
Parity Games and Automata for Game Logic

Helle Hvid Hansen1, Clemens Kupke2(B), Johannes Marti2, and Yde Venema3

1 Delft University of Technology, Delft, The Netherlands
2 University of Strathclyde, Glasgow, UK

clemens.kupke@strath.ac.uk
3 University of Amsterdam, Amsterdam, The Netherlands

Abstract. Parikh’s game logic is a PDL-like fixpoint logic interpreted
on monotone neighbourhood frames that represent the strategic power
of players in determined two-player games. Game logic translates into
a fragment of the monotone μ-calculus, which in turn is expressively
equivalent to monotone modal automata. Parity games and automata are
important tools for dealing with the combinatorial complexity of nested
fixpoints in modal fixpoint logics, such as the modal μ-calculus. In this
paper, we (1) discuss the semantics a of game logic over neighbourhood
structures in terms of parity games, and (2) use these games to obtain
an automata-theoretic characterisation of the fragment of the monotone
μ-calculus that corresponds to game logic. Our proof makes extensive use
of structures that we call syntax graphs that combine the ease-of-use of
syntax trees of formulas with the flexibility and succinctness of automata.
They are essentially a graph-based view of the alternating tree automata
that were introduced by Wilke in the study of modal μ-calculus.

1 Introduction

Game logic was introduced by Parikh [23] as a modal logic for reasoning about
strategic power in determined 2-player games, and it can be seen as a gener-
alisation of PDL [16] both in terms of syntax and semantics. On the syntax
side, game logic is a multi-modal language in which modalities are labelled by
games, which in turn are built from atomic games, the PDL program constructs
together with the operation dual which switches the role of the players. A modal
formula 〈α〉ϕ should be read as “player 1 has a strategy in the game α to achieve
an outcome that satisfies the formula ϕ”. On the semantic side, one goes from
PDL to game logic by moving from Kripke frames to monotone neighbourhood
frames. A game perspective on this generalisation is that nondeterministic pro-
grams (i.e., relations) are 1-player games in which the player chooses his move
from a set of successors, and monotone neighbourhood frames are 2-player games
where player 1 first chooses a neighbourhood U , and then player 2 chooses an
element in U . The shift from Kripke frames to monotone neighbourhood frames
also means that we go from normal modal logic to monotone modal logic. Just

C. Kupke and J. Marti—Supported by EPSRC grant EP/N015843/1.

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 115–132, 2018.
https://doi.org/10.1007/978-3-319-73579-5_8

116 H. H. Hansen et al.

as PDL (and other fixpoint logics such as LTL and CTL∗) can be viewed as a
fragment of the modal μ-calculus [2,20], game logic can be naturally viewed as
a fragment of the monotone μ-calculus [24], which is monotone (multi-) modal
logic with explicit fixpoint operators. A notable difference is that PDL, LTL and
CTL∗ are all contained in level 1 or 2 of the alternation hierarchy whereas game
logic, due to the combination of dual and iteration, spans all levels of the alter-
nation hierarchy [1]. This high level of expressiveness could be an explanation
for why a completeness proof for game logic is still missing.

In this paper we contribute to the theory of game logic. We discuss the seman-
tics of game logic over neighbourhood structures using parity games and then
use these games to characterise a class of automata that is exactly as expressive
as formulas in game logic. Parity games are an intuitive way of dealing with
the nesting of least and greatest fixpoint operators, and together with automata
they play a fundamental role in the theory of fixpoint logics [12]. For instance,
parity games and automata have been used in proving complexity results for the
modal μ-calculus [7,8] and also Walukiewicz’ completeness result [27] is proved
by automata-theoretic means. Some of these results have been extended to the
setting of coalgebraic fixpoint logic [10]. In particular, they are applicable to the
monotone μ-calculus. Since monotone modal μ-calculus is expressively equiva-
lent to a naturally defined class of (unguarded) monotone modal automata [11],
it is of interest to find out which subclass of these automata corresponds to game
logic. The main result in our paper is a characterisation of a class of unguarded
monotone modal automata that effectively corresponds to game logic, in the
sense that there are effective translations in both directions. This result can be
seen as the game logic analogue of the characterisation of PDL in automata-
theoretic terms [3]. The case of game logic, however, is more involved because
composition of games does not distribute from the left over choice as is the
case for the programs in PDL. This is related to the fact that in the relational
semantics of PDL, diamonds distribute over disjunctions; this property, which
is heavily exploited in the mentioned results on PDL, does not apply to the
diamonds of game logic. Finally, note that our characterisation can also be seen
as an automata-theoretic counterpart to the results in [4, Sect. 3.3] that charac-
terise a fragment of the μ-calculus that is expressively equivalent to game logic
interpreted over Kripke frames.

Our characterisation goes via a class of structures that we call syntax graphs.
Syntax graphs combine the ease-of-use of syntax trees of formulas with the flex-
ibility and succinctness of automata. They are essentially the same as Wilke’s
alternating tree automata (ATAs) [29] except they are described in terms of their
transition graphs, and they run on monotone neighbourhood models rather than
Kripke models. Unguarded monotone modal automata can, in turn, be viewed
as Wilke’s ATAs with complex transition condition [29] (again with a seman-
tics over monotone neighbourhood models). As noted in [19,29] an ATA with
complex transition conditions can be effectively translated into an equivalent
ATA, and this construction is easily seen to work also for monotone semantics.
Concretely, our characterisation consists of a number of conditions that define a

Parity Games and Automata for Game Logic 117

subclass GG of syntax graphs that correspond to game logic formulas. We call
these game logic graphs. A game automaton is then a monotone modal automa-
ton whose corresponding syntax graph (i.e. ATA) is in GG. The translation
from formulas to game logic graphs is an inductive construction similar to the
construction of a nondeterministic automaton from a regular expression. Con-
versely, the defining conditions on game logic graphs allow us to decompose a
game logic graph into components that correspond to formulas.

The rest of the paper is structured as follows. In Sect. 2 we recall the syntax
and neighbourhood semantics of game logic and describe a normal form that
is needed for our results. In Sect. 3 we introduce the game semantics for game
logic and prove it to be equivalent to the neighbourhood semantics. In Sect. 4
we discuss syntax graphs and their game semantics. In Sect. 5 we define game
logic graphs and prove them to be expressively equivalent to formulas in game
logic. Due to space constraints, proofs are provided in an extended version of
this paper [15].

