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1 INTRODUCTION

Many of the most well-known logics in program verification, concurrency, and other areas of
computer science and artificial intelligence can be cast as modal fixpoint logics, that is, embedded
into some variant of the p-calculus. Typical examples are Propositional Dynamic Logic (PDL) (Pratt
1976) where, say, the formula (a*)p (“p can be reached by finite iteration of a”) can be expressed
as the least fixpoint

pX.pV<(a)X;

Computation Tree Logic (CTL) (Emerson and Clarke 1982), whose formula AFp (“p eventually
holds on all paths”) is just the fixpoint

pX.pVvoX;
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and the common knowledge operator C of epistemic logic (Lewis 1969), where Cp (“it is common
knowledge that p”) can be expressed as the fixpoint

VX. (p A /\lr'lzl KiX)’

with n the number of agents and K; read as “agent i knows that.” A common feature of these
examples is that they trade off expressivity for simplicity of expression in comparison to the full
p-calculus.

One of the reasons why the full p-calculus is hard for both end users and logicians is that it
requires keeping track of bound variables. Indeed, we note that the simpler logics listed above (in
the case of PDL, the #-nesting-free fragment) live in the single-variable fragment of the p-calculus
(a subfragment of the alternation-free fragment (Emerson and Lei 1986)), which is precisely what
enables one to abandon variables altogether in favour of variable-free fixpoint operators such
as AF or C. We refer to logics that embed into a single-variable p-calculus as flat fixpoint logics
(Santocanale and Venema 2010).

Here, we study flat fixpoint logics in the more general setting of coalgebraic logic. Coalgebra
has emerged as the right level of generality for a unified treatment of a wide range of modalities
with seemingly disparate semantics beyond the realm of pure relational structures. Examples in-
clude monotone modalities (Chellas 1980), probabilistic modalities (Larsen and Skou 1991), graded
modalities (Fine 1972; D’Agostino and Visser 2002), coalitional/alternating-time modalities (Alur
et al. 2002; Pauly 2002), and various non-monotonic conditionals (Friedman and Halpern 1994;
Olivetti et al. 2007). The semantics of coalgebraic logic is parametrized over the choice of an endo-
functor on the category of sets, whose coalgebras play the role of frames. Besides standard Kripke
frames, the notion of coalgebra encompasses, e.g., Markov chains, weighted automata, multi-
graphs, neighbourhood frames, selection function frames (Chellas 1980), and concurrent game
structures (Alur et al. 2002). Generic completeness results in coalgebraic logic are parametrized
over sets of rules or axioms that satisfy a local form of completeness called one-step completeness.
That is, they require completeness of a restricted logic without fixpoints and nesting of modalities
that is interpreted over the successor structure of a single (implicit) state rather than full-blown
frames or models (e.g., in the relational base case, over a single subset of the base set thought of
as a local view on a set of successors), a condition that is typically quite easy to establish. In fact,
suitable one-step complete axiomatizations for many examples can already be found in the litera-
ture on coalgebraic logic (Pattinson 2003; Schréder 2007; Schréder and Pattinson 2009; Kupke and
Pattinson 2010).

In our flat coalgebraic fixpoint logics one thus can express statements such as “the coalition C of
agents can maintain p forever,” “the present state is the root of a binary tree all whose leaves sat-
isfy p,” or “p is commonly believed with reasonable certainty.” In particular, we cover flat fragments
of the graded p-calculus (Kupferman et al. 2002) and the alternating-time p-calculus (AMC) (Alur
et al. 2002); one such flat fragment is alternating-time temporal logic (ATL).

Our main result on flat coalgebraic fixpoint logics is completeness of the natural axiomatization
that makes the fixpoint definitions explicit, generalizing the well-known Kozen-Park axiomatiza-
tion. The axiomatization is parametric both w.r.t. the underlying (coalgebraic) system type and
the choice of flat fragment, under mild restrictions on the form of fixpoint operators. This result
generalizes results by Santocanale and Venema (2010) to the level of coalgebraic logic and relies on
the notion of O-adjointness (Santocanale 2008) to prove that fixpoints in the Lindenbaum algebra
are constructive, i.e., approximable in w steps. The crucial ingredient here are one-step complete
rule sets (Schroder 2007). These enable generalizations of both the key rigidity lemma and the
O-adjointness theorem of Santocanale and Venema (2010), the latter to the effect that all uniform-
depth modal operators are O-adjoint.
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Completeness of Flat Coalgebraic Fixpoint Logics 4:3

Our completeness result follows a long tradition of non-trivial completeness proofs for fixpoint
logics, e.g., PDL (Kozen and Parikh 1981; Segerberg 1982), CTL (Emerson and Halpern 1985), Lin-
ear Temporal Logic (LTL) (Gabbay et al. 1980; Lichtenstein and Pnueli 2000), the aconjunctive
p-calculus (Kozen 1983), and the full p-calculus (Walukiewicz 2000). Note that all these results are
independent, as completeness is not in general inherited by sublogics and in fact employs quite dif-
ferent methods. Instantiating our generic results to concrete logics yields new results in nearly all
cases that go beyond the classical relational p-calculus, noting that neither Kupferman et al. (2002)
nor Cirstea et al. (2011) cover axiomatizations. In particular, we obtain for the first time a complete-
ness result for graded fixpoint logics, i.e., fragments of the graded p-calculus, and we generalize the
completeness of ATL (Goranko and van Drimmelen 2006) to arbitrary flat fragments of the AMC.

Further Related Work. The present article is an extended and revised version of a previous con-
ference paper (Schroder and Venema 2010). The technical treatment differs from the conference
version in that we weaken the assumptions of the generic completeness theorem to require only
a one-step complete rule set instead of a one-step cutfree complete one; moreover, we opt for a
propositional basis with unrestricted negation, converting to negation normal form only for pur-
poses of the model construction in Section 5. Flat coalgebraic fixpoint logics are fragments of
coalgebraic p-calculi and as such known to be decidable in ExpTIME under reasonable assump-
tions (Cirstea et al. 2011). A tableau-based global caching algorithm for flat fixpoint logics has
recently been developed by Hausmann and one of the authors (Schréder) (2015), so we omit dis-
cussion of the (less practical) tableau algorithm given in the conference version.

Organization. We recall the requisite background in coalgebraic logic and introduce the syntax
and semantics of flat coalgebraic fixpoint logics in Section 2. We proceed to discuss the generic
axiomatization in Section 3. In Section 4, we prove the central O-adjointness theorem and then
present the ensuing model construction in Section 5. Section 6 concludes.

2 FLAT COALGEBRAIC FIXPOINT LOGICS

We briefly recall the generic framework of coalgebraic modal logic (Pattinson 2004; Schroder
2007) and define its extension with flat fixpoint operators, a fragment of the coalgebraic p-
calculus (Cirstea et al. 2011). We present the calculus in a form that includes negation and therefore
need to pay attention to positive and negative occurrences of variables and subformulas; to avoid
excessive repetition, we fix these notions for all notions of formula that include negation and pos-
sibly a notion of (propositional) variable.

Definition 2.1. In any logic with negation -, an occurrence of a subformula in a formula is
positive if it is in the scope of an even number of negations — and otherwise negative. In logics
featuring a notion of (propositional) variable, a formula ¢ is positive (negative) in a variable v if all
occurrences of v in ¢ are positive (negative).

For the rest of the article, we fix a countably infinite set V of parameter or propositional variables,
typically called p or p;, ps, . . ., and additionally a single distinguished recursion variable x ¢ V. The
parameter variables will serve as placeholders for formulas in fixpoint schemes and in proof rules.
We use the word variable to refer to both the parameter variables and the recursion variable.

The first parameter of the syntax of a flat coalgebraic fixpoint logicis a (modal) similarity type A,
i.e., an at most countable set of modal operators with associated finite arities. The set of modal
fixpoint schemes y, § is given by the grammar

V.0 u=Llx|pl-ylyAd|Ots...\¥n)s
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where © € Ais n-ary and p € V (and x is the fixed recursion variable); we require additionally that
fixpoint schemes are positive in all variables (this is essential in case of the recursion variable x
to ensure existence of fixpoints; for parameter variables, it is a mere technical convenience, as
negative occurrences of a parameter variable can be replaced with positive occurrences of a fresh
variable, with negation moved into the parameter formula). Further Boolean operations T, V, —,
< are defined as usual. Moreover, we abbreviate

APty -+ s Pn) = =O(=1, . . ., —y)

for © € A and refer to © as the dual of 9. We intend variables as place holders for arguments and
parameters of formulas defining fixpoint operators; as such, they serve only technical purposes
and will not form part of the actual fixpoint language defined below (other than as part of modal
fixpoint schemes indexing flat fixpoint operators). In particular, variables should not be confused
with propositional atoms, which can appear also in actual formulas. Propositional atoms are in-
corporated into the modal similarity type A as nullary operators when needed (Example 2.3(1));
this approach not only simplifies the technical presentation, but it also enhances generality in that
it allows covering logics that do not have propositional atoms, such as Hennessy-Milner logic.

The second syntactic parameter is a set I' of modal fixpoint schemes y determining the choice of
fixpoint operators. We require that all y € T" are guarded, i.e., that all occurrences of the recursion
variable x are under the scope of at least one modal operator; this is not an essential restriction as
every p-calculus formula is provably equivalent to a guarded formula (Walukiewicz 2000). We de-
note substituted formulas y[¢1/p1;. . . Pn/pns¥/x] as y(¢1, . . ., $n, ). The set Fy (A, T) or just Fy
of (fixpoint) formulas ¢, is then defined by the grammar

QY=L =@ PAY | 1., ¢n) | ﬁy(gbl,--w(]sn),

where © € Aisn-aryandy € T'. The intended meaning of the connective #, is to take least fixpoints
of the parametrized operation interpreting y:

ﬁy(d)la .. -,¢n) = ﬂx'Y(¢la .. -,¢n7x)

(we will give a formal semantics later in this section). The name flat for the fixpoint operators #,
relates to the fact that modal fixpoint schemes y do not contain fixpoint operators. Note, however,
that nesting of flat fixpoint operators is unrestricted, i.e., the ¢; can be arbitrary fixpoint formulas
infly (¢1,...,$n). We introduce greatest fixpoint operators as duals of least-fixpoint operators: For
a modal fixpoint scheme y, we denote by ¥ its dual, i.e., the modal fixpoint scheme —yo, where
o(v) = —w for all variables v. We then define the greatest fixpoint operator by by

b?(¢17 te ?¢n) = _‘ﬁy(_‘(ﬁh T 7_'¢n)

so that by(qﬁl, coesPn) = vx. Y (91, .. ., Pn, x) (again, pending the introduction of the formal seman-
tics).
A standard example of a flat fixpoint logic is CTL, whose operators AU, EG can be coded as

APU Y] = Bipovipiaox) (@) and  EG =bynoxg.

Note here that p A Ox is equivalent to the dual —=(—p vV O—x) of p V Ox.

Syntactically, #, is regarded as a primitive operator that just happens to have a long name; in
particular, occurrences of variables in y do not count as occurrences in formulas #, ¢. For the sake
of readability, we restrict the further technical development to unary modalities © € A and unary
fixpoint operators, i.e., we assume that every y € I' has only one parameter variable, denoted by p
throughout; the extension to higher arities is a mere notational issue, and in fact we continue to
use higher-arity modalities and fixpoint operators in the examples.
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We have not included variables in the definition of fixpoint formulas. A (fixpoint) formula with
variables is an expression of the form y o, where y is a modal fixpoint scheme and o is a substitution
of some of the variables in y with fixpoint formulas (i.e., variables never appear under fixpoint
operators). In the following, the term formula will refer to fixpoint formulas without variables
unless variables are explicitly mentioned. We sometimes indicate the occurrence of a variable v
in a formula ¥ by writing (v), and then write /(p) for the formula obtained by substituting a
formula p for v. For a modal fixpoint scheme y(p, x), we denote the function taking a formula
to y (¢, /) by y(¢) and by y(¢) its k-fold iteration.

The logic is further parametrized semantically over the underlying class of systems and the
interpretation of the modal operators. The former is determined by the choice of a functor

T : Set — Set,

i.e., an operation T that maps sets X to sets TX and functions f : X — Y to functions Tf : TX —
TY, preserving identities and composition. The role of models is then played by T-coalgebras, i.e.,
pairs (X, &) where X is a set of states and

E:X->TX

is the structure map. Thinking of TX informally as a parametrized datatype over X, we regard &
as associating with each state x a structured collection £(x) of successor states and observations.
For example, for TX = PX x PU, with U a fixed set of propositional atoms and # denoting the
covariant powerset functor (with P f(A) = f[A] for f : X — Y and A € P (X)), we obtain that T-
coalgebras are Kripke models, as they associate with each state a set of successor states and a set
of valid propositional atoms. Our main interest here is in examples beyond Kripke semantics, see
Example 2.3.

