
Q-algebras

Vera Stebletsova∗ Yde Venema†

1 Introduction

The paper [Jónsson 1991] contains a discussion and comparison of a number of possible operations
on binary relations. Among these are the so-called Q-operations that are defined as follows.

Definition 1.1 Let R be a matrix of binary relations Rij , 0 ≤ i, j < n, and let k, l be two numbers

smaller than n, to be called reference points1. Then Qkl
n (R) is the binary relation defined by

sQkl
n (R)t iff there are u0, . . . , un−1 such that s = uk, t = ul and uiRijuj for all i, j ∈ n.

As an example of such an operation, consider the following figure. It depicts the definition of
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Figure 1: A quinary operation

a quinary operation Q(R0, R1, R2, R3, R4) that holds between s and t iff there are points u and v
such that the binary relations Ri hold between these four points as in the picture. In the notation
of the previous definition, the resulting relation could be expressed as

Q01
4


1 1 R0 R2

1 1 1 1
1 R1 1 R4

1 R2 1 1


where 1 denotes the universal relation on the base set.

These Q-operations have a geometrical origin, but in [Jónsson 1991] Jónsson discusses them
only in a context where he compares the expressive power of various clones of operations on
binary relations. For instance, the operation defined in the picture above does not belong to
the Tarski clone; that is, Q cannot be defined by using the boolean operations together with the
∗Department of Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands. E-mail:

Vera.Stebletsova@phil.ruu.nl. The research of this author is sponsored by the Netherlands Organization for the
Advancement of Research (NWO).
†Faculty of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam,

the Netherlands. E-mail: yde@cs.vu.nl. The research of this author has been made possible by a fellowship of the
Royal Netherlands Academy of Arts and Sciences.

1For the sake of a more transparent presentation of our axiom schemas, we deviate slightly from Jónsson’s
original approach where the reference points are fixed as k = 0, l = 1. It is not difficult to show that in fact, the
two approaches are term-definitionally equivalent.
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identity constant and the converse and composition operations. One of the main problems posed
by Jónsson is to find a simple set of operations that taken together will provide all the expressive
power of first order logic. A natural candidate for this seemed to be the Q-clone, and indeed,
if one only considers algebras of relations over a finite base set then we obtain a positive result,
as was shown in [Németi & Andréka 1991]. On the other hand, these authors prove that if one
also allows relations over infinite sets, then there are first order definable operations on binary
relations that do not belong to Jónsson’s Q-clone. The latter result was also proven independently
in [Venema 1991].

Nevertheless, we believe that Q-operations provide interesting algebras. One of our reasons to
believe so is that the representable Q-algebras (to be formally defined below) allow an axiomatiza-
tion that is quite simple and transparent — at least, given the fact that we have a rather complex
similarity type. This representation result, Theorem 2 below, is the main technical result of our
paper. Our axiomatization and the proof of our representation theorem are inspired by the paper
[Nishimura 1980]. In that article a completeness result is proven for a temporal logic of intervals of
which the modal operators bear a close resemblance to the Q-operations discussed in our paper. A
second reason is formed by the interesting connections that seem to exist between our Q-calculus
and some approaches in the area of term graph rewriting, cf. [Kahl 1996].

Definition 1.2 Let U be some set; with Re(U) we denote the set P(U ×U) of all binary relations
over U . The full relation set Q-algebra over U , notation: Q(U), is defined as the structure

Q(U) = (Re(U),∩,∪, (·)c, ∅, IdU ,Qkl
n )n∈ω,k,l<n,

where IdU = {(x, x) | x ∈ U} is the diagonal or identity relation on U , and the operations Qkl
n are

as in Definition 1.1 above. The class of these algebras is denoted by FQ.
Algebras (A, ·,+,−, 0, 1’, Qkln )n∈ω,k,l<n of this similarity type are simply called Q-type algebras.
Let A be a Q-type algebra. A representation of A is an embedding of A into a product of full

relation set Q-algebras. A is representable if it has a representation. The class of representable
Q-type algebras is denoted by RQ.

We also mention some of our notational conventions. We write i ∈ n with the understanding
that n = {0, . . . , n − 1}; underlined symbols are used to denote matrices. The notation x^

abbreviates Q01
2

(
1 1
x 1

)
, and x ; y is short for Q01

3

 1 1 x
1 1 1
1 y 1

. Note that in this way R^

denotes the converse relation of R on full relation set Q-algebras, and R ; S the composition or
relative product of R and S.

The first result concerning RQ that we want to mention is the following.

Theorem 1 RQ is a canonical discriminator variety of Boolean algebras with operators.

Since RQ is defined as S P RQ, saying that it is a variety is equivalent to stating that it is closed
under taking homomorphic images. A variety of boolean algebras with operators is canonical
if it is closed under taking canonical embedding algebras, as defined in [Jónsson & Tarski 1951].
[Jipsen 1993] showed that a variety of Boolean algebras with operators is a discriminator variety
iff it is generated by a class K of algebras having a so-called unary discriminator term. This is a
term c(x) such that K |= x 6= 0 → c(x) = 1, while c(0) = 0. In the present case, it is easy to see
that the term

Q01
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 x 1


is a unary discriminator term on FQ.

The main problem that we concentrate on in this paper is how to axiomatize the equational
theory of RQ. In Definition 2.1 of the next section we will give a set of axioms defining a class Q

2



of algebras that we will call Q-algebras. We can now formulate the main theorem of this paper as
follows.

Theorem 2 A Q-type algebra is representable iff it is a Q-algebra. In brief:

Q = RQ.

Proofs for each of these theorems will be supplied in section 3, while in section 4, we discuss
the third result of the paper, establishing a link between Q-algebras and the so-called relation
algebras of finite dimension (formerly called matrix algebras of finite degree), cf. [Maddux 1983,
Maddux 1992]. From the discussion following Definition 1.2 it is easily seen that every Q-type
algebra contains a Tarski (generalized) reduct. In section 4 we will define, for each n ≥ 3, a finitely
based equational class Qn; the main result of the section will then state the following.

Theorem 3 Let 3 ≤ n < ω. An algebra A is a relation algebra of dimension n iff it can be
embedded in the Tarski reduct of a Qn-algebra. In brief:

RAn = S RdT Qn.

This theorem is in contrast to recent results obtained in [Hirsch & Hodkinson 1997] stating that
for every n ≥ 4, the variety RAn+1 is not finitely based over RAn.

Acknowledgement We would like to thank the anonymous referee for carefully reading the
manuscript and making many suggestions for improving it.

2 Q-algebras

It is the aim of this section to give the equations axiomatizing the class of representable Q-algebras.
To be more precise, we define the equational class of Q-algebras which we will show in the next
section to coincide with the class of representable Q-algebras. We also gather some basic facts
concerning these Q-algebras, in Lemma 2.3.

In the next definition, the Q-axioms are presented. While reading and trying to understand
these axioms, the reader is strongly advised to have a simultaneous glimpse at the examples that
are provided right after the axiom schemas. In the presentation of the axioms we frequently use
meta-variables s and t that stand for matrices of terms. In general, ‘x’ stands for a matrix of
variables; the matrix x[s/xij ] denotes the matrix x with the i, jth entry replaced by the term s
(for a specific, fixed pair i, j). The matrix x[[spq/xpq]] denotes the matrix x with each (p, q)-entry
replaced by the term spq. We denote syntactical identity of the terms s and t by ‘s ≡ t’. For
example, instances of the axiom schema Q2 involve precisely those matrices of terms in which all
terms are variables except for one which must be the constant 0.

Definition 2.1 By a Q-algebra we mean a Q-type algebra A = (B, 1’, {Qkln })1<n<ω,k,l∈n such that
B is a boolean algebra and A satisfies all well-typed instances2 of the following axiom schemas
Q1–Q10. The class of Q-algebras is denoted by Q.

