar:

a ::= p | ¬a |
∨
A | ∇α | µp.a,

where p ∈ P, A ∈ Pω(µLT
L) and α ∈ Tω(µLT

L(P)). There is a restriction on the formulation
of the formulas µp.a, namely, no occurrence of p in a may be in the scope of an odd number
of negations.1

1 For a precise definition of the notions scope and occurrence, we can inductively define a construction
tree of a formula, where the children of a node labeled ∇α are given by the formulas in Base(α).

CALCO’15

244 Uniform Interpolation for Coalgebraic Fixpoint Logic

I Remark 3.3. For a given formula a ∈ µLT
L(P), Pa ⊆ P denotes the set of all propositional

letters occurring in a. Observe that for Q′ ⊆ Q ⊆ P, we have that µLT
L(Q′) ⊆ µLT

L(Q). This
can be proved by induction on the complexity of formulas in µLT

L(Q′).

Before we turn to the coalgebraic semantics of this language, there are a number of syntactic
definitions to be fixed.

I Definition 3.4. We will write b E a if b is a subformula of a. Inductively we define the set
Sfor(a) of subformulas of a as follows:

Sfor(p) := {p},
Sfor(¬a) := {¬a} ∪ Sfor(a),

Sfor
(∨

A
)

:= {
∨
A} ∪

⋃
a∈A

Sfor(a),

Sfor(µp.a) := {µp.a} ∪ Sfor(a),
Sfor (∇α) := {∇α} ∪

⋃
a∈Base(α)

Sfor(a)

The elements of Base(α) will be called the immediate subformulas of ∇α.

I Definition 3.5. A formula a ∈ µLT
L(P) is guarded if every subformula µp.b of a has the

property that all occurrences of p inside b are within the scope of a ∇.

We now introduce the semantics of coalgebraic fixpoint logic. For this purpose we define the
notion of a T-model over a set P of propositional letters.

I Definition 3.6. A T-model S = (S, σ, V) is a T-coalgebra (S, σ) together with a valuation
V that is a function V : P→ PS.

Using the fixed quasi-functorial lax extension L for the functor T we can define the semantics
for the language µLT

L(P) on T-models, by giving the definition of the satisfaction relation
S: S → µLT

L(P) for a T-model S = (S, σ, V).

I Definition 3.7. Before going to the definition of the satisfaction relation, we need to fix
some notation: For X ⊆ S, V [p 7→ X] denotes the valuation that is exactly like V apart
from mapping p to X. We also use JaKS for the extension of formula a in a T-model S:
JaKS := {s ∈ S | s S a}.Then JaKS[p 7→X] denotes the extension of a considering the valuation
V [p 7→ X], instead of V .
Now we are ready to define the satisfaction relation as follows:

s S p iff s ∈ V (p)
s S ¬a iff not s S a

s S
∨
A iff s S a for some a ∈ A

s S ∇α iff (σ(s), α) ∈ L S

s S µp.a iff s ∈
⋂
{X ⊆ S | JaKS[p 7→X] ⊆ X}.

I Remark 3.8. The clauses in Definition 3.7 are not stated in a correct recursive way. In
the recursive clause for the ∇ modality we make use of the unrestricted satisfaction relation
S that has yet to be defined. We can only suppose that S|S×Base(α) is already defined.
The actual recursive definition is that s S ∇α iff (σ(s), α) ∈ L(S|S×Base(α)). To see why
this is equal to the clause given above, see [14, Proposition 6].

J. Marti, F. Seifan, and Y. Venema 245

I Remark 3.9. Given a valuation V : P→ PS, one can think of it as a coloring γV : S → PP
given by: γV (s) := {p ∈ P | s ∈ V (p)}. So following Definition 2.6, a T-model S = (S, σ, V)
can also be seen as a P(P)-colored T-coalgebra denoted as Ŝ = (S, σ, γV).

I Definition 3.10. The projection of a P(P)-colored T-coalgebra S = (S, σ, γ) to a set Q ⊆ P
is the P(Q)-colored T-coalgebra SQ = (S, σ, γQ) where γQ : S → PQ, s 7→ γ(s) ∩ Q.

