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Abstract

This chaptdf] sketches some of the mathematical surroundings of modal logic. First, we discuss the algebraic perspective
on the field, showing how the theory of universal algebra, and more specifically, that of Boolean algebras with operators,

can be used to prove significant results in modal logic. In the second and last part of the chapter we describe how modal
logic, and its model theory, provides many natural manifestations of the more general theory of universal coalgebra.
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1 Introduction

Modal logic is not an isolated field. When studied from a mathematical perspective, it has evident connections
with many other areas in logic, mathematics and theoretical computer science. Other chapters of this handbool
point out some of the links between modal logic and areas like (finite) model theory or automata theory. Here
we will outline thealgebraicandcoalgebraicenvironments of the theory of modal logic.

First we approach modal logic with the methodologyatifebraic logic a discipline which aims at study-
ing all kinds of logics using tools and techniques from universal algebra — in fact, much of the theory of
universal algebra was developed in tandem with that of algebraic logic. The idea is to associate, with any
logic L, a classAlg(L) of algebras, in such a way that (natural) logical properties obrrespond to (natural)
algebraic properties dklg(L). Carrying out this program for modal logic, we find that normal modal logics
have algebraic counterparts in varietiesBafolean algebras with operato(gAos). In the simplest case of
monomodal logics, the algebras that we are dealing with are simpbjal algebrasthat is, expansions of
Boolean algebras with a single, unary operation that preserves finite joins (disjunctions). One advantage of
the algebraic semantics over the relational one is that it allows a geamenaletenessesult, but the algebraic
approach may also serve to prove many significant results concerning properties of modal logics such as com:
pleteness, canonicity, and interpolation. As we will see, a crucial observation in the algebraic theory of modal
logic is that standard algebraic constructions correspond to well-known operations on Kripke frames. These
correspondences can be made precise in the form of categiduialities which may serve to explain much of
the interaction between modal logic and universal algebra. Our discussion of the algebraic approach towards
modal logics takes up the sectidis Jjto 8.

Thecoalgebraicperspective on modal logic is much more recent (see sdgtion 9 for references). Coalgebras
are simple but fundamental mathematical structures that capture the essence of dynamic or evolving systems
The theory of universal coalgebra seeks to provide a general framework for the study of notions related to
(possibly infinite) behavior such as invariance, and observational indistinguishability. When it comes to modal
logic, an important difference with the algebraic perspective is that coalggbrasalizerather thardualize
the model theory of modal logic. Many familiar notions and constructions, such as bisimulations and bounded
morphisms, have analogues in other fields, and find their natural place at the level of coalgebra. Perhaps evel
more important is the realization that one may generalize the concept of modal logic from Kripke frames to
arbitrary coalgebras. In fact, the link between (these generalizations of) modal logic and coalgebra is so tight,
that one may even claim that modal logic is the natural logic for coalgebras — just like equational logic is that
for algebra. The second and last part of this chapter, starting from sgction 9, is devoted to coalgebra.

What is the point of taking such an abstract perspective on modal logic, be it algebraic or coalgebraic?
Obviously, making the above kind of mathematical generalizations, one should not aim at solving all concrete
problems for specific modal logics. Rather, the approach may serve to isolate those aspects of a problem
that are easy in the sense of being solvable by general means; it thus enables us to focus on the remainini
aspects that are specific to the problem at hand. To give an example, it is certainly not the case that all modal
formulas are canonical, but Sahlgvist's theorem considerably simplifies completeness proofs by taking care
of the canonical part of the axiomatization. A second benefit of embedding modal logic in its mathematical
context is that it may lead to a better understanding of notions from modal logic. Taking an example from
coalgebra, the notion of a bounded morphism between Kripke models (or frames), becomes much more natura
once we understand that it coincides with the natural coalgebraic notion of a homomorphism.

Our main aim with this chapter is to give the reader an impression of both the algebraic and the coalgebraic
perspective on modal logic. Our focus will be on concepts and ideas, but we will also mention important
techniques and landmark results; proofs, or rather proof sketches, are given as much as possible. Despite it
over-average length, a text of this size cannot come close to being comprehensive; our main selection criterion
has been to focus ageneralityof methods and results. Unfortunately, even some important topics have fallen
prey to this, most particularly, tredgebras of relationseven though they played and continue to play a crucial
role in the history of algebraic logic. Fortunately, these kindsaifs are well documented elsewhere, see for
instance HENKIN, MONK & TARSKI [67] for cylindric algebras, or RSCH & H ODKINSON [B68] for relation
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algebras. A second topic receiving only fragmented attentidrisi®rical context While we do attribute

results as much as possible, readers with an interest in the (fascinating!) history of modal logic, will not find
much to suit their taste here. Rather, they should consaliBLATT [44], or perhaps the historical notes

of BLACKBURN, DE RIJKE & V ENEMA [I3]. Finally, a warning: in this chapter we assume familiarity with
basic notions from category theory (such as functors, duality), universal algebra (such as congruences, free
algebras), and more specifically, Boolean algebras. Readers encountering unfamiliar concepts in this chapte
are advised to consult some text book in universal algebra or category theory. For convenience, in an appendi
we have summed up all the material that we consider to be background knowledge.
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| am grateful to Nick Bezhanishvili, Mai Gehrke, §tlem Gencer, Rob Goldblatt, H. Peter Gumm, Gaelle
Fontaine, Helle Hansen, lan Hodkinson, Ramon Jansana, Clemens Kupke, Alessandra Palmigiano, Jan Ruttel
and Mark Theunissen for their help. Great is my gratitude to Alexander Kurz, who provided a large number
of suggestions to improve the paper.



2 Basics of modal logic

In this section we briefly review the basic definitions of modal logic. Starting with syntax, we take a fairly
general approach towards modal languages and allow modal connectives of arbitrary finite ramiialA
similarity type iS a setr of modal connectives, together with an arity function: 7 — w assigning to each
symbolV € 1 arank or arity ar(V). Given a modal similarity type and a sef( of variables we inductively
define the sef'ma.(X) of modal T-formulas in X by the following rule:

pu=as € X | T|L|~p|oA |V |V(et,...,0n)

with V. € 7 andn = ar(V). We will use standard abbreviations such-asand <; we also define the
dual operatorA of V € 7 asA(p1,...,¢n) := =V (—p1,...,7p,). Unary modalities are usually called
diamonds, and their dualsboxes; to denote these modalities we reserve (possibly indexed) symbols of the
shaped and, respectively.

Throughout this chapter we will work with an arbitrary but fixed modal similarity typ©ften, we will
provide proofs only for theéasic modal similarity type which consists of a single diamond that will always
simply be denoted a$ (its dual asd). Unless explicitly stated otherwise, we are always dealing with a fixed,
countably infinite seX of variables; in order not to clutter up notation we will suppress explicit references to
X as much as possible.

It will be convenient to have names and notation for some special formulas that behave just like ordinary
diamond formulas of the forn®x. Fix a special dummy variable. In the basic modal language, we may
define acompound diamond as any disjunction of formulas of the forgi*v (here®%yp := p and Oy =
OO™p). The general case is a bit more involved; for any modalitgf arity n > 0, and anyl < i < n, the
formula< g v == V(T,...,T,v,T,..., T) (i.e., allarguments aré except for the-th one which iw) is
called thei-th induced diamond of V. The collectionCD(7) of compound diamonds of 7 is defined via:

=0 ‘ <>(v7i)‘v | ®10V &0

We will write ¢ rather than# () for the formula in which every occurrence ofis substituted by, (note
thatv is theuniquevariable occurring in a compound diamond). Induced and compbaredsare defined in
the obvious way.

Modal logic can be approached from a semantic or from a purely syntactic/axiomatic angle. In this chapter
we follow both approaches, starting with the semantic one.

Definition 2.1 A 7-frame is a structuréS = (S, R) whereS is a non-empty set of objects callegtes, points,
or worlds, andR is an interpretation assigning ant 1-ary relationRy on S to everyn-ary modal connective
V. A valuation onS is a mapV : X — P(S) assigning a subset ¢f to each variable:. A 7-model is a
structureM = (S, R, V') such that(S, R) is ar-frame, on whichV is a valuation; the frameS, R) is called
the underlying frame of M.

The notion oftruth is defined by formula induction. The set of points wheris true will always be denoted
as[e].
Definition 2.2 Given ar-modelM, we define by induction when a formulais true at a state of M, notation:
M, s IF :
M, s -z if s e V(z),
M,s T always
M,slF L nevet
M, s IF =@ if M, s lf o,
M, slF oAy if M,slFypandM, s |-,
M, sk Vv if M,slF@orM,sl-y,
M, sk V(p1,...,0n) if Ryssy...s,forsomesy,..., s, suchthat,s; I o, for eachi.

4



We writeM IF ¢ if ¢ is truethroughout M, that is, true at every state bf.

Definition 2.3 Given ar-framesS, we say that a modal formula is valid in S, notation:S IF ¢ if ¢ is true
throughout any model based &n Similarly standard definitions apply to sets of formulas and classes of
frames.

We extend the interpretatioR of a 7-frameS = (S, R) to the compound diamonds by putting
R,:=1d,
Ro g 8= {(s,8;) | Ryssi---syforsomesy,...,si—1,8i+1,...,5, € S} o Rg,
Re,ve, = R¢, URy,.
We further defindts := Uge, Ui<i<ar(v) Bvi, @R := {ge op(r) Re- Given a binary relatiod), we let
Q[s] := {t | Qst} denote the collection af)-successors of. It is then straightforward to verify that in any

frameS, Rs|s] consists of all those points that can be reached fsamone step, thaR“ is the reflexive and
transitive closure oRg, and that for any valuatiolr it holds that

S,V,s I #piff S, V.t I ¢ for somet with R¢st.

That is, compound diamonds indeed behave like diamonds.

Frames and models do not exist in isolation. Given twibamesS andS’, a mapd : S — S’ is called a
bounded morphism from S to §’, notation:6 : S — §', if 4 satisfies the following conditions for &f € 7:

(forth) Ryssi ... sy, only if RG6(s)0(s1)...60(sn), and
(back) RGH(s)s] ... s;, only if there aresy, . .., s, such thatRyss; . .. s, andf(s;) = s, for eachi.

We letFr.. denote the category with-frames as objects and bounded morphisms as arrows.

If such a bounded morphisthis surjective, we caly’ a bounded morphic image of S, notation:S — §'; if
6 is injective we writeS — S’ and call the subframe &f based on the imag# S| a generated subframe of S'.
We leave it for the reader to verify that the structife R|T') (whereR|T maps eaclV € 7 to therestriction
of Ry to T) is a generated subframe ®fif and only if T" is a hereditary subset ofS, that is, ift € T then
Rytty ... t, implies that all the; belong toT. Given a pointr in S, we denote witlS, the least generated
subframe containing; the domain of this subframe is thus the 84r|. If S = S, we callr aroot of S, and
say thatS is rooted. Finally, given afamily {S; | i € I} of r-frames, we define itdisjoint union ) _;_; S; as
the structurg} ,.; Si, {Rv | V € 7}), where the domaid) _,_; S; = U,c;{i} x S; is the disjoint union of
the domainsS;, and the relatiomRy is given byRv (7, s)(i1,51) ... (in, 8n) <= i=14 =... =1, and
(R,-)vssl oo Sn.

Remark 2.4 More general than Kripke frames are the neighborhood frames, which we now review very
briefly, and for the basic modal similarity type only. The reader can find more details on these structures
in HBML. A neighborhood frame is a structureS = (S, o) with o : S — PP(S); such a structure is called <«
monotone if o(s) is upwards closed for all € S, thatis,X € o(s) andX C Y imply Y € o(s). Elements

of o(s) are calledneighborhoods of s, and the semantics of the modal® (we will not use< andO in this
context) in aneighborhood model M = (S, o, V') with V' : X — P(S) a valuation is given by

M, s I Ve if [¢] € o(s), Q)

that is, V holds ats iff s has a neighborhood af-points. Both the box and the diamond interpretation in
Kripke models follow the pattern of](1): takes(s) = {A € S | AN R[s] # @}, andon(s) = {A C S |
R[s] C A}, respectively.

Amapf :S — S'is aneighborhood morphism between two neighborhood framés, o) and(S’, o’) if
forall s € Sand allX’ C S'it holds thatX’ € o'(fs) iff f~1[X'] € o(s).

Now we turn to the more syntactic approach towards modal logic. We identify logics with sets of theorems
— the more general approach basedconsequence relationsill be discussed in Chapté&? of this book.
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A modal T-logic is then a sel. C Fma. which (i) contains all classical propositional tautologies, and (i) is
closed under the derivation rules (MP) Mlodus Ponens (if both ¢ andy — 1 belong toL then so doeg),
and (US) ofuniform substitution (if ¢ belongs tol then so do all of its substitution instances). If a formula
belongs to a modal logi€ then we say thap is atheorem of L, notation:t-;, .

A modallogic is calleatlassical if itis closed under the following rulé:;, ¢; <> ¥, =t V(p1,...,0n) <
V(i1,...,1); monotone ifitis closed undek ¢, — 1, =t V(p1,...,0n) — V(¢1,...,1,); andnor-
mal if it contains in addition, for eack € 7, the axioms-V* 1 andV (p,qV ¢, 7) — V(p,q,7) VV (D, ¢, T)
wherep and7 denote arbitrary sequences of propositional variables of combined lengih) — 1. We leave
it as an exercise for the reader to verify that this definition coincides with the standard one in the case of basic
modal logic.