2That is to say, every instance of the schema is an axiom if it is a well-formed equation in the language of
Q-algebras.
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Q1. 1^ = 1.

Q2. Qkln (x[0/xij ]) = 0,

Q3. Qkln (x) · x′ = Qkln (x[x01 · x′/x01]),

Q4. Qkln (x) ≤ Qkln (x[xii · 1’/xii]),

Q5. Qkln+1(x[xij · 1’/xij ]) ≤ Qf(k)f(l)
n (x[[

∏
(f(p′),f(q′))=(p,q)

xp′q′/xpq]]),

for distinct i and j and for any surjective map f : n+ 1→ n such that f(i) = f(j).

Q6. Qkln (x) = Qkln (x[x^ji · xij/xij ]),

Q7. x^^ = x.

Q8. Q
f(k)f(l)
m (x) ≤ Qkln (y[[xf(p)f(q)/ypq]]),

Q9. Qklm(x[xij ·Qk
′l′

n (y)/xij ]) ≤ Qklm+n(t),

where the matrix t of terms is given by

tpq ≡


xpq if p, q < m
yp−m,q−m if p, q ≥ m
1’ if {p, q} = {i, k′ +m} or {p, q} = {j, l′ +m}
1 otherwise.

Q10. Qkln (x) ≤ Qkln (x[Qijn (x)/xij ]),

Remark 2.2 For the axioms Q4, Q9 and Q10, one may replace the inequality sign (‘≤’) with an
equality (‘=’); we prefer the given definitions since they reflect more clearly the flow of information.

The meaning of these axioms will be easier to understand by an inspection of the following
examples.

Example of Q3.

Q20
3

x00 x01 x02

x10 x11 x12

x20 x21 x22

 · x′ = Q20
3

 x00 x01 x02

x10 x11 x12

x20 · x′ x21 x22

 .

Example of Q4.

Q02
3

x00 x01 x02

x10 x11 x12

x20 x21 x22

 ≤ Q02
3

x00 x01 x02

x10 x11 · 1’ x12

x20 x21 x22


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Example of Q5.
(with f : 0 7→ 0, 1 7→ 1, 2 7→ 1, 3 7→ 2)

Q30
4


x00 x01 x02 x03

x10 x11 x12 x13

x20 x21 · 1’ x22 x23

x30 x31 x32 x33

 ≤ Q20
3

 x00 x01 · x02 x03

x10 · x20 x11 · x12 · x21 · x22 x13 · x23

x30 x31 · x32 x33



Example of Q6.

Q21
3

x00 x01 x02

x10 x11 x12

x20 x21 x22

 = Q21
3

x00 x01 · x^10 x02

x10 x11 x12

x20 x21 a22

 .

Examples of Q8.
(with f : 0 7→ 0, 1 7→ 1, 2 7→ 1)

Q01
2

(
x00 x01

x10 x11

)
≤ Q01

3

x00 x01 x01

x10 x11 x11

x10 x11 x11


(with f : 0 7→ 2, 1 7→ 1)

Q11
3

x00 x01 x02

x10 x11 x12

x20 x21 x22

 ≤ Q11
2

(
x22 x21

x12 x11

)

Example of Q9.

Q10
2

(
x00 x01

x10 ·Q21
3 (y) x11

)
≤ Q10

5


x00 x01 1 1’ 1
x10 x11 1 1 1’
1 1 y00 y01 y02

1’ 1 y10 y11 y12

1 1’ y20 y21 y22

 .

Example of Q10.

Q02
3

x00 x01 x02

x10 x11 x12

x20 x21 x22

 ≤ Q02
3


x00 x01 x02

x10 x11 x12

x20 Q21
3

x00 x01 x02

x10 x11 x12

x20 x21 x22

 x22

 .

Lemma 2.3 below contains some arithmetical facts concerning Q-algebras which are useful
later. One of the most important examples concerns conjugacy. Recall that two unary functions
f and g on a Boolean algebra are conjugated if we have that f(x) · y = 0 iff x · g(y) = 0. For
operations of higher arity, we use the following definition which goes back to Jónsson and Tarski
[Jónsson & Tarski 1951]. Let f : An → A be an n-ary operation on the Boolean algebra A. Fix a
number k < n and a sequence a0, . . . , ak−1, ak+1, . . . , an−1 of elements of A. Consider the unary
map f̄ : A→ A given by

a 7→ f(a0, . . . , ak−1, a, ak+1, an−1).
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Such maps are called sections of f . Now an n-ary operation f is conjugated if each of its sections
is conjugated in the sense meant before for unary operations.

Conjugated operations behave fairly nice; for instance, they are completely additive, which
means that they distribute over arbitrary sums in each of their arguments. A fortiori, conjugated
operations distribute over finite sums; in our particular case, this means that all Q-operations are
additive.

Lemma 2.3 The following hold in Q.

(1) Q01
2

(
1 x
1 1

)
= x.

(2) Each Q-operation is conjugated; we have

Qkln (x) · z = 0 ↔ Qijn (t) · xij = 0,

where the matrix t of terms is given by

tpq ≡

 xkl · z if (p, q) = (k, l)
1 if (p, q) = (i, j)
xpq otherwise

if (k, l) 6= (i, j), or by

tpq ≡
{
z if (p, q) = (k, l)
xpq otherwise

if (k, l) = (i, j).

(3) Each Q-operation is completely additive (in each of its arguments). In particular, for each
i, j, we have

Qkln (s) +Qkln (s′) = Qkln (t),

where s, s′ and t are matrices of terms such that sij = xij, s′ij = x′ij and tij = xij + x′ij, while
spq = s′pq = tpq = xpq for (p, q) 6= (i, j).

(4) Each Q-operation is monotone; that is, we have the following quasi-equation:

(
∧
i,j∈n

xij ≤ yij) → Qkln (x) ≤ Qkln (y).

(5) Qkln (x) = Qkln (s) +Qkln (s′), where for some fixed i, j ∈ n, s and s′ are the term matrices given
by sij = xij · x′ij, s′ij = xij − x′ij, while spq = s′pq = xpq for (p, q) 6= (i, j).
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(6) Qkln (x) ≤ xkl.

(7) Qkln (x) = Qkln (t), where, for some fixed i, j, the matrix t of terms is given by

tpq ≡


x^ji if (p, q) = (i, j)
x^ij if (p, q) = (j, i)
xpq otherwise.

(8) The operation ^ is self-conjugate; that is, x^ · z = 0 iff z^ · x = 0.

(9) The operation ^ is completely additive; in particular, (x+ y)^ = x^ + y^.

(10) 1’^ = 1’.

(11) Qkln (x) = 0 iff Qk
′l′

n (x) = 0 for any (k, l), (k′, l′) ∈ n× n.

Example of Lemma 2.3(2). Assume that we consider the section of Q02
3 that is obtained by fixing

elements apq ∈ A for (p, q) 6= (i, j). We have

Q02
3

 a00 a01 a02

a10 a11 a12

a20 a a22

 · b = 0 iff g(b) · a = 0,

where g is the map given by

g(b) = Q21
3

 a00 a01 a02 · b
a10 a11 a12

a20 1 a22

 .

Example of Lemma 2.3(7).

Q11
3

x00 x01 x02

x10 x11 x12

x20 x21 x22

 = Q11
3

x00 x^10 x02

x^01 x11 x12

x20 x21 x22


Proof.

(1) Immediate by the axioms Q1 and Q3.