I Definition 3.11. Given a set Q ⊆ P, an LQ-bisimulation between two T-models S and Y
is defined to be an LP(Q)-bisimulation between P(Q)-colored T-colagebras ŜQ and ŶQ, which
are given by Remark 3.9 and Definition 3.10. More precisely, a relation R : S → Y is an
LQ-bisimulation between T-models S = (S, σ, VS) and Y = (Y, λ, VY) if and only if R is an
L-bisimulation between T-coalgebras S = (S, σ) and Y = (Y, λ) and R preserves the truth of
all propositional letters in Q, that is, for all (s, y) ∈ R and p ∈ Q, s ∈ VS(p) iff y ∈ VY (p).

From this definition, it is easy to see that for any Q′ ⊆ Q, if a relation R is an LQ-bisimulation
between T-models S and Y, then it is also an LQ′ -bisimulation between them.

I Definition 3.12. Given a propositional letter p ∈ P, a relation R : S → S′ is an up-
to-p LP-bisimulation between two T-models S = (S, σ, V) and S′ = (S′, σ′, V ′), if it is an
LP\{p}-bisimulation between T-models S and S′. We write s ↔L

p s
′ if s and s′ are up-to-p

LP-bisimilar, that is where we disregard the proposition letter p.

Now we are going to look at the expressive power of µLT
L(P) with respect to states in

T-models. For this, we start with a definition.

I Definition 3.13. Two states s in T-model S = (S, σ, V) and s′ in T-model S′ = (S′, σ′, V ′)
are called equivalent for formulas in µLT

L(P) if s S a iff s′ S′ a, for all a ∈ µLT
L(P).

An important property of our coalgebraic fixpoint logic is that truth is bisimulation invariant.
This fact is given by the following proposition.

I Proposition 3.14. Given a state s in a T-model S = (S, σ, V) and a state s′ in a T-model
S′ = (S′, σ′, V ′), if s and s′ are LP-bisimilar then s and s′ are equivalent for formulas in
µLT

L(P).

For the proof of this proposition we refer to [22, Proposition 5.14], [13, Proposition 4.11]
and the fact that lax extensions are monotone.

Now we are ready to state the last semantic result we will need throughout this paper.

I Proposition 3.15. Each formula in µLT
L(P) can be transformed into an equivalent guarded

formula in µLT
L(P).

It can be proved by induction on the complexity of formulas, see [22, Proposition 5.15]

I Convention 3.16. Throughout this paper we always assume µLT
L(P)-formulas to be

guarded.

3.2 Coalgebraic Automata
Coalgebraic automata are supposed to operate on pointed coalgebras. Basically, the idea is
that an initialized T-automaton will either accept or reject a given pointed T-coalgebra. In
the following section, we will recall the basic definitions from coalgebraic automata theory.

CALCO’15

246 Uniform Interpolation for Coalgebraic Fixpoint Logic

I Definition 3.17. Given a functor T : Set→ Set. A (non-deterministic) T-automaton over
a color set C is a triple A = (A,∆,Ω), with A some finite set (of states), ∆ : A× C → PTA
the transition map and Ω : A→ ω a parity map. An initialized version of A is a pair (A, a)
consisting of an automaton A together with an element a ∈ A, which is the initial state.

The acceptance condition for T-automaton is formulated in terms of a parity game[12]. The
acceptance game G(S,A) between initialized automaton (A, aI) and a pointed coalgebra
(S, sI) is given by the Table 1. The game is played by two players: Éloise (∃) and Abélard
(∀). A match of the game is a (finite or infinite) sequence of positions which is given by the
two players moving from one position to another according to the rules of Table 1. Let us
now give the formal definition of acceptance game.

I Definition 3.18. Let (A, aI) be an initialized T-automaton over the color set C. Further-
more let (S, sI) = (S, σ, γ, sI) be a pointed C-colored T-coalgebra. Then the acceptance game
G(S,A) is given by the following table:

Table 1 Acceptance game for T-automaton.