2 Game Logic

Most definitions and results in this section are from [23,25]. The syntax of game
logic is based on the syntax of propositional modal logic with the additional
feature that modal operators are labelled with terms that denote games. Since we
have “test games” of the form ϕ?, the definition of the syntax is a simultaneous
recursion on the structure of formulas and games.

Definition 1. Throughout the paper we fix a countable set Prop of atomic propo-
sitions (proposition letters) and a set Gam of atomic games. The sets F of for-
mulas and G of game terms of game logic are defined recursively as follows:

F � ϕ :: = p ∈ Prop | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈α〉ϕ, where α ∈ G
G � α :: = g ∈ Gam | αd | α ∪ α | α ∩ α | α;α | α∗ | α× | ϕ? | ϕ!, where ϕ ∈ F

We use the standard definitions of → and ↔, and note that � can be defined as
p ∨ ¬p for any p ∈ Prop. In the following we denote formulas by ϕ,ψ, . . . and
game terms with α, β, ρ, We use the letter χ to denote arbitrary terms that
could either be a formula or a game term.

The formulas of game logic express strategic power in 2-player determined,
zero-sum games. A formula 〈α〉ϕ says that player 1 has a strategy in the game
α to ensure that the outcome of the game satisfies ϕ. The assumption that the
games are determined and zero-sum means that in a given game α, player 2 has
a strategy to achieve ϕ iff player 1 does not have a strategy to achieve ¬ϕ. Hence
the formula ¬〈α〉¬ϕ, usually written as [α]ϕ, says that player 2 has a strategy in
α to ensure an outcome that satisfies ϕ. For technical reasons we do not include
boxes as primitive operators.

It will be convenient to refer to player 1 as Angel and player 2 as Demon.
The game operations can then be explained as follows. The composition α ; β is

118 H. H. Hansen et al.

the game consisting of playing α followed by β. The angelic choice α ∪ β (resp.
demonic choice α∩β) is the game in which Angel (resp. Demon) chooses whether
to play α or β. The angelic iteration α∗ is the game in which α is played 0 or
more times, and after each time, Angel chooses whether to stop or play again,
but she must stop after some finite number of iterations. The demonic iteration
α× is the iterated game in which Demon chooses when to stop, and he may
choose to play forever. The formula 〈α∗〉ϕ thus says that Angel has a strategy to
reach a ϕ-state by playing α some finite number of rounds (where her strategy
may depend on what Demon did in previous rounds, so that in particular, the
number of rounds needed to reach ϕ is not determined at the start of the game).
The formula 〈α×〉ϕ says that Angel has a strategy for maintaining ϕ indefinitely
when playing α repeatedly. Finally, the dual game αd is the same as α but with
the roles of the two players reversed, i.e., Angel has a strategy to achieve ϕ in
αd iff Demon has a strategy to achieve ϕ in α, and vice versa.

In [23,25], the language of game logic only contained the game
operations ; ∪,∗ ,d, and the demonic operations were defined as α∩β = (αd ∪βd)d

and α× = ((αd)∗)d. We take the demonic operations as primitives, since later we
want to reduce formulas to dual and negation normal form.

The formal semantics of game logic is given by representing games as mono-
tone neighbourhood frames. These are well known semantic structures in modal
logic [5,13].

Definition 2. Let S be a set. We denote by M(S) the set of up-closed subsets
of P(S), i.e., M(S) = {N ⊆ P(S) | ∀U,U ′ : U ∈ N,U ⊆ U ′ ⇒ U ′ ∈ N}. A
monotone neighbourhood frame on S is a function f : S → M(S). We denote
by MF(S) the set of all monotone neighbourhood frames on S.

For f ∈ MF(S) and s ∈ S, the subsets U in f(s) are called the neighbour-
hoods of s. We point out that such neighbourhoods are not necessarily neigh-
bourhoods in the topological sense. In particular, we do not require that a state
s is an element of all its neighbourhoods. In our setting, the neighbourhoods will
be the subsets that Angel can force in the game represented by f .

We note that (M(S),⊆) is a complete partial order with associated join and
meet given by union and intersection of neighbourhood collections. This CPO
structure lifts pointwise to a CPO (MF(S),�) in which we also denote join and
meet by ∪ and ∩.

In analogue with how the PDL program operations are interpreted in relation
algebra, we interpret game operations via algebraic structure on MF(S).1

Definition 3 (Game operations). Let f, f1, f2 ∈ MF(S) be monotone neigh-
bourhood frames. We define

– the unit frame ηS by: U ∈ ηS(s) iff s ∈ U for s ∈ S and U ⊆ S.

1 It is well-known that M is a monad, [14]. Readers who are familiar with monads will
recognise that unit and composition correspond to the unit and Kleisli composition.

Parity Games and Automata for Game Logic 119

– the composition f1 ; f2 by:

U ∈ (f1 ; f2)(s) iff {s′ ∈ S | U ∈ f2(s′)} ∈ f1(s) for s ∈ S and U ⊆ S.

– the Angelic choice and Demonic choice between f1 and f2 by:

(f ∪ g)(s) = f(s) ∪ g(s) (f ∩ g)(s) = f(s) ∩ g(s), for s ∈ S.

– the dual fd by: U ∈ fd(s) iff S \ U /∈ f(s) for s ∈ S and U ⊆ S.
– the angelic iteration f∗ := LFP(Af),
– the demonic iteration f× := GFP(Df),

where LFP(Af) and GFP(Df) are the least and greatest fixed points of the maps

Af : MF(S) → MF(S) Df : MF(S) → MF(S)
g �→ ηS ∪ (f ; g) g �→ ηS ∩ (f ; g)

Note that for any f ∈ MF(S), the map g �→ f ; g is a monotone operation on
(MF(S),�) and hence so are Af and Df . By the Knaster-Tarski theorem, Af

and Df have unique least and greatest fixed points.

It is straightforward to verify that MF(S) is closed under the above oper-
ations. The following lemma lists a number of identities that will be useful in
reasoning about game logic semantics.