(2) For the direction from left to right, assume Qkln (x) · z = 0 and (k, l) 6= (i, j). Consider the
following instance of the the axiom Q10:

Qijn (u) ≤ Qijn (s) (∗)
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where the matrix u of terms is given by

upq ≡
{
xkl · z if (p, q) = (k, l)
xpq otherwise,

and the matrix s of terms is given by

spq ≡
{
Qkln (u) if (p, q) = (k, l)
upq otherwise.

Axiom Q3 yields Qkln (u) = Qkln (x) · z. Since by the assumption Qkln (x) · z = 0, we have
Qijn (s) = 0, by axiom Q2. So we obtain from (*)

Qijn (u) = 0,

whence, by axiom Q3, we get Qijn (t) · xij = 0, where the matrix t of terms is given by

tpq ≡

 xkl · z if (p, q) = (k, l)
1 if (p, q) = (i, j)
xpq otherwise.

The other direction is similar. For (k, l) = (i, j) we apply axiom Q3 directly.

(3) This is immediate by the fact that each Q-operation is conjugated, cf. Theorem 1.14 of
[Jónsson & Tarski 1951].

(4) is obtained from (3).

(5) is immediate from the boolean identity xij = (xij · z) + (xij − z) and (3).

(6) Qkln (x) = Qkln (x) · xkl ≤ xkl, by axiom Q3.

(7) Qkln (x) =1 Q
kl
n (s) =2 Q

kl
n (s′) =3 Q

kl
n (t),

where, for some fixed i, j ∈ n, the matrix s of terms is given by

spq ≡


x^ji · xij if (p, q) = (i, j)
xji · x^ij if (p, q) = (j, i)
xpq otherwise,

the matrix s′ of terms is given by

s′pq ≡


x^ji · x^^

ij if (p, q) = (i, j)
x^^
ji · x^ij if (p, q) = (j, i)
xpq otherwise,

and the matrix t of terms is given by

tpq ≡


x^ji if (p, q) = (i, j)
x^ij if (p, q) = (j, i)
xpq otherwise.

Here =1 is by Q6, =2 is by Q7, and =3 is again by Q6.

(8) Suppose Q01
2

(
1 1
x 1

)
· z = 0. Then by Lemma 2.3(2), we obtain Q10

2

(
1 z
1 1

)
· x = 0. The

opposite direction is analogues.

(9) This is immediate by the fact that ^ is conjugated, cf. Theorem 1.14 of [Jónsson & Tarski 1951].
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(10) follows from

1’^ =1 Q
01
2

(
1 1
1’ 1

)
≤2 Q

01
2

(
1’ 1
1’ 1

)
≤3 Q

01
3

 1’ 1 1’
1’ 1 1’
1’ 1 1’

 =4 Q
01
2

(
1’ 1’
1’ 1’

)
≤5 1’,

where ‘=1’ is by definition, ‘≤2’ is by Q4, ‘≤3’ is by Q8 (with f : 0 7→ 0, 1 7→ 1, 2 7→ 0),
‘=4’ is by Q5 (with f : 0 7→ 0, 1 7→ 1, 2 7→ 1), and ‘≤5’ is by Q3. It is proved similarly that
1’ ≤ 1’^, using Lemma 2.3(1), the axioms Q4, Q8, Q5, and Lemma 2.3(4).

(11) We obtain (11) using first (2) with z = 1, and then axiom Q3.

qed

3 Construction

In this section we provide proofs for our first two theorems. We concentrate on the hard part
of Theorem 2, which states that every Q-algebra is in fact representable. For this aim we first
introduce a number of useful technical notions; in our presentation of the proof and our choice of
terminology we follow [Hirsch & Hodkinson 1997].

Definition 3.1 Given a Q-algebra A, a network of size n on A, or, shortly, n-network on A, is a
function α: n× n→ A. A n-network α is consistent if Qkln (α) 6= 0 for each (k, l) ∈ n× n.

Note that it follows by the axioms Q4 and Q2 that for any consistent network α, αii · 1’ 6= 0
for all i ∈ n. Also, by Lemma 2.3(11) it follows that in order to check whether a given network α
is consistent, it suffices to check whether Qkln (α) 6= 0 for one pair (k, l).

The key part of the proof of Theorem 2 consists of a step-by-step construction of a representa-
tion of a given countable Q-algebra A. This construction is aimed towards the creation of ‘chains’
of networks α0 ⊆ α1 ⊆ . . . from which we can ‘read off’ the representation of the algebra. Each
network in this chain can be seen as an approximation of (part of) the final representation, the
approximations getting better and better as we proceed in this chain. In fact, we need some sort
of limit construction over such ‘nice’ chains of networks. Such limits are not ordinary networks
themselves, but related entities that we will call ultrafilter networks.

Definition 3.2 Let A be a countable Q-algebra and a an arbitrary non-zero element of A. An
ultrafilter network over A for a is a function Φ : ω×ω → Ultrafilters(A) such that a ∈ Φij for some
i, j and for all i, j, n ∈ ω and all k, l < n:

(a) 1’ ∈ Φii,

(b) Qkln (β) ∈ Φij iff there are nodes u0, . . . , un−1 in the domain of Φ such that uk = i, ul = j
and βpq ∈ Φupuq for all p, q ∈ n.

The importance of ultrafilter networks will be made clear by the following two lemmas, which
together imply that countable Q-algebras are representable. This suffices to show that any Q-
algebra is representable, as we will show in the Proof of Theorem 2, at the end of the section.

Lemma 3.3 Let A be a countable Q-algebra and suppose that for each non-zero a ∈ A there is an
ultrafilter network over A for a. Then A is representable.

Lemma 3.4 Let A be a countable Q-algebra and a an arbitrary non-zero element of A. Then
there is an ultrafilter network over A for a.
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Proof of Lemma 3.3. Let Φ be an ultrafilter network over the countable Q-algebra A. Define
a relation ' over ω as follows:

i ' j iff 1’ ∈ Φij .

Claim 1. ' is an equivalence relation.

Proof of Claim. Reflexivity of ' is immediate by Definition 3.2(a). For symmetry, suppose

that i ' j; that is, 1’ ∈ Φij . By definition of ^ and Lemma 2.3(10), we have that Q01
2

(
1 1
1’ 1

)
=

1’^ = 1’ ∈ Φij , so by Definition 3.2(b) we find 1’ ∈ Φji. The latter means j ' i, by definition of
'.

Finally, in order to prove transitivity of ', assume that i ' j, j ' k; we have to show that
i ' k. By the definition of ', 1’ ∈ Φij and 1’ ∈ Φjk. Since 1 ∈ Φpq for all p, q ∈ {i, j, k}, this gives
by Definition 3.2(b) (with indices in the order i, j, k):

Q01
3

 1 1’ 1
1 1 1’
1 1 1

 ∈ Φik.

By the axiom Q5 and by monotonicity (Lemma 2.3(4)) we obtain

Q01
3

 1 1’ 1
1 1 1’
1 1 1

 ≤ Q01
2

(
1 1’ · 1

1 · 1 1 · 1’ · 1 · 1

)
= Q01

2

(
1 1’
1 1’

)
≤ Q01

2

(
1 1’
1 1

)
.

Thus by upwards closedness of ultrafilters,

Q01
2

(
1 1’
1 1

)
∈ Φik,

and finally, 1’ ∈ Φik, by Lemma 2.3(1). That is, i ' k, by definition. J

In fact, ' behaves like a sort of congruence relation, in a sense to be made precise in the claim
below:

Claim 2. Φij = Φkl whenever i ' k and j ' l.

Proof of Claim. Assume that i ' k and j ' l. In order to show that Φij = Φkl, it suffices to
prove that Φij ⊆ Φkl (since Φij and Φkl are ultrafilters). Hence, assume b ∈ Φij for some arbitrary
b in A.