The minimal classical, monotone and normal modal logics for a similarity typere denoted a€ .,
M., andK,, respectively. Here we use the convention @afM and K denote the minimal logics for the
basic modal similarity type. It is easy to see that the collection of normal modal logics is closed under taking
arbitrary intersections and therefore forms a complete lattice under the inclusion ordering. Hence, with any
setl” of 7-formulas we may associate thast normal modal-logic extendindK and containing all formulas
in I'; this logic is denoted aK ..I'. We say that this logic iaxiomatized by I', since any theorem iK..I'
can be obtained as the result oflaivation from the axioms of the logic (including formulas 1) using its
derivation rules. Similar definitions and notation apply to extensiors,.ocdndM,.

The validity relationt between frames and formulas induces a Galois connection consisting of two maps,
Log andFr, defined as follows. Given a cla€f frames,Log(C), thelogic of C, is the set of modal formulas
that are valid inC. Conversely, given a sét of formulas, letFr(I") denote the class of frames on whiEhs
valid. (We call this a Galois connection because we always Gaverr(I") iff I' C Log(C).) Thestable sets of
formulas of this connection, that is, the sBtsuch thal” = Log(Fr(T")) are called’Kripke) complete logics —
we leave it for the reader to verify that such sets are indeed normal modal logics. On the other sidbl¢he
frame classes, that is, the ones that are closed under the compésitidiog, are called’modally) definable.
Not all modal logics are Kripke complete (seemML) and not all frame classes are modally definable (seeq
HBML). <



3 Modal logic in algebraic form

As indicated in the introduction, it is the aim of algebraic logic to study logic by algebraic means. Nowadays,
most people will associate modal logic primarily with relational structures, but, as with other branches of logic,
the 19th century infancy of modern symbolic modal logic was completely algebraic, se€M.L [BZ]).
Somehow during the 20th century however, the traditions of algebraic logic and of modal logic got separated,
and for decades proceeded without any interaction whatsoever. In particular, dh#sIN& TARSKI [I70]
introduced not only Boolean algebras with operators and their representation over relational structures, but alsc
the rudiments of canonicity and correspondence theory, this seminal work did not mention modal logic, and it
was completely overlooked by modal logicians for many years. This is not to say that algebras were to remain
absent from the modal logic tradition — they were introduced BwmboN [BO]. But only in the 1970s, prob-

ably with the discovery of the fundamental incompleteness of the relational semantiesomaEoN [T02],

did universal algebraic (and topological) methods regain importance — as examples we metiofis],

ESAKIA [?3], GOLDBLATT [37/38], and RUTENBERG [21]. And it would even have to wait until the 1990s
before the algebraic and modal traditions would be completely rejoined, with collaborations between modal
and algebraic logicians (leading to, for instance, the introduction of the guarded fragmembRERA, VAN
BENTHEM & N EMETI [Z]), with modal logicians investigating algebras of relations from a modal perspective
(MARX & V ENEMA [B4]), or with algebraic logicians responding to the modal traditicbNSsoN[69]). It

is from this perspective that the algebraic part of this chapter has been written.

Before we explain how talgebraizemodal logic using the key structures of Boolean algebras with op-
erators BAOS), let us first briefly introduce the algebraic perspective on (propositional) logic itself. Think
of proposition letters as atomic objects referring to entities called propositions, and of connectives as func-
tion symbols to be interpreted as operations on propositions. Then notice the complete analogy between the
definitions of formulas and terms, respectively, and already we have worked our way towards one of the key
ideas underlying the algebraic approach towards (propositional) Ipgipositional formulas can be seen as
algebraic terms denoting propositians

Definition 3.1 Given a modal similarity type, we define its corresponding algebraic similarity typenl.
simply as the union of with the Boolean similarity typ&ool = {T, L, —, A, V}.

We will use= as the equality symbol of this algebraic language; as abbreviations vgé aisé< in their
standard meaning. Since the standard Boolean symbols are function symbols in this algebraic language, we
will not use them to denote Boolean combination of equations. For that purpose we let the s§nainols:>
denote conjunction and implication, respectively.

The setFma,(X) of formulas over a set of variable$ can then be identified with the s&er g, (X)
of algebraicBool-terms overX. More importantly, we may imposagebraic structureon formulas.

Definition 3.2 The 7-formula algebra is the structuré@ma, := (Fma,, {O™ | O € Bool,}), where for
each (Boolean or modal) connecti¥ its interpretation

@FmaT : (()Dlv s 7@71«) = Q(Splv ce 79077«)
defines a map of arity = ar(9©) on Fma,.

As a first advantage of this algebraic point of view, recall that substitutions are completely determined by
their values on the variables. Putting this algebraically, for any funetiassigning formulas to variables, the
substitution induced by is the unique extensiof of ¢ to anendomorphisnon the formula algebra. More
generally, it is easy to see that given an arbitrary algébod type Bool ., any assignment mapping variables
to elements of the carrier éf has a unique extensiagnwhich is ahomomorphisnfrom Fma. to A. That is,
we have the following result.

Proposition 3.3 Fma; is thew-generated absolutely free algebra of the similarity type!..
7



Logical languages may now be interpreted in many different kinds of algebras; but of course, we are only
interested in structures that can plausibly be viewed as algebras of propositions.

Example 3.4 Consider theruth value algebra2 of the Boolean similarity type. Its carrier is given as the set
2 = {0,1} where0 (‘false’) and1 (‘true’) are the classical truth values, while its interpretation of the Boolean
connectives/function symbols is given by the standauth tables Given avaluationV : X — 2 of truth
values to propositional variables, we can simpbmputethe truth value17(<p) of any propositional formula

®, using the unique homomorphisﬁﬁ : Fma, — 2 extending the assignmemt. That is, we see another
manifestation of the absolute freeness of the formula algebra.

The algebras arising from the relational semantics of modal languages are the so-called complex algebras
(This terminology dates back to the times when subsets of groups were referrabtoEexe®f the group.)

Definition 3.5 Given ann + 1-ary relationR on a setS, define then-ary map(R) on the power set of by
(RY(ay,...,ayn):={s €S| Rssy...s, forsomesy,...,s, with s; € a; for all :}.

The complex algebra ST of aT-frameS is obtained by expanding the power set algeh(&) with operations
(Ry) for each modal connective; that is,

ST :=(P(9),S,2,~5,N,U,{(Ry) | V € T}). 2

Given a frame clas§, we letCm(C) denote the class of complex algebras of frame§;isonversely, for a
classK of algebrasStr(K) denotes the class of frames whose complex algebras beldfig to

Remark 3.6 More generally, given a neighborhood fraffie= (S, o), define the map ™ : P(S) — P(S) by
ot(A):={se S| Aeco(s)}, and defines* as the expansion d@f(S) with the operatiorr ™.

From the perspective of complex algebrasakation is nothing but arassignment of variables to elements
of the complex algebra &*. Furthermore, and much more importantly, given a valuatioon a frameS, a
straightforward induction proves that

S,V,s Ik piff s € V(p), (3)

whereV : Fma, — ST is the unique homomorphism extendikig With the meaning function []5"V defined
as the function that maps a formufeto its extension [¢] := {s € S| S, V, s IF ¢}, what () reveals is that,
in a sloganmeaning is a homomorphism

Proposition 3.7 Let V' be some valuation on a-frameS. Then the meaning functiop]®" is the unique
homomorphisnV : Fma, — S™ that extendd/.

As a corollary of this, lety™ denote the equatiop =~ T, then we find that for any-framesS, and any
T-formulasyp, 1
SIFiff ST = ¢~ and Sik ¢« iff ST = o~ 1, 4)

that is, the validity of #ormulain the frameS corresponds to that of aquatioff] in the complex algebra of
S, and vice versa. We have arrived at one of the most fundamental notion of algebraic logic, namely, that of a
class of algebraalgebraizinga logic.

Definition 3.8 Let L. be a modat--logic, andK a class ofBool-algebras. We say th#t algebraizes L, if we
have
Fr g iff K= o7, ®)
KEeryiff Fp oo, (6)
for all formulas/termsy andq.

2 In the sequel, we will be sloppy about the distinction between a formula and its equational translation, writing for iastance
if we meanA | ¢~.
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The point of this definition is to alert the reader that algebraizations constitute stronger links between logics
and classes of algebras than the mere existence of a completeness result, as would be expféssed by (5) on
own. If the clas¥K algebraizes the modal logic, then it is not just the case thidtcontains all the information
of L through the translatioft)~, but also,L encodes the full equational theory k§fthrough the translation
mapping an equatiog ~ 1 to the formulay < . Furthermore, the second translation isiarerseto the
first one in the sense that if we translate the formulaack and forth, the resuft < T is L-equivalent top.

Given the Boolean backbone of modal logics, this property holds vacuously, so there is no need to formulate
this as an additional clause of the definition.

Also, observe that it immediately follows from the definition thaKifalgebraizesl, then so does the
variety generated bi.

Remark 3.9 The above definition is a specific instantiation of a much wider notion, which is dueda B
Picozzi [18]. The basic idea of a class of algebrdsebraizing a logic always involves uniform translations
from formulas to equations, and from equations to formulas, that are, modulo equivalence, inverse to each
other. But the general case is of course not limited to modal logics, or to logics extending classical proposi-
tional logic; also, the translations may be from formulas to sets of equations, and from equations to sets of
formulas.

The most important point is however that the natural habitat of the concept is t@isgquence relations
rather than of logics (in our sense of the word, that is, of logics as sets of sentences). In this more general set:
ting, the requirement that the translations are each other’s inverse, is expressed on the logical side by means c
the consequence relation, and can equivalently be described on the algebraic side using (infinitary versions of
guasi-equations. For more details on modal consequence relations and the way to algebraize them, the read
is referred to Chapte?? of HBML. For the general theory of algebraizing logics, seEA\KOWSKI [Z1] or <«
FONT & JANSANA [Z6].

In any case, it will be clear that we can already state our first algebraization result, the proof of which is
immediate from[{4):

Theorem 3.10 Let C be a class of-frames. TherCm(C) algebraizeslog(C).

Turning to the algebraization of arbitrary modal logics, we now introduce the key plé&Beatean alge-
bras with operatorstogether with some related concepts.

Definition 3.11 Given two Boolean algebra® andB/, it is often convenient to call a functiofi: B — B’
amap from B to B’. Such a map is callechonotone if a < bin B implies f(a) <" f(b) in B’, normal if
f(L) = 1, andadditive if[’] f(a v b) = f(a) V' f(b), andmultiplicative if f(a Ab) = f(a) A’ f(b). We will
call an operatiory : B™ — B anoperator if it is normal and additive in each of its coordinates.

BAE .- denotes the class efexpanded Boolean algebra, (shortly,7-BAES), that is, of algebras

A= (AT, L — AV, {VA|Ver)

with a Boolearreduct (A, T, L, —, A, V) thatis indeed a Boolean algebrais called amonotone T-expanded
Boolean algebra, oraBAM, if eachV* is a monotone operation, andaolean algebra with T-operators, Or
T-BAO, if eachV* is an operator. The classes of these algebras are denoted as, resp&aivelyandBAO.,.
In the case of the basic modal similarity type, we speatadal algebras rather than efBaos; MA denotes
the class of these algebras. Given alsef modalr-formulas, and a clads of r-expanded Boolean algebras,
we defineK(T") as the class of algebraskhthat validate the set of equations := {y~ T | v € T'}.

Given twoT-BAES A andA’, we callamap) : A — A’ aBoolean homomorphism if it is a homomorphism
from the Boolean reduct of to that of A’, and amodal homomorphism it if is a homomorphism with respect
to the modal operations. Thus a homomorphism betweenrt®aEs is a map that is both a Boolean and a

3 Observe that we write’ and\/’ rather than/* andv*’, respectively; this convention will always apply to the interpretations of the
Boolean symbols, and sometimes to the modal connectives as well.
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modal homomorphism. We I&AE,, BAM., etc. also denote the category with th@AES, ..., as objects
and the homomorphisms as arrows.

Example 3.12 Algebras of the forn§*, with S somer-frame, are the prime specimens of Boolean algebras
with operators. These algebras are sometimes referredctmagte BAOS.

More generally, the complex algebra of a neighborhood frame (see R¢miark 3.6) is an examphkeof a
for the basic modal similarity type; it is easy to see that suclamelongs toBAM iff S is a monotone
neighborhood frame.

Our terminological convention will be that properties of and notions pertaining to Boolean algebras (such
as atomicity, completeness, filters, ...) apply to an expanded Boolean algebra as they apply to its underlying
Boolean algebras.

All of the properties defined in Definitidn 3111 can be given in equational form, so all of the classes defined
there are in factarieties In the next section we discuss the algebraic properties of these varieties; let us first
see why they are so important from a logical perspective. This can be formulated very concisely.

Theorem 3.13 LetI" be a set of modat-formulas. TheBAE,(T") algebraize<C,.T", BAM(T") algebraizes
M. .I', andBAO,(I") algebraizeK.I". In particular, MA(T") algebraizesK.T".

Note that this theorem implies a general, algebrefenpletenesgesult: for instance, concerning modal
logics in the basic modal similarity type, it states that

Frr @ iff MA(T) = ©7. ()

That is to sayy is a theorem of the logiaxiomatizedby I if and only if ¢ is valid in the class of algebras
definedby I".

The key tool in theproof of Theoreni 313 is played by the so-calldddenbaum-Tarski algebraf a logic.
The introduction of this fundamental tool is based on the observation that for all classical modal logics, the
notion of logical equivalence is a congruence on the formula algebra.