Lemma 1. For all f, g ∈ MF(S), we have:

1. (fd)d = f 4. (f ∪ g)d = fd ∩ gd 7. (f∗)d = (fd)×

2. (f ; g)d = fd ; gd 5. (f ∩ g)d = fd ∪ gd 8. (f×)d = (fd)∗

3. (ηS)d = ηS 6. f ⊆ g ⇒ gd ⊆ fd

We now have all the definitions in place to define game models and the
semantics of formulas and games. We first give some intuitions. A game model
consists of a state space together with interpretations of atomic propositions
(as subsets of the state space) and atomic games (as monotone neighbourhood
frames). The semantics of complex formulas and complex games is then defined
by mutual induction. For a formula ϕ, the semantics [[ϕ]] is defined via the usual
definitions from monotone modal logic. For a game α, the semantics 〈|α|〉 is a
monotone neighbourhood frame defined via the game constructions given above.
The subsets U in 〈|α|〉(s) are the sets of outcomes that Angel can “force” when
playing the game α in state s.

Definition 4. A game model is a triple S = (S, γ, Υ) where S is a set of states,
γ : Gam → MF(S) is a Gam-indexed collection of monotone neighbourhood
frames, which provides an interpretation of atomic games, and Υ : Prop → P(S)
is a valuation of atomic propositions. For ϕ ∈ F and α ∈ G we define the

120 H. H. Hansen et al.

semantics [[ϕ]]S ⊆ S and 〈|α|〉S ∈ MF(S) by induction on the term structure:

[[p]]S := Υ (p) for p ∈ Prop [[¬ϕ]]S := S \ [[ϕ]]S
[[ϕ1 ∨ ϕ2]]S := [[ϕ1]]S ∪ [[ϕ2]]S [[ϕ1 ∧ ϕ2]]S := [[ϕ1]]S ∩ [[ϕ2]]S

[[〈α〉ϕ]]S := {s ∈ S | [[ϕ]]S ∈ 〈|α|〉S(s)} 〈|α;β|〉S := 〈|α|〉S ; 〈|β|〉S
〈|g|〉S := γ(g) for g ∈ Gam 〈|αd|〉S := (〈|α|〉S)d

〈|α ∪ β|〉S := 〈|α|〉S ∪ 〈|β|〉S 〈|α ∩ β|〉S := 〈|α|〉S ∩ 〈|β|〉S
〈|α∗|〉S := (〈|α|〉S)∗ 〈|α×|〉S := (〈|α|〉S)×

〈|ψ?|〉S := λx.

{
ηS(x) if x ∈ [[ψ]]S
∅ otherwise. 〈|ψ!|〉S := λx.

{
ηS(x) if x �∈ [[ψ]]S
PS otherwise.

We write ϕ ≡ ψ if for all S, [[ϕ]]S = [[ψ]]S. Similarly, we write α ≡ β if for all S,
〈|α|〉S = 〈|β|〉S. We will often omit the subscript S, if S is clear from the context,
or irrelevant.

The following lemma states some basic identities involving the dual operator,
and a congruence property.

Lemma 2. Let ϕ,ψ ∈ F and α, β ∈ G. We have:

1. (αd)d ≡ α 2. (α;β)d ≡ αd;βd

3. (α ∪ β)d ≡ αd ∩ βd 4. (α ∩ β)d ≡ αd ∪ βd

5. (α∗)d ≡ (αd)× 6. (α×)d ≡ (αd)∗

7. (ψ?)d ≡ (¬ψ)! 8. (ψ!)d ≡ (¬ψ)?
9. 〈αd〉ϕ ≡ ¬〈α〉¬ϕ 10. If α ≡ β and ϕ ≡ ψ then 〈α〉ϕ ≡ 〈β〉ψ

We will make frequent use of the fact that all formulas and game terms can
be reduced to a dual and negation normal form.

Definition 5. A formula ϕ ∈ F , resp. game term α ∈ G, is in dual and negation
normal form (DNNF) if dual is only applied to atomic games and negations occur
only in front of proposition letters. We denote by FDNNF the set of formulas in
DNNF, and by GDNNF the set of game terms in DNNF.

Lemma 3. For all ϕ ∈ F , there is a DNNF formula nf(ϕ) such that ϕ ≡ nf(ϕ).
For all α ∈ G, there is a DNNF game term nf(α) such that α ≡ nf(α).

From now on we will generally assume that formulas are in DNNF. The
following lemma lists some crucial validities that form the basis for the definition
of the game semantics in the next section. It is straightforward to verify that
these formulas are valid.

Lemma 4. The following formulas are valid in all game models:

〈α;β〉ϕ ↔ 〈α〉〈β〉ϕ 〈αd〉ϕ ↔ ¬〈α〉¬ϕ
〈α ∪ β〉ϕ ↔ 〈α〉ϕ ∨ 〈β〉ϕ 〈α ∩ β〉ϕ ↔ 〈α〉ϕ ∧ 〈β〉ϕ

〈α∗〉ϕ ↔ ϕ ∨ 〈α〉〈α∗〉ϕ 〈α×〉ϕ ↔ ϕ ∧ 〈α〉〈α×〉ϕ
〈ψ?〉ϕ ↔ ψ ∧ ϕ 〈ψ!〉ϕ ↔ ψ ∨ ϕ

Parity Games and Automata for Game Logic 121

3 Game Semantics for Game Logic

In this section we will see how games provide an operational semantics for
game logic. In particular, we will develop a two-player evaluation game for
game logic, very much in the spirit of Berwanger [1]. Note however, that
the ambient model-theoretic structures in our setting are monotone neighbour-
hood structures, whereas Berwanger restricts to (relational) Kripke structures.
Our approach allows for a neat formulation of some useful additional obser-
vations involving the unfolding games related to monotone operations on full
powersets [26].

3.1 Game Preliminaries

Two-player graph games are an important tool for fixpoint logics. We will briefly
recall their definition and the related terminology. For a more comprehensive
account of these games, the reader is referred to [12]. A graph game is played
on a board B, that is, a set of positions. Each position b ∈ B belongs to one
of the two players, Eloise (abbr. ∃) and Abelard (abbr. ∀). Formally we write
B = B∃ ∪ B∀, and for each position b we use P (b) to denote the player i such
that b ∈ Bi. Furthermore, the board is endowed with a binary relation E, so
that each position b ∈ B comes with a set E[b] ⊆ B of successors. Note that we
do not require the games to be strictly alternating, i.e., successors of positions
in B∃ or B∀ can lie again in B∃ or B∀, respectively. Formally, we say that the
arena of the game consists of a directed two-sorted graph B = (B∃, B∀, E).