Position Player Admissible moves Parity
(s, a) ∈ S ×A ∃ (σ(s), φ) s.t. φ ∈ ∆(a, γ(s)) Ω(a)
(σ(s), φ) ∈ TS × TA ∃ {Z : S → A | (σ(s), φ) ∈ LZ 0
Z ⊆ S ×A ∀ Z 0

Positions of the form (s, a) ∈ S ×A will be called basic positions of the game. A partial
play of the game of the form (s, a)(σ(s), φ)Z(t, b) (with (s, a) ∈ S ×A, (σ(s), φ) ∈ TS × TA,
Z : S → A and (t, b) ∈ Z) will be called a round of the play. For the winning conditions,
recall that finite matches are lost by the player who gets stuck. For infinite matches, consider
an arbitrary such match:

ρ = (s0, a0)(σ(s0), φ0)Z0(s1, a1)(σ(s1), φ1)Z1(s2, a2)...

Clearly, ρ induces an infinite sequence of basic positions (s0, a0)(s1, a1)(s2, a2)... and, thus,
an infinite sequence of states in A: ρ �A:= a0a1a2... Now ∃ is the winner of the match ρ if the
maximum priority occurring infinitely often on ρ |A is even. Otherwise ∀ wins ρ. A positional
or history free strategy for ∃ is a pair of functions (Φ : S ×A→ TA,Z : S ×A→ P(S ×A)).
Such a strategy is legitimate if at any position, it maps the position to an admissible next
position. A legitimate strategy is winning for ∃ from a position in the game, if it guarantees
∃ to win any match starting from that position, no matter how ∀ plays. A position starting
from which ∃ has a winning strategy is called a winning position for ∃ . The set of all winning
positions for ∃ in G(S,A) is denoted by Win∃(S,A) or shortly by Win∃. A history-free
strategy (Φ, Z) initialized at (sI , b) ∈ S ×A is called scattered if the relation

{(sI , b)} ∪
⋃
{Zs,a ⊆ S ×A | (s, a) ∈Win∃},

with Zs,a the value of Z on (s, a), is functional. Finally we say that initialized T-automaton
(A, aI) accepts (S, sI) if ∃ has a winning strategy in the game G(A,S) initialized at position
(sI , aI). If ∃ has a scattered winning strategy starting from (sI , aI), we will say (A, aI)
strongly accepts (S, sI).

I Definition 3.19. For every initialized T-automaton (A, aI) over some color set C, L(A, aI),
the recognizable language of (A, aI), is the class of all pointed C-colored T-coalgebras that
are accepted by (A, aI). We call two initialized T-automata (A, aI) and (A′, a′I) over set C
equivalent iff L(A, aI) = L(A′, a′I).

J. Marti, F. Seifan, and Y. Venema 247

3.3 Logic and Automata
There is a routine construction of an equivalent initialized T-automaton (A, aI) from a
µLT

L(P)-formula, and vice versa. Given the finitary nature of our automata, this construction
requires the functor T to preserve finite sets.

I Proposition 3.20. Let T be a functor that preserves finite sets. There exists an effective pro-
cedure to transform a formula b ∈ µLT

L(P) to an initialized T-automaton (Ab, ab) over the set
C = P(P) such that for every C-colored T-coalgebra (S, s): (S, s) S b iff (Ab, ab) accepts (S, s).

Proof sketch. Our construction proceeds along the exact same lines as the construction of an
initialized alternating T-automaton from a given formula [22, Theorem 2] and transforming
it to a non-deterministic T-automaton [12, Theorem 1] in the case of a functor that preserves
weak pullbacks, and uses some facts from [13] to the fact that also in our case, the nabla
operator has certain desirable properties. The construction proceeds in the following stages:
(0) First of all we generalize our notion of a T-automaton (which is non-deterministic

in nature) to that of an alternating T-automaton, which has a transition map of the
type ∆ : A→ PPTA. For these automata, acceptance is defined as for the alternating
automata in [12] and [22].