By definition of ', and the fact that 1 ∈ Φpq for any p, q, we have by Definition 3.2(b) (read
dimensions in the order i, j, k, l):

Q23
4


1 b 1’ 1
1 1 1 1’
1 1 1 1
1 1 1 1

 ∈ Φkl.

Then by two applications of basically the axiom Q5, we obtain

Q23
4


1 b 1’ 1
1 1 1 1’
1 1 1 1
1 1 1 1

 ≤ Q02
3

 1’ b 1
1 1 1’
1 1 1

 ≤ Q01
2

(
1’ b
1 1’

)
.

It follows by monotonicity (Lemma 2.3(4)) and Lemma 2.3(1) that

Q01
2

(
1’ b
1 1’

)
≤ Q01

2

(
1 b
1 1

)
= b.

But then b ∈ Φkl since Φkl is an ultrafilter. J
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We can now consider the set
U := ω/ '

of '-equivalence classes. This set U will be the base set of our representation; we introduce a
function J from A to the full set of binary relations over U as follows: for any a ∈ A we set

J(a) = {([i], [j]) ∈ U × U | a ∈ Φij}.

It follows from the previous claim that this correctly defines a function. We will now show that
in fact, it is a homomorphism.

Claim 3. J is a homomorphism satisfying J(a) 6= ∅.

Proof of Claim. We only treat the condition for sum and for the Q-operations. For sum:

J(a+ a′) = {([i], [j]) | a+ a′ ∈ Φij}
= {([i], [j]) | a ∈ Φij} ∪ {([i], [j]) | a′ ∈ Φij}
= J(a) ∪ J(a′).

Here the crucial (second) equation follows from the fact that each Φij is an ultrafilter and hence
contains a+ a′ iff it contains a or a′.

Now we turn to an arbitrary operation Qkln . Consider the following equivalences:

([i], [j]) ∈ J(Qkln (α))
iff1 Qkln (α) ∈ Φij
iff2 there are nodes h0, . . . , hn−1 such that hk = i, hl = j and

αpq ∈ Φhp,hq for all p, q < n
iff3 there are nodes h0, . . . , hn−1 such that hk = i, hl = j and

([hp], [hq]) ∈ J(αpq), for all p, q < n
iff4 there are equivalence classes H0,. . . , Hn−1 such that Hk = [i], Hl = [j] and

(Hp,Hq) ∈ J(αpq), for all p, q < n,

iff5 ([i], [j]) ∈ Qkl
n (R), where Rpq = J(αpq), all p, q < n.

Here the equivalences ‘iff1’ and ‘iff3’ are by definition of J , while ‘iff4’ is trivial. The second ‘iff’ is
the second condition on ultrafilter networks, and the final equivalence is immediate by definition
of the relation operation Qkl

n (cf. Definition 1.1).
Finally, J(a) 6= ∅ since it was assumed that a ∈ Φij for some i, j ∈ ω. J

Now we are ready to prove Lemma 3.3. Assume that for each non-zero a in the algebra A,
there is an ultrafilter network Φa for a. This implies that for each a 6= 0, there is a set Ua
and a homomorphism Ja : A → Q(Ua) such that J(a) 6= ∅. But then it follows by a standard
argument that the natural map J : A →

∏
a6=0 Re(Ua) is an embedding of A into the product

algebra
∏
a6=0 Q(Ua). In other words, J is a representation.

This finishes the proof of Lemma 3.3. qed

We now turn to the proof of Lemma 3.4.

Proof of Lemma 3.4. Let A be a fixed countable Q-algebra and a an arbitrary non-zero ele-
ment of A. We have to prove the existence of an ultrafilter network for a over A. We have already
mentioned before that this ultrafilter network will be constructed as a sort of limit of a chain of
ordinary networks. In order to make these notions more precise, we need some new concepts.

First, let α and β be two networks, of size m and n, respectively. A map f : m → n is an
embedding of α into β if βf(i)f(j) ≤ αij for all i, j in m. If such a f exists, we say that β is an
extension of α, notation: β ⊆ α,

A first-degree defect of a consistent m-network α is a pair 〈(i, j), a〉 such that neither αij ≤ a
nor αij ≤ −a.
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A second-degree defect of a consistent m-network α is a triple 〈(i, j), (k, l), µ〉, where i, j ∈ m,
µ is a network of size n and k, l are numbers in n such that αij ≤ Qkln (µ), while there is no
embedding f : n→ m of µ into α such that f(k) = i and f(l) = j.

Note that in a defect 〈(i, j), (k, l), µ〉 of a network α, µ must be consistent. For, by the
consistency of α it follows by the axiom Q2, that αij 6= 0 for any (i, j) ∈ m×m. So, Qkln (µ) 6= 0.

We first have to make sure that the sequence of networks we construct will indeed converge to
a map sending pairs to ultrafilter. We will see later on that this follows from the next claim.

Claim 1. Let α be a consistent m-network, and d a first-degree defect of α. Then there is a
consistent extension β of α such that d is not a defect of β.

Proof of Claim. Let α be a consistent m-network, b ∈ A, and (i, j) ∈ m×m. Let α+ and α−

be the networks obtained from α by changing the value of (i, j) into αij ·b and αij−b, respectively.
Then at least one of α+ and α− is consistent — this follows from Lemma 2.3(5). It is almost
immediate that both α+ and α− are extensions of α. J

Claim 2. Let α be a consistent m-network, and d a second-degree defect of α. Then there is a
consistent extension β of α such that d is not a defect of β.

Proof of Claim. Let α be a consistent m-network, and assume that d = 〈(i, j), (k, l), µ〉 is a
defect of α. That is, (i, j) ∈ m×m, µ is an n-network, such that αij ≤ Qkln (µ), while there is no
map f : n→ m such that αf(p)f(q) ≤ µpq for all p, q < n and f(k) = i and f(l) = j. We only treat
the case where k 6= l — the proof for the case where k = l can be proved by making a few obvious
modifications. Without loss of generality we take k = n − 2, l = n − 1; this latter assumption is
justified by axiom Q8. Now define the m+ n-network γ by

γpq :=


αpq if p, q < m,
µp−m,q−m if p, q ≥ m,
1’ if {p, q} = {i, n+m− 2} or {p, q} = {j, n+m− 1},
1 otherwise.

It follows easily from axiom Q9 that γ is consistent. Obviously, γ is an extension of both networks
µ (by the function g : p 7→ m + p) and α (by the identity map id of m into m + n). However, γ
is not yet the network that we are looking for, since the embedding g of µ into γ does not satisfy
g(k) = i and g(l) = j. Fortunately, this can be easily fixed by collapsing γ to an m+n−2-network
β, as follows. First, let h : m+ n→ m+ n− 2 be the map given by

h(p) :=

 i if p = m+ n− 2,
j if q = m+ n− 1,
p otherwise.

Now define the network β by

βpq =
∏
{γp′q′ | (f(p′), f(q′) = (p, q)}.