A match or play of the game consists of the two players moving a pebble
around the board, starting from some initial position b0. When the pebble arrives
at a position b ∈ B, it is player P (b)’s turn to move; (s)he can move the pebble
to a new position of their liking, but the choice is restricted to a successor of b.
Should E[b] be empty then we say that player P (b) got stuck at the position.
A match or play of the game thus constitutes a (finite or infinite) sequence
of positions b0b1b2 . . . such that biEbi+1 (for each i such that bi and bi+1 are
defined). A full play is either (i) an infinite play or (ii) a finite play in which the
last player got stuck. A non-full play is called a partial play. Each full play of
the game has a winner and a loser. A finite full play is lost by the player who
got stuck; the winning condition for infinite games is usually specified using a
so-called parity function, i.e., a function Ω : B → N that maps each position
to a natural number (its priority) and that has finite range. An infinite play
Π = b0b1 . . . bn · · · ∈ Bω is won by Eloise if max{Ω(b) | b ∈ Inf(Π)} is even,
where Inf(Π) denotes the positions from B that occur infinitely often in Π.
Otherwise Abelard wins this play. A graph game with parity function Ω is a
parity game. All graph games used in this paper are parity games, but we will
not specify the parity function explicitly in simple cases (e.g. when one of the
players is supposed to win all infinite plays).

A strategy for player i tells player i how to play at all positions where it is i’s
turn to move. A strategy can be represented as a partial function which maps
partial plays β = b0 · · · bn with P (bn) = i to legal next positions (that is, to

122 H. H. Hansen et al.

elements of E[bn]), and which is undefined for partial plays β = b0 · · · bn with
E[bn] = ∅. We say that a play Π = b1 . . . bn · · · ∈ B∗ ∪Bω follows a strategy f if
for all positions bj in Π on which f is defined we have f(bj) = bj+1. A strategy is
positional if it only depends on the current position of the match. A strategy is
winning for player i from position b ∈ B if it guarantees i to win any match with
initial position b, no matter how the adversary plays—note that this definition
also applies to positions b for which P (b) �= i. A position b ∈ B is called a
winning position for player i, if i has a winning strategy from position b; the set
of winning positions for i in a game F is denoted as Wini(F). Parity games are
positionally determined, i.e., at each position of the game board exactly one of
the players has a positional winning strategy (cf. [9,22]).

3.2 Definition of the Evaluation Game

In order to be able to trace the unfoldings of fixpoint operators within games
we need some terminology concerning the nesting of fixpoints. Firstly, we need
notation for the subterm relation and the definition of a parity map for a formula.

Definition 6. We let � ⊆ (F ∪ G)2 be the subterm relation on formulas and
game terms, i.e., ξ1 � ξ2 if either ξ1 = ξ2 or ξ1 is a proper subterm of ξ2.

Definition 7. For a term ξ ∈ F ∪G we let Fix(ξ) := {α∗ | α ∈ G, α∗ �ξ}∪{α× |
α ∈ G, α× � ξ}. A parity function for a formula ϕ in DNNF is a partial map
Ω : Fix(ϕ) → ω such that

1. α1 � α2 implies Ω(α1) < Ω(α2) for all α1, α2 ∈ Fix(ϕ) with α1 �= α2, and
2. for all α ∈ Fix(ϕ), Ω(α) is even iff α = ρ× is a demonic iteration.

We define the canonical parity function Ωcan : Fix(ϕ) → ω associated with ϕ
as the partial function given by Ωcan(α∗) = 2n + 1 and Ωcan(α×) = 2n where
n = #Fix(α∗) and n = #Fix(α×), respectively. The canonical parity function
formalises the fact that any fixpoint operator dominates any other fixpoint oper-
ator in its scope.

Definition 8. Let S = (S, γ, Υ) be a game model, let ϕ ∈ F be a formula
in DNNF and let Ω : Fix(ϕ) → ω be a parity function for ϕ. We define the
evaluation game E(S, ϕ) as the parity graph game with the game board specified
in Fig. 1 and the parity function ΩE given by

ΩE(b) :=
{

Ω(α) if b = (x, 〈α〉ψ) for some α ∈ Fix(ϕ)
0 otherwise.

3.3 Adequacy of Game Semantics

In this section we show that the game semantics of Definition 8 is equivalent to
the standard semantics of game logic from Definition 4 where we assume w.l.o.g.
that formulas are in DNNF.

Parity Games and Automata for Game Logic 123

traPemaGtraPalumroF

Position b P(b) Moves E[b]

(s, p), s ∈ Υ (p) ∀ ∅
(s, p), s /∈ Υ (p) ∃ ∅
(s, ¬p), s ∈ Υ (p) ∃ ∅
(s, ¬p), s �∈ Υ (p) ∀ ∅
(s, ϕ ∧ ψ) ∀ {(s, ϕ), (s, ψ)}
(s, ϕ ∨ ψ) ∃ {(s, ϕ), (s, ψ)}
(s, 〈g〉ϕ) ∃ {(U, 〈g〉ϕ) | U ∈ 〈|g|〉(s)}
(U, 〈g〉ϕ) ∀ {(s, ϕ) | s ∈ U}
(s, 〈gd〉ϕ) ∀ {(U, 〈gd〉ϕ) | U ∈ 〈|g|〉(s)}
(U, 〈gd〉ϕ) ∃ {(s, ϕ) | s ∈ U}

Position b P(b) Moves E[b]

(s, 〈α ;β〉ϕ) � {(s, 〈α〉〈β〉ϕ)}
(s, 〈α ∪ β〉ϕ) � {(s, 〈α〉ϕ ∨ 〈β〉ϕ)}
(s, 〈α ∩ β〉ϕ) � {(s, 〈α〉ϕ ∧ 〈β〉ϕ)}
(s, 〈α∗〉ϕ) � {(s, ϕ ∨ 〈α〉〈α∗〉ϕ)}
(s, 〈α×〉ϕ) � {(s, ϕ ∧ 〈α〉〈α×〉ϕ)}
(s, 〈ψ?〉ϕ) � {(s, ψ ∧ ϕ)}
(s, 〈ψ!〉ϕ) � {(s, ψ ∨ ϕ)}

Fig. 1. Game board of the evaluation game. We use P (b) = � to express that it is
irrelevant which player moves, since there is exactly one possible move.