(1) Using routine methods [22, Theorem 2] we can inductively show that every formula in
our language can be effectively transformed into an equivalent alternating automaton.
For the case of negation we use the method of [11] together with the fact that the dual of
our nabla operator can be expressed using disjunctions and the nabla operator itself [13,
Theorem 4.14].

(2) What is still missing is a simulation theorem stating that every alternating automaton
can be replaced with an equivalent non-deterministic one. This result is in fact also a
more or less routine result [2, section 9.6], since we can use the fact that our nabla also
satisfies a certain modal distributive law, stating that the conjunction of nablas over some
formulas is equivalent to a disjunction of nablas over some conjunctions of these formulas
[13, Proposition 4.17].

(3) Combining (1) and (2) we see that every formula in our coalgebraic fixpoint language is
equivalent to one of our automata indeed. J

I Proposition 3.21. There exists an effective procedure transforming an initialized T-
automaton (A, aI) to an equivalent µLT

L(P)-formula aA.

This result is rather standard, see for instance [22, Theorem 3].

4 Automata are Closed under Projection

This section is devoted to the proof of our main technical result i.e., closure under projection.

I Definition 4.1. Let A = (A,∆,Ω) be a T-automaton over color set C. We call a state a ∈ A
a true state of A if Ω(a) is even and ∆(a, c) = T({a}). We will standardly use the notation
a> to refer to a true state. Given (a, c) ∈ A× C we call φ ∈ ∆(a, c) a satisfiable element of
A if there is a witnessing T-coalgebra (Qφ, ρ, γQ), τ ∈ TQ and a relation Zφ : Q→ A such
that (τ, φ) ∈ LZφ and Zφ ⊆Win∃(Q,A). Finally we call a T-automaton A totally satisfiable
whenever for all (a, c) ∈ A× C and φ ∈ ∆(a, c), φ is satisfiable.

The following proposition states that without loss of generality we can always assume that
an initialized T-automaton (A, aI) is totally satisfiable and has a true state. Furthermore,
we may always assume that there exists a witnessing T-coalgebra Q that works for all
(a, c) ∈ A× C and φ ∈ ∆(a, c).

CALCO’15

248 Uniform Interpolation for Coalgebraic Fixpoint Logic

I Proposition 4.2. For any initialized T-automaton (A, aI) over a color set C we have
that:
1. There is an equivalent initialized T-automaton (A′, aI) such that A′ has a true state.
2. There exists a totally satisfiable initialized T-automaton (A′, a′I) which is equivalent to

(A, aI).
3. If (A, aI) is totally satisfiable, then there is a C-colored witnessing coalgebra Q = (Q, ρ, γQ)

and a relation Y : Q → A with Y ⊆ Win∃(Q,A) such that for all (a, c) ∈ A × C and
φ ∈ ∆(a, c), there is a τ ∈ TQ such that (τ, φ) ∈ LY .

Now we will state the main technical result of this paper. Theorem 4.3 is a generalization
of [12, Proposition 5.9], where the same result is proved for the weak-pullback preserving
functors. In the following theorem we will generalize the proposition to the class of all
functors with a quasi-functorial lax extension that preserves diagonals. The proof strategy is
the same as in [12], but the construction here is more involved.

I Theorem 4.3 (Closure under projection). Given an initialized T-automaton (A, aI) over
a color set P(P) and an element p ∈ P, then there exists an initialized T-automaton (∃p.A, aI)
over the color set P(P \ {p}) such that:

(S, sI) ∈ L(∃p.A, aI) iff (S, sI) ∈ L(A, aI) for some (S, sI) with S, sI ↔L
p S, sI . (2)

Proof. Given (A, aI) over color a set PP, we define the initialized T-automaton (∃p.A, aI)
over the color set P(P \ {p}) as the automaton (∃p.A, aI) := (A,∆p,Ω, aI), where

∆p : A× P(P \ {p})→ PTA, (a, c) 7→ ∆(a, c) ∪∆(a, c ∪ {p}).