Clearly, the map id : m→ m+n−2 is an embedding of α into β, while the map f : n→ m+n−2
given by f(p) = h(g(p)) embeds µ into β. Since f(k) = h(g(k)) = h(m + n − 2) = i and
f(l) = h(g(l)) = h(m+ n− 1) = j, the only thing that is left to show is that β is consistent. But
this is immediate by the consistency of γ and two successive applications of axiom Q5 (with maps
identifying m+n− 1 with j and m+n− 2 with i, respectively). We omit the rather cumbersome
details. J

Now we are ready to define the main construction of the proof. We will build a sequence of
consistent networks α0 ⊆ α1 ⊆ . . . ⊆ αk ⊆ . . . as follows. To start with, since the algebra A is
countable, we can enumerate both kinds of possible defects. That is, we may assume that we have
an enumeration C0, C1, . . . of the set ω × ω × A, and an enumeration D0, D1, . . . of all triples of
the form 〈(i, j), (k, l), µ〉, where i, j, k and l are natural numbers and µ is some matrix over A.
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base step We start with the initial 2-network α0 =
(

1 a
1 1

)
, where a is the element that we are

constructing the ultrafilter network for. Since a is non-zero, α0 is consistent by Lemma 2.3(1).

odd steps Assume that we have already defined the network α2r for some natural number r. If
α2r does not have any defects of the first kind, then define α2r+1 := α2r. Otherwise, let c be
the first first-degree defect of α2r (with respect to the enumeration C). By Claim 1, there is
an extension β of α2r such that c is not a defect of β. Then define α2r+1 := β.

even steps Proceed as in the previous case, but for defects of the second kind. (Use Claim 2
here).

Obviously, this gives a chain α0 ⊆ α1 ⊆ α2 ⊆ . . . of networks. We may and will assume that in
fact αlij ≤ αkij whenever k ≤ l. We now define αω as the limit of all networks αk of the sequence,
as follows. The domain of αω is ω × ω and for all (i, j) of αω,

αωij = {b ∈ A | αkij ≤ b for some k < ω }.

Claim 3. αω is an ultrafilter network.

Proof of Claim. We have to show that
(1) each (i, j) in αω is labelled by an ultrafilter of A,
(2) For any n-network β, numbers k, l < n and arbitrary numbers i, j: Qkln (β) ∈ αωij iff there

are nodes u0, . . . un−1 in αω such that uk = i, ul = j and βpq ∈ αωupuq for all p, q ∈ n, and
(3) 1’ ∈ αωii for all i ∈ ω.

Proof of (1). Fix some natural numbers i and j. We will show that αωij is an ultrafilter. First,
suppose b, c are elements of αωij . By the definition of αωij , there are k, l < ω such that αkij ≤ b

and αlij ≤ c. Without loss of generality we may assume that k ≤ l. By construction, we have
αlij ≤ αkij , which implies αlij ≤ b · c. So, by the definition of αωij , b · c ∈ αωij . Hence, αωij is closed
under meets.

Second, 0 6∈ αωij . This follows from axiom Q2 and the consistency of all networks αk. Third,
upward closure of αωij is immediate by its definition. This shows that αωij is a filter.

For maximality, assume that neither b nor −b is in αωij , for some element b of A. This implies
that 〈(i, j), b〉 is a defect of every αk. However, our construction guarantees that every defect of a
network will eventually be repaired. So we face a contradiction.

Proof of (2). Let β be an n-network over A and let i and j be two natural numbers. For the ‘only
if’-direction, suppose that Qkln (β) ∈ αωij . Then, by the definition of αωij , there is a number r such
that αrij ≤ Qkln (β). It follows by a standard argument on our construction that for some s ≥ r, the
triple 〈(i, j), (k, l), β〉 is not a defect of αs. But this means by definition of second-degree defects
that there is an embedding f : n→ m (where n and m are the sizes of β and αs, respectively) of
β into αs such that f(k) = i and f(l) = j. By definition of an embedding, αsf(p)f(q) ≤ βpq for all
p, q < n. By definition of αω, this means that for all p, q < n, βpq ∈ αωf(p)f(q); since f(k) = i and
f(l) = j, we are finished.

For the other direction, suppose there are nodes u0, . . . , uk = i, ul = j, . . . , un−1 (with k, l ∈ n),
such that βpq ∈ αωupuq for all p, q ∈ n. Then, by construction of αω, there must be an m-network
αr, r < ω, such that αr is defined on all these edges and such that αrupuq ≤ βpq for all p, q ∈ n.
Since αr is consistent, Qklm(αr) 6= 0; it is not very difficult to prove that Qklm(αr) ∈ αωij . Also,
by axiom Q8, Qijm(αr) ≤ Qkln (β′), where β′ is defined by β′pq = αrupuq . Then β′pq ≤ βpq for all
p, q ∈ n, so by monotonicity, Qkln (β′) ≤ Qkln (β). It follows that Qklm(αr) ≤ Qkln (β), and hence, that
Qkln (β) ∈ αωij .
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Proof of (3). By construction of αω, we have Qkln (αr) 6= 0 for all r < ω (n being the size of αr).
Then we obtain from this Qkln (. . . , αrii · 0’, . . .) = 0, by the axiom Q4. By construction (odd step)
there is a step s such that αsii ≤ 1’, which gives 1’ ∈ αωii by definition of αωii. J

This finishes the proof of Lemma 3.4. qed

Proof of Theorem 2. The lemmas 3.3, 3.4 imply that countable Q-algebras are representable.
Now we complete the proof of Theorem 2 by showing that any Q-algebra is representable.

Suppose A is a Q-algebra. Define LA to be the first-order language which contains a binary
predicate symbol Pa(v, w) for each element a of A. The theory TA (over LA) associated with A is
determined by the following axioms:

(1) ∀v (P1(v, v)); ∀vw (P1(v, w)↔ P1(w, v)); ∀vuw (P1(v, u) ∧ P1(u,w)→ P1(v, w))
(2) ∀vw (Pa·b(v, w)↔ Pa(v, w) ∧ Pb(v, w))
(3) ∀vw (P1(v, w)→ [P−a(v, w)↔ ¬Pa(v, w)]
(4) ∀vw (P1’(v, w)↔ v = w)
(5) ∀vw (PQkln (a)(v, w)↔ ∃u0 . . . un−1 (v = uk ∧ w = ul ∧

∏
i,j∈n Paij (ui, uj))).

A representation of A is (essentially) a model of TA, and vice versa. Hence by the compactness
theorem it suffices to show that each finite subset of TA has a model.

Let F be an arbitrary finite subset of TA; let A(F ) denote the Q-algebra that is generated
by those elements b of A of which the predicate Pb occurs in F . Then by definition, A(F ) is a
subalgebra of A, and since F is finite, A(F ) is countable. It follows that A(F ) is representable.

TA(F ) denotes the theory associated with A(F ). Each sentence σ of F contains a finite num-
ber k of predicate symbols. Due to the way A(F ) and TA(F ) were defined, TA(F ) contains all
possible sentences on these k predicate symbols, including σ. So F ⊆ TA(F ). But since A(F ) is
representable, TA(F ) has a model, which is then also a model for F . qed

Proof of Theorem 1. It follows immediately from Birkhoff’s theorem that the equationally
defined class Q is a variety. Now all the axioms Q1–Q10 defining Q are in so-called Sahlqvist form,
cf. [de Rijke & Venema 1995]. It follows immediately that Q is canonical.

The corresponding statements for the class RQ are obtained by Theorem 2. We saw already
in the Introduction that RQ is generated by a class FQ that has a discriminator term. qed

4 Relation algebras of finite dimension

In this final section we establish a link between Q-algebras and the so-called relation algebras of
finite dimension. The latter, introduced in [Maddux 1983] under the name of matrix algebras of
finite degree, come in varieties: there is a variety RAn for each finite n (and also a RAω which will
come into the picture only at the end of this section). In their turn these algebras correspond to
a Gentzen-style sequent calculus for the set EquRRA of the ‘true’ relational equations. Basically,
this correspondence is such that the dimension of the variety RAn reflects the number of variables
used in a proof of this sequent calculus: an equation in the language of relation algebras belongs
to the equational theory of RAn iff it can be proved using only n variables.