To compare the two different semantics we need a game characterisation of
the ()∗ and ()×-operations. As both operations are defined as fixpoints they can
be characterised via fixpoint games (these games are straightforward adaptation
of the unfolding game described in [26]). We provide some intuition below the
definition.

Definition 9. Let α ∈ G be a game term, let S = (S, γ, Υ) be a game model
and let U ⊆ S. The games F(S, α∗, U) and F(S, α×, U) have the following game
boards:

Board of F(S, α∗, U): Board of F(S, α×, U):
Pos. b P (b) Moves E[b]

s ∈ S ∃
{{∅} if s ∈ U

〈|α|〉(s) otherwise.
U ′ ∈ P(S) ∀ U ′

Pos. b P (b) Moves E[b]

s ∈ S ∃
{ 〈|α|〉(s) if s ∈ U

∅ otherwise.
U ′ ∈ P(S) ∀ U ′

The winning conditions in these games are as usual: finite complete plays are
lost by the player that gets stuck. Infinite plays of F(S, α∗, U) and F(S, α×, U)
are won by Abelard and Eloise, respectively.

The fixpoint game F(S, α∗, U) works as follows. The objective of Eloise is to
reach U in finitely many rounds of α. At a position s ∈ U , Eloise can win by
choosing the move ∅ which causes Abelard to get stuck in the next step, since he
must choose from the empty set of moves. At a position s �∈ U , Eloise chooses
an α-neighbourhood U ′ of s, and in the next step Abelard then chooses a state
s′ ∈ U ′, and the game continues. In the game F(S, α×, U), the objective of Eloise
is to stay in U indefinitely. At a position s /∈ U , she therefore loses immediately
(indeed, she is stuck at such positions, since her set of moves is empty). But at
a position s ∈ U , the players play another round of α, and the game continues.

124 H. H. Hansen et al.

Lemma 5. For all S = (S, γ, Υ), α ∈ G, s ∈ S and U ⊆ S, we have:

s ∈ Win∃(F(S, α∗, U)) iff U ∈ 〈|α∗|〉(s), and
s ∈ Win∃(F(S, α×, U)) iff U ∈ 〈|α×|〉(s).

The lemma easily follows because the games F(S, α∗, U) and F(S, α×, U) are
instances of Tarski’s fixpoint games that characterise least and greatest fixpoints
of a monotone operator.

The following technical lemma demonstrates that winning strategies for
Eloise in the evaluation game entail the existence of certain neighbourhood
sets in the game model that witness the truth of a modal formula. There is
no requirement on the witness to be non-empty, e.g., s |= 〈α〉⊥ if ∅ ∈ 〈|α|〉(s).
Lemma 6. Let ϕ ∈ F , let S = (S, γ, Υ) be a game model and consider the game
E = E(S, ϕ). Assume that f∃ is a winning strategy for Eloise in E, and that
(s, 〈α〉ψ) ∈ Win∃(E). Let Winψ(E) := {s′ ∈ S | (s′, ψ) ∈ Win∃(E)} and suppose
Winψ(E) ⊆ [[ψ]]. Then Winψ(E) ∈ 〈|α|〉(s).

The lemma is the key to prove one direction of the adequacy of our game
semantics.

Proposition 1. Let ϕ ∈ F , let S = (S, γ, Υ) be a game model and consider
E = E(S, ϕ). For all ψ occurring in E we have Winψ(E) ⊆ [[ψ]]S.

The claim is proven by induction on ψ and follows easily from Lemma 6. For the
second half of the adequacy theorem we again need a technical lemma.

Lemma 7. Let S = (S, γ, Υ) be a game model and let ϕ ∈ F . For any position
(s, 〈α〉ψ) of the game E = E(S, ϕ) and for all U ⊆ [[ψ]]S with U ∈ 〈|α|〉(s) Eloise
has a strategy f∃ such that for each finite E-play Π starting at (s, 〈α〉ψ) and
following f∃ either Abelard gets stuck or Π reaches a state (s′, ξ′) ∈ S × F that
satisfies one of the following conditions: (i) ξ′ � α and s′ ∈ [[ξ′]], or (ii) ξ′ = ψ
and s′ ∈ U .

Proposition 2. Let S = (S, γ, Υ) be a game model and consider the game E =
E(S, ϕ) for some ϕ ∈ F . There is a strategy f∃ for Eloise that is winning for
Eloise for all game positions (s, ψ) such that s ∈ [[ψ]]S.

In summary, Propositions 1 and 2 imply that our game semantics for game
logic is adequate:

Theorem 1. Let S = (S, γ, Υ) be a game model and consider the game E =
E(S, ϕ) for some ϕ ∈ F . Then for all positions (s, ψ) in E we have (s, ψ) ∈
Win∃(E) iff S, s |= ψ.

Parity Games and Automata for Game Logic 125

4 Syntax Graphs

In this section we introduce syntax graphs which we then use later to provide
an automata-theoretic characterisation of game logic. Syntax graphs are a gen-
eralisation of syntax trees that allow cycles and sharing of subterms. Another
perspective is that they are a graph-based description of the alternating tree
automata from [19,29]. We discuss the precise connection after the definition of
syntax graphs and their game semantics.

4.1 Graph Basics

We first recall some basic notions and fix notation. A graph is a pair G = (V,E)
where V is a set of vertices V and E ⊆ V × V is a set of edges. We will use the
following notation: vEw iff (v, w) ∈ E iff w ∈ E(v), and call w a successor of v.

Let G = (V,E) be a graph. A path p in G is a sequence of vertices p = v1 . . . vn

such that viEvi+1 for all i < n. We say that vn is reachable from v1 if a path
p = v1 . . . vn exists. Note that every vertex is always reachable from itself. A
cycle c = v1 . . . vn is any path such that v1 = vn and n ≥ 2.

A path p = v1 . . . vn is simple if all the vi for i ≤ n are distinct. A cycle
c = v1 . . . vn is simple if all the vi for i < n are distinct Every path can be
contracted to a simple path with the same start and end points, To see how this
works consider a path p that contains a repetition of some vertex u ∈ V . This
means that p is of the form p = qumur, for paths q, m and r. We contract p to
the path qur with the same starting and end points, in which there is one less
occurrence of u. We can repeat this procedure until we obtain a simple path.