We need to show that (∃p.A, aI) satisfies (2). The right-to-left direction of (2) is straightfor-
ward, since all legitimate moves of ∃ in the game G(A,S′) are also legitimate in G(∃p.A,S′p).

To show the left-to-right direction of (2) assume that (∃p.A, aI) accepts the P(P \ {p})-
colored T-coalgebra (S, sI) = (S, σ, γ, sI). We need to define a PP-colored coalgebra (S, sI) =
(S, σ, γ, sI) ∈ L(A, a) that is up-to-p bisimilar to (S, sI).

By Proposition 4.2 we can assume that (∃p.A, aI) has a true state and is totally satisfiable,
which entails that there is a PP-colored coalgebra Q = (Q, ρ, γQ) and a relation Y : Q→ A

with Y ⊆Win∃(Q,∃p.A) such that for all (a, c) ∈ A× C and φ ∈ ∆(a, c) there is a τ ∈ TQ
with (τ, φ) ∈ LY .

The carrier of (S, sI) is the set S := (S × A)] Q. To define the coalgebra structure
σ : S → TS we distinguish the following cases:
(1) If q ∈ Q, define σ(q) := ρ(q).
(2) If (s, a) ∈ S × A and (s, a) /∈ Win∃(S,∃p.A), define σ(s, a) := Tκa(σ(s)), where κa :

S → S ×A, s 7→ (s, a).
(3) In the case where (s, a) ∈ S × A and (s, a) ∈ Win∃(S,∃p.A) we define σ(s, a) as

follows: From the winning strategy that witnesses (s, a) ∈ Win∃(S,∃p.A) we obtain
a φs,a ∈ ∆(a, γ(s)) and a relation Zs,a : S → A such that Zs,a ⊆ Win∃(S,∃p.A) and
(σ(s), φs,a) ∈ LZs,a. Because (A, aI) contains a true state we can assume without loss
of generality that Zs,a is full on S. We can write Zs,a = π◦1 ;π2 where π1 : Zs,a → S

and π2 : Zs,a → A are the projections of Zs,a. These projections can be seen as
relations with domain (S × A)]Q for which it then follows that Zs,a ⊆ π◦1 ; (πs] Y).
Because L is a lax extension one obtains that LZs,a ⊆ L(π◦1 ; (πs] Y)) and hence
(σ(s), φs,a) ∈ L(π◦1 ; (πs] Y)). It also holds that σ(s) ∈ Dom(L(π◦1)) because Zs,a is
full on S, so π◦1 is full on S, and hence by Proposition 2.13 (2) L(π◦1) is full on TS.

J. Marti, F. Seifan, and Y. Venema 249

Moreover φs,a ∈ Rng(L(π2] Y)) because φs,a ∈ Rng(LY) by the properties of Y and
LY ⊆ L(L(π2] Y).
With the quasi-functoriality of L it now follows that (σ(s), φs,a) ∈ L(π◦1);L(πs] Y).
Hence it is possible to choose σ(s, a) ∈ T((S ×A)]Q) such that

(σ(s), σ(s, a)) ∈ L(π◦1) and (σ(s, a), φs,a) ∈ L(π2] Y).

To complete the definition of the PP-colored pointed coalgebra (S, sI) we set sI := (sI , aI)
and define the coloring γ : S → P(P) by distinguishing the following cases:
(1) If q ∈ Q, define γ(q) := γQ(q).
(2) If (s, a) ∈ S ×A and (s, a) /∈Win∃(S,∃p.A), define γ(s, a) := γ(s).
(3) If (s, a) ∈ S×A and (s, a) ∈Win∃(S,∃p.A) we define γ(s, a) by considering the choice of
∃ at (s, a). Since (s, a) is a winning position for ∃, she picks an element φs,a ∈ ∆p(a, γ(s)).
The function ∆p is defined such that ∆p(a, γ(s)) = ∆(a, γ(s))∪∆(a, γ(s)∪{p}). We set

γ(s, a) :=
{
γ(s) ∪ {p} if φs,a ∈ ∆(a, γ(s) ∪ {p}),
γ(s) otherwise.