In order to explain the link with Q-algebras, let us recall from the introduction that the Tarski
operations of ^ and ; (of converse and relative product, respectively) could easily be defined
using the Q-operations. Thus Tarski-type algebras are subreducts of Q-type algebras; as we will see
in this section, it turns out that the relation algebras of dimension n correspond precisely to the
subreducts of Q-algebras satisfying a specified, finite part of the Q-axioms. For technical reasons
however, we deviate from the Q-similarity type that we have worked in until now. In this section,
our algebras contain operations Qkln for one fixed n only, viz., the dimension of the corresponding
variety of relation algebras.

Definition 4.1 Let 3 ≤ n < ω. A Qn-type algebra is an algebra of the similarity type (A,+,−, 1’,
{Qkln }k,l<n), where + and − are binary operations on A, 1’ is a constant, and Qkln are n2-ary
operations on A.

14



This switch does not imply any ‘real’ change: in a Qn-type algebra, the operations Qklm with
m smaller than n are easily seen to be term-definable, using

Qklm(x) = Qkln (t)

where

tpq ≡
{
xpq if p, q ≤ m
1 otherwise.

Operations Qklm with m bigger than n are not term-definable, but then, they do not play any role
in the correspondence with the Maddux relation algebras of dimension n. It is precisely in order
to avoid cumbersome bookkeeping regarding the behaviour of such operations that we ‘cut off’
our Q-algebras in this section.

In order to make the promised connection precise, we now first define the concepts involved; we
then proceed to prove Theorem 3. We first recall some definitions concerning Tarski-type algebras.

Definition 4.2 Algebras of the form A = (A,+,−, 1’,^, ; ) where A is a non-empty set, + and ;
are binary operations, − and ^ are unary operations, and 1’ is a constant, are called Tarski-type
algebras.

A Tarski-type algebra A is called a semi-associative relation algebra if it satisfies the following
axioms:

A0. (A,+,−) is a Boolean algebra,
A1. x = x; 1’ = 1’;x (the identity law),
A2. x; y · z = 0 iff x^; z · y = 0 (left Peircean law),
A3. x; y · z = 0 iff z; y^ · x = 0 (right Peircean law),
A4. (x; 1); 1 = x; 1 (semiassociative law).

Let A be an atomic semi-associative relation algebra. M ⊆ n×nAt A is an n-dimensional basis
for A if the following are satisfied:
(A) if a ∈M , i, j, p < n then aii ≤ 1’, a^ij = aji, aij ≤ aip; apj ,
(B) if a ∈ M, i, j, p < n, p 6= i, j, and x, y ∈ At A, and aij ≤ x; y then there is some b ∈ M such
that bip = x, bpj = y, and blm = alm for p 6= l,m < n,
(C) for every x ∈ At A there is a ∈M such that a01 = x.

A semi-associative algebra is called a relation algebra of dimension n iff it is a subalgebra of
some complete atomic semi-associative relation algebra with an n-dimensional basis; the class of
such algebras is denoted with RAn. The class of semi-associative algebras is denoted with SA.

Definition 4.3 Let 3 ≤ n < ω. A Qn-type algebra is an algebra A = (A,+,−, 1’, {Qkln }k,l<n),
where + and − are binary operations on A, 1’ is an element of A, and each Qkln is a n2-ary
operation on A.

By a Qn-algebra we mean a Qn-type algebra A = (B, 1’, {Qkln }k,l<n) such that B is a boolean
algebra and A satisfies the appropriate axiom schemas from Definition 2.1 — with the understand-
ing that the axioms Q1, Q5, Q8 and Q9 are replaced, respectively, by Q1*, Q5*, Q8*, and Q9*
below.

Q1*. Q01
n (s) = 1

where the matrix s of terms is given by

spq ≡ 1

Q5*. Qkln (s) ≤ Qf(k)f(l)
n (t),
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for any map f : n→ n. Here the matrices s and t of terms are given by

spq ≡
{
xpq · 1’ if f(p) = f(q)
xpq otherwise,

tpq ≡
∏

(f(p′),f(q′))=(p,q)

xp′q′

Q8*. Qf(k)f(l)
n (x) ≤ Qkln (t),

for any map f : n→ n. Here the matrix t of terms is given by

tpq ≡ xf(p)f(q).

Q9*. Qkln (s) ≤ Qkln (t),

where for some fixed i, j,m ∈ n, m 6= i, j, the matrices s and t of terms are given by

spq ≡
{
xij · y ; z if (p, q) = (i, j)
xpq otherwise

tpq ≡


xpq if p, q 6= m
y if p = i, q = m
z if p = m, q = j
1 otherwise.

The class of Qn-algebras is denoted by Qn.

To link up these two types of algebras, recall from the introduction that we could define ^

(converse) and ; (relative product or composition) in Q-algebras. Note however, that we used the
operations Q01

2 and Q01
3 in these definitions, whereas in a Qn-type algebra we have only operations

Qkln in our disposal. Therefore from now on we use the following definitions:

Definition 4.4 Let A = (B, 1’, {Qkln }k,l<n) be a Qn-type algebra. Define the following auxiliary
operations:

x^ = Q01
n (t), where tpq ≡

{
x if p = 1, q = 0
1 otherwise.

x; y = Q01
n (t), where tpq ≡

 x if p = 0, q = 2
y if p = 2, q = 1
1 otherwise.

The Tarski reduct of A is defined as the Tarski-type algebra RdT A given as:

RdT A = (B, 1’,^, ; ),

where ^ and ; are as defined as above. Given a class X of Qn-type algebras, let RdT X denote
the class of associated Tarski reducts.

Now that we have defined this link between Q-type algebras and Tarski type algebras, we can
start to prove the main result of this section, viz, Theorem 3. In order to do so, we apply some
basic duality theory between boolean algebras with operators and relational structures or frames
as we shall call them, cf. [Goldblatt 1989]. For readers unfamiliar with this theory, we just recall
the definition of the (full) complex algebra of a frame.

Definition 4.5 Let F = 〈W, {Ri}i∈I〉 be a frame, where Ri ⊆ niW . Its complex algebra is the
algebra CmF = (P(W ),∩,∪, (·)c, ∅, {mRi}i∈I), where mRi is the ni − 1-ary operation defined by

mRi(X1, . . . , Xni−1) = {y ∈W | Riyx1 . . . xni−1 for some x1 ∈ X1, . . . , xni−1 ∈ Xni−1}.
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This seems to be a natural move given the focus on complete and atomic algebras in the
definition of relation algebras of finite dimension. The basic structure of the proof is to associate
with each class of algebras (RAn and Qn) a class of frames (AFn and QFn, respectively); the precise
nature of this association can be found in the Lemmas 4.8 and 4.10, respectively. Finally, the crux
of the proof then lies in connecting these two frame classes; the precise link, which in fact is rather
direct, follows in Lemma 4.12.

Definition 4.6 Let W be a non-empty set, C ⊆ 3W,F ⊆ 2W, I ⊆ W . The structure M =
〈W,C,F, I〉 is called an arrow frame if

(i) ∀u, v, w (∃z (Cuvz ∧ Iz)↔ u = v),

(ii) ∀u, v, w, z (Cuvz ∧ Fvw → Czwu),

(iii) ∀u, v, w, z (Cuvz ∧ Fzw → Cvuw)

(iv) ∀w∃!v(Fwv)

(v) ∀u, v, w, z, y(Cuvw ∧ Czuv → ∃x(Czvx)).

Let 3 ≤ n < ω; a set B ⊆ n×nW is an n-dimensional basis for an arrow frame M if the following
are satisfied:

(a) If v ∈ B, i, j, p < n then Ivii, Fvjivij , Cvijvipvpj ,

(b) If v ∈ B, i, j, p < n, p 6= i, j, and Cvijuz then there is some w ∈ B such that wip = u, wpj = z
and whenever p 6= l,m < n, wlm = vlm,

(c) For every w ∈W there is some v ∈ B such that v01 = w.