Given T, the interpretation of the modalities is determined by associating with each ¥ € A a
predicate lifting [[©]] for T. Here, a predicate lifting (for T) is a family of maps Ax : PX — PTX,
where X ranges over all sets, satisfying the naturality condition

Ax(fF7'AD = (T) ' Av (A)]
forall f:X — Y, A€ PY.In other words, a predicate lifting is a natural transformation
A:Q—> QoT,

where Q : Set®” — Set denotes the contravariant powerset functor, given by QX being the pow-
erset of X and Qf(A) = f~1[A] for f: X — Y and A C Y. The idea is that a predicate lifting Ax
converts a predicate on the set X of states into a predicate on the set TX of structured collections
over X. The basic example, for TX = P(X) x P(U) as above, is

[O]x(4) = {(B,Q) € P(X) xP(U) | B < A},

which induces precisely the usual semantics of the box when composed with taking preimages
under the structure map, as in the clause for the semantics of modalities given below. Given a
predicate lifting [©]], we also have a predicate lifting [¥]] for the dual modality @, given by

[Plx(4) =X - [?]x (X - A).
For example, for 0 as above and & = O, we have [¢ ] (A) = {(B,Q) € P(X) X P(U) | BN A # 0}.
As we work with fixpoints, we insist that all modal operators are monotone, i.e., [V] x : P(X) —
P(TX) is monotone w.r.t. set inclusion for each © € A. The semantics of a formula ¢ with re-
cursion variable x (no other variables will ever be evaluated in unsubstituted form) is a subset
[#1lx,£(B) € X, depending on a T-coalgebra (X, {) and a set B C X serving as the interpretation
of x. The semantics of formulas ¢ without variables (in particular of §-formulas) will not depend
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4:6 L. Schroder and Y. Venema

on B and hence will be denoted just by [¢]] . ¢): givens € X, we write s [=(x,¢) ¢ fors € [¢]]x ¢)-
The set [#]]x, &) (B) is defined by recursion over ¢:

[x(x £ (B) =B

[I“‘f’]](x,g)(B) =X\ [[¢]](X,§)(B)
(¢ A Y1, 6)(B) = [l (x,6)(B) N [¥](x ¢ (B)
[(©4]x, &) (B) = §_1[[Q7]]X([[¢]](x,§) (B))

[y ¢ xe = [ B S X 1 [y(®)] x5 (B) € BI.

The clause for #, ¢ just says that [#, #]] %.8) is the least fixpoint of the map [[y(gb)]](x,f) PX) -
P (X), which is monotone, because all modalities are monotone and modal fixpoint schemes are
positive in the recursion variable. We fix the data T, A, T, and so on, throughout. A formula ¢ €
ﬂ is valid if [[gb]](X‘sf) = X for every T-coalgebra (X, &), and satisfiable if =¢ is not valid, i.e., if
[$1l(x ¢ # O for some T-coalgebra (X, §).

We recall that given T-coalgebras (X, £) and (Y, {), a T-coalgebra morphism f : (X, &) — (Y,{)
isamap f : X — Y making the diagram

f

X——Y

SR

TX —=TY
Tf

commute. Flat fixpoint formulas are invariant under coalgebra morphisms:

LEmMA 2.2, Let f: (X, &) — (Y,{) be a T-coalgebra morphism, let B C Y, and let ¢ be a flat
fixpoint formula. Then

(4] (x, ) (f'[B) = f_l[[I¢]](Y,g)(B)]- (1)

(The lemma holds more generally for the full coalgebraic p-calculus, with essentially the same
proof; we refrain from stating it in more generality here to avoid introducing additional notation.)

Proor. Induction over ¢; the Boolean cases are trivial, and the modal cases are by naturality of
predicate liftings (cf. (Pattinson 2004)). We are left with the fixpoint case; we work with p-calculus
notation, i.e., our remaining case is of the form px. ¢, a closed formula, because there is only one
recursion variable. That is, we are to show that

[ux. ¢ x ey = £ [Tpx- 61y, o))- (2)

It is well known that we can approximate least fixpoints of monotone functions from below us-
ing ordinal-indexed chains. Specifically, [px. ]l x, ¢) is the union of the sets el (“X’ £ (@) indexed

over ordinals «, defined by [[¢]]?x,§) (@) = 0, by [Iqﬁ]](”;lf) 0) = [I¢]](x,§)([[¢]](ax,§) (@)) in the suc-

cessor step and by [¢]] Zxé) 0) = Up<a [M]]fx,g)(@) in the limit step; analogously, [[ux. ¢]](Y,g) is
approximated from below by sets [[d)]](“Y’ g)((b). Since taking preimages under f commutes with
[¢] by the inductive hypothesis, and generally commutes with (infinite) unions and preserves 0,
an easy transfinite induction shows that

161 (0 = £ 1615 (0]

for all a. The inductive claim follows by forming the union over all @ on both sides, again using
commutation of preimages with unions. ]
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Example 2.3 (Coalgebraic logics). We discuss select examples covered by the coalgebraic
approach, starting with a more detailed exposition of the basic example of Kripke semantics and
then moving on beyond. More examples are found, e.g., in Schréder and Pattinson (2009) and
Pattinson and Schroder (2010). For the sake of readability, we elide the treatment of propositional
atoms in all examples except Kripke semantics, as the technicalities are the same in all cases.

(1) Kripke semantics: In mild generalization of the basic example discussed above, fixpoint
extensions of the modal logics K,,, have modal operators O; for i = 1,...,m, interpreted over
the functor T given on sets by TX = (PX)™ X PU using the predicate liftings [O;]x(A) =
{(B1,...,Bm,P) € (PX)™ xPU | B; € A}. Coalgebras for T are in 1-1 correspondence with m-
relation Kripke models, and [[O;]] captures the usual semantics of the box operators. Atomic propo-
sitions are modelled as nullary modalities a € A, interpreted by nullary predicate liftings

[allx = {(Bi,....Bm,P) € (PX)" X PU | a € P}.

CTL, *-nesting-free PDL, and the logic of common knowledge all are flat fixpoint logics in this
setting. The CTL operators have been exemplified above; the operator [a*] of PDL is the greatest
fixpoint operator
[a"] = bpafa)xs
and the common knowledge operator C is the greatest fixpoint operator b, for
Yy =p A AL Ox.
(Of course, reading O; as a knowledge operator “agent i knows that” would standardly be com-
bined with imposing additional frame axioms, e.g., S5, an aspect that we do not pursue here. Note,
however, that the above definition of C effectively incorporates the actual truth of commonly
known facts, Cp — p, and positive introspection, Cp — CCp.) Although our main result (Theo-
rem 5.16) does not support completely arbitrary fixpoint operators, it does (like Santocanale and
Venema (2010)) cover operators that go beyond CTL. For example, the operator even(¢) “on every
path, every even state satisfies ¢,” which is not expressible in CTL (Emerson 1990; Wolper 1983),
is the greatest fixpoint operator
bp/\DDX’
to which our main result does apply.

Strictly speaking, one should note that, so far, we have not covered CTL in the standard sense,
according to which models are assumed to be serial, i.e., every state is required to have at least one
successor. We model this requirement coalgebraically by replacing T as above with the functor
T’X = P*X x PU, where P* is the non-empty powerset functor, i.e., P*X is the set of non-empty
subsets of X. (Since CTL standardly uses only one next-step modality AX, we omit the exponent m.)
We distinguish the arising fixpoint logics by the adjective serial and refer to absence of the seriality
requirement by the adjective non-serial.

Further restricting the semantics to require that every state has exactly one successor in fact
produces the semantics of LTL (without past) in terms of infinite sequences of valuations (where
O is typically denoted Q). Coalgebraically, this is reflected in using the functor T”X = X X PU;
we refer to T''-coalgebras as deterministic Kripke models. (For purposes of model checking, LTL
is more generally interpreted over labelled transition systems, but the more restrictive infinite-
sequence semantics is equivalent for purposes of satisfiability.)

(2) Graded fixpoint logics are sublogics of the graded p-calculus (Kupferman et al. 2002). They
have modal operators ¢, “in more than k successors,” with duals ;. = Ok “in all but k successors.”
We interpret them over the functor B that takes a set X to the set

BX =X - NU {oo}
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4:8 L. Schroder and Y. Venema

of multisets over X (with possibly infinite multiplicities) by
[Orllx(A) = {p € BX | u(A) > k},

where we use € 8X as an N U {oo}-valued measure, i.e., write (A) = Y e p1(x). This captures
the semantics of graded modalities over multigraphs (D’Agostino and Visser 2002), which is equiv-
alent to the more customary Kripke semantics (Fine 1972) w.r.t. satisfiability of fixpoint formulas
(Lemma 2.4). In description logic, graded operators are called qualified number restrictions (Baader
et al. 2003). The example mentioned by Kupferman et al. (2002), a graded fixpoint formula ex-
pressing that the current state is the root of a finite binary tree all whose leaves satisfy p, can be
expressed by the #-operator for

pV O1x.
Similarly, the #-operator for
p Vv Ugx

expresses that p holds somewhere on every infinite k + 1-ary tree starting at the current state.
To add an example where the recursion variable x appears under more than one modality, the
#-operator for

p Vv <>1<>1X

expresses that the current state is the root of a finite binary tree all whose leaves are at even
distance from the root and satisfy p.

(3) Probabilistic fixpoint logics, i.e., fixpoint extensions of probabilistic modal logic (Larsen and
Skou 1991; Fagin and Halpern 1994; Heifetz and Mongin 2001), have modal operators L, “in the
next step, it holds with probability at least r that” for r € [0, 1] N Q. They are interpreted over the
functor D that maps a set X to the set of discrete probability distributions on X by putting

[L,Dx(A) = {P € DX | PA > r}.

Recall here that a probability distribution P on X is discrete if it is defined on the o-algebra
of all subsets of X, which implies that P is determined by its values on singleton sets, i.e.,
P(A) = Yy ea P({x}) for all A € X (and then necessarily P({x}) > 0 for at most countably many x).
Coalgebras for O are Markov chains. Flat probabilistic fixpoint logics in this sense are fragments
of the probabilistic u-calculus in the sense introduced by Cirstea et al. (2011) (to be distinguished
from the [0, 1]-valued logic of the same name (Morgan and Mclver 1997; Huth and Kwiatkowska
1997)) as an instance of the coalgebraic u-calculus. The probabilistic p-calculus was subsequently
reinvented by Liu et al. (2015) (Liu et al. prove that model checking the probabilistic y-calculus is
in UPNcoUP and satisfiability is in 2ExpTiME while Cirstea et al. already show that satisfiability
is ExpTIME-complete) and taken up again by Larsen et al. (2016). More generally, one can admit
linear inequalities involving probabilities, as, e.g., in work by Fagin and Halpern (1994), as long as
one pays attention to monotonicity.
In a view of probabilistic logic as a logic of reactive systems, we can use the b-operator

AG, = bp/\L,x

to express formulas like AG, —fail, stating that the system will, at any point during its runtime,
fail with probability at most 1 — r, a sensible specification for systems that may sometimes fail but
should not fail excessively often (as announced, we silently include propositional atoms such as
fail in the syntax).

Alternatively, we may interpret the operators L, epistemically. We extend the logic to multiple
agents in the same way as for K in Item 1, obtaining a logic with probabilistic operators L. read
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Completeness of Flat Coalgebraic Fixpoint Logics 4:9

“agent i believes with confidence r that.” We then have an uncertain variant C, of the common
knowledge operator, namely the b-operator for

" Li(p A x).

Thus, C,¢ is read “everyone believes with confidence r that ¢ holds and that everyone believes
with confidence r that ¢ holds and so on”; in short “¢ is commonly believed with confidence r.”

A variant is the operator C, 4 that, when applied to a formula ¢, separates belief in ¢ from beliefs
about other agents: C, g is the b-operator for

Ly (Lp A L),

and thus C, 4¢ states that everyone believes ¢ with confidence r and believes with confidence g
that all agents believe the same, and so on. (Note that C, , is not the same as C,!)

Systems and logics with non-negative real-valued weights (not required to sum up to 1) are
treated coalgebraically in a similar manner (Kupke and Pattinson 2010).

(4) Conditional fixpoint logics have a single binary modal operator =, written in infix notation.
The intended reading of a = b is “if a, then normally b.” Conditional logics come with a wide
variety of axiomatizations and semantics (see, e.g., Pattinson and Schréder (2010) for an overview).
For example, the minimal conditional logic CK is interpreted over the functor Cf that maps a
set X to the set PX — PX (more precisely QX — PX, where Q is contravariant powerset), whose
coalgebras are selection function models (Chellas 1980), by putting

[=1x(AB) = {f € CfX | f(A) < B}.