A pointed graph G = (V,E, vI) is a graph (V,E) together with a vI ∈ V
that we call the initial vertex of G. If G is a graph (V,E) or a pointed graph
(V,E, v) and vI is a vertex in G, we define G@vI = (V ′, E′, vI) to be the subgraph
generated by vI in G, i.e., V ′ is the set of vertices that are reachable from vI

and E′ = E ∩ (V ′ × V ′).
A pointed graph G = (V,E, vI) is reachable if every v ∈ V is reachable from

vI . Note that G@vI is always reachable.

4.2 Syntax Graphs

We define the following sets of label symbols: Lit = Lb0 := {p,¬p | p ∈ Prop},
Latt = Lb2 := {∧,∨} and Mod = Lb1 := {〈g〉 | g ∈ Gam} ∪ {〈gd〉 | g ∈ Gam}.
The labels Lb0, Lb1, Lb2 can be given an arity in the expected manner, namely,
for l ∈ Lbi, arity(l) = i. We let Lb := Lb0 ∪ Lb1 ∪ Lb2.

Definition 10. A syntax graph G = (V,E,L,Ω) is a finite graph (V,E)
together with a labelling function L : V → Lb and a partial priority function
Ω : V ⇀ ω satisfying the following two conditions:

(arity condition). For all v ∈ V , |E(v)| = arity(L(v)).
(priority condition). On every simple cycle of (V,E) there is at least one

vertex on which Ω is defined.

126 H. H. Hansen et al.

Later we will show that formulas correspond to syntax graphs, and game
terms correspond to syntax graphs with a special atomic proposition that marks
an “exit” from the graph. The idea is that a game term α is viewed as the
modality 〈α〉 which still needs a formula ϕ in order to become a formula 〈α〉ϕ,
and an exit marks a place in the graph where ϕ can be inserted.

Definition 11. A proposition letter e is an exit of a syntax graph G =
(V,E,L,Ω) if there is a vertex v ∈ V with L(v) = e and there is no v ∈ V
with L(v) = ¬e.

We say that a proposition letter p is reachable from a vertex v in G if there
is some vertex u that is reachable from v in G with L(u) = p or L(u) = ¬p. The
priority of a path (or cycle) p = v1 . . . vn is defined by

Ω(p) = max ({−1} ∪ {Ω(vi) | 1 ≤ i ≤ n}) ,

i.e., Ω(p) = −1 if Ω is undefined on all the vi.

Due to the close connection between formulas and syntax graphs, we can
define an acceptance game for syntax graphs in essentially the same way as
in Definition 8, using that successors in the syntax graph can be viewed as
subformulas.

Definition 12. Let G = (V,E,L,Ω, vI) be a pointed syntax graph and S =
(S, γ, Υ, sI) be a pointed game model. We define the acceptance game A =
A(G,S) as a parity game with the game board as specified in Fig. 2, initial posi-
tion (vI , sI) and priority function ΩA such that ΩA(v, s) = Ω(v) if Ω(v) is
defined and ΩA(v, s) = 0 otherwise. If Eloise has a winning strategy in the game
A(G,S) then we say that G accepts S. We also write S, s |= G to mean that
Eloise has a winning strategy in the game A(G,S) starting from position (vI , s).

Given a pointed syntax graph G and a formula ϕ, we write G ≡ ϕ if for all
S, Eloise has a winning strategy in E(S, ϕ) iff she has one in A(G,S).

Position b P (b) Moves E[b]

(v, s), L(v) = p, s ∈ Υ (p) ∀ ∅
(v, s), L(v) = p, s /∈ Υ (p) ∃ ∅
(v, s), L(v) = ¬p, s ∈ Υ (p) ∃ ∅
(v, s), L(v) = ¬p, s /∈ Υ (p) ∀ ∅
(v, s), L(v) = ∧ ∀ {(w0, s), (w1, s)}, where E(v) = {w0, w1}
(v, s), L(v) = ∨ ∃ {(w0, s), (w1, s)}, where E(v) = {w0, w1}
(v, s), L(v) = 〈g〉 ∃ {(v, U) | U ∈ 〈|g|〉(s)}
(v, U), L(v) = 〈g〉 ∀ {(w, s) | s ∈ U, L(v) = {w}}
(v, s), L(v) = 〈gd〉 ∀ {(v, U) | U ∈ 〈|g|〉(s)}
(v, U), L(v) = 〈gd〉 ∃ {(w, s) | s ∈ U, L(v) = {w}}

Fig. 2. Game board of the acceptance game A(G, S)

Parity Games and Automata for Game Logic 127

A syntax graph is essentially a multi-modal version of an alternating tree
automaton (ATA) with partial priority function as described in [29, Sect. 2.2.5].
Namely, taking the transition graph of an ATA as defined in [29, Sect. 2.2.4] and
equipping this graph with the evident labelling function, yields a syntax graph.
Conversely, given a syntax graph one constructs for each vertex a transition
condition from its label and successors in the obvious manner. If desired, a partial
priority function Ω can be made into a total map Ω′ by defining Ω′(v) = Ω(v)+2
if v ∈ VP and Ω′(v) = 0 otherwise. One easily adapts the notion of a run on a
pointed Kripke structure from [29] to a run on a pointed game model (by dealing
with modal transition conditions as in the modal positions of Definition 12) such
that there exists an accepting run for the ATA on S iff Eloise has a winning
strategy in the acceptance game for the corresponding syntax graph on S.

As described in [29, Sect. 2.2.5] and in more detail in [19, Sect. 9.3.4] ATAs
can be generalised to allow complex transition conditions (i.e. arbitrary formulas)
without increasing their expressive power. The basic idea in transforming an ATA
with complex transition condition into an equivalent ATA is to introduce new
states for each node in the syntax tree of the transition conditions.

Monotone modal automata are obtained by instantiating the definition of
Λ-automaton from [11] with the function MGam and taking Λ to be a suitable set
of predicate liftings. Monotone modal automata and their unguarded variants are
expressively complete for the monotone (multi-modal) μ-calculus. On the other
hand, unguarded monotone modal automata are essentially the same as ATAs
with complex transition condition (running on monotone neighbourhood models
for a multi-modal signature), hence by the above transformation, unguarded
monotone modal automata can be viewed as syntax graphs, and vice versa.