We need to show that S, sI ↔L
p S, (sI , aI) and that ((sI , aI), aI) ∈Win∃(S,A).

I Claim (1). S, sI ↔L
p S, (sI , aI).

Proof of claim (1). We show that graph of the projection πS : S×A→ S seen as a relation
between S and S is an up-to-p bisimulation between S, sI and S, sI . We need to prove that

(σ(s, a), σ(s)) ∈ LπS and γ(s, a) \ {p} = γ(s) whenever ((s, a), s) ∈ π1.

That γ(s, a) \ {p} = γ(s) follows directly from the definition of γ. For (σ(s, a), σ(s)) ∈ LπS
we distinguish two cases:
(i) If (s, a) ∈ S × A and (s, a) /∈ Win∃(S,∃p.A) then the statement holds because by

definition σ(s, a) = Tκa(σ(s)) and since L is a lax extensions and κa ⊆ πS we have that

(Tκa(σ(s)), σ(s)) ∈ Tκa = Lκa ⊆ LπS

(ii) If (s, a) ∈ S × A and (s, a) ∈ Win∃(S,∃p.A) then we get by the definition of σ that
(σ(s, a), σ(s)) ∈ Lπ1. It follows that (σ(s, a), σ(s)) ∈ LπS because L is a lax extensions
and π1 ⊆ πS since π1 : Zs,a → S is the projection of the relation Zs,a ⊆ S ×A. J

I Claim (2). ((sI , aI), aI) ∈Win∃(S,A).

Proof of claim (2). Let (Ψ, Y ′) be a strategy for ∃ witnessing that Y ⊆ Win∃(Q,∃p.A).
Define ∃’s strategy in G(S,A) as follows:

Φ : S ×A→ TA
((s, b), a) 7→ φs,a

(q, a) 7→ ψq,a

Z : S ×A→ P(S ×A)
((s, b), a) 7→ π2] Y

(q, a) 7→ Y ′q,a

where π2 is the projection of Zs,a, if (s, a) ∈Win∃(S,∃p.A), and arbitrary otherwise. J

I Claim (2a). For the following types of positions in G(S,A), the given strategy (Φ, Z)
provides legitimate moves for ∃:
(i) (q, a) ∈ S ×A and (q, a) ∈Win∃(Q,∃p.A),
(ii) ((s, a), a) ∈ S ×A and (s, a) ∈Win∃(S,∃p.A)

CALCO’15

250 Uniform Interpolation for Coalgebraic Fixpoint Logic

Proof of Claim (2a).
(i) This is clear since σ(q) = ρ(q) and ∃ plays her winning strategy in G(Q,∃p.A).
(ii) By the definition of γ we have that φs,a = φs,a ∈ ∆(a, γ(s, a)). Also (σ(s, a), φs,a) ∈

LZs,a because (σ(s, a), φs,a) ∈ L(π2] Y).
J

I Claim (2b). (Φ, Z) guarantees ∃ to win any match of G(S,A) starting from ((sI , aI), aI).

Proof of Claim (2b). To check that (Φ, Z) is winning it suffices to distinguish the following
two kinds of matches:
(i) At some stage ∀ chooses an element (q, a) ∈ Y . From this moment on, there is no way to

go through the states of S and since Y ⊆Win∃(Q,∃p.A), ∃ plays her winning strategy
in G(Q,A) and wins the match.

(ii) ∀ never picks an element of the form (q, a). In this case any (Φ, Z)-conforming match is
of the form

((sI , aI), aI)((s1, a1), a1)((s2, a2), a2) . . .

This match corresponds to the (Φ, Z)-conforming match

(sI , aI)(s1, a1)(s2, a2) . . .

in the game G(S,A). Since we assumed (Φ, Z) to be a winning strategy for ∃, (Φ, Z) is
also a winning strategy for her.