(Thus, = is monotone in the second but neither monotone nor antitone (order reversing) in the
first argument. This makes = different from material implication, which is precisely the point of
inventing it. Technically, this is fine as long as we form fixpoints only over the second argument,
i.e., let the recursion variable x appear in y € T only to the right of = as in the example below.)

We can combine coalgebraic logics freely using results of Schroder and Pattinson (2011). For
example, combining conditional logic with multi-agent K in its description logic incarnation
ALC (Baader et al. 2003), we can define an abstract concept of animal taxa with two-gender
descendancy as b, (FirstOfltsKind, Male, Female) with y given as

(=p1) = ((FhasParent. p, M x) M (3 hasParent. p3 M x)).

A taxon is a fixpoint of y (FirstOfltsKind, Male, Female) if all individuals that do not belong to some
assumed first ancestor generation of the species normally have two parents of the same species,
and the greatest fixpoint subsumes all animals belonging to such taxa. The use of the conditional =
instead of standard material implication — takes into account that these days, a given exceptional
sheep might, e.g., be a clone and thus not have parents in the strict sense.

(5) The alternating-time p-calculus (AMC) (Alur et al. 2002) has modal operators (C)HQO read
“coalition C of agents can enforce ... in one step,” where a coalition C is a subset C C N of a fixed
set N = {1,...,n} of agents; we shall also write [C] in place of {C)O as in coalition logic (Pauly
2002). The semantics of the coalitional modalities is defined over concurrent game structures (or
game frames) and can be captured coalgebraically (Schroder and Pattinson 2009): We define a
functor G by

CX ={(f, (ki)ien) | [+ (ITien) [kil} = X,
where k; € N and [k;] = {1,...,k;} and by Gg(f, (ki)ien) = (g o f, (ki)ien) for g : X — Y. This

captures a form of concurrent game where each agent i € N chooses a move j; € [k;] and the
joint choice determines an outcome f(ji, .. .,jn) € X. (The semantics given by Pauly (2002) differs
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4:10 L. Schroder and Y. Venema

slightly in that the agents can have unrestricted sets of available moves rather than only finite
ones.) Coalgebras (X, &) for G are concurrent game structures (Alur et al. 2002); they associate to
each state x € X a concurrent game £(x) € GX whose outcomes are states and thus allow for plays
with multiple successive moves. The semantics of the modalities [C] is given by the liftings

[[CIx(A) = {(f, (ki)ien) € GX | A(ji € [kil)iec- VUi € [kiDien\c- f((i)ien) € A}

That is, a state x in a concurrent game structure satisfies [C]¢ if the agents in C have a joint choice
of moves such that regardless of the choice of moves by the other agents, the outcome satisfies ¢.

One of the flat fragments of the AMC is ATL (Alur et al. 2002). For example, the ATL-operator
{CHp1Up2, read “coalition C can eventually force p, and meanwhile maintain p;,” is the §-operator
for

p2 V(1 A [Clx).

As in the case of CTL, flat fixpoints in the AMC go considerably beyond ATL; e.g., the b-operator
for p A [0][0]x (“p holds in all even states along any path”) is not even in the more expressive logic
ATL* (Alur et al. 2002; Dam 1994). A similar flat operator, the b-operator for [C](p A [D](g A x)),
expresses that coalitions C and D can forever play ping-pong between p and gq.

(6) Monotone fixpoint logics have a modal operator 0O, interpreted over the monotone neighbour-
hood functor defined by

MX ={U € P(PX) | A upwards closed}
by means of the predicate lifting
[Olx(A) ={A e MX | AeU}.

(The functor M acts onmaps f : X — Y by Mf(A) = {B € PY | f~![B] € A} and hence is a sub-
functor of the double contravariant powerset functor.) Often, the axioms OT and ¢ T are imposed
where & = O denotes the dual of O. This amounts to using the subfunctor M; of M given by

MX={Ae MX|0¢A>X},

the serial monotone neighbourhood functor, whose coalgebras are serial monotone neighbourhood
frames. In particular, these form the semantic setting of concurrent PDL (Peleg 1987) and game
logic (Parikh 1985), where operators are indexed over atomic programs or games, respectively;
this is modelled coalgebraically in the same way as multi-modal K (Item 1). The *-nesting-free
fragments of concurrent PDL and game logic are flat fixpoint logics. For example, game logic has
operators (y), indexed over composite games y and read “Angel has a strategy to enforce ... in
game y”. Games are formed from atomic games using the usual constructs for regular expressions
as in PDL, and, additionally, the dualizing operator (=)? that swaps the roles of the players in
a game. For example, one has a demonic iteration operator (—)* defined by y* = ((y?)*)?. The
formula (y*)¢ thus says that Angel has a strategy to enforce ¢ in the game where y is played
repeatedly, with Demon choosing the number of rounds. If y is star free (i.e., contains neither (—)*
nor (—)*), then we can phrase (y*) as the b-operator for p A (y)x.

It remains to prove the mentioned equivalence of the Kripke semantics and the multigraph
semantics of the graded p-calculus (Example 2.3(2)), generalizing the equivalence for the fixpoint-
free case (Schroder 2007). Since the Kripke semantics of graded modalities fails to be coalgebraic
(as it violates the naturality condition for predicate liftings), this equivalence is needed to obtain
completeness of flat fragments of the graded p-calculus from our generic completeness result.

LEMMA 2.4. A formula in the flat graded pi-calculus is satisfiable over (finite) Kripke frames iff it
is satisfiable over (finite) multigraphs.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 4. Publication date: January 2018.



Completeness of Flat Coalgebraic Fixpoint Logics 4:11

Proor. For the sake of simplicity, we continue to elide propositional atoms. Since every Kripke
frame can be regarded as a multigraph, “only if” is clear. To show “if”, let ¢ be a flat graded fixpoint
formula, and let x, be a state in a B-coalgebra (X, &) such that x; =(x, #) ¢. Let ko be maximal such
that O, occurs in ¢. Observe that ¢ remains satisfied if we replace & with &', where &'(x)(y) =
min(&(x)(y), ko + 1) (formally, this is proved by induction on ¢), so we can assume that all £(x)(y)
are finite (in fact, at most ko + 1). Now construct a Kripke model (X, R) by making sufficiently many
copies of states, as in Schréder (2007, Remark 6): Take as states in X all pairs (y, j) € X X N such
that £(x)(y) > j for some x, and in this case put (x, i)R(y, j) for all i such that (x, i) € X. Note that X
is finite if X is finite. Like for any Kripke frame, we can equivalently regard (X, R) as a multigraph
(X, &), where &(x, i)(y, j) = 1if (x,i)R(y, ), and E(x, i)(y, j) = 0 otherwise. Let 7 : X — X denote
the projection that maps (x, i) to x. By Lemma 2.2, it suffices to show that

m:(X.6) - (X, )

is a B-coalgebra morphism, i.e., that

Br((x,0)) = E(x).
Indeed, the multiplicity of y € X in the multiset on the left-hand side is the cardinality of the set
{(y,]) € X | (x,i)R(y, j)}, which equals £(x)(y) by construction of R. O

3 THE GENERIC AXIOMATIZATION

The generic semantic and syntactic framework of the previous section comes with a generic,
parametrized deduction system, whose completeness will be our main result. We begin with the
fixed part of the deduction system. We include full propositional reasoning, i.e., introduction of
substituted propositional tautologies and modus ponens. Fixpoints are governed by the obvious
Kozen-Park axiomatization: We have the unfolding axiom

Y(d)’ﬁyd)) - ﬂyﬁb
and the fixpoint induction rule
Y. x) = x
By —x
for all formulas ¢, y; together, these axioms capture the fact that §, ¢ is the least prefixpoint of

v(9).
LEMMA 3.1. The monotonicity and congruence rules
4 gy
l:ty‘iS - ﬂy‘/f ﬂy(ﬁ And ﬂyw

are derivable.

Proor. The congruence rule is derivable from the monotonicity rule. To derive the
latter, assume ¢ — 1. Since y is positive in the parameter variable, we can then derive

y(¢.8,¥) — y(¥.#,¥). By unfolding, we derive y (¢, #,¢) — #,¢ and then §, ¢ — #, ¢ by fixpoint
induction. O

The variable part of the proof system is the axiomatization of the modal operators, which turns
out to be completely orthogonal to the fixpoint axiomatization. In fact, we can just reuse complete
rule sets for the purely modal part of the logic (Schréder 2007; Schréder and Pattinson 2009). First
some notation.

Definition 3.2. We denote the set of propositional formulas over a set Z by Prop(Z) and the set
{Qa |V e A aeZ} by A(Z). A literal over Z is either an element of Z or the negation of such
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4:12 L. Schroder and Y. Venema

an element, i.e., has the form ez, where z € Z and € € {-, -} is either nothing or negation. A (dis-
junctive) clause is a finite (possibly empty) disjunction of literals; a conjunctive clause is a finite
conjunction of literals. A clause (disjunctive or conjunctive) is contracted if it contains every lit-
eral at most once. For ¢, € Prop(Z), we say that ¢ propositionally entails 1, and write ¢ +py ¥,
if ¢ — ¢ is a propositional tautology. Similarly, ® C Prop(Z) propositionally entails ¢ (® +pr, ¢)
if there exist ¢1, ..., ¢, € ® such that ¢; A -+ A ¢, Fpr . We write 2 for the set {L, T} of truth
values. For ¢ € Prop(Z), we denote the evaluation of ¢ in the Boolean algebra X under a val-
uation 7 : Z — PX by [¢]ly , and write X, 7 |= ¢ if [¢]ly , = X. For ¢ € Prop(A(Prop(Z2))), the
interpretation
[Y]rx,. € TX

of ¢ in the Boolean algebra (T X) under 7 is the inductive extension of the assignment
() rx,r = [©lx7(2).

We write TX, 7 |= ¢ if [ ]lrx.. = TX. A propositional formula over A(V) is clean if it mentions
every variable at most once.

We can now give the formal definition of the modal rule format. We continue to use the set V
of variables as placeholders for formulas; when variables appear in rules, we prefer to call them
propositional variables.

Definition 3.3. A one-step rule R = ¢/ y consists of a premise ¢ € Prop(V') and a conclusion y that
is a clean (disjunctive) clause over A(V), where every variable in ¢ appears also in y. We say that R
is monotone (a notion similar to one introduced by Cirstea et al. (2011) for rules phrased without
negation) if whenever y is positive (negative) in a variable a € V, then ¢ is positive (negative) in a
(note that because y is clean, we have for every variable a that y is either positive or negative in
a). The rule R is one-step sound if whenever X, 7 |= ¢ for a valuation 7 : V — PX, then TX, 7 |= y.
A set R of one-step rules is one-step complete if, whenever TX, 7 |= ¢ for a set X, a clean clause ¢
over A(V), and a PX-valuation 7, then ¢ is provable over X, 7, i.e., propositionally entailed by
clauses yo, where ¢/ y € R and o is a Prop(V)-substitution such that X,z |= ¢o. Moreover, R is
one-step cutfree completeif, whenever TX, 7 |= ¢ for X, 7, as above, then / is cutfree provable over
X, 1,ie., xy Fpr ¢ for some ¢/y € R such that X, 7 |= ¢.

Remark 3.4. In the terminology of Schréder and Pattinson (2009), one-step cutfree complete rule
sets correspond to one-step complete rule sets that are closed under contraction, resolution, and
injective renamings of the propositional variables. Notice in particular that y as in the definition
of cutfree provability is clean, being the conclusion of a one-step rule, and hence contracted.

As the last parameter of the framework, we

fix from now on a one-step complete set R of one-step sound one-step rules, and denote
the arising logic by Ly.

Rules ¢/ € R are applied in substituted form, i.e., for every substitution o, we may conclude o
from ¢o. In summary, the proof system consists of propositional reasoning, the unfolding axiom,
the fixpoint induction rule, and the rules in R. It is easy to see that this system is sound; explicitly:

THEOREM 3.5 (SOUNDNESS). Every provable fixpoint formula is valid.

We will show that the system is also complete. Note that that the system without the fixpoint
rules (i.e., comprising only propositional reasoning and a one-step complete set of modal rules) is
known to be complete for the fixpoint-free modal language (Schroder 2007). As usual, we write - ¢
if a formula ¢ is provable. We say that ¢ is consistent if —¢ is not provable.
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We proceed to record some facts on the relationship between the two notions of one-step com-
pleteness.

Definition 3.6. A one-step rule ¢/y is R-derivable if y is propositionally entailed by conclu-
sions Yo of rules p/yy € R, where o is a Prop(V)-substitution and ¢ +p; po.

Of course, R-derivable rules are sound. The converse holds thanks to one-step completeness:
LeEMMA 3.7. All one-step sound one-step rules are R-derivable.