Definition 3.14 Let L be a modaft-logic. The relatiorns;, between formulas is defined by puttipg=y, ¢ if
@ < 1 is anL-theorem.

Proposition 3.15 For any classical modat-logic L, the relation=, is a congruence on the formula algebra
Fma,.

Definition 3.16 Given a modat-logic L, we denote the congruence class of the formulmder the relation
=1, by [x]; for a set of formula®, we let[®];, denote the seff].. | ¢ € ®}. The quotient algebri@ma, /=1,
is called theLindenbaum-Tarski algebra ofL, notation:F.

Note that the elements of the Lindenbaum-Tarski alg&hrare the equivalence classes of the relation
of the setF'ma... The algebraic operations are defined as follow$: = [T|., LF2 = [ L], [¢]r AT [¢]1, =
[ AL, etc. We briefly remind the reader that all of these definitions could be parameterized by making the
setX of variables explicit.

It is hard to overestimate the importance of Lindenbaum-Tarski algebras. For a start, the &lgebra
contains all the information of its logiE, in the following sense.

Theorem 3.17 Let . be a modal logic for some similarity type Then for any twa-formulasy and, we
have

FrEemyiff p=p¢.

Proof. For the direction from left to right, consider the natural assignment — [z];. It follows from the
validity of ¢ ~ v in F, thatv(p) = v(y). But an easy formula induction shows thdty) = [x]z, for all
formulasy. Hence we obtain thap];, = [¢]., thatis,p =/, 1.

For the reverse direction, let be some assignment on the Lindenbaum-Tarski algebra. Choose for each
variablex a representative(x) of the equivalence claggx); that is, for each variable we have thatv(z) =
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[o(x)]r. Note that this majp is nothing but a substitution; recall thatis the extension of to all formulas.
It is not hard to prove that all formulagsatisfya(x) = [a(x)]|z. But it follows fromy =7, ¢ thata () =1
a(1), sinceL is closed under uniform substitution. Hence we find thap) = «(v). And sincea was
arbitrary, this shows thd; = ¢ ~ ¢, as required. O

On the other hand, Lindenbaum-Tarski algebras play an important algebraic role as well, as is concisely
formulated in the following Theorem.

Theorem 3.18 For any classical modat-logic L, Fy, is thew-generated free algebra for the varieBAE . (L).

Proof. Let A be an algebra iBAE, (L), and consider an arbitrary map: [X|;, — A (recall thatX de-
notes the set of variables, and that]; = {[z]r | = € X}). We will prove thata can be extended to a
homomorphism froni';, to A.

To this aim, consider the compositiano v : X — A of a with the natural map : x — [z].. It follows
from the universal mapping property &fa, over X that this map can be extended to a homomorphism
aov:Fma, — A.

We claim thatker() C ker(a ov). To see this, consider formulasand+ such that(p, ) € ker(v);
then[y]r, = [¢]1, and sap =1, +. It follows from A being inBAE, (L) thatA = ¢ ~ v, sop ~ v certainly
holds inA under the assignmento v. But that is just another way of saying that, 1)) € ker(a o v).

But then from this claim it follows that the map: Fma,/=1— A, given by

—_~—

a(lglr) == aov(p)

is well-defined. It is not hard to show thatis in fact a homomorphism frof to A, and since it clearly
extendsy, we have established the universal mapping properB;dbr BAE, (L) over [ X]y. O

Finally, in order to prove the Algebraization Theorém B.13 from these two theorems, we need one addi-
tional result concerning varieties of the foBAE, (L) if L is a modal logic axiomatized by a débf formulas.
We leave the rather tedious but straightforward proof of this proposition as an exercise for the reader.

Proposition 3.19 LetI" be a set of-formulas. TheBAE,(C,.I') = BAE. ("), BAE,(M,.I') = BAM(T"),
andBAE, (K,.I') = BAO, ().

This finishes our introduction to the algebraization of modal logics. In seftion 6 we will have a lot more to
say about the link between normal modal logics and varieti@05.
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4 Varieties of expanded Boolean algebras

In this section we discuss what the theory of universal algebra has to say about Boolean algebras with operator:
and their siblings.

Lattices of congruences

A very important theme in universal algebra has been to relate the properties of a variety to the shape of the
congruence lattices of its algebras. In the case of Boolean algebras and their expansions, this has turned out t
be particularly fruitful.

Definition 4.1 An algebraA haspermuting congruences if ©1 0 ©, = 0O, o ©4 for all congruence®, ©-
overA ; A is congruence distributive if Cg(A), its lattice of congruences, is distributive.

These properties hold of a variety if they hold of each of its members; and a variety is aédbaaktical
if it is both congruence permutable and congruence distributive.

Itis a rather strong property for an algebra to have permuting congruences, or to be congruence distributive,
and both notions have important applications. Concerning the second notion, we will see an important property
of congruence distributive varieties in Theorgem#.12. In order to motivate the first concept here we just mention
that it allows a considerable simplification in the computation of joins in congruence lattices: whereas in
general the joir®; Vv ©, of two congruence®; andO; is given asd; vV O3 = 01 U (B1003) U (O 0
©2001) U ---,inthe case of permuting congruence this rearranges its€lf 50, = ©1 o Os.

Theorem 4.2 Varieties of expanded Boolean algebras are arithmetical.

Proof. This proof can be seen as a consequence of a result by A. Pixley, who proved that a variety is arith-
metical if and only if it admits the definition of so-caII(MhI’cevand%-majority terms For some detail, le¥
be a variety of expanded Boolean algebras. First consider the ternary (Booleapjtegnx) given by
p(x,y,z) :=(xAz) V(e A-yA-z)V (- A-yAz).

We leave it for the reader to verify that this idvéul’cev term, that is,

VEp(z,z,2) = zandV | p(z, 2z, 2) =~ x. (8)
From this it follows thatV is congruence permutable: l&tbe some algebra in the variety anddeb € A
be elements such thét, b) € ©; o Oy for some congruence&d; and©,. Then there is some € A with
(a,c) € ©1 and(c, b) € O2. From this it follows thata, b) € ©2 o0 O, because

a= pA(a, b, b)@gpA(a, c, b)@lpA(c, c,b) =b.

This proves tha®, 00, C 0,00, which means that has permuting congruences. Congruence distributivity
can be proven in a similar way: consider the tevfrgiven by

M(z,y,z) == (xVy) A(yVz)A(zVz).
The reader will have little trouble in showing that
Vi M, z,y) = M(z,y,z) ~ M(y,z,z) = , ©)

i.e., Mis a%—majority term. In a similar way as above we can then LBE (9) to skiaercongruence distribu-
tive. 0
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Congruences and filters

One of the nicest features afos is that their congruences can be characterized by cestdigetof the
algebra.

Definition 4.3 LetB be a Boolean algebra. A subgetC B is called a(Boolean) filter of B if it (i) contains
the top element dB, (ii) is closed under taking meets (that isqifb € F thena Ab € F), and (iii) is anup-set
(thatis,a € F anda < bimply b € F). Afilter F'is proper if it does not contain the bottom element®for
equivalently, ifF* # B. We let F'i(B) denote the collection of filters d.

Example 4.4 It is not difficult to see that the séti(B) is closed under taking intersections; hence, we may
speak of thesmallestfilter F'p containing a given seD C B; this filter can also be defined as the following
set

Fp={T}U{be B| therearely,...,d, € Dsuchthatl; A---Ad, <b},

which explains why we also refer to this set as the fifiaferated by D. In case thaD is a singleton{a}, we
write aT for Fy,y; this set is called therincipal filter generated by a. Clearly we have:! := {b € B | a < b}.

The filter F)p is proper iff D has the so-calleflnite meet property (thatis,/\ Dy > L for all finite subsets
Dy C D).

Definition 4.5 Let A be aBAO; a subsef’ C A is amodal or open filter of A if F'is a filter of (the underlying
BA of) A which is closed under the application of induced boxes; thatés F impliesBa € F for all induced
boxesM. The collection of modal filters of is denoted ad/Fi(A).

In anyBAO A, the set§ T} and A are modal filters; the singletgfir*} is called therivial (modal) filter
of A, and any filter different fromd is calledproper.

Note that for the basic modal similarity type this definition boils down to requiring that a modal filter is a
(Boolean) filterF" such thalDa € F whenevew € F.

The following theorem will prove to be extremely useful.

Theorem 4.6 Let A be a Boolean algebra with operators. Then

(i) the collectionMFi(A) is closed under taking arbitrary intersections and hence forms a complete lattice
with respect to the subset ordering;

(i) this lattice is isomorphic to the congruence latticedothrough the isomorphisii : MFi(A) — Cg(A)
given by

Iy :={(a,b) e AxA|la—be M},
and its inverseV : Cg(A) — MFi(A) by
No:={a€ A|(a,T) €O}
It follows from the completeness of the lattice of modal filters @s@ A, that with each seb C A we

may associate themallest modal filter M including D. The following proposition explains why we also
refer toMp as the modal filtegenerated by D:

Proposition 4.7 Let A be a Boolean algebra with-operators, andD a subset ofd. Then
Mp={ac A|WdiAN...NRd, <aforsomelly,... B, € CD(7), dy,...,d, € D}.
In particular, whenbD is a singleton, sayD = {d}, we find

Myg={a€ A|Bd < aforsomell € CD(r), d € D}.
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Subdirect irreducibility

We now turn to the algebraic notion of subdirect irreducibility, which plays an important role in the analysis
of varieties. The motivation for introducing this concept is the search for the universal algebraic analogon of
the prime numbers, as it were. That is, we want to isolate a class of algebraic building blocks that are basic in
the sense that (i) every algebra may be decomposed into basic ones, while (ii) the basic ones themselves onl
allow trivial decompositions. Now there are various interpretations of the words ‘basic’ and ‘decomposition’.

Definition 4.8 An algebraA is simple if its only homomorphic images atk itself and the trivial algebra of
its similarity type, andlirectly indecomposable if in any decompositiolh = [ A;, A is isomorphic to one of
theAl

Both of these notions are important and interesting, but neither one is exactly what we want. The notion
of simplicity is too restrictive since not every variety is generated by its simple members. And, whereas
every finite algebra is isomorphic to a direct product of directly indecomposable algebras, this does not hold
for all infinite algebras. For instance, it is not hard to see that the algglwExample[34 is the only
nontrivial directly indecomposable Boolean algebra, while a straightforward cardinality argument shows that
no countably infinite algebra can be isomorphic to a direct powe. of

Hence, in order to meet our criteria, we arrive at a notion which at first sight may seem somewhat involved.
In words, an algebra is subdirectly irreducible iff it does not allow a prepkdirect decomposition.

Definition 4.9 Let A be an algebra, anfl; | < € I} a family of algebras of the same type. An embeddijng
of Ainto [ [,.; A; is calledsubdirect if m; o7 is surjective for each projection functian. If A is a subalgebra
of [[;c; Ai, then we say thak is a subdirect product of the family {A; | i € I}, or that the family forms a
subdirect decomposition of A, if the inclusion map is a subdirect embedding.

A is calledsubdirectly irreducible, or, briefly,s.i., if for every subdirect embedding: A — Hie[ A, there
isani € I such thatr; on : A — A; is an isomorphism.

In practice, one always uses a nice characterization of subdirect irreducibility in terms of the congru-
ence lattice of the algebra, and similarly for simple and directly indecomposable algebras. For the proof
of this proposition we refer to any standard textbook on universal algebra. For a proper understanding
of its formulation, recall that any algebra always has at least two congruences: thiggonal relation
Ay ={(a,a) | a € A}, and theglobal relationT 4 = A x A.

Proposition 4.10 Let A be an algebra. Then
(i) AissimpleiffCg(A) ={A,T};
(i) A is directly indecomposabile iff there are no two congruer@esind ©5 such thato; A ©, = A and
©1009 =T;
(iif) A is subdirectly irreducible iff it has has monolith, that is, a smallest non-diagonal congruence.

The following theorem can be read as stating that, indeed, subdirect irreducibility is the proper concept
when it comes to finding the basic building blocks of varieties.

Theorem 4.11 (Birkhoff) Every algebra can be subdirectly decomposed into subdirectly irreducible alge-
bras. As a corollary, every variety is generated by its subdirectly irreducible members.

As a corollary of this theorem, we see that the study of the lattice of subvarieties of a given variety can
be conducted by way of inspecting the s.i. members of the variety. In the case of expanded Boolean algebras
the logical meaning of this is that it gives us a tool for the study of extensions of a given modal logic. For,
as we will see in sectiofj 6 that the subvarieties of the variety determined by a modal logic, correspond to the
extensions of that logic. Also, because expanded Boolean algebras are congruence distributive, we may appl
Jonsson’s Lemma. This result involves the class operatidthsS andPu, which are defined in the appendix.

Theorem 4.12 (dnsson) LetK be a class of algebras such théar(K) is congruence distributive. Then all
subdirectly irreducible members Whr(K) belong toHSPu(K).
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The use of this theorem lies in the fact thakifgenerates a congruence distributive variétythen the
s.i. members oW still resemble the algebras K in many ways. For instance, K is afinite set offinite
members, thePu(K) = K; hence we obtain the following result for finitely generated varieties of expanded
Boolean algebras.

Corollary 4.13 Let K be a finite set of finite-expanded Boolean algebras. Thear(K) only has finitely
many subvarieties, each of which is determined by a sub$t§ @).

Finally, restricting our attention to Boolean algebras with operators, we encounter yet another nice prop-
erty, namely that we can characterize subdirect irreducibility of an algebra by the existence sifigire
element — one with rather special properties, that is.