We have chosen to work with syntax graphs rather than ATAs or monotone
modal automata, since we characterise the game logic fragment mainly in terms
of the graph structure. In the following section, we identify a class GG of syn-
tax graphs that correspond to game logic formulas. By the correspondence just
outlined, we can define game automata as those unguarded monotone modal
automata for which the corresponding syntax graph (ATA) is in GG.

5 The Game Logic Fragment

In this section we define game logic graphs, which are a class of syntax graphs
that has the same expressivity over neighbourhood frames as formulas in game
logic. After giving the definition of game logic graphs, we show that for each
game logic formula there is a game logic graph that accepts a pointed game
model iff the formula is true at the model and, vice versa, for every game logic
graph there is a game logic formula that is true at a pointed game model iff the
game logic graphs accepts the model.

5.1 Game Logic Graphs

The idea behind the definition of game logic graphs is that cycles in the graph
correspond to formulas of the form 〈α∗〉ϕ and 〈α×〉ϕ. Consider e.g. the axiom for

128 H. H. Hansen et al.

〈α∗〉ϕ (in Lemma 4). We see that the vertex v corresponding to the disjunction in
ϕ ∨ 〈α〉〈α∗〉ϕ has a special role as a vertex on the corresponding cycle. Namely,
let vl and vr be the two successors of v where going to vl means leaving the
cycle (going to subformula ϕ) and going to vr means remaining on the cycle
(going to subformula 〈α〉〈α∗〉ϕ). We will refer to this v as the head of the cycle
corresponding to 〈α∗〉ϕ. If the cycles in the syntax graph arise from a nesting of
fixpoint formulas, and Ω is the parity function of some formula (cf. Definition 7),
then certain conditions will need to hold for the cycles and Ω. This is made
precise in the following definition.

Definition 13. Given a syntax graph G = (V,E,L,Ω) in which Ω is injective,
we let h := Ω−1 : ran(Ω) → V denote the inverse of Ω on its range. We use the
abbreviation hn := h(n) and call hn the head of priority n. Whenever we write
hn, we presuppose that n ∈ ran(Ω).

A game logic graph is a syntax graph G = (V,E,L,Ω) in which Ω is injective
and the following conditions hold for all n ∈ ran(Ω):

(parity). L(hn) = ∨ if n is odd and L(hn) = ∧ if n is even.
(head). There are maps r, l : ran(Ω) → V , for which we also use the abbrevia-

tions rn := r(n) and ln := l(n), such that E(hn) = {ln, rn} and
(leave). For all simple paths p = ln . . . hn we have that Ω(p) > n.
(remain). There is no simple path hnrn . . . hm for any m > n.

A game logic graph with exit is a syntax graph with exit G = (V,E,L,Ω, e)
for which (V,E,L,Ω) is a game logic graph that additionally satisfies:

(exit). For all n ∈ ran(Ω) and all v ∈ V with L(v) = e, there is no simple path
hnrn . . . v.

5.2 From Formulas to Game Logic Graphs

Our first result in characterising the game logic fragment of syntax graphs shows
that we can translate game logic formulas into equivalent game logic graphs.

Theorem 2. For every game α ∈ GDNNF in which the proposition letter e does
not occur, there is a pointed syntax graph G with exit e such that G ≡ 〈α〉e. For
every game logic formula ϕ ∈ FDNNF there is a pointed syntax graph G such that
G ≡ ϕ.

The proof of Theorem 2 is by a mutual induction on the structure of games
and formulas, and is similar to the construction of a nondeterministic finite
automaton from a regular expression [17], that is, we define constructions on
syntax graphs that correspond to game operations and logical connectives. The
recursive procedure itself is similar to the translation of game logic into the μ-
calculus [24], with the difference that we directly translate into syntax graphs
instead of formulas of the μ-calculus.

For example, we construct G1 ;G2 where G1 and G2 are given by the induc-
tion hypothesis by rerouting the edges that went to an exit vertex in G1 to go to

Parity Games and Automata for Game Logic 129

the initial state of G2. The priority function Ω for G1 ;G2 is unchanged on the
G2 part, but in order to make sure Ω is injective we shift all priority values in
G1 by adding to them a number k that preserves the parity and ensures that all
priorities in the G1 part are higher than those in the G2 part. The correctness of
the construction is proved by constructing winning strategies in the evaluation
game from winning strategies in the acceptance game, and vice versa. A detailed
proof is provided in [15].

Example 1. Below we show the syntax graphs of some formulas. The initial ver-
tex is the topmost vertex, and priorities are indicated as subscripts on the vertex
labels.

∧2

∧ e

∨1 p

〈g〉

∨

∨ ∧

p 〈g〉 q e

e

∧2

∨ e

∨1 〈h〉

∧

¬p 〈g〉

ϕ = 〈(p?; g∗)×〉e ϕ = 〈(p!; g) ∪ q?〉e ϕ = 〈(((¬p)?; g)∗ ∪ h)×〉e

5.3 From Game Logic Graphs to Formulas

We now show how to transform game logic graphs into equivalent game logic
formulas.

Theorem 3. For every pointed game logic graph with exit G = (V,E,L,Ω, e, vI)
there is a game term δ ∈ G, not containing e and only containing propositional
letters that are reachable from vI , such that G ≡ 〈δ〉e.

The proof of Theorem 3 is by induction on the number of heads in the game
logic graph. In the base case there are no heads which implies that there are no
cycles in the graph, which makes it easy to recursively decompose the graph into
a game term. In the inductive step we use a construction that removes some of
the edges at the head with the highest priority and thus cutting all cycles that
pass through the highest priority head. This allows us to remove the priority
from this head and obtain a simpler game logic graph to which we can apply the
induction hypothesis. A detailed proof is provided in [15].

Because any propositional letter e that does not occur in G can be added as an
exit to a game logic graph G we obtain the following corollary from Theorem 3:

Corollary 1. For every pointed game logic syntax graph G there is a formula
ϕ ∈ F such that G ≡ ϕ.

130 H. H. Hansen et al.

Example 2. We apply the construction from Theorem 3 to the graph on the left
in Example 1. The heads h1 and h2 are the disjunction with priority 1 and the
conjunction with priority 2, respectively. We start the decomposition at h2. We
then first obtain a game δ2 = λ×

2 , where λ×
2 is a dummy game term that is a

place holder for the game through the left child of h2, that describes how to
reach the exit from the initial state without iterating at h2. We also apply the
induction hypothesis to obtain a new game λ2 that describes one iteration from
the left node to h2, which we replace by a fresh exit e′. In this inductive step
we then need to cut h1. At h1 we have δ1 = λ∗

1 ∩ p? ; p! and λ1 = 〈g〉. We then
obtain λ2 by substituting λ∗

1 in δ1 with λ∗
1 and thus obtain λ1 = g∗ ∩ (p? ; p!).