PRroOF. Let ¢/ y be one-step sound. Let V; C V be the set of propositional variables that occur
in y, and put
X={k:Vy —> 2|k = ¢} t(a) ={ke X |x(a) =T}.
Then X, x |= ¢, so that TX,k |= y by one-step soundness. By one-step completeness of R, y is
propositionally entailed by clauses o, where p/¢ € R and o is a Prop(V)-substitution such that
X, 1 |= po. It suffices to show that ¢ Fp po, which, however, is clear by construction of X,z. O

LEMMA 3.8. The set of R-derivable monotone one-step rules is one-step cutfree complete.

In other words, a clause over A(V) is provable over X,  iff it is cutfree provable over X, T using an
R-derivable monotone one-step rule.

ProoF (LEMMA 3.8). By Lemma 3.7, this follows once we show that the set of one-step sound
monotone one-step rules is one-step cutfree complete. This is proved by Cirstea et al. (2011, Propo-
sition 4.7) for a formally even more restrictive class of rules (also called monotone®). O

Definition 3.9. A conjunctive clause p over A(V) is one-step t-consistent for r : V. — PX if =p is
not provable over X, 7. Moreover, p is one-step -satisfiableif [p]l 7 , # 0. We extend the notion of
one-step 7-consistency to infinite sets ® of literals over A(V): We say that ® is one-step r-consistent
if, for all py, ..., pn € ®, the conjunctive clause p; A -+ A p, is one-step 7-consistent.

Note that by the above, p is one-step 7-consistent iff —p is not cutfree provable over X, 7 using
an R-derivable monotone one-step rule. One-step completeness can be rephrased as saying that
every one-step T-consistent conjunctive clause over A(V) is one-step t-satisfiable.

Example 3.10 (One-step rules). One-step complete rule systems have been exhibited for all
logics of Example 2.3 and many more (Pattinson 2003; Cirstea and Pattinson 2007; Schréder and
Pattinson 2009; Pattinson and Schroder 2010; Kupke and Pattinson 2010). In some cases (Cirstea
and Pattinson 2007; Pattinson 2003), axiomatizations have been phrased in terms of one-step
axioms, i.e., formulas in ¢ € Prop(A(Prop(V))) that can be introduced in substituted form ¢o
with o a substitution of propositional variables by formulas; it has been shown that this format
is interconvertible with one-step rules (Schroder 2007). We recall some examples in more detail,
converting to one-step rules where necessary.

(1) Kripke semantics: The standard axiomatization of the modal logic K;, with O; written as
just O, can be phrased in terms of one-step rules for necessitation, monotonicity, and normality as

a a—b anNb—>c

Oa Oa—0Ob OaADb—0Oc

ISpecifically, a rule is monotone in the sense of Cirstea at al. if its premise is a positive formula and its conclusion is
a disjunction of atoms of the form ©a or Ya. All such rules are clearly monotone in our sense. In fact, we also have a
converse: Monotone rules in our sense can be transformed into the more restrictive format by taking negation normal
forms and substituting away negated variables.
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where here and in the following, we write clauses —a; V ---V =a, V by V ... b,, as implications
ay A+ ANay, = by V-V by Given this axiomatization, a one-step rule ¢/¢ is R-derivable iff
¥ contains disjuncts —Oay, . . ., =Oay, Ob (with n > 0) such that ¢ Fp a; A --+ A a, — b (all such
rules are clearly derivable, and the converse is easily seen semantically (Pattinson and Schroder
2010, Example 4.6)).

A more restricted semantics over serial Kripke models as for serial CTL (Example 2.3.1) is re-

flected in the additional rule
—a

-0a’

Restricting additionally to deterministic models as used for LTL (and switching from O to O as
customary) logically corresponds to adding the rule

aVvb
Qa Vv Ob
(which, given the other rules, is mutually interderivable with the better-known axiom - O a —
Ona).
(2) Graded fixpoint logics: Rephrasing a known complete axiomatization of graded modal logic
(De Caro 1988), we obtain the rules

a—b c—aVvb
RGl) —M8M8M8M Al
( ) On+1a = Opb (A1) Onpin,€ = OpaV Op,b
aVb—>c
anb—>d —a
(A2) (RN)

Onan Onzb = Opiang+1C V Ood _‘<>Oa.

These rules are clearly one-step sound. They have previously been shown to be one-step com-
plete (Schroder and Pattinson 2009) by reference to the previous completeness proof for graded
modal logic; we give a simple stand-alone proof in Lemma 3.12.

(3) Probabilistic fixpoint logics: We can reuse the one-step complete rule set for probabilistic
modal logic (Heifetz and Mongin 2001; Cirstea and Pattinson 2007). For the extended language
with linear inequalities on probabilities, one has the one-step cutfree complete rule set given by
Kupke and Pattinson (2010), noting that one-step cutfree complete rule sets can be restricted to
any subset of the modal operators (Schroder and Pattinson 2009), in particular to monotone linear
inequalities.

(4) Conditional fixpoint logics: One-step complete rule sets are known for various flavours of
conditional logic (Pattinson and Schréder 2010; Schroder et al. 2010).

(5) Alternating-time p-calculus: The following one-step complete set of rules is implicit in Pauly
(2002) (see also Schroder and Pattinson (2009)):

-a a avb anb—c
=[Cla [Cla [0]laV[N]b [ClaA[D]b— [CUD]’

where C and D are disjoint in the last rule. In words: No coalition can enforce the logically impos-
sible; every coalition can enforce logical tautologies; either a is unavoidable or —a can be enforced
by all agents in collaboration; and disjoint coalitions can combine their abilities.
(6) Monotone fixpoint logics: When we interpret O over the monotone neighbourhood functor,
we have only the rule
a—b
Oa—0Ob’
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Seriality is captured by the additional rules

a —a

Oa -Oa’

Remark 3.11. We point out that in all examples with finite modal similarity type A, the rule sets
given above are finite, so that our completeness result will establish finite axiomatizability; this
holds in particular for alternating-time logics. (Note also that one-step rules can be converted into
axioms (Schroder 2007)). When A is infinite, we cannot reasonably expect a finite axiomatization.
The rules for graded modalities are locally finite in the sense that every modality is mentioned only
in finitely many axioms. The rules for probabilistic logic (Heifetz and Mongin 2001; Cirstea and
Pattinson 2007) do not have this property, and it seems unlikely that a locally finite axiomatization
is possible in this case.

As announced we provide a stand-alone proof of one-step completeness of the rules for graded
modal logic:

LEMMA 3.12. The rules (RG1), (A1), (A2), and (RN) (Example 3.10.2) are one-step complete for
graded modal logic.

Proor. Let 7: V — PX. We prove one-step completeness by showing that every one-step -
consistent conjunctive clause ¢ is one-step 7-satisfiable (Definition 3.9). We can assume that X
is finite (see (Schroder 2007, Proposition 23), (Myers et al. 2009, Lemma 30)), and then that 7 :
V — PX is surjective. By a standard argument, there exists a maximal one-step r-consistent set ®
(Definition 3.9) of literals over A(V) such that ® +p; ¢. (Note that the argument is entirely generic
up to this point.) We construct a multiset u € 8X that satisfies ® over 7, i.e., p € (Ngex [Pll7x .-
Specifically, we define p as an N U {oo}-valued measure on X by

#(A) = max{k + 1| Oxa € ®,7(a) = A}

for A C X, where by convention max @ = 0. To see that y is really a measure, note first that p1(0) = 0
by (RN), applied to a such that r(a) = 0. Moreover, yu is additive, i.e., u(AU B) = p(A) + p(B) for
disjoint A, B. (Since X is finite, there is no issue about y being o-additive.) Here, > is by (A2) and
(RN), applied to a, b, ¢,d such that 7(a) = A, t(b) = B, 7(d) = 0, and 7(c) = AU B. Similarly, < is
by (A1) applied to a, b, ¢ such that 7(a) = A, 7(b) = B, and 7(c) = AU B. It remains to show that
p € [Orallrx, . iff Oxa € @. “If” is immediate by the definition of y, and “only if ” is by (RG1). O

Completeness Proofs: Coalgebraic Logics and Flat Fixpoint Logics

Our completeness proof brings together ideas from earlier work of the authors and others on,
respectively, coalgebraic modal logic and flat modal fixpoint logics. To provide some orientation
in our proof, we very briefly summarize the salient points of the mentioned two lines of research.

Coalgebraic Modal Logic: Completeness via One-Step Completeness. The simplest case where one-
step completeness of a set of one-step rules has been used to establish completeness of a full-blown
modal logic is the basic next-step logic, given by omitting all fixpoint operators from ¥y (Schréder
2007). Here are some of the main points of this model construction:

— As usual, we start with a consistent formula ¢ and need to show that ¢ is satisfiable; in fact,
we show that ¢ has a finite model.

—To this end, we form the (finite) set ¥ of all subformulas of ¢ and their negations, with a view
to building a (finite) model whose set X of states consists of the X-atoms, i.e., the maximally
consistent subsets of X.

ACM Transactions on Computational Logic, Vol. 19, No. 1, Article 4. Publication date: January 2018.



4:16 L. Schroder and Y. Venema

—Of course, we intend to construct the model in such a way that the truth lemmaholds: Every
>-atom should satisfy, as a state of the model, precisely the 3-formulas that it contains.
Thus, every formula p € ¥ comes with a putative extension p, consisting of all ¥-atoms
that contain p.

—The truth lemma is proved by induction, and the only case in the induction that refers to the
yet-to-be-defined coalgebra structure ¢ on the set of Z-atoms is the one for the modalities.
The property that & needs to satisfy to make this step work is coherence:

§(A) e [@Ix(p) iff ©peA ®)

for every X-atom A and every ©p € X. Indeed, in the induction for the truth lemma, the
inductive hypothesis implies that p is not just the putative but the actual extension of p,
and then the left-hand side of (3) is precisely the definition of A satisfying ©p.

—The key step completing the proof is thus to establish the existence lemma, which states that
a coherent coalgebra structure on the set of atoms does exist. This is where one-step com-
pleteness comes in: If for some X-atom A there does not exist any choice of £(A) satisfying
the coherence requirement, then this means that TX, 7 |= i where ¢/ is a (disjunctive) clause
over A(V) containing ~Va, whenever Vp € A and Va, whenever -Vp € A, and 7(a,) = p.
It follows by one-step completeness that i is one-step provable over X, 7, which readily
leads to a contradiction.

Flat Modal Fixpoint Logic: Algebraic Completeness via Constructive Fixpoints. The completeness
result by Santocanale and the second author (Santocanale and Venema 2010) deals with systems
that are simple in a complementary direction, in the sense that they do allow flat fixpoint operators,
while their coalgebraic language is that of basic modal logic interpreted on standard Kripke models.

The proof method here follows the tradition of algebraic logic, encoding the derivation system
into the so-called Lindenbaum algebra, a special algebraic structure that is built from the equiv-
alence classes of formulas modulo provable equivalence. Where this Lindenbaum algebra corre-
sponds to the deductive side of the logic, the semantic side is provided by assigning to each Kripke
structure a so-called complex algebra, whose carrier is just the powerset of the set of states. Com-
pleteness of the logic is then proved via a representation theorem stating that the Lindenbaum
algebra can be embedded into one of these complex algebras.

This approach is standard in the context of basic modal logic (Blackburn et al. 2001); what makes
it work in the setting of flat modal fixpoint logics as well is that for many of these logics, the
Lindenbaum algebra has some special properties. Most significantly, the goal of Santocanale and
Venema’s proof is to ensure that every least §-fixpoint in the Lindenbaum algebra is constructive,
that is, reached after at most w many steps in the standard ordinal approximation of fixpoints.
The central tool for proving this constructivity is the notion of a finitary O-adjoint, introduced by
Santocanale (Santocanale 2008). Further on we provide a precise definition and an example of this
notion; for the moment we just note that O-adjointness is a generalisation of ordinary adjointness.
The point for the completeness proof is that finitary O-adjoints provide constructive fixpoints, as
a fairly straightforward proof will reveal.

Summarizing, this approach yields an automatic completeness result for flat modal fixpoint lan-
guages that restricts to fixpoint operators #, for which the formula y induces a finitary O-adjoint
on the Lindenbaum algebra. Finally, Santocanale and Venema provide some sufficient syntactic
conditions on the fixpoint schemes that ensure finitary O-adjointness and, thus, completeness.

Roughly speaking, our completeness proof for flat coalgebraic fixpoint logics combines the alge-
braic approach for flat modal fixpoint logics with the model construction of coalgebraic logic. The
salient point about this coalgebraic model construction for the case with fixpoints, which will be
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given in Section 5, is that plain atoms no longer suffice; we will additionally annotate least-fixpoint
formulas with suitable time-outs to differentiate between multiple occurrences of the same atom
(see Example 5.13). The results of the next section show, in a nutshell, that such time-outs, which
determine how often a least fixpoint can be unfolded, can indeed be introduced consistently. The
key observation here is that we can generalize the concept of O-adjointness to the coalgebraic set-
ting, and, under some syntactic conditions on the fixpoint scheme, guarantee the constructiveness
of the Lindenbaum algebra of the logic.