Definition 4.14 An elemente of aBAO A is calledessential or anopremum if e < T, while forallb < T
there is a compound modaliy such thalllb < e. Dually, we say that an elemepts radical in A, or aradix
of A, if p> 1, while foralla > 1 there is a compound modaliysuch thaip < éa.

Clearly, an element of aBAO is essential iff its complemente is radical. In the sequel this fact will be
used implicitly, context deciding which formulation is the most convenient.

Example 4.15 Let S be arooted frame with rootr. It is easy to see that the singletpn} is radical inS*: let
a C S be a nonempty element 8f". Take an element from a; sincer is a root ofS, there must be some
compound modality such thatR7s; from this it is immediate thafr} C (R4)a.

The following theorem (or at least, the more important statement concerning subdirect irreducibility) is
due to RAUTENBERG, see for instance [91].

Theorem 4.16 Let A be a nontrivial Boolean algebra with-operators. Ther is simple iff every non-top
element of4 is essential, and subdirectly irreducible iff it has an essential element.

Proof. It follows immediately from Theorern 4.6 thatis s.i. iff it has a smallest non-trivial modal filter, and
it is not hard to see that any such filter is of the fakfy for some element of A. The proof of the statement
on subdirect irreducibility is thus complete if we can show that for an arbitrary elesment:

M. is a smallest nontrivial modal filter iff is essential (20)

First suppose thal/, is a smallest nontrivial modal filter. Sincé, is nontrivial, it follows immediately that
e # T. In order to show that is essential, consider an arbitrary elemenrt T € A, and consider the filter
M, generated by. It follows from our assumption o/, that M, C M, so thate € M,. Hence we may
deduce from Propositign 4.7 that there is some compound modeditich thallla < e. This suffices to prove
thate is essential.

For the converse direction, suppose th& essential, and e be an arbitrary nontrivial modal filter on
A. Thatis,M # {T}, soM contains an element # T. but then it follows from the essentiality efthat
there is some compound modalgysuch thallla < e; this shows that € M, whenceM, C M. In other
words, M, is the smallest modal filter of.

The proof concerning simplicity is completely similar and therefore left as an exercise. O
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5 Frames and algebras

5.1 Introduction

The algebraic study of modal logic was started in sedfion 3. Its main result, Thgorém 3.13, links normal modal
logics to varieties of Boolean algebras with operators by stating a general algebraization result. But no matter
how well-behaved these algebras are, most modal logicians will still prefer the relational semantics, either
because they find it more intuitive, or because frames simply happen to be the structures in which they take
an (application driven) interest. Hence there is an obvious need to understand the precise relation between th
worlds of frames and algebras, respectively. As we will discuss in this section, much of this relation can be
understood within the framework of two dualities, both of which relate algebras to (topological) frames, and
one forgetful functor. In order to explain whwo dualities are needed, it is best to consifieite structures
first. For the sake of a smooth presentation we confine ourselves to the basic modal language.

Let FinFram andFinMA denote the respective categories of finite frames with bounded morphisms, and of
finite modal algebras with homomorphisms. Recall that in Definffion 3.5 we coded up aSram&, R) by
means of itxomplex algebr&™. Conversely, ifA = (A, L, T, —, A, V, ) is a finite modal algebra, then we
can base a frame on the sét(A) of atoms(see Definitiorf 5]1) ofA by putting

Ropq = p<<q.

It is then easy to see that
S (ST),y andA = (A,)*

for an arbitrary finite fram& and an arbitrary finite modal algebfa And, with the appropriate extension of
the constructiong:)™ and(-).; to morphisms, we can in fact establish that

the functorg(-)™ and(-) form a dual equivalence betwe&mFram andFinMA. (11)

Unfortunately, there is no way to remove the restriction to finite structurgsjin (11) and obtain a dual equiv-
alence between the categorfesandMA. In fact, since the categoMA has an initial object (the free modal
algebra over zero generators), while does not have a final object (cf. sectipri 10 for detaits) duality
whatsoever can be established between these two categories. Howevels theetural way to associate a
frame with an arbitrary modal algebry if we let ultrafilters generalize the notion of an atom. That is, we
can simply base theltrafilter frame A, of A on the collection of ultrafilters of (the Boolean reduct afby
putting

Rouv ;<= <acwuforalla €w.

Again, this construction can be extended to a fun¢turfrom MA to Fr.

We will see that there is interesting interaction between the fun¢tprsand (-),. The most important
result is the 8nsson-Tarski representation theorem stating that every modal alyelanrabe embedded in its
‘double dual’A? := (A,)". As we will see in the next section, this result lies at the root of the application of
algebra in modal completeness results.

While there is no duality between the categofiesndMA, with some modifications, both functofg ™
and(-). do provide interesting dualities. Here there are two basic observations. First, the complex duality
functor (-)™ is injective on objects; that is, any frame may be recovered (modulo isomorphism) from its
complex algebra. Second, although the fundtgs does not have this property (sse Example]5.14), there
is a simple remedy for this problem, namely,add the missing information, topologically encoded, to the
frameA, of an algebra\. Thus we see that two fairly nice dualities can be found if we remove the finiteness
constraint oreitherside of the duality[(11):

e a ‘complex’ or ‘discrete’ duality obtains (see Theorgm 5.8) if we consider the entire category on the frame
side, and aubcategonpf perfectalgebras witlcompletehomomorphisms on the other side;

¢ a ‘topological’ duality obtains (see Theordm 5.28) if, conversely, we keep the category on the algebra side
intact, butadd topological structuren the frame side.
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Both dualities restrict to[{1.1) in the finite case, and the topological and the complex duality are linked by
the functor thatorgetsthe topological structure on the frame side. Furthermore, similar results can be proved
connecting (monotone) neighborhood frames and (monotone) expanded Boolean algebras. In fact, the picture
sketched above applies to far wider contexis [68].

For a brief overview of this section, below we first introduce the above mentioned functors and dualities,
in some detail. We then see how the algebraic notions of subdirect irreducibility and simplicity turn up on the
other side of this duality. We finish the section with a brief discussion of the interaction of the fufigtors
and(-)e with more ‘intrinsic’ constructions on algebras and frames such as products and disjoint unions.

5.2 Complex duality

We have already seen how to transform frames into algebras; we now consider these complex algebras from :
more abstract perspective. In order to characterize them among the class of all Boolean algebras with operators
we need some terminology.

Definition 5.1 A Boolean algebr® is calledcomplete if it is complete as a lattice, that is, if every subdét
of B has both a meet (or greatest lower boupdX and a join (or least upper bouny) X . B is calledatomic
if below every non-bottom element &f there is amtom, (i.e., an elemenp satisfying L < p while there is
noa such thatl < a < p).

Now letB andB’ be two Boolean algebras; a m@p B — B’ is calledcompletely additive if it preserves
all non-empty joins, that is, if for all non-empty subséif B for which\/ X exists, it holds that

OV x) =\ 71x].

An n-ary operationf on a Boolean algebrB is called acomplete operator if it preserves all joins in each
coordinate (or, equivalently, if it is normal and completely additive in each of its coordinates). Finally, a
Boolean algebra with operators is caljggfect if it is complete and atomic, and all its operators are complete.

The reader can easily verify that all complex algebras are perfect. It is equally easy to see that every finite
BAO is perfect, since such an algebra has no infinite joins, and a straightforward induction proves that operators
preserve finite joins in each of their arguments. For an example of an operator that is not comfebe, det
infinite set, and defing : P(S) — P(S) by putting f(X) = X if X is finite while f(X) = S otherwise.

In the very same way as we defined above for finite structures, given a pesfeete can define a frame
based on the set of atoms &f In fact, for the definition to make sense, we only needethe to be atomic.

Definition 5.2 Let B be an atomic Boolean algebra, afichn n-ary operator orB. Define then + 1-ary
relation@ s on At(B) by
Qfpop1---Pn = po < f(P1,-- -, Pn)-

Given an atomie-BAO A, define itsatom structure A as ther-frameA; = (AtA, {Qvs | V € T}).

Now that we have ways to turn frames into atomic algebras and vice versa, the natural question is how
these constructions interact. The following proposition seems to be folklore.

Proposition 5.3 Let, for a modal similarity type, S be ar-frame, andA an atomicr-BAO. Then

() S= (%)

(i) A= (A,)Tiff Ais perfect.
Proof. Concerning the first part, it is straightforward to verify that the mapx — {z} is the required
isomorphism. For the second item, let the naapA — P(At(A)) be given bye(a) := {p € AtA | p < a}.
The crucial observation in the proof is that

¢ embedsA into (A, )™ iff all operations ofA are complete (12)
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This map is then an isomorphism #f is perfect. a

As we will see now, the link between frames and algebras is not restricted to objects. With the natural
definition for morphisms between perfaxos, we will see how to turn bounded morphisms between frames
into thesecompleteBA0 homomorphisms, and vice versa.

Definition 5.4 Let A andA’ be two perfect-BAOS. A complete homomorphism from A to A’ is a homo-
morphismn : A — A’ which preservesll meets and joins. That is, for every subgetC A we have that
n(V X) = V' n[X] andn(A X) = A\'n[X]. We letBAO; denote the category of perfect Boolean algebras
with 7-operators as objects, and complete homomorphisms as arrows.

Definition 5.5 Let S andS’ two 7-frames. Given a bounded morphigh: S — §’, define the mag™ :
P(S") — P(S) by
07 (X'):={s€S5|0(s) € X'}

Conversely, given perfeet-BA0s A and A’ and a complete homomorphism: A — A/, define the map
N4 : At(A’) — A, which can be shown to map atoms to atoms, by

(@) == Na € A|p <nla)}.

It is our aim to prove that-)™ and(-); form a duality between the categories. andBAO;". We first
show functoriality:

Proposition 5.6 (-)™ is a contravariant functor fronfr, to BAO; .

Proof. The important issue here is that for any bounded morpltisn§ — S’, the mapd™ is a complete
homomorphism fron§'t to S*. It is easy to see tha@" is a complete Boolean homomorphism between the
respective power set algebras; in order to prove that it is also a modal homomorphism, it suffices to show that
for ann + 1-ary relationk we have

(RY(OT(X1),...,07(Xn)) = 07 ((R)(X1,..., Xn)) (13)

in case is a bounded morphism with respectf@ndR’. Here it is interesting to note that in fact the inclusion

C is equivalent to thdorth property and the converse inclusian, to theback propertyof 6. In a way, [IB)

can be seen as a piece of evidence that bounded morphisms provide in fact the right kind of morphism betweer
frames. O

Proposition 5.7 (), is a contravariant functor fronBAO to Fr..

Proof. Here the first point is to prove thatif: A — A’ is a complete Boolean homomorphism between the
perfectT-BAOS A and A/, thenr, maps atoms of\’ to atoms ofA. To see this, lep’ be an atom of\’; it
suffices to show thaj, (p’) is join prime in A. That is, we assume that (p') < \/ X for someX C A, and
have to show thaj, (p') < x for somez € X. From the assumption we may derive that

P < () <\ X) = \//n[X]-

Here the first inequality directly follows from the definition @f (p). But sincep’ is an atom ofd’, the fact
thatp’ <’ \/' n[X] implies thatp’ <’ n(x) for somer € X. The definition ofi, (p') then immediately gives
thatn (p') <’ x.

Unfortunately, we do not have the space here to prove thaidgfin addition a modal homomorphism,
thenn is a bounded morphism, or that the operatijon. commutes with function composition, i.e., that
(fon)y =npobyifn: A— A’andd : A’ — A” are complete homomorphisms. 0

The following result, that we will refer to as theomplex dualityfor BAOS, is due to FOMASON [103]
(for the basic modal logic case).
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Theorem 5.8 The functorg:)* and(-),. constitute a dual equivalence between the categrieandBAO; .

Proof. Given the results already established, it suffices to prove that the isomorphisris— (S*). and
ea : A — (Ay)T, defined in the proof of Propositidn .3, aratural. For instance, concerning we have to
prove thateys o = (n4)™" o e for an arbitrary complete homomorphism A — A’. The reader can easily
verify this by a direct calculation. O

5.3 Ultrafilter frames

Now let us see how to remove the restriction to finite structures on the algebra s[dé of (11); our first goal is
to represent arbitrary (that is, not necessarily finite or even atomic) algebras by frames. But, gjiveria

what to take as the points of a frame represenfigThis problem of course already appears on the Boolean
level, and its solution is provided by Stone’s representation theorem. This celebrated piece of mathematics
states that every Boolean algebra can be embedded in the set algebra wirefilters; let us briefly review

the basic facts concerning ultrafilters.

Definition 5.9 Let B be a Boolean algebra. Amtrafilter of B is a proper filteru such that eithet or —a
belongs tou, for all a € B. The collection of ultrafilters oB is denoted adJf (B). Given a setS, we
sometimes refer to ultrafilters of the power set algebré abultrafilters over S.

Example 5.10 Given a setS, and an element € S, define theprincipal ultrafilter 7, as the se{ X C S |
s € X}. Itis straightforward to verify that this set is indeed an ultrafilter o¥eMore generally, ifp is an
atom of thesa B, then the principal filtepT = {a € B | p < a} is in fact an ultrafilter; it is in this sense that
ultrafilters form a generalization of atoms.
For an example of a non-principal ultrafilter, consider the Boolean algebra of finite and cofinite sets of
some infinite sef’; the collection of cofinite subsets Bfforms an ultrafilter of this algebra.
As a last example, ultrafilters can be seen to generalize the notiomakenal consistent seConsider
the Lindenbaum-Tarski algebly, of a modal logicL; it is easy to verify thaf is a maximalL-consistent set
of formulas if and only if the sef[¢]. | ¢ € ®} is an ultrafilter ofF ;..