Let v be an n×n matrix of elements of W . For any map f : n→ n define vf to be the matrix
given by

vfpq ≡ vf(p)f(q).

Let B be a basis for M. Define B̃ = {vf : v ∈ B, f : n → n is a bijection }. B is called good if
B = B̃. Define BM =

⋃
{B : B is a basis for M}.

Finally, we let AF denote the class of arrow frames, and AFn the class of arrow frames with a
good n-dimensional basis.

In the following lemma we prove that the set BM may serve as the canonical definition of an
n-dimensional basis for M, whenever M has an n-dimensional basis; furthermore, we may assume
that BM is good.

Lemma 4.7 Let M be an arrow frame.

1. If B is a basis for M then B̃ is also a basis for M.

2. If B is a basis for M then BM is also a basis for M; furthermore, BM is good.

Proof. For part 1, assume that B is a basis for M. Each vf from B̃ satisfies 4.6(a) in an obvious
way, and condition 4.6(c) holds because B ⊆ B̃.

To check 4.6(b), assume vf ∈ B̃, where v ∈ B, p 6= i, j, and Cvfijxy. So Cvf(i)f(j)xy.
Since v ∈ B, and Cvf(i)f(j)xy, and f(p) 6= f(i), f(j) there is w ∈ B such that wf(i)f(p) =
x, wf(p)f(j) = y, and wf(l)f(m) = vf(l)f(m) whenever f(l), f(m) 6= f(p). Then wf ∈ B̃ is such
that wfip = wf(i)f(p) = x, wfpj = wf(p)f(j) = y, and wflm = wf(l)f(m) = vf(l)f(m) = vflm whenever
f(l), f(m) 6= f(p). Thus B̃ satisfies 4.6(b).
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For part 2, it is straightforward to verify that BM is a basis. It is then rather easy to check
(using part 1 and the definition of BM) that BM is in fact good. qed

The following lemma links up some classes of Tarski-type algebras with some classes of arrow
frames. We also recall the fact that every arrow frame has a 3-dimensional basis.

Lemma 4.8 1. Any arrow frame has a 3-dimensional basis; that is:

AF = AF3.

2. A Tarski-type algebra is semi-associative iff it can be embedded in the complex algebra of an
arrow frame, in brief:

SA = S Cm AF.

3. A Tarski-type algebra is a relation algebra of dimension n iff it can be embedded in the
complex algebra of an arrow frame with a good n-dimensional basis. In brief:

RAn = S Cm AFn.

Proof. The proof of part 1 and 2 is left to the reader (for closely related proofs, see [Maddux 1982]
— the main difference is that in our set-up F is a functional relation, not a function; also, we
order the arguments of the relation C differently).

For part 3, first let B be a relation algebra of dimension n. By Definition 4.2 it can be
embedded in some complete atomic semi-associative algebra A with an n-dimensional basis M .
Define the atom structure AtA = (At A, I, F, C) of A as follows: At A is the set of atoms of A,
I = {x : x ≤ 1’}, F = {〈x, y〉 : x ≤ y^}, and C = {〈x, y, z〉 : x ≤ y; z}.

We leave it to the reader to verify that this structure satisfies condition (i) – (v) of Definition 4.6,
and that A is isomorphic to Cm (AtA). It follows immediately from the definitions that the relation
M ⊆ n×nAt A itself is a basis for the frame AtA.

For the opposite direction of part 3, consider the complex algebra CmF of an arrow frame
F = 〈W, I, F,C〉 with a good n-dimensional basis B. It follows from part 1 CmF is a semi-
associative relation algebra. Note that the atoms of the algebra CmF are the singletons {x}, with
x ∈W . By this correspondence, the relation B naturally induces a relation on the atoms of CmF;
it is straightforward to verify that this relation is in fact a basis. qed

From this it is easy to deduce that S Cm AFn ⊆ RAn.
Now that we have established a link between frames and algebras for the similarity type of

Tarski relation algebras, we do the same for the Qn-similarity type. First of all we define Qn-
frames. Relations Rkln , k, l < n of Qn-frames are in correspondence to the algebraic operations
Qkln . We also introduce relations DF and GF which correspond to the defined operations ; and ^,
respectively. Then in Lemma 4.10 we show a connection between Qn-frames and Qn-algebras.

Definition 4.9 A structure F = 〈W, I,Rkln 〉k,l<n with W a non-empty set, I ⊆ W and Rkl ⊆
W × n2

W is called a Qn-frame if the conditions R1 – R9 below hold. We first define the following
relations.

D1. DF consists of those triples 〈x, y, z〉 for which there is a n2-matrix v of elements of W , and
numbers i, j, p, k, l < n such that x = vij , y = vip, z = vpj and Rkln vklv.

D2. GF consists of those pairs 〈x, y〉 for which there is a n2-matrix v of elements of W , and
numbers i, j, k, l < n such that x = vji, y = vij and Rkln vklv.

With the help of these relations, we can define the conditions as follows.

R1. ∀w∃v (R01
n wv),
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R2. Let i, j,m, p, q < n,m 6= i, j.

∀wvxy (Rkln wv ∧Dvijxy → ∃z (Rkln wz ∧ zim = x ∧ zmj = y ∧
∧

p,q 6=m

zp,q = vp,q))

R3. ∀wv (Rkln wv → w = vkl)

R4. ∀w∃!v (Gwv)

R5. ∀wv (Gvw → Gwv)

R6. ∀wv (Rkln wv → Ivii)

R7. Let f : n→ n.

∀w, v (Rkln wv ∧
∧

f(p)=f(q)

Ivpq → ∃z(Rf(k)f(l)
n vf(k)f(l)z ∧

∧
zf(p)f(q) = vpq))

R8. Let f : n→ n.
∀w, v (Rf(k)f(l)

n wv → Rkln wv
f )

R9. ∀w, v (Rkln wv → Rijn vijv).

The class of Qn-frames is denoted as QFn.

The next lemma links up frames and algebras on the Q-side.

Lemma 4.10 Let 3 ≤ n < ω. A Qn-type algebra A is a Qn-algebra iff it can be embedded in the
complex algebra of a Qn-frame. In brief:

Qn = S Cm QFn.

Proof. (Sketch). We will show that for an arbitrary Qn-type frame F, we have

F is in QFn iff CmF is in Qn. (1)

From this the Lemma follows easily, since the variety Qn is canonical — note that canonicity of Qn

follows from the simple (negation-free) syntactic shape of its defining axioms, cf. [Jónsson & Tarski 1951].
One can prove (1) easily using correspondence theory; that is, we will use the fact that with each

Q-axiom there is a corresponding frame condition (effectively computable from the axiom) such
that the axiom holds in CmF iff F satisfies the frame condition; for details, see [de Rijke & Venema 1995].

We will confine ourselves to a few examples of the direction ‘⇐’ of (1). Assume that CmF
is a Qn-frame. Then F |= R1 since R1 is the frame correspondent of axiom Q1; likewise, R2
corresponds to Q9∗, and R3 to Q3. We leave the conditions R4 – R8 as exercises for the reader,
and finish with showing that F |= R9. From Lemma 2.3.(11) we may easily infer that F |=
∀v (∃wRklwv ↔ ∃uRijuv); taken together with R3 this immediately yields R9. qed

The final link that we need is between the two kinds of frames.

Definition 4.11 Let M = 〈W,C,F, I〉 be an arrow frame in AFn; recall the definition of the good
n-dimensional basis BM. Define, for k, l < n, the (n2 + 1)-ary relation Rkl on W as follows:

Rklwv iff v ∈ BM and w = vkl.