Substituting λ×
1 for λ×

1 in δ2 yields the overall game (g∗ ∩ (p? ; p!))×. Hence the
game graph is equivalent to the formula 〈(g∗ ∩ (p? ; p!))×〉e.

6 Conclusion

We have provided a semantics for game logic in terms of parity games. This was
the key to obtain our main technical result, the characterisation of game logic
graphs, i.e., a class of parity automata that correspond to game logic formulas.

These automata open several avenues for future research: Firstly, we would
like to study normal forms in game logic. In the μ-calculus, automata are the
key to obtain the (semi-)disjunctive normal forms of formulas which can be used
to prove further results, e.g., completeness, interpolation and the characterisa-
tion of the expressivity of the logic [6,18,28]. Our experience suggests that a
similar normal form for game logic is out of reach, but a careful analysis of the
cycle structure of game logic graphs might yield useful insights concerning the
structure of game logic formulas. As a first step in this direction we are cur-
rently investigating how to obtain guarded game logic graphs and, consequently,
a definition of guarded game logic formulas.

Furthermore, game logic constitutes a very general dynamic logic that makes
very few assumptions on the algebraic properties of the modal operators. There-
fore we believe that our game logic automata have the potential to help us
understand a wider class of automata for families of dynamic logics such as coal-
gebraic dynamic logics [14] or many-valued dynamic logics as described in [21]
or for a combination of these frameworks.

References

1. Berwanger, D.: Game logic is strong enough for parity games. Stud. Logica 75(2),
205–219 (2003)

2. Bradfield, J., Stirling, C.: Modal μ-calculi. In: Handbook of Modal Logic, pp. 721–
756. Elsevier (2006)

3. Carreiro, F., Venema, Y.: PDL inside the μ-calculus: a syntactic and an automata-
theoretic characterization. In: Goré, R., Kooi, B., Kurucz, A. (eds.) Advances in
Modal Logic, vol. 10, pp. 74–93. College Publications (2014)

Parity Games and Automata for Game Logic 131

4. Carreiro, F.: Fragments of fixpoint logics. Ph.D. thesis, University of Amsterdam
(2015)

5. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

6. d’Agostino, G., Hollenberg, M.: Logical questions concerning the μ-calculus. J.
Symbol. Logic 65, 310–332 (2000)

7. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs
(extended abstract). In: Proceedings of the 29th Symposium on the Foundations
of Computer Science, pp. 328–337. IEEE Computer Society Press (1988)

8. Emerson, E.A., Jutla, C.S., Sistla, P.: On model checking for the μ-calculus and
its fragments. Theor. Comput. Sci. 258, 491–522 (2001)

9. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proceed-
ings of the 32nd IEEE Symposium on Foundations of Computer Science (FoCS
1991), pp. 368–377. IEEE (1991)

10. Enqvist, S., Seifan, F., Venema, Y.: Completeness for μ-calculi: a coalgebraic app-
roach. Technical rep. PP-2017-04, ILLC, Universiteit van Amsterdam (2017)

11. Fontaine, G., Leal, R., Venema, Y.: Automata for coalgebras: an approach using
predicate liftings. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 381–392. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 32

12. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

13. Hansen, H.H.: Monotonic modal logic. Master’s thesis, University of Amsterdam
(2003). iLLC Preprint PP-2003-24

14. Hansen, H.H., Kupke, C.: Weak completeness of coalgebraic dynamic logics. In:
Fixed Points in Computer Science (FICS). EPTCS, vol. 191, pp. 90–104 (2015)

15. Hansen, H., Kupke, C., Marti, J., Venema, Y.: Parity games and automata for
game logic (extended version) (2017). http://www.arxiv.org

16. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge
(2000)

17. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

18. Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results.
In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60246-1 160

19. Kirsten, D.: Alternating tree automata and parity games. In: Grädel, E., Thomas,
W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp.
153–167. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4 9

20. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

21. Madeira, A., Neves, R., Martins, M.: An exercise on the generation of many-valued
dynamic logics. J. Logic Algebraic Method Program. 85(5), 1011–1037 (2016)

22. Mostowski, A.: Games with forbidden positions. Technical rep. 78, Instytut Matem-
atyki, Uniwersytet Gdański, Poland (1991)

23. Parikh, R.: The logic of games and its applications. In: Topics in the Theory of
Computation. Annals of Discrete Mathematics, vol. 14. Elsevier (1985)

24. Pauly, M.: Logic for social software. Ph.D. thesis, University of Amsterdam (2001)
25. Pauly, M., Parikh, R.: Game logic: an overview. Stud. Logica 75(2), 165–182 (2003)
26. Venema, Y.: Lectures on the modal μ-calculus (2012). https://staff.science.uva.nl/

y.venema/

https://doi.org/10.1007/978-3-642-14162-1_32
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
http://www.arxiv.org
https://doi.org/10.1007/3-540-60246-1_160
https://doi.org/10.1007/3-540-36387-4_9
https://staff.science.uva.nl/y.venema/
https://staff.science.uva.nl/y.venema/

132 H. H. Hansen et al.

27. Walukiewicz, I.: On completeness of the mu-calculus. In: Proceedings of the Eighth
Annual Symposium on Logic in Computer Science (LICS 1993), pp. 136–146. IEEE
Computer Society (1993)

28. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional μ-
calculus. Inf. Comput. 157(1–2), 142–182 (2000). LICS 1995. San Diego, CA

29. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Belg. Math. Soc. 8, 359–391 (2001)

	Parity Games and Automata for Game Logic
	1 Introduction
	2 Game Logic
	3 Game Semantics for Game Logic
	3.1 Game Preliminaries
	3.2 Definition of the Evaluation Game
	3.3 Adequacy of Game Semantics

	4 Syntax Graphs
	4.1 Graph Basics
	4.2 Syntax Graphs

	5 The Game Logic Fragment
	5.1 Game Logic Graphs
	5.2 From Formulas to Game Logic Graphs
	5.3 From Game Logic Graphs to Formulas

	6 Conclusion
	References