J

This finishes the proof of Theorem 4.3. J

5 Uniform Interpolation for µLT
L

In the following section we will prove the main theorem of this paper, viz., uniform interpola-
tion for µLT

L. Our proof follows and generalizes the proof in [20] which shows a similar result
for monotone modal logic (without fixpoints). We first need some auxiliary definitions.

I Definition 5.1. Define the relation of logical consequence �: µLT
L(P)→ µLT

L(P) by a � a′
if and only if s S a implies s S a

′ for all states s in any T-model S.

I Definition 5.2. Given a formula a ∈ µLT
L(P), we let Pa denote the (obviously defined) set

of proposition letters occurring in a.

Our main result can now be formulated as follows.

I Theorem 5.3 (Uniform Interpolation). Let T be a set functor that preserves finite sets, and
let L be a quasi-functorial lax extension for T. For any formula a ∈ µLT

L(P) and any set
Q ⊆ Pa of propositional letters, there is a formula aQ ∈ µLT

L(Q), effectively constructable
from a, such that for every formula b ∈ µLT

L(P) with Pa ∩ Pb ⊆ Q, we have that

a � b iff aQ � b.

If a is fixpoint-free, then so is aQ.

As mentioned in the introduction, our proof is based on the definability of the bisimulation
quantifier in our language.

J. Marti, F. Seifan, and Y. Venema 251

I Proposition 5.4. Given any proposition letter p, there is a map ∃p : µLT
L(P) −→ µLT

L(P)
such that P∃p.b = Pb \ {p} and

S, s ∃p.b iff S′, s′ b, for some S′, s′ with S, s ↔L
p S′, s′. (3)

for any formula b ∈ µLT
L(P).

Proof. Take a formula b ∈ µLT
L(P). By Proposition 3.20 we can transform it to an equivalent

initialized T-automaton (Ab, ab). From Theorem 4.3 we have an initialized T-automaton
(∃p.Ab, ab) such that:

(∃p.Ab, ab) accepts (S, s) iff (Ab, ab) accepts (S′, s′) for some (S′, s′) with S, s↔L
p S′, s′.

Now by Proposition 3.21 we can transform the initialized T-automaton (∃p.Ab, ab) to an
equivalent formula a(∃p.Ab) and put ∃p.b := a(∃p.Ab). It is easy to show that:

S, s a(∃p.Ab) iff S′, s′ b, for some S′, s′ with S, s↔L
p S′, s′.

We leave it for the reader to verify that P∃p.b = Pb \ {p}. J

Now we are ready to prove the uniform interpolation theorem:

Proof of Theorem 5.3. Let p0, p1, ..., pn−1 enumerate the proposition letters in Pa \ Q, and
set

aQ := ∃p0∃p1 . . . ∃pn−1.a.

It is not difficult to verify that aQ is fixpoint-free if a is so.
In order to check that a � b iff aQ � b, first assume that a � b. To prove that aQ � b

take a pointed T-model (S0, s0) with s0 S0 aQ. By the semantics of the bisimulation
quantifiers we get states si in T-models Si for i = 1, 2, . . . , n such that si -pi

si+1 for
i = 0, ..., n and sn Sn

a. From the latter fact it follows that sn Sn
b since we have assumed

a � b. Because each of the witnessing up-to-pi LP-bisimulations for i = 0, 1, . . . , n − 1 is
also an LP\{p0,p1,...,pn−1}-bisimulation, we can compose them and obtain an LP\{p0,p1,...,pn−1}-
bisimulation between s0 and sn. Since Pb ⊆ P \ {p0, p1, . . . , pn−1} we get s0 S0 b.

For the other direction, we show that a � aQ, then a � b follows by transitivity from
aQ � b. Take any state s in a T-model S = (S, σ, V) with s S a. Then s S aQ because s is
up-to-p LP-bisimilar to itself for any p ∈ P, since the identity on S is an LP-bisimulation. J

6 Conclusions and Future Work

In this paper we showed that the coalgebraic fixpoint logic for functors with a quasi-functorial
lax extension that preserves diagonals, enjoys uniform interpolation. This suggests to further
study the class of functors possessing such a relation lifting. For instance one might try to
characterize this class of functors in categorical terms and investigate how the cover modality
of such a relation lifting relates to modalities arising from predicate liftings [14].