Ultrafilters can be characterized as the proper filters that are maximal with respect to the inclusion ordering;
this identification provides the key tool for establishing the existence of ultrafilters, as the proof sketch of the
following Theorem reveals.

Theorem 5.11 (Ultrafilter Theorem) Any proper filter of a Boolean algebi® can be extended to an ultra-
filter of B.

Proof. Given a proper filtel", apply Zorn’s Lemma to the collectiofi of proper filters that extend’, and
obtain a proper filter that is maximal inC'. It is not hard to prove that is in fact a maximal proper filter, and
from this it is easily follows that: is an ultrafilter. a

Stone’s representation theorem suggests to take the colldéfigh) of aBao A as thedomainof a frame
that will representd; for the accessibility relation on this ultrafilter frame we will (in the case of the basic
modal similarity type) make the ultrafiltervisible fromw if there is no explicit information preventing this;
that is, if there is h@ € v with ¢a ¢ w. For an arbitrary similarity type we have the following definition.

Definition 5.12 Given ann-ary operatorf on the Boolean algebi, define itsdual relation Ry as then + 1-
ary relation onUf (B) given by:

Ruuy ---uy 1= f(a1,...,an) €uforallay € ui,...,a, € uy.

Now let A be a Boolean algebra withroperators; then we define thwtrafilter frame or canonical structure
of A as the structure
Ag := (Uf(A),{Rysr | V €T}).

Given a clas¥K of algebras, we le€st(K) denote the class of ultrafilter frames of algebraKin
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Example 5.13 Recall from Chapte?? of HBML that thecanonical frame of a normal modal logid. is the <
structureCy, = (C, R) whereC is the set of maximally.-consistent set of formulas, and (we confine ourselves
to the basic modal similarity type} is the canonical accessibility relation given Byiv :<— <¢ € u for
all p in v. Using the identification that we made in Example p.10 of maximabnsistent sets with ultrafilters
of the Lindenbaum-Tarski algebfg,, it is fairly obvious that the canonical frame faris isomorphic to the
ultrafilter frame offFy..

As a second example of the ultrafilter frame construction we mention thatttaélter extensiornueS of
a frameS (as defined in Chapte&r? of HBML) is nothing but the ‘double dua(S™), of S. Verifying thisis <
simply a matter of unraveling the definitions.

Unlike the complex algebra functor, the ultrafilter frame construction is not injective.

Example 5.14 Let A be the collection of finite and cofinite subsetNgfand letB contain in addition those
sets of natural numbers that differ in at most finitely many elements from either ti#eafedvens or the set
O of odds. Both4 and B are closed under the Boolean operations, and it is easy to se tizat exactly one
non-principal ultrafilter, and3, exactly two: one containing the skt and one the s&d. Now suppose that
we create algebras andB by endowingA and B with some dummy operator, say, the identity map. Then
we find that the respective ultrafilter framés andB, are isomorphic: both have countably many points,
and in both cases, the accessibility relation is simply the diagonal. But the algelarasB are clearly not
isomorphic.

As we will see further on, the following theorem frordNSSON& TARSKI [70] is not only vital when
it comes to applications of the algebraic approach in modal completeness theory. It is also a manifestation
of a fundamental mathematical concept, namely that @fpaesentatiortheorem stating that every abstract
structure in an axiomatically defined class is in fact isomorphic to a concrete, ‘intended’ structure of the kind
that the axioms try to capture.

Theorem 5.15 (bnsson-Tarski Representation Theorem)Let A be a Boolean algebra with-operators.
Then the Stone representation mapA — P Uf(A) given by

a:={ue Uf(A)|acu} (14)
is an embedding of into (A,)™.

Proof. We omit details concerning the Boolean part of this theorem, which is of course nothing but Stone’s
representation theorem for Boolean algebras.

Concerning the additional operations, we restrict ourselves to the basic modal similarity type. So we
consider a modal algebda= (A, T, L, —, A, V, <) and show that

Sa = (Ro)a. (15)

First we consider an ultrafiltex € (Rc)a. It follows by the definition of(Rs) (see[3.b) that there is an
ultrafilter v such thatRcuv andv € @, that is,a € v. Then by definition ofR., it follows that$a € u, and,
hence, that: € a. This proves thaba C (Ro)a.

For the converse direction, take an arbitrary ultrafitee <a; that is, &a € u. We have to come up
with an ultrafilterv such that (i)Rouv and (i) v € a, or, equivalentlya € v. We first reformulate the first
condition:

Rouv iff a € v for all a with —&O—a € u. (16)

Hence, by the Ultrafilter Theoren 5]11 it suffices to show that thdset A | —C—2 € u} U {a} has the
finite meet property, see Exampjle]4.4. In order to prove this, first observe that thesetl | —C—x € u}
is closed under taking meets — this easily follows from the additivity@nd the fact that: is a filter.

But then it is left to show that A a > 1 foranyx € A with —&—2x € u. Suppose for contradiction
thatz A a = L. We obtaine < —z so<®a < O—a by monotonicity of&, and so we find>—x in « because
<&a € u. This gives the desired contradiction since we already-hé&d-x in u. O
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Definition 5.16 Given a Boolean algebra with-operatorsA, the ‘double dual’ algebréA,)* is known as
the canonical embedding algebra of A, the canonical extension of A and theperfect extension of A; we will
mainly use the second term, and usually denote the structuxé.as

The bnsson-Tarski theorem thus states that the constructiphsand (), interact well if we start with
algebrasA — (A,)" for everyBao A. Unfortunately, if we start with frames, then the return is less safe: for
ar-frames, the maps — m, (assigning to points dd their associated principal ultrafilters) is an embedding
of Sinto (ST)e only if S is image finite. (In fact, the condition of image-finiteness is also sufficient.) And
if S contains a point from which paths of arbitrary finite length emanate, but no infinite path, then there is
no bounded morphism frorB to (S*), whatsoever. From this it follows that there is no way to extend the
ultrafilter frame construction to a functor thatddjoint to that of taking complex algebras. This is a notable
divergence of the case of Boolean algebras per se (that is, without operators) — the formation of the canonical
extensiorB? of a Boolean algebr& is afree construction, see [68] for more information on these matters.

Nevertheless, the operation of taking ultrafilter frames can be extended to a functor, as follows.

Definition 5.17 Let A andA’ be two Boolean algebras withoperators. Given a homomorphigm A — A/,
we define the map, : UfA" — P(A), which can be shown to map ultrafilters to ultrafilters, by putting

ne(u') :={a € A| n(a) € u}. a7
Proposition 5.18 (-), is a contravariant functor fronBAO. to Fr..

Proof. If n : A — A’is a Boolean homomorphism, then it follows almost immediatelyshataps ultrafilters
to ultrafilters, while it is not too hard either to prove that, for any modalitgf rank, sayy:

ne has the forth property foRy if V'(nay, . ..,na,) < n(Viai,...,a)),
ne has the back property fdky if V/(nay,...,na,) > n(Via,...,a,)).

This shows that), is @ bounded morphism fro, to A, if  : A — A’ is a homomorphism. It is then left
to show that-), is functorial, and in particular, thét) o 0), = 6, o 7, for homomorphism¢ : A — A’ and
n: A’ — A”. This can be checked by a straightforward calculation which we leave for the reader. O

5.4 Topological duality

In the previous subsection we encountered a problem of the fuigiorin general, algebras cannot be re-
trieved from their ultrafilter frames. A very simple remedy is theradil this information to the frame by
melting algebra and frame into one structure. Since this issue already pertains at the level of Boolean algebra:
(without additional operations), that is where we start the discussion.

Definition 5.19 A field of sets is a pair(S, A) with A C P(S) being closed under all Boolean set-theoretic
operations, or equivalently, witA such that A, S, &, ~g, N, U) is a subalgebra d#S. The elements ofl are
called theadmissible subsets oF.

Given a Boolean algebta = (4, T, L, —, A, V), putA := {a C Uf(A) | a € A}, withTas in (1b), and
defineA, := (UfA, fAl> as theassociated field of sets of A. Conversely, thassociated Boolean algebra of a
field of setsS = (S, A) is the structur&* := (A, S, &, ~g,N, U).

It will be clear that the Boolean algebrasand (A.)* will always be isomorphic; however, we will only
have that = (S*). if S has some special properties.

Definition 5.20 A field of setsS = (S, A) is discrete if A contains all singletons of, differentiated if for
any two distinct points # ¢ of S there is a set € A such thats € a andt ¢ a, andfull if A = P(S). Sis
compact if every subset ofd with the finite intersection property has a non-empty intersectiondegudiptive
if it is both differentiated and compact.

In a descriptive field of sets, the points and the admissible sets heddnce there are sufficiently many
admissible sets to separate distinct points, while there are enough points to witness all the ultrafilters of the
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algebra. More precisely, one can prove that for any field of$ets(S, A), the map
s—{a€A|se€a} (18)

provides an bijection betweedhand the collection of ultrafilters &* iff S is descriptive.

Remark 5.21 Our terminology strongly suggests a topological connection. In order to make this explicit, note
that the collection of admissible sets of a field of sets (S, A) forms a basis for a topology4; and that,
conversely, we may take the g€l (X) of clopen(that is, closed and open) elements of a topolBgy (X, 7)
as a collection of admissible sets. In accordance with this, we define a Stlisef to beopen if it is a union
of admissible sets, andosed if it is an intersection of admissible sets. Thus the study of fields of sets takes
us into a rather specific branch of set-theoretic topology in which all spacesrardimensional, that is, have
a basis of clopens.

One may prove for any field of se$s= (.S, A) thatS is descriptive iff(S, 0.4) is aStone space, that is,o 4
is a compact, Hausdorff and zero-dimensional topology. Basically then, descriptive fields of sets and Stone
spaces are two ways of formulating the same mathematical objects; the difference is no more than a matter of
focus, be it on the topology itself, or rather on its sets of clopens.

The topological nature also comes out clearly when we distusphisms

Definition 5.22 Given two fields of set§ = (S, A) andS' = (5’, A’), we callamap : S — S’ continuous
if the set
0*(a') :={se€ S|0(s) €ad} (19)

belongs toA foralla’ € A’.
We define the duaj, : UfA’ — UfA of a morphismy : A — A’ between two Boolean algebras as the
mapn.(uv') :={a € A | n(a) € u'}.

Without further proof we mention (our reformulation of) the following seminal result froronge [1071]
(see DHNSTONE[BE] for an extensive discussion of its impact).

Theorem 5.23 (Stone duality) The functors(-)* and (-). form a dual equivalence between the category of
Boolean algebras with homomorphism, and that of descriptive fields of sets with continuous maps.

The duality forsaos can now be developed by incorporating the ultrafilter fun¢tnrinto the Stone
duality: the dual object representing a Boolean algebra with operators will combireathand its dual
Kripke frame in one structure.

Definition 5.24 A general T-frame is a structuréG = (G, R, A), whereR = {Ry | V € 7} is a family of
relations on, such that (iYG, R) is ar-frame and (ii){G, A) is a field of sets such that (iii} is closed under
the operation Ry ) for each operation symb& € 7. The structuréG, R) is called theunderlying Kripke
frame ofG.

Given a general fram@& = (G, R, A), defineG* as the subalgebra ¢, R)™ with carrier A. Conversely,
given ar-BAO A, define its dual general frame, as the structuréUs (A), {Ryx | V € 7}, A).

As in the case of the duals of Boolean algebras, general frames of the\foane rather special, also with
respect to the interaction between their relational and the topological side. We let notions like differentiated-
ness apply to a general fram@, R, A) as it applies to the underlying field of séts, A).

Definition 5.25 A general frameG = (G, R, A) is tight if every tuple(s, sy,..., s,) Which isnotin the
relation Ry (with V an arbitrary relation symbol of arity) is witnessed by admissible sets, . . ., a,, such
thats; € a; for eachi, while s ¢ (Rv)(a1,...,ay,). G is refined if it is both differentiated and tight, and
descriptive if it is both refined and compact.

Remark 5.26 An easy proof shows that we may reformulate the property of tightness equivalently by requir-
ing that (restricting to the basic modal language hétg)] = (\{a € A | s € [R]a} for each points in
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G = (G, R, A). In other words, the relatioR is point-closed, since each point d& has aclosedsuccessor set
— closed in the induced topologyu, that is. Thus from a topological perspective, descriptive general frames
can be identified with point-closed relational Stone spaces.

In order to turn the constructior(s)* and (-). into functors we have to introduce morphisms between
(descriptive) general frames as well. Again, we combine modal and topological aspects in the natural way.

Definition 5.27 Given two general frames = (G, R, A) andG’ = (G', R, A’),amap : G — G'iscalled a
continuous bounded morphism if itis both a bounded morphism froid, R) to (G’, R') and a continuous map
from (G, A) to (G’, A’). The category of descriptive generaframes with continuous bounded morphisms is
denoted a®GF..

Now let us see how-)* and(-). operate on morphisms. For the definitiondéffor 6 a continuous bounded
morphism we refer to[(19); conversely, given a homomorphjsmA — A’ between twor-BAOS, definer.

as in Definition[5.22, that isi, (v') := {a € A | n(a) € u}. We have now arrived at the main result of this
subsection, Theore 5]28 below, which is due LGBLATT [34,39]. Independently, &KIA [?3] came up
with such a duality for a more specific variety of algebras.