4 CONSTRUCTIVE FIXPOINTS

We now launch into the details of the completeness proof for the system introduced in the previous
section. Where we give examples of technical definitions along the way, these will, for readability,
mostly be cast in the basic, relational instance of coalgebraic logic (Example 2.3.(1)). This should
not distract from the fact that all results apply to coalgebraic logic in full generality as illustrated
in Example 2.3.

Our first aim is to prove that fixpoints in the Lindenbaum algebra of ..Cﬁ are constructive, i.e.,
can be iteratively approximated in w steps. In terms of consistency of formulas, this means that
whenever a formula of the form #, ¢ A 1/ is consistent, then already y’(¢)(L) A ¥ is consistent for
some i < w; this fact will play a pivotal role in the model construction in Section 5. We begin by
introducing the requisite algebraic tools.

Definition 4.1. A A-algebra is a Boolean algebra A with a monotone operation 9 : A — A for
each © € A. In a A-algebra A, a modal fixpoint scheme y(p, x) is interpreted as an operation y4 :
A? — A in the evident way. A #-algebra is a A-algebra A that is endowed with operations ﬁf for
each y(p,x) € T such that for each a € A, ﬁ‘;}(a) is the least fixpoint of the map y*(a,—) : A — A
(in particular, these fixpoints exist in a §-algebra). In a f-algebra A, every fixpoint formula with
variables ¢(v1,...,v,) is interpreted as a function ¢ : A" — A. We say that A validates a rule
R=9¢/y if(ﬁA(al, ...,ay) = T whenever ¢A(a1, ...,ap) =Tforay,...,a, € A An Ly-algebrais
a f-algebra A that validates every rule in our fixed set R of one-step rules.

As mentioned earlier, in the tradition of algebraic logic, Ly-algebras provide an algebraic en-
coding of our proof system. More specifically, we will be interested in the Lindenbaum algebra
A(Ly) of our logic. As usual, this algebra (almost always infinite) is defined as the quotient of the
set ¥y of formulas under the congruence relation = of provable equivalence (¢ = ¢ iff + ¢ & V),
equipped with the algebra structure that just interprets every connective as itself. (The congru-
ence property of = follows from the fact that both the modalities and the fixpoint operators come
with congruence rules, the former by one-step completeness and the latter by Lemma 3.1.) An
easy induction shows that every formula ¢ is interpreted as the element ¢p4(£#) = [¢] of this al-
gebra, where [¢] denotes the equivalence class of ¢ under =; when there is no danger of con-
fusion, we may write ¢ in place of [¢]. More generally, when ¢ is a formula with n variables,
then ¢2£8) ([p1], ..., [pn]) = [#(p1s . - ., pu)]. The Kozen-Park axiomatization ensures that A(Ly)
actually is an Ly-algebra:

LemMA 4.2. The Lindenbaum algebra is the initial Ly-algebra.

ProoF. The unfolding axiom makes #, ¢ a prefixpoint of YA (¢, =) in A(Ly), and the fixpoint
induction rule ensures that #, ¢ is the least such, because every element of A(Ly) is the denotation
of a formula. This shows that A(Ly) is a §-algebra. To show that A(Ly) is an L-algebra, it remains
to establish that A(Ly) validates every one-step rule ¢/i in R. So let [p1], ..., [pn] € A(Ly) such
that ¢ ([p1],...,[pn]) = T. Then the formula ¢(p,...,pn) is valid; since ¢/ is sound, it
follows that /(py, . . ., pn) is valid, i.e., Y29 ([p1],. .., [pn]) = T, as required.
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Initiality of A(Ly) is then straightforward: If B is an Ly-algebra, then B validates the unfolding
axiom and the fixpoint induction rule so that we have a well-defined map f : A(Ly) — B given
by f([¢]) = ¢B. By construction of the algebra structure on A(Ly), f is homomorphic w.r.t. all
algebraic operators (Boolean, modal, and fixpoint). Uniqueness of f is shown by induction over
formulas in the usual way, using the fact that the fixpoint operators are explicitly included in the
algebra structure. ]

In these terms, our target property is phrased as follows.

Definition 4.3. We say that y € T is constructive if for all ¢,
tyo =\ r($)'(1)
i<w
in the Lindenbaum algebra A(Ly), i.e., if - §,¢ — i whenever r y(¢)'(L) — ¢ forall i < w.
We explicitly state the dual formulation of this property:

LemMaA 4.4. Lety be constructive. If §,¢ A ) is consistent, then y (§)' (L) A ¥ is consistent for some
i <o

(In algebraic terms, the above lemma says that if y is constructive and #, ¢ A/ > L in A(Ly),
then y(¢)'(L) A > L for some i < w.)

Example 4.5 (Constructivity). Constructivity of the fixpoint

ﬁpv@xﬁb
defining the CTL formula EF¢$ means that ¢ is the supremum of the infinite ascending chain

1

¢
PV OP
PV OPV OOP

in the Lindenbaum algebra (noting that algebraically, p vV &L = p).

The central tool for proving constructivity, introduced by Santocanale (2008) and featuring
prominently in subsequent work by Santocanale and Venema (2010), is the notion of a finitary
O-adjoint. We recall that a map f between partially ordered sets (e.g., between Boolean algebras)
is a left adjoint if there exists a map g in the opposite direction such that f(x) < yiff x < g(y). This
requirement is suitably weakened in the definition of O-adjointness:

Definition 4.6. We say that a formula i/ (x) is an O-adjoint if for all ¢ € F, there exists a finite
set Gy (¢) of formulas such that for all p € 7,

Fy(p) = ¢iff + p— y for some y € Gy (¢), (4)

ie,y(p) < ¢in A(Ly) iff p < x for some y € Gy (¢). Moreover,  is a finitary O-adjoint if Gy, can
be chosen such that for every ¢, the closure of ¢ under Gy, i.e., the least set A with ¢ € A and
X € A= Gy (x) € A, is finite. We say that a modal fixpoint scheme y € T is a (finitary) O-adjoint
if y(¢) is a (finitary) O-adjoint for all ¢ € Fy.

LEMMA 4.7 (SANTOCANALE 2008). Every finitary O-adjoint is constructive.
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Example 4.8 (O-adjointness). Our proof of O-adjointness (Theorem 4.22) will feature an explicit
construction of Gy, (¢) as in Definition 4.6, which we will illustrate after the proof (Example 4.23).
For now, we look at an ad hoc example for specific i/, ¢ in probabilistic modal logic (Exam-
ple 2.3.(3)), anticipating, for simplicity, the completeness theorem (Theorem 5.16): Consider

I// =L1/2x ¢ = —|(L5/6(1/\L5/6b/\L5/6C),
where a, b, ¢ are propositional atoms. Then we can take
Gy(¢9) ={~(anb),~(bAc),~(anc)}.

To show that this really does the job, we argue semantically—and this suffices by our soundness
and (anticipated) completeness results. For the “if” direction in (4), assume w.l.o.g. that |= p —
—(a A D), let (X, &) be a D-coalgebra (i.e., a Markov chain), and let y € X such that y [=(x,¢) L1/2p.
Assume for a contradiction that y |=(x, #) Lsjsa A Ls/sb. Theny |=(x, ¢y Lz/3(a A b) but by our other
assumptions, y |=(x,¢) Li/2—(a A b), contradiction.

We prove the “only if 7 direction in Equation (4) by contraposition. So assume that all of p A
anb, pAbAc, and p A a A c are satisfiable. We will show that Ly/3p A Lsjga A Lsj6b A Lsjea is
satisfiable as well. To start with, the formula a A b A c is, of course, satisfiable. Forming the disjoint
union of coalgebras in which the mentioned satisfiable formulas are indeed satisfied in some state
and adding a new root state, we can thus construct a D-coalgebra (X, &) containing a root state y
and states yi, y2,y3, ys such that y; Fx,5) pAaAAD, Y2 x5y pAbAC Y3 Ex,5) pAaAc, and
Ya I=(x,6) a A b A e, with (o) (Y1) = £(yo) (y2) = £(yo)(y3) = 1/6 and £(yo)(ya) = 1/2:

1/2
Yo Yy aANbAc
P I /
Y1 Y2 Y3
pANaNb pADAC pANaAc

SN N N

(the triangles are meant to indicate the coalgebras whose disjoint union we formed). Then
Yo |:(X,§) Ll/zp A L5/6a A L5/6b A L5/6C.

Definition 4.9 (Top-level decomposition). Let ¢ be a formula (possibly with variables) such that
contains some modal operator and every occurrence of a variable in ¥ is in the scope of some
modal operator. Let i/’ be the equivalent formula that arises by unfolding all top-level occurrences
of # once (where an occurrence is top-level if it is not in the scope of a modal or fixpoint operator).
By guardedness of fixpoint operators, ¢’ is of the form /yo, where ¢y € Prop(A(V)) is clean and ¢
is a substitution. We refer to the equivalence ¢ = yyo (or, more precisely, the pair (¢y, o)) as the
top-level decomposition of .

Example 4.10 (Top-level decomposition). The top-level decomposition y = yoo of a formula of
the shape

x=0¢V ﬁp/\()xo‘p
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(we give no semantics for the modalities as the definition is purely syntactic) is given by
Yo =0OaV (Vb A Oc)
a(a)=¢
ab) =y
a(c) = fpnox VY.

The first step in the proof of O-adjointness for a large class of operators is a generalization of
Santocanale’s rigidity lemma (2008):

LEmMMA 4.11 (RiGIDITY). Let § be a clause over A(Fy), with top-level decomposition y = y0p.
Then ) is provable iff there exists an R-derivable monotone one-step rule ¢/ y such that ¢oy is provable

and x Fpr Y.

The proofrelies on the one-point extension of an algebra (so called because it mimics the addition
of a new root point in a coalgebraic model on the algebraic side), in generalization of a similar
construction by Santocanale and Venema (2010):

Let A be a countable Ly-algebra, let S(A) be the set of ultrafilters of A, fix a surjective map
0 :V — A, and let a clean conjunctive clause p over A(V) be one-step -consistent for 6 : V —
P(S(A)) given by 6 = j o o (applicative composition), where j : A — P(S(A)) is the usual canon-
ical map j(a) = {u € S(A) | a € u}. We construct the one-point extension A”, an Ly-algebra em-
ulating the addition of a new point whose successor structure is described by p, as follows. To
begin, we can find a maximally one-step 0-consistent set ® (Definition 3.9) of literals over A(V)
such that ® Fp; p. As we emulate adding a single point, the carrier of A” is A X 2, where 2 is the
Boolean algebra {.L, T}; we thus have projection maps m; : A — Aand m; : A? — 2. We make A”
into a A-algebra by putting

0% (a,d) = (¥4(a), 9 (a)), ®)

where O : A — 2 is defined by ©”(a) = T iff Ya € ®o. (Thus, Vi (a,d) is independent of d, in
agreement with the semantic fact that the interpretation of modal operators depends only on the
successor structure of the current state, not on the current state itself.)

Remark 4.12. We are interested only in one-point extensions A” where A is countably infinite.
Nevertheless, it may be helpful to look at the case where A is the complex algebra P (X) of a finite T-
coalgebra (X, &) (Pattinson and Schréder 2008); the operation interpreting a modality © € A is then
defined by ©(B) = £71[©]]x(B) for B € P(X).In this case, we can identify S(A) with X and take j to
be identity (as for finite X, every ultrafilter in (X) is fixed), so 6 = o. By one-step completeness, p
is one-step 0-satisfiable (Definition 3.9), so we can pick a t € [p]l;x o € TX and then take @ to
be the set {Va | t € [Va]l7y ¢}. (In fact, this way of obtaining ® would work in the general case.)
Now A” can be identified with the complex algebra (X U {x,}) of a coalgebra (X U {x,}, £), where
xo X and € extends & to X U {x,} by E(xo) = Ti(t), with i denoting the inclusion X < X U {x,}:
We can decompose B € P(X U {x¢}) into a pair (B N X, d) consisting of the subset BN X € P(X)
and an element d € 2 indicating whether x, € B, and xy € ©(B) ifft € [C[x(BN X) iff (BN X) €
o, so the effect of the algebraic operation © on d is exactly as in Equation (5). In other words,
in the restricted case at hand, the construction of A” really does correspond exactly to extending
(X, &) with a new root point whose behaviour is specified by p.

We proceed with the general case and define a valuation 6 : V. — A” by

(o(v), L) ifv occurs in a positive literal in p

6(v) = {(O’(U), T) otherwise.
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We then have
pé > Lin AP : (6)
by definition of A”, the second component of pé is T because ®o +pp po.