References
1 Jiří Adámek and Věra Trnková. Automata and algebras in categories, volume 37 of Math-

ematics and its Applications (East European Series). Kluwer Academic Publishers Group,
Dordrecht, 1990.

2 A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2001.

CALCO’15

252 Uniform Interpolation for Coalgebraic Fixpoint Logic

3 J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

4 William Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and
proof theory. J. Symb. Logic, 22:269–285, 1957.

5 Giovanna D’Agostino and Marco Hollenberg. Logical questions concerning the µ-calculus:
interpolation, Lyndon and Łoś-Tarski. J. Symbolic Logic, 65(1):310–332, 2000.

6 Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21–51, 1961.

7 Silvio Ghilardi. An algebraic theory of normal forms. Ann. Pure Appl. Logic, 71(3):189–245,
1995.

8 Silvio Ghilardi and Marek Zawadowski. Undefinability of propositional quantifiers in the
modal system S4. Studia Logica, 55(2):259–271, 1995.

9 Leon Henkin. An extension of the Craig-Lyndon interpolation theorem. J. Symbolic Logic,
28:201–216, 1963.

10 David Janin and Igor Walukiewicz. Automata for the modal µ-calculus and related results.
In Mathematical foundations of computer science 1995 (Prague), volume 969 of Lecture
Notes in Comput. Sci., pages 552–562. Springer, Berlin, 1995.

11 Christian Kissig and Yde Venema. Complementation of coalgebra automata. In Algebra
and coalgebra in computer science, volume 5728 of Lecture Notes in Comput. Sci., pages
81–96. Springer, Berlin, 2009.

12 Clemens Kupke and Yde Venema. Coalgebraic automata theory: basic results. Log. Methods
Comput. Sci., 4(4):4:10, 43, 2008.

13 Johannes Marti. Relation liftings in coalgebraic modal logic. Master’s thesis, Universiteit
van Amsterdam, 2011.

14 Johannes Marti and Yde Venema. Lax extensions of coalgebra functors and their logic. J.
Comput. System Sci., 81(5):880–900, 2015.

15 Lawrence S. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96(1-3):277–317, 1999. Fest-
schrift on the occasion of Professor Rohit Parikh’s 60th birthday.

16 Dirk Pattinson. The logic of exact covers: Completeness and uniform interpolation. In
Logic in Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium on, pages
418–427. IEEE, 2013.

17 Andrew M. Pitts. On an interpretation of second-order quantification in first-order intu-
itionistic propositional logic. J. Symbolic Logic, 57(1):33–52, 1992.

18 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141:1–35, 1969.

19 J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci.,
249(1):3–80, 2000. Modern algebra and its applications (Nashville, TN, 1996).

20 Luigi Santocanale and Yde Venema. Uniform interpolation for monotone modal logic. In
Advances in modal logic. Volume 8, pages 350–370. Coll. Publ., London, 2010.

21 Vladimir Yurievich Shavrukov. Adventures in diagonalizable algebras. ILLC Publications,
1994.

22 Yde Venema. Automata and fixed point logics for coalgebras. In Proceedings of the Work-
shop on Coalgebraic Methods in Computer Science, volume 106 of Electron. Notes Theor.
Comput. Sci., pages 355–375 (electronic). Elsevier, Amsterdam, 2004.

23 Albert Visser. Uniform interpolation and layered bisimulation. In Gödel’96 (Brno, 1996),
volume 6 of Lecture Notes Logic, pages 139–164. Springer, Berlin, 1996.

	Introduction
	Preliminaries
	Set Functors
	Coalgebras
	Relation Lifting and Bisimulation

	Coalgebraic Fixpoint Logic and Automata
	Coalgebraic Fixpoint Logic
	Coalgebraic Automata
	Logic and Automata

	Automata are Closed under Projection
	Uniform Interpolation for LTL
	Conclusions and Future Work