Theorem 5.28 The functors(-)* and (-). constitute a dual equivalence between the categdik®. and
DGF.

Proof. Itis rather straightforward to verify thét)* and(-).. are functors which form a dual adjunction between

the categorieDGF, andBAO;. Itis then left to show thas = (G*). for any descriptive general frani& and

thatA = (A,)* for any Boolean algebra with-operators\. But both of these claims are easy to establish: for

the first isomorphism, take the map pf](18); and for the second isomorphism, simply take the Stone embedding
~of (I4). The proof details are left to the reader. O

It is straightforward to derive from this duality that for any clas®sf general frames, the class of dual
algebras algebraizds (once we have properly defined all notions involved), but we leave the details for the
reader.

5.5 Simplicity and Subdirect irreducibility

As an application of these dualities, let us look at the frame counterparts of the notions of simplicity and
subdirect irreducibility. In the complex duality of sectipn]5.2, this question has a satisfactory answer, at least
for subdirect irreducibility:

Theorem 5.29 LetS be ar-frame. Then
(i) St is simple only if each point is a root &f
(i) ST is subdirectly irreducible iff is rooted.

Proof. Concerning subdirect irreducibility, the direction from right to left, first mentioneddn &BLATT [B3Y],
was already treated in Examgle 4.15. The proof of the converse implication appeared fikstBINS99].
For its details, suppose thatis a radix of the algebr&™, and consider an arbitrary poiate S. Then by
definition of radicality we find thap C (R4){s} for some compound modalit§. It is easy to see that this
implies Ryrs for eachr € p, so that each element pfis in fact a root ofS. Hence, ifS* is simple, then every
point is a root ofS, since every non-empty subset®fs a radix ofS™ by Theorenj 4.16. IE* is s.i., then by
the same theorem it has at least one radix; rootednesshofs follows from the fact that radical elements are
non-empty by definition. O

Perhaps contrary to the reader’s expectation, the converse of Thgorefn 5.29(i) is not true.

Example 5.30 Consider the fram& = (Z, R) for the basic modal similarity type, with as the set of integers
andRxy iff |z — y| = 1. Then clearly every integer is a root &f while on the other hand,* is not simple.
An easy way to see this is by proving that the only radical elemerits adre the finite subsets @.
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In the topological duality of section %.4, the correspondence between subdirect irreducibility and rooted-
ness is not so nice either. In general, subdirect irreducibilitk afeither implies rootedness éf,, nor is it
implied by it, as the following examples fronaSIBIN [99] witness.

Example 5.31 For an example of the first kind, take the subalgebra- (N, >)* based on the collection
of finite and cofinite subsets of the s&tof natural numbers. As we will see later oh,is not subdirectly
irreducible. However, the frantg, is rooted, since it adds one reflexive painfcorresponding to the ultrafilter
of the cofinite sets) tdV, >), in such a way that sees all other points.

Conversely, consider the franfeof the previous example, and take its subalgdbitaased on the finite
and cofinite sets. It is easy to see thais s.i.: simply note that every singleton is radical. However, the one
reflexive pointoo thatB, adds toZ is not related to any other point iB,.. Hence B, provides an example of
an s.i. algebra of which the dual general frame has no roots at all.

These examples indicate that if we are looking for a characterization of the notion of subdirect irreducibil-
ity, it does not suffice to look at the dual Kripke frame alone: we have to take the topology into account. Our
characterization will be in terms of so-called topological roots or, briefly, topo-roots. Recall that af a
t-frameS = (S, R) is a pointr of S such thatkR“[r] = S, where the relatiolR“ is given as the union of the
accessibility relations of the compound diamonds. It is straightforward to verify that in a frame of thé& form
this boils down to

RYuv iff there is a compound diamor@ with ¢a € w forall a € v. (20)

Our definition of theopo-reachability relation is obtained by swapping the universal and the existential quan-
tifier in (20).

Definition 5.32 Given a Boolean algebra with operatdrsdefine theopo-reachabilityrelation R* C Uf A x
Uf A as follows:

R*uw iff for all a € v there is a compound diamoddwith ¢a € w. (21)

We letT, denote the set dbpo-rootsof A,; that is, the collection of those ultrafiltetssuch thatR*[u] =
UfA.

The topological terminology will be clarified by the following alternative characterizatidg*of

Proposition 5.33 Let A be some Boolean algebra withoperators, and: some ultrafilter of\. ThenR*[u] =
Re[u]; that is, R*[u] is the topological closure ak“[u] in the Stone topology ...

As the following theorem from ¥NEMA [I08] witnesses, topo-roots provide the right tool for the charac-
terization of the notions of simplicity and subdirect irreducibility.
Theorem 5.34 Let A be a Boolean algebra with-operators. Then
(i) Aissimpleiffly = UfA;
(ii) A is subdirectly irreducible ifffy is open and non-empty.
Unfortunately, we do not have the space for a proof or even a proof sketch. We confine ourselves to noting

that the proof makes use of the correspondence between modal filteraraf closed, hereditary subsets of
A,.

Example 5.35 It is now obvious why the algebra of Example[5:31 is not s.i.: its dual frame does have a
(single) rootw but the sef{w} of roots is not open in the topology @f,. The algebra of the same example
on the other hani s.i. Whereas its dual franig, has narootsat all, almost every point dB. is a topo-root.

As corollaries of the last theorem we obtain some (well-)known results showing that in many cases, nicer
characterizations are indeed possible. We call a Boolean algebra with operatansitive if it has amaster
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modality, that is, a compound diamony such thatéa < $a for all compound diamond¢$ and alla in

A. (With some authors, this property goes under the nameealfk transitivity). The following result is
due to S\MBIN [99] (whereas in the closely related field of intuitionistic logic, similar characterizations of
s.i. Heyting algebras in terms of their dual structures had been known for some timeagfiAH?4]).

Corollary 5.36 Let A be anw-transitive Boolean algebra with operators. Théans subdirectly irreducible
iff the collection of roots oA\, is non-empty and open.

Proof. This follows from Theoreni 5.34 by the observation thatifs w-transitive, thenR* = RY = R,
(where¢ is the master modality af), whence the notions of root and topo-root coincide. O

Results concerning the dualsfofite BAOS are already covered by TheorEm 5.29, since for faes the
complex and the topological dualities coincide.

5.6 Class operations

While the functorg-)™ and(-), do not form a duality, they do provide an interesting link between the cate-
goriesFr, andBAO,. We already discussed the role of the ‘double duals’, that iscémenical embedding
algebraA? = (A,)" of aBAO A, and theultrafilter extension (ST), of a frameS. But there is also a wealth

of results concerning the direct interaction of the mentioned functors with the more ‘intrinsic’ constructions
on algebras and frames. We confine ourselves here to the algebraic operations of taking homomorphic im-
ages, subalgebras and products, and their frame counterparts of taking generated subframes, bounded morpt
images, and disjoint unions. The results listed in Thedrem 5.37 are more or less direct consequences of the
dualities established earlier on; therefore, we leave the proofs to the reader.

Theorem 5.37 LetS, S’ and all S; with ¢ € I ber-frames, and le\, A" and all A; with j € J be Boolean
algebras withr-operators. Then

() 0:S— Sonlyifot: ST - ST;

(i) 6:S— S onlyifot .St — S*;

(i) n: A A’ onlyifne : A, — A,;

(iv) n: A — A’ onlyifne : A, — A,;

W) (CierSi)” =1Lies S

vi) (TLiesAi), = > jes(Ay)e if Jis finite.

In generalitis not true that the ultrafilter frar(le] ;. ; A; )« is isomorphic to the disjoint uniop_ ;. ; (A;)e:

the problem is that for infinitd, not every ultrafilter of the product can be linked to an ultrafilter of one of
the factors. Fortunately, we do have the following ‘second best’ connection, essentially daer&&[2 1],

which states that the ultrafilter frame of the product is isomorphic to the disjoint union of the ultrafilter frames
of all ultraproductsof the original algebras over the index set.

Theorem 5.38 Let{A,; | i € I} be a family of Boolean algebras withoperators. Then

([+) = = (@0,

iel DeUf(I)

Proof. Given an element of A := [[; A;, letd(a) := {i € I | a(i) # L} be thesupport set of a. Thenitis
not hard to prove that[u] := {d(a) | a € u} is an ultrafilter oved for everyu € Uf(A).

Now given an ultrafilterD over I, the natural homomorphisw” : a — a/D is a surjective homomor-
phism fromA ontoAp := [], A;. So by Theoremh 5.8[{iv), its duaf’ : (Ap), — A, is a frame embedding.
We now claim that

Range (vP) = {u € UfA | d[u] = D}. (22)
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For the inclusionC, take an arbitrary ultrafilter of Ap. For anya € vP(z), it holds by definition that
vP(a) = a/D belongs toz; but thena/D must be distinct from the bottom element&p. Henced(a) € D
by definition ofd. Since this applies to arbitrary € v2(2) it follows thatd[vP(z)] € D. But then we must
have equality because boilfiv? (2)] and D are ultrafilters oved. For the converse inclusion, if € UfA
satisfiesi[u] = D, then the set.p := {a/D | a € u} is easily seen to be an ultrafilter &f, which satisfies
vP (up) = u. This proves|(22).

Clearly for each ultrafilteD over I, Range (I/.D) is (the domain of) a generated subframeAqf it now
follows from the fact thatl[u| € Uf(I) and (2R) that these subframes are mutually disjoint, but jointly cover
the full domainUf A of A,. From this the theorem is immediate. 0

On the basis of the Theorermns .37 @nd]5.38 we may develop a ‘calculus of class operations’. For instance,
letting S¢ denote the operation of taking generated subframes, Theoreji 5.37(i) can be read as’st&ting
HCm’, meaning thatCmS¢(C) € HCm(C) for every frame clas€. There are many constructions of either
frames or algebras that have been investigated, and many results, similar to the THeonems[5.3F and 5.38, hav
been obtained. The interested reader is referred to workdyyDBLATT, for instance [4@,241].

Unfortunately, we have only space here for one further example (which will be used in the next section).

Proposition 5.39 For any classC of framesPuCm(C) € SCmPu(C).

Proof. Let {S; | ¢ € I} be a family ofr-frames, and letD be an ultrafilter over/. Define the mapy :
[1,P(Si)/D — P(I];Si/D) by putting, fors/D in [, S;/D:

s/Den(a/D) :«<—= {iel|s(i)e€ali)} eD.
We leave it for the reader to verify that this is a well-defined embeddirid @87 /D into ([];S;/D)*. O

We will give one application of the Theorerns .37 @and]5.38 here, more use of these results will be made
in the next sections. Theorem 35.40 below, due WLGBLATT & THOMASON [47], can be read as a modal
dual of Birkhoff’s theorem identifying varieties with equational classes. For a definition of Birkhoff’s theorem
from acoalgebraicperspective, the reader is referred to sedfian 14.

Theorem 5.40 (Goldblatt-Thomason Theorem)Let C be a class of-frames. Then

(i) if Cis modally definable then it reflects ultrafilter extensions, and is closed under taking bounded morphic
images, generated subframes and disjoint unions;

(i) the converse of|(i) holds @ is closed under taking ultrapowers, (for instance( ifs elementary).

Proof. First assume that is modally definable; that is; = Fr(I") for some sel” of modalr-formulas (in
fact, we may takd" to the logic ofC, but this is not relevant now). Now suppose that the fré&his the
bounded morphic image of sorSén C. FromS in C it follows thatS I T' whenceS™ = I'™; but at the same
time we see that by Theorem 5.87(i)," is a subalgebra d*. Hence als®'" |= I'™, soS’ = I" which
immediately implies tha®’ belongs toC. This shows tha€ is closed under taking bounded morphic images;
the case of generated subframes and disjoint unions is proved similarly.

Now suppose that the ultrafilter extensiaeS = (S*), belongs toC. Then((St).)" = I'¥, and so
St IF T sinceS™ is a subalgebra of(S*).)" by the dnsson-Tarski Theorefn 5|15. But fr@t = '~ it
follows thatS I+ T" whenceS belongs toC. This shows tha€ reflects ultrafilter extensions, and thus proves
part ().

For the second part, assume tkagnjoys all of the listed closure properties. In order to prove that
Fr(Log(C)), take an arbitrary fram® such thasS |- Log(C). It suffices to show th&f actually belongs tq.

It follows from S I Log(C) that ST validates the equational theory of the claas(C), and so by
Birkhoff’s variety theorenS™ belongs to the varietyarCm(C) generated by the class of complex algebras
overC. Then by Tarski'sHSP-theoremS* belongs tatHSPCm(C). That is, for some family{F; | i € I} of
frames inC, and some algebr& we have that

St « A — HIFj
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Note that[], F; = (32, F;)" by Theoren{ 5.3[v), and th& := 3", F; belongs toC. Then using Theo-
rem[53F[iii) and[(iv) we find that

(87)s = As = (F7),.
Now it follows by Theorem?? in Chapter?? of HBML that (F'), is a bounded morphic image of some «

ultrapowerF/ /D of F. Then by the various listed closure propertieofve show that subsequently, each
of the framesF’ /D, (F*),, A, and(ST), belong toC. Finally then, als& belongs toC since its ultrafilter

extension(S*), does so. O
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6 Logics and varieties

This section, which forms the heart of the algebra part of this chapter, discusses the connection between norma
modal logics UMLS) and varieties oBAos. The main part of the section consists in showing how standard
properties of a logic turn up on the algebraic side of the picture, but we start with showing hiattitteeof

normal modal logics is dually isomorphic to that of the varietiesabs.