LEMMA 4.13. The algebra A? is an Ly-algebra.

Proor. The proof that A is a #-algebra is a simple application of Bekic’s theorem, as in
Santocanale and Venema (2010): Since A” has carrier AX 2, the fixpoint definition of
(,c) =4, (¢4,b) in AP can be seen as a mutually recursive definition of two variables ¥/, c.
By guardedness of fixpoints and the interpretation of modalities in AP, the definition of the
first variable ¢/ does not mention the second variable ¢, so we can calculate the solution for ¢
separately, using the fact that A is a f-algebra, and then replace i with this solution §, (¢) in the
recursive definition of the second variable c¢. We end up with ¢ being defined as the least fixpoint
of a monotone function on 2, which exists because 2 is a complete lattice.

It remains to prove that A” validates the one-step rules in R. The first component of A” behaves
just like A, so that we have to verify the rules only on the second component, 2. That is, whenever
we have a one-step rule y/¢ € R and a valuation 7 : V' — A such that yr = T in A”, we have to
prove that w7 = T. Since 7 depends only on 7,7, we thus have to prove that whenever we have
7’ : V — Asuch that yr’ = T in A, the interpretation of {7’ in 2 is T, where the interpretation of
Y7’ is determined by means of the ©” and the Boolean algebra structure of 2; that is, we have to
show that ®o +p; /7’. Since o is surjective, we have r’ = ¢ o 7 (applicative composition) for some
renaming 7 : V — V; our goal then reduces to showing that ® +p; /7. We proceed by contradic-
tion: Assume ® ¥p; 7. Then by maximality of ®, ® +p, —1/7. Since ® is one-step 0-consistent,
this implies that [-xZ]]g4),¢ # 0. Butsincef oz = joo o = jor’, [~x7] g(a) e is the image of
—-y7r’ € Aunder the Boolean homomorphism j : A — £ (S(A)). This implies =y’ # L, in contra-
diction to yz’ = T. O

In consequence of the fact that A(Ly) is the initial Ly-algebra, we thus have

LEMMA 4.14. Let 0 : V. — A(Ly) be surjective, and let p be a conjunctive clause over A(V). If p
is one-step 0-consistent for 0(v) = {u € S(A(Ly)) | 0(v) € u}, then po is consistent, i.e, po > L in
A(Ly).

Proor. Let f be the unique Ly-algebra homomorphism A(Ly) — A(Ly)”, and take 6 : V —
A(Ly)* as above. Note that the first projection 7; : A(Ly)? — A(Ly) is a homomorphism of Ly-
algebras by construction of A(Ly)”. By the uniqueness part of initiality, it follows that ; o f = id.
For a € V, we therefore have m,(f(c(a)) = o(a) = m1(6(a)); moreover, if a occurs in a positive
literal in p, then m2(f(0(a))) = L = m2(6(a)), and if a occurs in a negative literal in p (hence does
not occur in a positive literal, since p is clean), then 7, (f(c(a))) < T = m2(6(a)). Since the order
on A(Ly)” is componentwise, this implies that f o o(a) > &(a) if a occurs in a positive literal
in p, and f o o(a) < 6(a) if a occurs in a negative literal in p. Since f is homomorphic and the
modalities are monotone, it follows by (6) that f(po) = p(f o ) > p& > L. Since f preserves L,
this implies po > L. O
From Lemma 4.14, one easily proves rigidity (Lemma 4.11) using the fact that every consistent

formula is contained in some ultrafilter of A(Ly):

PrROOF (LEMMA 4.11). “If” is clear. For “only if,” we prove the dual statement: Let i be a con-
junctive clause over A(¥y), with top-level decomposition 1 = 400, such that ~¢oy is consistent
for all R-derivable monotone one-step rules ¢/y such that y Fp. —; we show that ¢ is con-
sistent. W.l.o.g. 0y is a surjection V' — F, which we prolong to a surjection 6y : V. — A(Ly). By
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Lemma 4.14, it suffices to prove that 1y (a conjunctive clause over A(V)) is one-step 6-consistent
for 0(v) = {u € S(A(Ly)) | 5o(v) € u}. Thus, let ¢/ y be an R-derivable rule such that y Fp. 1.
We have to show that S(A(Ly)), 0 £ ¢. By assumption and because y +pr —ty, we have that ~¢ay
is consistent, hence —¢3, > L in A(Ly), so that there exists u € S(A(Ly)) with ~¢ay € u. Now
one shows by induction over p € Prop(V) thatu € [[p]]S(A(Lﬁ)),G iff p6y € u: The cases for Boolean
connectives are by the ultrafilter property of u, and the base case p = a € V is by definition of 6.
In particular, we have u € [[_'(/J’]]S(A(Lg)),e’ showing that S(A(Ly)), 0 [¢ ¢ as required. |

In a nutshell, rigidity enables us to prove O-adjointness of all (monotone) modal operators and,
even more generally, all modal fixpoint schemes in which the recursion variable x occurs at uni-
form depth (such as O¢x A &Ox). Formally:

Definition 4.15. A formula i with variables is uniform of depth k if every occurrence of the
recursion variable x in i is in the scope of exactly k modal operators (including the case that x does
not occur in ; recall, moreover, that variables never occur under fixpoint operators). Moreover,
is uniformif y is uniform of depth k for some k; the minimal such k is the depth of uniformity of ¢ (in
fact, k is always unique except when x does not appear in ¢, in which case the depth of uniformity
is 0). Formally, uniform formulas are defined inductively by following inductive clauses:

—x is uniform of depth 0;

—formulas not containing x are uniform of depth k, for any k;

—any Boolean combination of uniform formulas of depth k is uniform of depth k; and
—if ¢ is uniform of depth k, then 9y is uniform of depth k + 1, for © € A.

Finitariness of O-adjoints will use the standard Fischer-Ladner closure:

Definition 4.16. A set ¥ of formulas is Fischer-Ladner closed if ¥ is closed under subformulas and
negation (where the negation of a negated formula —¢ is taken to be ¢), and whenever #,¢ € %,
then y (¢, #,$) € =. We denote the Fischer-Ladner closure of a formula 1/, i.e., the smallest Fischer-
Ladner closed set containing ¥/, by FL(i/).

LEMMA 4.17 (KozeN 1983). The set FL(Y) is finite.
The further development revolves largely around derivable rules:

Definition 4.18. A rule R = ¢/ consists of a premise ¢ and a conclusion y/, both being formulas
with variables. The rule R is derivable if i/ can be derived from the assumption ¢ using the rules
of the system (propositional reasoning, unfolding, fixpoint induction, modal rules).

LEMMA 4.19. If is positive in x and v+ y — p, thent+ () — ¥(p).

Proor. Induction over ¢, simultaneously with a corresponding statement on formulas that are
negative in x. The Boolean cases are straightforward, and the cases for fixpoint operators are
trivial, because x never appears under fixpoint operators. The case for a modal operator © € A is
discharged by the fact that by monotonicity of ©, the monotonicity rule a — b/Va — ©b is one-
step sound and, therefore, by Lemma 3.7, R-derivable. m]

LEMMA 4.20. Let ¢y = ¢/(x) be a uniform formula, and put

G = {¢ € Prop(FL(¥)) | ¢/¢ derivable, § uniform of depth 0}.
Then, given a formula p, Y(p) is provable iff (p) is provable for some ¢(x) € G.

Proor. ‘If” This is essentially just the claim that derivability is stable under substitution,
proved by induction over derivations.
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“Only if » We proceed by induction over the depth of uniformity, with trivial base case. Thus,
let ¥ be uniform of depth k > 0, and let /(p) be provable. By unfolding (guarded) top-level fix-
points (i.e., those not in the scope of a modality) and then applying propositional reasoning to
transform into CNF, we reduce to the case that ¢ is a clause over A(FL(i/)); note here that these
transformations remain within Prop(FL(y/)). Let ¢ = y00 be the top-level decomposition of ¥/;
then the top-level decomposition of 1/(p) has the form xﬁoag) where 0'60 (a) = oo(a)(p). By rigidity
(Lemma 4.11), we have an R-derivable monotone one-step rule y/¢’ such that )(o(f is provable
and ¥’ Fpr Y. Then the rule yoy/y is derivable, yoy € Prop(FL(y)) is uniform of depth k — 1, and
(x00)(p) is provable (being equal to )(0'0p ). By the inductive assumption, applied to y oy, there exists
¢(x) € Prop(FL(xo0)) € Prop(FL(y)) such that ¢/ yoy is derivable, ¢ is uniform of degree 0, and
¢(p) is provable. Since ¢/ yop and yoy/y are derivable, so is ¢/1, hence ¢ € G, which proves the
claim. O

We recall a trick from propositional logic:

LEMMA 4.21. Let  be a formula with variables containing only top-level occurrences (Defini-
tion 4.9) of the variable y. Then there is a formula a such that

YIT/yl v y[L/y] Fpr ¢laly].

Proor. By standard Boolean expansion. Specifically, a = /[T /y] does the job. This is seen by
case distinction over [ T/y]: First, assume /[T /y]; then /[T /y] is equivalent to T, so [T /y]
propositionally entails ¥/[(/[T/y]/y], because y has only top-level occurrences in 1. Second, as-
sume —/[T/y]. From ¢/[T/y] V ¥[L/y], we then conclude ¢/[L/y]. Since by assumption, [T /y]
is equivalent to L, this, again, propositionally entails [/[T/y]/y]. O

We are now set to prove the main result of this section:

THEOREM 4.22 (FINITARY O-ADJOINTNESS). If the formula y with recursion variable x is positive
and uniform in x, then the operation (L) : A(Ly) — A(Ly) induced by is a finitary O-adjoint.

Proor. For readability, we phrase the arguments using formulas in ¥y rather than elements
of A(Ly). Let ¢ € F3. We have to construct a set Gy (¢) of formulas such that for all p € 7y, +
V(p) — ¢iff - p — y for some y € Gy (¢); moreover we require Gy (4) to be finite up to provable
equivalence.

The formula ¥/’ := ¢y — ¢ is uniform (as ¢ does not contain x). Let G C Prop(FL(y’)) be as in
Lemma 4.20, applied to /’; notice that Prop(FL(y")) is finite up to provable equivalence. Then put

Gy(9) = {x(T) | x(x) € G, x(T) V x(L)}.

Now let + p — x(T) for some y(x) € G such that + y(T) V y(L). To show that + ¢/(p) — ¢, it
suffices by construction of G and positivity of / to prove that + y(a) A (p — a) for some formula a:
Then it follows that + (/(a) = @) A (p — a), and hence by Lemma 4.19, that + /(p) — ¢. Since
X N (p = x) is uniform of depth 0, existence of such an a follows by Lemma 4.21 once we show
that

FX(MA( =)V (L) A= 1))
equivalently,
Fx(T)V (=p A x (1))
By distributing disjunction over conjunction, this last formula is equivalent to
(p = x(M) A (x(L) Vv x(T))

and hence provable by assumption.
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Conversely, let + /(p) — ¢. By Lemma 4.20, there exists y € G such that y(p) is provable.
Since y is uniform of depth 0, y(p) is propositionally equivalent to its Boolean expansion (p —
x(T)) A (=p — y(L)) and hence propositionally entails y (L) V y(T), which is therefore provable.
That is, we have y(T) € Gy (¢) and + p — x(T), as required.

This proves that yA(£#) is O-adjoint. From the above description of Gy, one sees immediately

that 1yA(£#) is in fact a finitary O-adjoint, as Prop(FL(y/")) is closed under Gy and finite up to
provable equivalence. O

Example 4.23 (O-adjointness). We illustrate the construction of Gy (¢) in the proof of Theo-
rem 4.22 for the relational base case (Example 2.3(1)), for simplicity without propositional atoms,
so A = {O}. We can generally restrict attention to the case that ¢ is a clause over A(F}), i.e., ¢ has
the form

¢ = Nieg O — VjesOx
where I and J are finite index sets. We reuse the notation in the proof of Theorem 4.22 but instead
of G allow ourselves to use any set Gy € G such that G = {y | Ay’ € Gy. |= y — x’}. We start off
with
¥ = Ox.
By the description of derivable rules given in Example 3.10(1), we can take
Go={x—> (Nier i = xj) 1j€J},

and hence (replacing, as announced, G with Gy in the construction of Gy (¢4))
Gox(9) = (x(T) | x € Go.k (M) V x (L)} = {Nier i = xj | € J}
As a second example, take
¥ = Ox = —O-x.
Again by the description of derivable rules, we can now take
Go = {Nie19i = ~x}U{Nier i = xj 1j €T} (7)

Of course, if any formula A\ ;¢; ¢; — y; is derivable, then ¢ is derivable, so we can just take Gy (¢) =
{T}. Otherwise, we can omit the second component of the union in Equation (7) for purposes of
constructing Gy, (¢) and obtain

Gox(9) = {= Nier $i})-

In both cases, Gox(¢) is a singleton, so < is actually left adjoint.