With MQ we denote the associated Qn-type frame 〈W, I,Rkl〉k,l<n.
Conversely, given a Qn-frame F = 〈W, I,Rkln 〉k,l<n, we define its associated arrow-type frame

as FA = 〈W,DF, GF, I〉 where DF and GF are as defined in 4.9.
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In the main lemma of this section we show that on the frame level, there is an immediate
correspondence between arrow-type frames and Q-type frames.

Lemma 4.12 Let M = 〈W, I, F,C〉 be an arrow frame with a good n-dimensional basis B and
let F = 〈W, I,Rkln 〉k, l < n be a Qn-frame. Then

1. MQ is a Qn-frame;

2. FA belongs to AFn.

3. (MQ)A 'M;

4. CmFA = RdT CmF.

Proof. We first show that
C = DMQ and F = GMQ . (2)

We only prove that C = DMQ ; the other proof is similar. First assume Cxyz. Since BM is
a basis, by Definition 4.6(c) and (b) there is some w ∈ BM such that w01 = x, w02 = y, and
w21 = z. Using the definition of Rkl on M we obtain that DMQxyz, by D1.

Assume DMQxyz. By D1 this means that there is some v such that x = vij , y = vip, z = vpj
and Rklvklv. So v ∈ B, by definition of Rkl. Then Cvijvipvpj , by 4.6(a).

For part 1 of the Lemma, we show that MQ satisfies conditions R1 – R9 of Definition 4.9.
It is obvious that MQ satisfies R1 because of Definition 4.6(c). R2 follows from 4.6(b) and the

fact that C = DMQ , R3 from the definition of Rkl on M. The fact that F = GMQ makes R4 equal
to 4.6(iv). For R5, first observe that any arrow frame satisfies the formula (Fuw∧Fwy)→ u = y;
from this and (2) R5 follows immediately. R6 follows from 4.6(a).

For R7, consider a map f : n → n, and a matrix v ∈ B such that Ivst for all s, t < n with
f(s) = f(t). We want to prove the existence of a matrix z ∈ B satisfying zf(p)f(q) = vpq for all
p, q < n.

We first prove
f(p) = f(q), f(r) = f(s) only if vpr = vqs. (3)

For a proof, observe that f(p) = f(q) and f(r) = f(s) imply that Ivpq and Ivsr. Since v ∈ B, we
have Cvprvpqvqr and Cvqrvqsvsr by 4.6(a). We leave it to the reader to verify that in an arrow
frame this implies vpr = vqr and vqr = vqs. This proves (3).

Now let g be a bijection such that f◦g◦f = f . By (3) we have (vg)f(p)f(q) = vg(f(p))g(f(q)) = vpq
for all p, q. Since BM is a good basis, vg ∈ BM. Hence the matrix vg satisfies our requirements.

For R8, it suffices to prove that for an arbitrary map f : n → n and an arbitrary matrix
v ∈ BM, the matrix vf is in BM as well.

Let us agree to call a function h : n → n simple if there is a p such that for all k 6= p we
have h(k) = k while h(p) 6= p. Then every function is a composition of simple functions and
permutations. Hence, since BM is good, it suffices to restrict ourselves to the case where f is a
simple function f .

Fix p ∈ n as the number such that for all k ∈ n, f(k) = k if k 6= p, and let i, j be numbers
distinct from p. By Definition 4.6(a), we have Cvijviivij , so according to Definition 4.6(b), there
is a matrix w ∈ BM such that wip = vii, wpj = vij , and wst = vst whenever s, t 6= p. Using (a)
and the properties of arrow frames it is not difficult to check that w is vf . But then indeed vf is
in BM.

Finally, R9 follows from the definition of Rkl on M.

For part 2, let F = (W, I,Rkln )k,l<n be a Qn-frame. We show that FA = (W, I,GF, DF) is an
arrow frame; of the conditions (i)–(v), we only check the first one; the other conditions are checked
in the same manner. Assume DFuyz and Iz. By the definition of DF of 4.9 there is a n2-matrix
v of elements of W , and numbers i, j, p, k, l < n such that u = vij , y = vip, z = vpj and Rkln vklv.
So Iz is Ivpj . Let f : n→ n be a map such that f(p) = f(j); then by R7 we have

∃x(Rf(k)f(l)
n vf(k)f(l)x ∧

∧
xf(s)f(t) = vst).
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From this it follows that u = vij = xf(i)f(j) = xf(i)f(p) = vip = y.
Now we check that BF is an n-dimensional basis for it, where BF is defined as follows:

BF = {v : Rkln (vkl, v), k, l < n}.

For condition 4.6(a), assume v ∈ BF and i, j, p < n. We obtain Ivii by R6, GFvjivij by using R4
and definition D2, and DFvijvipvpj is immediate by D1. Then condition (b) follows from R2, and
(c) is a direct consequence of R1.

Part 3 follows immediately from (2).

In order to prove part 4, it suffices to show that for arbitrary subsets U, V ⊆W ,

mDF
(U, V ) = {w ∈W | ∃v ∈W (R01

n wv, v02 ∈ U, v21 ∈ V )},
mGF

(U) = {w ∈W | ∃v ∈W (R01
n wv, v10 ∈ U)}.

We only prove the first identity. The inclusion ⊇ is immediate by the definitions. For the other
direction, assume that w ∈ mDF

(U, V ). By definition, there are u ∈ U and v ∈ V such that
DFwuv. This implies the existence of a matrix w of elements of W , and numbers k, l such that
Rklwklw, w = wij , u = wip and v = wpj . Applying R9 to Rklwklw, we get Rijww. Now consider
a map f : n → n such that f(0) = i, f(1) = j and f(2) = p; by R8, we get R01wwf where wf02

= wf(0)f(2) = wip = u ∈ U and wf21 = wf(2)f(1) = wpj = v ∈ V . But this is precisely what we
required.

This finishes the proof of Lemma 4.12. qed

Note that in general, we need not have that (FA)Q ' F; when moving from F to (FA)Q, we
always choose the maximal basis of FA.

Proof of Theorem 3. First assume that A is a relation algebra of dimension n. By Lemma 4.8,
there is some arrow frame M in AFn such that A can be embedded in CmM. By Lemma 4.12,
(parts 1 and 3) there is a Qn-frame F such that M ' FA. Lemma 4.12.4 then implies that CmM
is isomorphic to RdT CmF. By Lemma 4.10, CmF belongs to Qn, so CmM belongs to RdT Qn.
But then clearly A belongs to S RdT Qn.

For the converse direction it suffices to prove that S RdT Qn is a subclass of RAn, since the
latter class is closed under taking subalgebras. Hence, assume that A itself is the Tarski reduct of
some Qn-algebra B. By Lemma 4.10 there is some Qn-frame F such that

B æ CmF.

From this it is immediate that
A = RdT B æ RdT CmF,

while from Lemma 4.12.4 it follows that

RdT CmF ' CmFA.

Since FA belongs to AFn by Lemma 4.12.2, it is then immediate by the definitions that A belongs
to RAn. This proves that RdT Qn is indeed a subclass of RAn. qed

Finally, a nice fact concerning the family of varieties (RAn)n∈ω is that its intersection is precisely
the variety RRA: ⋂

RAn = RRA, (4)

cf. [Maddux 1983]. Now suppose that we define Qω as the class of Q-type algebras A such that for
each n, its n-reduct An = (A, ·,+,−, 0, 1’, Qkln )k,l<n is in Qn. It follows from (4) and Theorem 3
that

RRA = S RdT Qω.
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But it also holds that
RRA = S RdT RQ = S RdT Q,

as a rather straightforward argument will show. This raises the obvious question whether in
fact Qω = Q. Looking at the definition of Qω this seems unlikely: the ‘network amalgamation’
condition Q9 of Q seems far stronger than the conditions Q9* of Qn. We leave this matter for
further research.
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