Definition 6.1 Given a normal modal logi€, we say that a normal modal logi¢ is a normal extension of
L simply if L C L'. The lattice of normal extensions éfis denoted a¥Ext(L).

We have already seen that with every normal madldgic we may associate a varieBAO, (L) of 7-
BAOS. Conversely, every class of these algebras gives rise to a normal modal logic.

Definition 6.2 Given a clas¥K of Boolean algebras with-operators, we definéog(K) := {¢ € Fma, |

K¢~}

The following theorem then describes the intimate connection between normal modal logics and varieties
of BAOs. Similar results can be proved about arbitrary modal logics and varietiegef and about monotone
modal logics and varieties @&amMs.

Theorem 6.3 (i) The map8BAO.(-) and Log(-) form a Galois connection, in the sense that for every'set
of 7-formulas, and every clads of Boolean algebras with-operators,I" C Log(K) iff K C BAO,(T).

(i) The stable formula sets of this connection are precisely the normal moeltgjics, while the stable
classes of algebras are precisely the varieties of Boolean algebrasvagerators.

(ili) Hence,Log is a dual isomorphism between the lattice of subvarietid® @, and the latticeNExt (K )
of normal modatr-logics

Proof. Itis not hard to see the Galois connection, since we fiave Log(K) iff A =+~ for all A in K and
ally € T'iff K < BAO,(I).

Now letI" be a stable set of formulas of this connection, that is, supposé'thatLog(BAO.(T")); one
easily infers that such B must be a normal modal logic. Conversely,Lifis a nhormal modal logic, then
L = Log(BAO.(L)) by the Algebraization Theorem 3]13.

At the other side of the connection, itis immediate from the definition that everyBhs(I") is a variety.
Conversely, assume th¥tis a variety ofr-BAos. Then clearlyy C BAO.(Log(V)) since this holds for any
class; for the opposite inclusion, by Birkhoff’s variety theorem it suffices to shovBth@t. (Log(V)) validates
every equation o¥/. So suppose thatl = ¢ ~ v; thenV | (p < ¢) = T sinceV has a Boolean basis;
from this it follows thaty < 1 € Log(V), whenceBAO.(Log(V)) validates the equatiofy «— 1) ~ T,
by definition. ButBAO.(Log(V)) also has a Boolean basis, so we find tBAD,(Log(V)) = ¢ ~ v, as
required.

The last part of the theorem is then immediate by the general theory of Galois connections. O

The dual isomorphism given by Theorgm] 6.3, linking the lattice of normal modal logics to that of varieties
of BAOS, has yielded a wealth of information on modal logics. For instance, universal algebraic theory on
splitting algebras led algebraically minded modal logicians to strong results ordtigeee of Kripke incom-
pleteness of a modal logic, see for instanceLBk [15]. We will not discuss the lattice of modal logics any
further in this chapter, referring the reader to the Chaemnd?? of HBML. <

Instead we turn to the question, how standard logical phenomena fit in the algebraic framework presented
so far. The answer to this question depends on the issue at stake, so let us consider a number of examples:

completenesss a property not so much of a single logic but rather of a pair of logics. For instance, Kripke
completeness of a logif means that. coincides with the logic of its frame clags Algebraically, this
corresponds to the fact that the vari@®AO, (L) is generated by the class of complex algelasC).
More details will be provided in subsectipn|6.1.

28



canonicity of a modal logicL has, as we will see in subsectipn]6.2, an algebraic counterpart in the property
of a class of algebras being closed under taking canonical extensions.

correspondencas more about formulas, or equations, than about logics, or varieties of algebras. Nevertheless,
it has a clear algebraic meaning: We can say that an equation corresponds, over a frame class C to a
first-order formulax in the language of frames, if, for all fram8sn C, we have thab* = s ~ tiff S = «.

interpolation is a property of a normal modal logic. In subsectjor] 6.3 we will see that it corresponds to an
amalgamation property on the algebraic side.

Let us now move to a more detailed discussion of some of these issues.

6.1 Completeness

As we mentioned already, Theorém 3.13 can be readgenaralalgebraiccompleteness result. So in this
respect the algebraic semantics behaves much better than the relational one: Classes of Kripke frames ar
generally not adequate for revealing all distinctions between normal modal logiasgseefor the details. <«

It clearly meanssomething for a modal logic to be Kripke complete, so what about the associated algebraic
variety? For an answer, recall the notion gdexfecteao from Definition[5.1.

Theorem 6.4 A normal modalr-logic L is (Kripke) complete ifBAO, (L) is generated by its perfect mem-
bers.

Proof. Straightforward by the observation that any varietpf BAOS is generated by its perfect members iff
its equational theory coincides with that of the cl@ssStr(V). 0

This inspires the following definition.

Definition 6.5 A varietyV of Boolean algebras with-operators is calleKripke) complete if V is generated
by its perfect members.

The phenomenon of Kripke incompleteness of normal modal logics is thus algebraically reflected by the
fact that many different varieties @hos may share the same class of perfect members.

The formulation of Theorerfi §.4 strongly suggests that Kripke completeness is only orfaroilyaof
properties pertaining to normal modal logics. In fact, one may wonder whether varieties of Boolean algebras
with operators are generated by those of their members that meet any given constraint. For instance, we migh
consider varieties that are generated by tfiaite members. Since every finiao is perfect this gives a
strong version of Kripke completeness that is known on the logical side dmiteemodel propertyof the
logic.

In this respect it is also interesting to see what happens if we consetgtening®r variationsof the no-
tion of perfection. For instance, recall that perfection eba is the conjunction of three properties: atomicity
and completeness of the underlying Boolean algebra, and complete additivity of the operators. Hence, we may
naturally ask which varieties &aos are generated by their atomic members, their complete and completely
additive members, etc. Recent investigations have provided answers to some of these questions. First how
ever, we mention a result ofuBszkowskI [18] which has been around for almost twenty years already, but
which seems to have received little attention. Call a first-order formula or equation in the language of Boolean
algebras with operatotsodally guarded if every variable occurs within the scope of a modality.

Theorem 6.6 Let V be a variety of expanded Boolean algebras which is axiomatized by modally guarded
equations. Thek is generated by its atomic members.

Proof. Given twoBAEs A and A’, call an embedding) : A — A’ guarded if for all guarded formulas
o(x1,...,x), and allay, ..., a; € A, itholds thatA = ¢[aq, ..., a] iff A = ¢[nay,...,nax]. Then

everyBAE A has a guarded embedding into an atoBi€. (23)
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It is straightforward to prove the theorem from](23): Any algehria V can be embedded into an atorsiee
B that satisfies the same guarded sentencés aad thus in particular, also belongs\to

For a proof of [2B), letA be somer-expanded Boolean algebra. By the Stone representation theorem,
we may assume that for some sét A is of the form(A, X, @, ~x,U,N, {V* | V € 7}). In fact, we may
assume that every non-emptye A is aninfinite subset ofX. (Otherwise, replac& with the setX x w and,
using the natural embeddirfg— P x w of the power set algebra df into that of X x w, continue with the
image ofA under this map.) Now leB be the collection of those subsétef X that differ in at most finitely
many elements from some elementifthat is,

B:={bC X |(an~xb)U(bn~xa)is finite, for somer € A}.

It is not hard to see that for evetyc B there is in fact auniqueelementa € A such that the symmetric
difference(a N ~xb) U (b N ~xa) is finite; this element will be denoted &%

One then easily proves that the struct(e X, @, ~x, U, N) is an atomic Boolean algebra, so if we define,
for V e 7:

VE(by, ... by) = VA®DE, ... bY),

we obtain ar-expanded Boolean algeha Finally, a straightforward induction on the complexity of guarded
formulas shows that the identity map is the required guarded embeddingmtd B. This proves[(Z3). O

However, the restriction tguardedaxioms in Theoreni 8.6 is essential, as the following result BRY
EMA [LO6] implies that there are varieties ®hos that haveno atomic members.

Theorem 6.7 There are nontrivial varieties of Boolean algebras with operators of which all members are
atomless.

Proof. The basic idea underlying this proof is straightforward: construct a particular, nontexalA, and
a unary termr(z) such that the formula = Vz(L < 2 = L < m(z) < x) holds inA. This shows not only
thatA is atomless, but that this atomlessness is withesseddxyrafunction
Lacking the space for further details concerning the constructidy afe briefly sketch how to prove the
theorem from here. Lek be the class oBAOs satisfyinga. Without loss of generality, assume théhas a
global modality (see sectidn 8.2). It then follows that the cBR&K) is a variety, and thus, that the formula
«, being a universal Horn sentence, holds in every member of this variety. But then every such algebra is
atomless, so the theorem follows if we can prove #é nontrivial. But this is an immediate consequence of
the existence of the algebsa a

Regarding the order/lattice theoretic property of completeness, a similar result obtains, duetdd1].
Theorem 6.8 There are nontrivial varieties of Boolean algebras with operators without complete members.

Proof. Consider the similarity type aense logic as in sectiorf 8l1. Le® = (N, <) be the bidirectional
frame of the natural numbers with the standard ordering. That is, we interpret the diafpradsd & p via
the relations< and >, respectively. Furthermore, lét be the subalgebra & based on the collection of
finite and cofinite subsets &f. We claim thatvar(A), the variety generated by, has no complete members.
Suppose for contradiction th&tis a complete member &far(A).

Each natural number is, insideS, the unique point satisfying the variable free formyla := OB T A
D’;,“L. Observe that the inequalities, A ¢,, <X L (for m # n), andy, <X Crpe,41 hold in A, hence in
Var(A), and therefore, irC. Definea, = ¢S, andb, := ¢S, ;. Itis then immediate that, < <pby,
by, < Opapy1, anda, A by, = L, for all m,n (we write O rather than<>%). But C is complete, so it
contains elements = \/, a, andb = \/,, b,, for which we easily derive that < ¢pb, b < Cpa, and
a ANb = L. Hence, from the fact thaf E CpOpx <X Opz it follows thata < Opa A Op—a, whence
aN(OpaVOp—a) = L. ThusC refutes the inequality pz < Cp(zAOpxVOp—zx), while a straightforward
proof shows this inequality to hold i&, and hence, iVar(A). This provides the required contradiction.O
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For more information on such notions of incompleteness that are weaker than Kripke incompleteness, the
reader is referred toIlLAK [8T]. To mention one open problem: it is not known whether an analogue of the
previous two results can be proved for the notion of completely additivity.

6.2 Canonicity

In Chapter?? of HBML, a normal modal logid. is defined to becanonical if C;, I+ L, whereCy, is the <«
canonical frame for the logi€. In order to put this in an algebraic perspective, first note thatt L is
equivalent to the requirement th@t = L~. Also, recall from Exampl¢ 5.13 that the canonical frame for
L is isomorphic to the ultrafilter frame of the Lindenbaum-Tarski alg&hraHence, we see that the issue is
whether(F1)? = ((Fr)e.)™ = L¥, whereas we know thd@t; = L~, cf. Theoren{ 3.17. This inspires the
following definition.

Definition 6.9 A class of Boolean algebras withoperators isanonical if it is closed under taking canonical
embedding algebras. Accordingly, an equatjas calledcanonical if the varietyBAO(n) is canonical, that
is, iIf A E=nonlyif A7 =1, for all BAOS A.

From the definition it is obvious that any normal modal logic is canonical if the vaB&@ (L) is
canonical, but what about the converse implication? Here we need to be a bit more precise about the definition
of the canonical frame; in particular, about the size of the set of variables. For, observe that the notion of
maximalityof an L-consistent set of formulas depends on the surrounding set of formulas, and hence, on the set
X of variables. Thus the shape of the canonical fréipelepends on theizeof the setX of variables; in order
to make this dependence explicit, we will wrifg, (X') for the canonical frame in which the points are maximal
L-consistent subsets éfma(X). A similarly convention applies to Lindenbaum-Tarski algebras. Taking this
cardinal subtlety into account, we arrive at a sharpened definition of the logical concept of canonicity.

Definition 6.10 A normal modal logicL is canonical if Cr(X) I L for all setsX. A formula ¢ is called
canonical ifCr,(X) I ¢ for all normal modal logicd. containinge.

Fortunately, we can prove that the logical and the algebraic notion of canonicity coincide.
Theorem 6.11 For any normal modat-logic L, L is canonical iffBAO, (L) is a canonical variety.

Proof. Let A be an arbitrary algebra BAO (L), and letX be a set containing a separate variakjdor each

a € A. ThenA is a homomorphic image d,(X) by the fact thatf;,(X) is the free algebra foBAO, (L)
over the sefX], see Theorem 318 for the case of countabléNow two applications of Theorem 5|37 show
that (F(X))” — A?. But (F.(X))” belongs toBAO.(L) by canonicity ofL, and soA? is in BAO.(L)
because varieties are closed under taking homomorphic images. O

It is not known whether, for the varie®AO.. (L) to be canonical, it suffices that the canonical frames for
countable variable sets validale Leaving this question as an open problem, we turn to the logiodkation
of the concept of canonicity. This lies in its applications in modal completeness theory, see Clrapiter
HBML for details. Algebraically, these applications are connected to the following result. <

Theorem 6.12 LetV be a variety of Boolean algebras withoperators. IfV is canonical, therV is complete.
Proof. If V is canonical theiv C SCmCst(V) so clearlyV is generated by its perfect members. O

So where do we find canonical varieties? In general there seem to be two roads here, a syntactic and &
model-theoretic one. The syntactic approach is the most important one for applications. Basically, the idea is
to find out whether a logic is canonical on the basis of the syntactic shape of the axioms. Now in general it
is undecidablevhether a given formula is canonical (see RACHT [I/4] for a proof). Fortunately, however,
there are fairly large classes of canonical formulas that occur frequently in practice, and are easily recognized.
We confine our attention here 8ahlqvist formulas — these are also discussed in the Chape@rand?? of
HBML. |
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In the sequel it will be convenient to assume that the primitive symbols of our language are, besides the
Boolean connectives, L, -, A andV, and the modalitie$V | V € 7}, also the implication symbe}, and
the dual modalitie§A | V € 7}. Also, recall that boxes are the duals of diamonds, that ispafy modal
operators.