Using uniform formulas as a base, we can now exploit some known closure properties of finitary
O-adjoints (Santocanale 2008).

Definition 4.24. The set of permissible modal fixpoint schemes is the closure of the set of uniform
modal fixpoint schemes under disjunction, conjunction with modal fixpoint schemes not contain-
ing the recursion variable x, and substitution for x, the latter in the sense that if y(x) and § are
permissible, then y(8) is permissible.

Example 4.25 (Permissibility). The modal fixpoint scheme
O(Ox V (p A OOx)) A O(Ox V (p A OOX))

is permissible, as it arises by substituting the disjunction ¢x V (p A O Ox) of the (trivially) uniform
modal fixpoint schemes ¢x and p A ©<x into the uniform modal fixpoint scheme Ox A Ox.

COROLLARY 4.26. Ify €T is permissible, theny is a finitary O-adjoint and hence constructive.
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Proor. The set of finitary O-adjoints is closed under joins, meets with constants, and compo-
sition (Santocanale 2008). O

From now on, we require that every y € I' is permissible and hence constructive; a flat coalge-
braic fixpoint logic satisfying this requirement will be called permissible. All fixpoint operators
mentioned in Example 2.3 are based on permissible fixpoint schemes (in fact, on uniform ones).

Remark 4.27. The sufficient criterion for O-adjointness given by Santocanale and Venema (2010)
is that modal fixpoint schemes be harmless, which in the single-modality case means that modal
fixpoint schemes y, § are generated by the grammar

y,&::=T|x|yV5|)(/\y|/\i;l()yi||:|y,

where y is a modal formula not mentioning the recursion variable x (but possibly mentioning
parameter variables). This notion is incomparable to permissibility in the sense of Definition 4.24;
e.g., O0x A ©<Ox is harmless but not permissible, and ¢0Ox A OOx is permissible (in fact, uniform)
but not harmless. We leave it as an open problem to find a sufficient criterion for O-adjointness
that subsumes both permissibility and harmlessness. The fixpoint schemes generating the CTL
operators are both harmless and permissible.

5 THE MODEL CONSTRUCTION

We proceed to describe a model construction that uses sets of timed-out formulas as states; a timed-
out formula has some of the fixpoints that appear in it annotated with time-outs indicating how
often they need to be unfolded. Our time-outs are related to Kozen’s p-counters (Kozen 1983)
but, as indicated, are integrated into formulas rather than maintained independently in a tableau
construction. The use of time-outs is justified by constructivity of fixpoint operators as proved in
the previous section.

Since only some of the fixpoint subformulas contained in a state will be annotated with finite
time-outs, only one implication of the truth lemma will hold (every state satisfies the timed-out
formulas it contains but not conversely—the model we construct will be finite, so every fixpoint will
be satisfied with some time-out, which the state may fail to specify). Consequently, in the inductive
proof of the truth lemma, the step for negation would fail. We therefore work with formulas in
negation normal form, defined in detail as follows. A modal fixpoint scheme is in negation normal
form (NNF) if it can be generated by the grammar

y: 0= L TlxlplyAdlyvdloyloy  (peV,0€n)

(recall that © abbreviates =~©—). We can clearly transform every modal fixpoint scheme into a
provably equivalent one in NNF (recall that modal fixpoint schemes are positive in all variables)
and therefore assume from now on that I' consists of modal fixpoint schemes in NNF (this does
not substantially affect the syntax as the modal fixpoint schemes just serve as indices of fixpoint
operators). A formula ¢ is in NNFif it can be generated by the grammar

QY= LITIGAYIGVY 94198 | 61y
The dual y of a modal fixpoint scheme y as defined in Section 2 is clearly equivalent to the modal
fixpoint scheme obtained from y by swapping A with Vv, T with L, and © with ©, and we regard y
as being syntactically defined in this way from now on; e.g., if & = 0, then the dual of y = p v Ox
isy = p A Ox. To show that we can transform every formula into NNF, it suffices as usual to show
that we can implement negation on NNFs; this is by the standard procedure of pushing negation
inside through the other connectives using provable equivalences. In particular, the equivalence

_‘ﬂy‘ﬁ « b?_‘¢
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is trivially provable, as the right-hand side is just an abbreviation for —§f, =—¢. Summing up, we
have

LEmMA 5.1. Every formula is provably equivalent to a formula in NNF.

It remains to adapt the notion of Fischer-Ladner closure; as no confusion is likely and the
changes are rather inessential, we continue to use the same term:

Definition 5.2. A set X of formulas in NNF is Fischer-Ladner closed if ¥ is closed under subfor-
mulas and fixpoint unfolding, i.e., whenever %, $ € 3 for x € {#,b}, then y (¢, *,$) € X.

The analogue of Lemma 4.17 remains true for the modified definition; so from now on we fix
a finite Fischer-Ladner closed set ¥ of formulas in NNF. We proceed to introduce the announced
notion of time-out:

Definition 5.3. The set of timed-out formulas ¢, is generated by the grammar
QY= LITIGAYIGVY 9999 | #7p | byp (k€w+1,peLy),

where y € I',© € A, subject to the restriction that ¢ is a timed-out formula only in case ¢ has at
most one subformula of the form #} y with k <  (which, however, may occur any number of
times), and for this ﬁ;f X

—ﬁ‘; x is not a subformula of ¢; and
—whenever ¢ p is a subformula of ¢, then §sp is a subformula of .

In this case, we define the time-out 7(¢) of ¢ to be k, and 7(§) = w otherwise (i.e., if ¢ does not
contain any subformula of the form #} y with x < ). The time-out gives the number of steps left
until satisfaction of the eventuality §, y, with time-out w signifying an unspecified number of steps
(note that time-outs are never associated with b-formulas).

We define two translations (—)* and () of timed-out formulas into ¥y, given by commutation
with Boolean and modal operators, (byp)°* = (byp)" = byp, and

typ) =the WP =y (<w)  #p) =tp

Thus, s unfolds fixpoints as prescribed by their time-outs, and ¢ just removes time-outs. In the
converse direction, we define a trivial translation (—)* that converts a formula ¢ € ¥ into a timed-
out formula by adding w as a time-out at the outermost level; that is, (—)® is given by commutation
with Boolean and modal operators, (byp)® = byp, and (#,p)® = ﬁ‘;’ p. All translations extend to
sets A of formulas, e.g., A* = {¢° | ¢ € A}. For timed-out formulas @, i, we put ¢ < ¢ iff ' = /'
and 7(¢) < 7(¢). Thatis, ¢ < ¢/ iff ¢ is the same as i/ up to possible decrease of the time-out. Given
a set 3 of formulas, a timed-out formula ¢ is a timed-out X-formula if ¢* € 3.

Example 5.4 (Timed-out formulas). A formula of the shape ¢ = ﬁ?,ﬁga A Dﬁ?,ﬁ(;a A f2ais atimed-
out formula (with time-out 7(¢) = 3): ﬁiﬂga is the only subformula of ¢ with a finite time-out, and
the only other f-formula appearing in ¢ outside the scope of a fixpoint, §a, appears (without
time-out) as a subformula in ﬂ;ﬁga.

Note that unlike formulas in NNF, timed-out formulas are not closed under negation, because
time-outs can only appear on least fixpoints. The point of the definition of timed-out formulas
is that every standard formula ¢ has at most one candidate subformula at which one can insert
a time-out, namely the greatest element under the subformula ordering among the subformulas
of ¢ that are #-formulas and appear in ¢ outside the scope of other fixpoints, if such a greatest
element exists. This enables the simple definition of <, which by the preceding discussion has the
following property.
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LEmMA 5.5. For every formula ¢, the preimage of ¢ under the translation t is non-empty (specifi-
cally, contains ¢ ) and well-ordered by <.

At the same time, timed-out formulas are stable under unfolding:

LEMMA 5.6. For every fixpoint formula p € Fy and every k € w + 1, y(p®, li;p) is a timed-out
formula.

PrOOF. As p is a (standard) formula, it is clear that y(p, ﬁ; p) cannot contain formulas of the
form ﬂg p with 4 < w other than ﬂ;f p. By well-foundedness of the subformula relation, y(p, ﬁ; p)
cannot contain ﬂ;’ p. Finally, since y itself does not contain any fixpoint operators, the only way
#-subformulas can arise in y (p®, ﬁ; p) is as subformulas of p. O

We have the expected relationship between the translations regarding provable entailment:
LEmMA 5.7.

(1) For every timed-out formula §, + ¢° — ¢*.
(2) If § < for timed-out formulas ¢, ), then+ ¢° — /°.

Proor. By iterated application of the unfolding axiom and monotonicity of modal fixpoint
schemes. O

States of the model will be sets of formulas satisfying a timed-out version of the usual expand-
edness requirement.

Definition 5.8 (Atom, timed-out atom). As usual, a X-atom is a maximally consistent subset of X.
A timed-out -atom is a maximal set A of timed-out X-formulas such that A’ is consistent.

LEMMA 5.9. Every timed-out 3-atom is upwards closed under <.

To prove finiteness of the model we construct, we use the fact that finite product orderings
(w + 1)k are well-quasi-orders and in particular have only finite anti-chains (Laver 1976).

LEMMA 5.10 (TIMED-OUT LINDENBAUM LEMMA).

(1) The set of timed-out 3-atoms is finite.

(2) For every set Aq of timed-out %-formulas such that Aj is consistent, there exists a timed-out
>-atom A such that Ay C A.

(3) For every consistent subset C C 3, there exists a timed-out X-atom A such that C C A.

Proor. Claim (3) follows from (2) for Ag = C®. We prove (1) and (2) in one go. The set of X-atoms
is finite, so for every set A, as in the statement there exists a 3-atom C such that Aé CC.Let U
be the set of sets A of timed-out 2-formulas such that A® is consistent, A’ = C, and A is upwards
closed under <; then the timed-out X-atoms whose t-image is C are the maximal elements of 2.
Now every element A € U is uniquely determined by the C-tuple ((A) of minimal time-outs it
induces (explicitly, for ¢ € C, the ¢-component of i((A) is min{zr(¢’) | ¢’ € A, (¢’)! = ¢}), and for
A,Be U, ACBiff (B) < (A) in the componentwise ordering. Thus, U is order-isomorphic to a
subset of the finite power ( + 1)€ of the well-ordering w + 1. It follows from the theory of well-
quasi-orders that (w + 1)€ is a well-quasi-order, which means that for every subset F of (w + 1),
every element of F is above one of finitely many minimal elements of F (Laver 1976); applying this
to A proves (1) and (2) (for (1), recall additionally that the set of 3-atoms is finite). O

As usual, the proof of the truth lemma will depend on a set of Hintikka-like properties:

LEMMA 5.11. If A is a timed-out X-atom, then
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(1) ifp ANy € A then ) € A;

(2) if¢ViyeA thendpeAory € A;

(3) L¢A;

(4) iffyd € A then i € A for somex < w;
(5) forfyd €Uy € Aiffy(¢.8y7'9) € A;
(6) for, ¢ € 3,0 ¢ € Aiffy(d.by¢) € A

Proor. 1:Ifp A ) € A, then (AU {¢})° and (A U {¢/})® are consistent, so ¢,/ € Aby maximality.

2:1f ¢ vV f € A, then either (AU {¢})° or (AU {¢})° is consistent, and hence one of ¢ and ¢ is
in A by maximality.

3: Clear.

4:If ¢ € A, then by Lemma 4.4 and by finiteness of A, there is k < @ such that (AU {#§¢})° is
consistent; hence f§¢ € A by maximality.

5: Note that both ﬂ;qﬁ and y(¢, ﬁ;‘lg’)) are timed-out X-formulas (the latter by Fischer-Ladner
closedness of ¥ and Lemma 5.6), and their s-translations are syntactically equal. Therefore if, e.g.,
ﬁﬁ) € A, then (AU {y(¢, ﬁ;_lgﬁ)})s is consistent, so y (¢, ﬁ’;_lgb) € A by maximality. The converse
implication is similar.

6: Similar to 5. O

We denote by 75 the (by Lemma 5.10, finite) set of timed-out >-atoms and proceed to construct a
model with carrier 75. We need to construct a coalgebra rather than just a relational structure; this
coalgebra should adequately implement the formulas contained in the states. This requirement is
encapsulated in the notion of coherence:

Definition 5.12. A coalgebra structure & on 75, is coherent if for every A € 75 and every timed-out
>-formula #p where @ is either a modal operator © € A or a dual modal operator @,

£(A) € [#]l5(p) whenever ap € A,
where p = {B€ 75 | p € B}.

Example 5.13 (Timed-out atoms, coherence). We exemplify the intended construction of models
from timed-out atoms in the basic relational setting, specifically in serial CTL (Example 2.3(1)),
continuing to write O in place of AX for brevity. We slightly adapt an example formula from work
on global caching (Hausmann and Schréder 2015): take

Y =AG(Fi A F, A @),
where
Fy=AFa F, = AFb
p=(@VbVvc)A(maV-b)A(=bV-c)A(maV -c) A
(a—>0Oc)A(b—>0Oc) A(c > O(a Vb)),

and let ¥ = FL(). In words, AG ¢ ensures that every reachable state satisfies exactly one of a, b, c,

and that c alternates with a V b along every path. Of course, every state reachable from a state
0

satisfying ¢/ must itself satisfy /. There are only three possible X-atoms Aa,A%,Ag containing .
They all contain Oy, Fy, F,, ¢, OF;, OF,, and are then determined by

A(; > a,—b,—c,0Oc

A% > —a, b, —c,Oc

Ag 3 —a,-b,c,0(a V b).
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This shows that constructing a model with the -atoms as states will not work: Since both A%
and A) must be reachable from A?, the only candidate has the shape

A) == Al —= A}
which, however, fails to satisfy AF a and AF b at A°.

Contrastingly, there are four timed-out S-atoms A,, Ap, AL, A2 containing ¢. Their images un-
der t are A} = A%, A} = A}, and (A})" = (AZ)" = A). They are then determined by the minimal
time-outs on F; and F, they contain, which we just write on the operator AF = #§,yoy:

Aq 3 AF'a, AF?b

Ap 3 AF?a, AF°b

Al > AF'a, AF’b

A% 5 AF’a, AF'D.
Note that, e.g., OF; and OF, also receive time-outs (unlike i/, as in this formula, the least fixpoints Fy,
F, are in the scope of a greatest fixpoint). For example we have Al 5 0AF’a, OAF?b. Observe that
while ¢ does allow paths visiting a (alternating with c) several times before reaching b, such paths
will not be realized in the model we are constructing, because the associated sets of timed-out

formulas are non-maximal, i.e., fail to contain minimal time-outs.
From these timed-out X-atoms, we build the coherent model

A
N
A, Ay
~N S
A2

For example, since O(a V b) € AL, coherence at Al requires that £(Al) € [O]l(a V b), ie., E(AL) C
a Vv b, where ¢ is the structure map of the model, understood as a P*-coalgebra. This holds because
§(A£) = {A,} and a V b consists of the timed-out atoms containing a V b, i.e.,aV b = {A,, Ap}.

In general, existence of a coherent coalgebra structure relies on one-step completeness:
LEMMA 5.14 (EXISTENCE LEMMA). There exists a coherent coalgebra structure on Ts..

Proor. The proof follows the same pattern as the one for the fixpoint-free case (Schréder 2007)
(see also the discussion in Section 3). We can construct the coalgebra structure & pointwise. So
let A € 7x; in the notation of Definition 5.12, we have to show that there exists t € T7s such that
t € [a]l5 (gzg) whenever a$ € A. With a view to deriving a contradiction, assume the contrary. Then
T7s,t |= ¢, where

Y= Vopea 7%avp V vepeA Q?b@)
T(avp) = ,5
rbs,) = 5 —
for pairwise distinct propositional variables ac,, bg,. By one-step completeness, it follows that ¢/
is provable over 75, 7, so by Lemma 3.8 there is an R-derivable monotone one-step rule ¢/y € R
such that y kp, ¢ and 75, 7 |= ¢. Now let 0 be the substitution defined by 6(av)) = p* and 0(bg),) =

=(p*). Then A® propositionally entails —1/6. Since A® is consistent, we are done once we show that
/0 is provable. To this end, it suffices to show that ¢6 is provable. Assume the contrary, i.e., =¢0 is
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consistent. Then there is a conjunctive clause ¢y in the disjunctive normal form of =¢ such that ¢,6
is consistent. Since ¢/ y is monotone and y pr i just means that y is contained in ¢/, ¢ is negative
in the ao,, and positive in the bg x thus, ¢, is positive in the a,, and negative in the b3 - Therefore,
¢o0 is, after removing double negations, of the form A A° for a set A of timed-out X-formulas.
By the timed-out Lindenbaum lemma (Lemma 5.10), A is contained in a timed-out -atom B € 7s.
Then B € [[¢o]]7, so B ¢ [[¢]lz, in contradiction to T3, 7 |= ¢. O

Next, we establish that a coherent coalgebra does what we expect:

LEmMMA 5.15 (TRUTH LEMMA). Let & be a coherent coalgebra structure on Tx. If A € 75 and ¢ € A,
then A |=(7§,§) @°.

Proor. Induction over timed-out 2-formulas ¢ using the lexicographic product of the subterm
ordering on ¢* with < as the induction measure. The case ¢ = T is trivial. The steps for L, A,
and V are taken care of by Lemma 5.11. The step for modal operators © or © is by coherence and
monotonicity.

Next, we discharge the case ¢ = ﬂ;l// By Lemma 5.11, we can assume k < w, and have
Y@, ﬁ§‘1 ) € A. We prove by a further induction on modal fixpoint schemes § that §(i/, ﬁ;‘l Y)e A
implies that A |=(g, ) (6(¥, ji;f‘lgb))s. The case for the parameter variable is discharged by the in-
ductive hypothesis applied to 1/, as /* is a proper subterm of ¢’, while the case for the recursion
variable is discharged by the inductive hypothesis applied to ﬂ;_llﬁ (which is strictly below #5
w.r.t. < since k < w). The cases for Boolean operations and modal operators are as in the outer in-
duction. This finishes the inner induction, so that A |=(5, ¢) v (¥, ﬁ;’lw) and hence A |=(7;, &) ﬁ;l//

Finally, the case ¢ = b, is discharged by coinduction. For timed-out ¥-formulas p, we put
Tx(p) = {A € Tx | p € A} (this is like p in Definition 5.12; we change the notation for typographi-
cal reasons as we will need to apply 75 to long formulas). As [[byxﬁ]](ﬁ’ ¢ Is a greatest fixpoint, it
suffices to prove that 75 (b, ) is semantically a postfixpoint of y (¥), i.e.,

Tz (0y¥) € [y ((T(by ). ®)
To begin, we prove by induction on modal fixpoint schemes § that for all timed-out £-formulas y,
726, x) € BT (x)). ©)

The cases for 1, T, and the recursion variable x are clear. The case for the parameter vari-
able p is discharged by the outer inductive hypothesis applied to . The cases for A and V are
by Lemma 5.11; e.g., we have

T:((61V 62) (¥, 1))

C T5(81(¥, x)) Y T=(82(¥ x)) (Lemma 5.11)
C [ (T (x)) L [5: (W I(T=(x)) (induction)
= [(62 v 1) (W) T=(x))-

Finally, the case for modal operators is by coherence: for & being either a modal operator © € A or
a dual modal operator ©, we have

T=(45(¥, x))

C &[] 5 (T2 (6(¥. X)))] (coherence)
c¢ “'[[a] 7 ([6 W 7=(x))] (induction, monotonicity)
= [ (T=(x))-
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by (9), we reduce our goal (8) to

Tz (0y9) € Tx(y (¥, by ¥)),
which holds by Lemma 5.11. O

In summary, we have proved (weak) completeness of the Kozen-Park axiomatization:

THEOREM 5.16 (WEAK COMPLETENESS). If T' is permissible and R is one-step complete, then the
logic Ly is weakly complete over finite models, i.e., every consistent formula has a finite model.

ProoF. Let ¢ € ¥4 be consistent; by Lemma 5.1 we can assume that ¢ is in NNF. We have
to show that ¢ is satisfiable in a finite T-coalgebra. This follows from the preceding lemmas by
the usual pattern: Let X be the least Fischer-Ladner closed set of formulas in NNF containing ¢.
Then ¢ is contained in the t-image of some timed-out 2-atom by the timed-out Lindenbaum lemma
(Lemma 5.10), and, hence, by the truth lemma (Lemma 5.15) satisfied in a coherent coalgebra on the
set 75 of timed-out X-atoms, which exists by Lemma 5.14; the set 75 is finite by Lemma 5.10. O

Remark 5.17. The full coalgebraic y-calculus is known to have the finite model property (every
satisfiable formula has a finite model) (Cirstea et al. 2011). Since soundness (Theorem 3.5) holds
over unrestricted models, Theorem 5.16 reproves the finite model property for the single-variable
fragment of the coalgebraic p-calculus.

Strong completeness in the sense that every consistent set of formulas is satisfiable fails already
in the basic relational instance; e.g., the set

{EFa}u{Od"—a|n >0},

where 0" stands for n consecutive boxes, is consistent (as all its finite subsets are satisfiable, hence
consistent) but unsatisfiable.

We enumerate a few concrete instances of the completeness result:

Example 5.18 (Completeness). We obtain that the Kozen-Park axiomatization (in combination
with the modal rules and propositional reasoning) is complete for the following logics.

(1) All permissible flat fragments of the standard relational p-calculus, interpreted over unre-
stricted, serial, or deterministic Kripke models. We thus recover the known completeness
results for LTL (Gabbay et al. 1980) and serial and non-serial CTL (Emerson and Halpern
1985) but also for logics featuring operators outside CTL as discussed in Example 2.3(1)
(note that the modal fixpoint scheme p A OOx appearing in Wolper’s even operator is triv-
ially uniform, as there is only a single occurrence of the recursion variable x). Non-serial
CTL is already covered by the generic results of Santocanale and Venema (2010).

(2) All permissible flat fragments of the graded p-calculus, including ones featuring the op-
erators “the current state is the root of a finite binary tree all whose leaves satisfy ...,”
“...holds somewhere on every infinite k + 1-ary tree starting at the current state,” and
“the current state is the root of a finite binary tree all whose leaves are at even distance
from the root and satisfy ...” discussed in Example 2.3.2.

(3) All permissible flat probabilistic fixpoint logics, including ones featuring linear inequali-
ties on probabilities.

(4) All permissible flat conditional fixpoint logics.

(5) All permissible flat fragments of the monotone p-calculus and the serial monotone p-
calculus, including the star-nesting-free fragments of CPDL and game logic.
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(6) All permissible flat fragments of the alternating-time p-calculus, including alternating-
time temporal logic ATL but also logics going beyond ATL, e.g., ones featuring the operator
“...holds in all even states along any path” discussed in Example 2.3.5. In fact, ATL appears
to be the only example outside the relational world for which a completeness result of this
type was previously known (Goranko and van Drimmelen 2006).

In most of these examples except graded and probabilistic fixpoint logics, we actually obtain
finite axiomatizability and locally finite axiomatizability in the case of graded fixpoint logics
(Remark 3.11).

6 CONCLUSIONS

We have lifted the completeness theorem for flat modal fixpoint logics (Santocanale and Venema
2010) to the level of generality of coalgebraic logic. Specifically, we have given a Kozen-Park style
axiomatization for fixpoint operators, and we have shown this axiomatization to be sound and
complete under the conditions that (i) the defining formulas of the fixpoint operators satisfy a
mild syntactic restriction, and (ii) the coalgebraic base logic is axiomatized by a one-step complete
rule set. This result covers, e.g., probabilistic fixpoint logics and flat fragments of the monotone
p-calculus, the ambient fixpoint logic of Parikh’s game logic (Parikh 1985), and concurrent PDL
(Peleg 1987). Further instances include completeness of flat fragments of the graded p-calculus
(Kupferman et al. 2002), to our knowledge the first completeness result for any graded fixpoint
logic, and completeness of flat fragments of the alternating-time p-calculus (Alur et al. 2002),
with ATL being apparently the only previously known example (Goranko and van Drimmelen
2006). In those examples that have finite modal similarity type, in particular for alternating-time
fixpoint logics, the axiomatization we obtain is finite.

A core technical point in the proof was to show that essentially all monotone modal operators
(including nested ones like OO, as long as the nesting depth is uniform) are finitary O-adjoints
in the sense of Santocanale (2008), and hence induce constructive fixpoint operators that can be
approximated in w steps in the Lindenbaum algebra. This has enabled a model construction us-
ing explicit time-outs for least fixpoint formulas in the spirit of the completeness proof for the
aconjunctive fragment of the p-calculus (Kozen 1983), which relies on a judicious definition of
timed-out formula.

A remaining open problem is to extend the completeness result to larger fragments of the coal-
gebraic p-calculus beyond the single variable fragment covered here. In collaboration with En-
qvist and Seifan, the second author recently obtained completeness results for the full coalgebraic
p-calculi based on Moss” modality V (Enqvist et al. 2016) (in the case of the coalgebra functor pre-
serving weak pullbacks), and for the full coalgebraic p-calculi based on a signature A of predicate
liftings that admit a so-called disjunctive basis (Engvist et al. 2017).
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