Definition 6.13 Given a modal similarity type, we define the following classes of terms/formulasbéed

atom is a variable, possibly preceded by a string of boxes. A formuia positive (negative) if all of its
variables are in the scope of an even (odd, respectively) number of negation symiSalggist formula is

a formula of the formp — ¢, whereyp is built up from negative formulas, boxed atoms, and constants, using
only modalities A andV, while ¢ is a positive formula.

The following results are some of the most celebrated general results in modal logic. Theokem 6.14 below,
from SAHLQVIST [98], put the crown on the work of many contemporary modal logicians.

Theorem 6.14 (Sahlgvist Canonicity) Every Sahlqvist formula is canonical.

For theproof, the reader is referred to sectign 7. As a corollary of this theorem ancbtirespondence
result for Sahlqgvist formulas (see Chap®&rof HBML), we obtain the following. |

Corollary 6.15 Let L. = K;.X be a normal modal logic axiomatized by a collectidrof Sahlqvist axioms.
ThenL is sound and complete with respect to the class of frames defined by the first-order correspondents of
the formulas of..

Remark 6.16 Although the Sahlqgvist canonicity theorem takes care of most of the canonical formulas that
one encounters in practice, it certainly does not cover the concept completely. For instameyk® &
VAKARELOV [49] widen the class to that of so-call@tuctiveformulas, see Chapté&? of HBML for some <«
discussion. GNSSON[6Y] generalizes an example ofNE [?5] to the result that for every positive formula
o(x), the equationp(z V y) =~ ¢(x) V ¢(y) is canonical. And of course, there are individual examples of
canonical formulas, such as the conjunction of the transitivity axiamd the McKinsey axiom <&z < ¢Ox,

cf. [69] for an algebraic proof.

As we mentioned, a second way to arrive at canonical varieti@\o§ proceeds via a model-theoretic
road. The basic idea here is that varieties are canonical if they cagnbeated in a certain way. A first and
seminal result in this direction was the following.

Theorem 6.17 (Fine) If K is an elementary class of frames, thesy(K) is a canonical normal modal logic.

Algebraically, Theorenl 6.17 reads that elementary frame classes generate canonical varieties. This resul
points at an intriguing connection between elementary frame classes and canonical varieties. In particular, it
has been an open problem for a long time whether the converse of Fine’s theorem would hold as well, that is,
whether every canonical variety would be generated by some elementary frame class. Recently however, this
issue has been settled negatively io®BLATT, HODKINSON & V ENEMA [48].

Theorem 6.18 There is a canonical variety that is not generated by any elementary frame class.

Proof. The example that we give here is based on a famous graph-theoretic result duésoHerte graph
isa pairtG = (G, E) with E an irreflexive, symmetric relation aii. A k-coloring of G is a partition ofG into
k independent sets, i.e., sets containing no pair of neighboring vertices.chh@natic number x(G) of G is
the smallest numbeér for which it has a-coloring, andx if it has no finite coloring. Acycle in G is a path
r1ExoF ... Ex,Fx, such thath > 3 andzy, ..., z, are all distinct vertices; the length of this cyclenis

Now intuitively, a lack of short cycles, indicating a certain ‘looseness’ of the graph, should make it easy
to color a graph with few colors, butfb0s [22] reveals the existence of a sequence of finite graphs whose
n-th memberG,, has chromaticity bigger tham while G,, hasno cycles of length< n. Fix such a sequence
{G,, | n > 2}, under the additional assumption th&t,| > |G,,| if » > m. (Here|G| denotes the number of
vertices inG.)
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The modal similarity type: of our variety EG will have two diamonds$ andE. On a graphG, the
first of these will be interpreted through the edge relation, and the second, througiblibérelationYs =
G x G. That is,E is aglobal modality cf. sectior{8J2. In the sequel we will blur the distinction between the
structures G, E, Y¢) and(G, E), for instance callindG, E, T¢) " the complex algebra @&, and denoting
it, accordingly, asG ™.

For the definition ofEG we extend the notion of chromaticity to arbitrary algebras. An eleraesftan
€-BAO A is calledindependent if a A Oa = L; write x(A) for the chromatic number of, that is, for the
leastk such that there are independent. . ., a, witha; V ---Va, = T anda; A aj = L fori # j, putting
Xx(A) = o if there is no finite suclt. Note that this definition generalizes the one given earlier, in the sense
that for any grapl@, x(G) = x(G™).

Now let), ,,, be the first order formula in this algebraic language stating thiahidis at leas2™ elements,
thenx(A) > m, and define

U= {12} U{Yg, | | 7 > 2},
I''={x < Ex,EEx < Ez,E-E—~2 <z, Ox < Ex}.

Note thatl' is the set of equations definirig to be a global modality, cf. Definitiof 8]11 for the logical
incarnation ofl". Let C denote the class of algebras satisfying the formudlas I", and letEG denote the
variety generated bg. It follows from Theorenj 8.15 th&G = SP(C).

We first show thakG is canonical. Note that sinceis an elementary class, it suffices by Theoifem]6.19
below to prove tha€ itself is canonical. Take an arbitrary algelan C. If A is finite, thenA” = A isin C
by assumption. I\ is infinite, then|A| > 2/C=| for all n > 2, so byA = v, |, We obtain that¢(A) > n for
all n > 2. Clearly theny(A) = oco; from this we may derive that the ultrafilter framg has areflexivepoint,
which implies that A,) ™, being the complex algebra #f,, has infinite chromaticity as well. But then we see
thatA? = v, ,, for all m,n, so we certainly hav&” = V. Itis easily seen that the formul&sare canonical,
so that we have proved thaf belongs taC.

It is left to prove thatEG is not elementarily generated. Theorem 4.12 afLGBLATT [40] states that
any varietyV of BAOs which is elementarily generated, is generated by an elementary fram& cdash that
Cst(V) C K C Str(V). Hence, for our purpose it suffices to come up with a family of frame&SiGEG) that
provide an ultraproduct outsidir(EG), and the obvious candidates for this are thedSritames{G,, | n >
2}. It is easy to check thak,” = U for eachn > 2, so eachG; belongs toC. But then all Erds frames
belong toCst(C), because eactt,,, being finite, is isomorphic t¢G;).. Now take a non-principal ultrafilter
D over the sew \ {0, 1}. Observe that for each, only finitely many of theG,, have any cycles of lengtk;
hence, by tos’ theorem, the ultraprod{gt, G,, has no cycles at all, and hence, iRi€olorable

This shows thaf [ , G,, does not belong t@, since it follows fromC |= 11 » that every nontrivial algebra
in C has chromaticity at least three. But fairly direct proofs show ${&f; A;) > x(A;) for all ¢, and that
x(A) > x(A") if A — A’. This implies thaty(A) > 2 for all A in SP(C), so by the fact tha$P(C) = EG it
follows that(] ], G, )™ does not belong t&G. O

Nevertheless, the converse of Fine’s theorem may fail be true in general, in many interesting cases it does
hold — we refer to ®@LDBLATT, HODKINSON & V ENEMA [48] for a state of the art survey. Note that it is
still an open problem whether eveiipitely axiomatizableanonical variety is elementarily generated.

Finally, recent work has put Fine’s result in a wider algebraic context. We formulate the following theorem
for Boolean algebras with operators, but in fact, it holds in a much wider setting, see for insteRBR& &
HARDING [P8].

Theorem 6.19 LetK be a class of Boolean algebras withoperators which is closed under taking ultraprod-
ucts and canonical extensions. Then the variety generatédiganonical.

Proof. Let A be in the variety generated t¢; we will show A? to belong toVar(K) as well. By Tarski’'s
‘HSP’-theorem, there is a familyB; | i« € I} C K, and an algebr® such thatA « B — [[,B;. Then it
follows from two times two applications of Theordm §.37 thdt «— B — (][,B;)?, so it suffices to show
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that(][,B;)? belongs tovar(K). However, we may infer from Theorejm 538 and Theofem| §37(v) that

<H1Bi)a H (HDAZ)J' (24)

De Uf(I)

1%

But by the assumptions o, each algebr&[[,,A;)” belongs toK, and so the producf (4) is iR(K) C
Var(K), as required. O

From the above result we can derive Fine’s Theorem as follows. Suppose ithatframe class, closed
under taking ultraproducts; for instance, ebe elementary. Then consider the cl&€sn(C) of sub-complex
algebras ovef. This class can be shown to be closed under taking ultraproducts as a corollary of Proposi-
tion 539, and closed under taking ultrafilter extensions as a corollary of Thé&®#anHBML. Application of <«
TheorenT6.19 then yields the desired result.

6.3 Interpolation

In the last part of this section we discuss another fundamental property of logics: interpolation. Interpolation
is important for applications because it allows reasoning systems to be set up in a modular way. Since we
have confined our attention to logics in the form of sets of theorems, the version of interpolation that we will
consider here is the following.

Definition 6.20 A modal logicZ has thelocal or Craig interpolation property if for every two formulasy and
1 such that-;, ¢ — 1 there is aninterpolant, that is, a formulgy with -7, ¢ — x and~; x — ¥ and such
that each variable of occurs both inp and ine.

The algebraic counterpart of interpolation involves the notioarmélgamation

Definition 6.21 Let K be a class of algebras.

L . - B
A V-formation in K is a quintuple, presented &s & By L Bs, and consisting of fi” 12»._f2

three algebraBy, B; andB- in K, linked by two embeddings, ande;. An amalgam

. o A h By B,
of this V-formation is a formatioi; »— Bq5 <~ By such thatf; oe; = fo0es. Such \ /
a amalgam is auperamalgam if for all distinct i andj, and allb; € B; andb; € B;: NG
fz(bz) <12 fj(bj) onIy if there is someé, € By with b; <; ei(bo) and6j<b0) Sj bj. 0

K is said to have théuper)amalgamation property if every V-formation inK has a (super)amalgam i

In words, an amalgam is a superamalgam if wheneugralement is smaller (ii8;2) than aB;-element,
then this iswitnessed by aBy-element. The basic result connecting interpolation and amalgamation is from
MAKSIMOVA [B3].

Theorem 6.22 Let L be a normal modat-logic. ThenL has the local interpolation property if and only if
BAO, (L) has superamalgamation.

Proof. Fix L. In the proof of this theorem we will frequently consider Lindenbaum-Tarski algebrdsdoer
various distinct sets of variables. Our notational convention will be that these sets of variables will always be
called Xy, X1, Xo and X5, with Xy = X1 N X5 and X5 = X7 U X5; thatlF; denotes the Lindenbaum-Tarski
algebra overX;; that[y]; denotes the equivalence class of the formulander thel-equivalence relatios:,
within the setF'ma(X;); and, finally, if X; C X, thate; ; denotes the map given By]; — [¢];. We leave it
for the reader to verify tha ; is anembedding of IF; into ;.

It is not hard to prove thak has local interpolation iff for all setX; and X of variables, the formation

11,12

Fi — TFio oy Fy is a superamalgam of the V-formatidh P Fo i 5. This observation already takes
care of the direction from right to left of the theorem.
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For the other direction we have to work harder. Consider a V-forma'plgi Bo Nt By in BAO,(L).
Without loss of generality we may assume thigt= B; N B,. Wanting to use local interpolation éfto find
a superamalgam of this V-formation, we translate the V-formation into syntax.

With X; := {z}, | b € B;} foreachi € {0, 1,2}, letg; : F; — B, TR ~F1o /Ty
be the unique homomorphism determined by the mgp— b, 5/4 A

cf. the picture. Clearly each; is surjective, whence by universal L1,12
algebra, eacl®; is isomorphic to the algebi; / ker(3;). Let M; I e 12
be the modal filter of; associated with the congruenker(;)

(as in Theoreni 41.6), and I&tf be the modal filter of'{5 gener- 1212

ated by the union of\/; and M5, or, to be more precise, by the 0 By Bs
setu 19[M1] U 11,12[M;1]. We claim that the algebi® /11, is /‘ €2 /’
the required superamalgam, withy, the congruence associated fo n 2
with M, again, as in Theoref#.6. 0 10,2 2

Proving this, the crucial observation is that,» belongs tal/ iff there are formulas»; € Fma(X;) and
w2 € Fma(Xy) suchthat-;, (p1 Ap2) — ¢, and[y;]; € M; fori = 1,2. From this, using local interpolation,
it may be derived that for formulag, € Fma(X1) andys € Fma(X2), we havelyy — 9]12 € M iff there
isay € Fma(Xyp) such thafy; — x|1 € M; and[x — 2|2 € Ms. And from this the desired properties of
[F12 /11, follow almost immediately. a

This theorem can be applied to obtain a fairly general interpolation resuwttfarnicalmodal logics that
define nice frame classes. We need the following definition.

Definition 6.23 Let S; andS, be two r-frames. The direct produ&; x S of these frames is the frame
based on the Cartesian produt x S,, with the relations defined coordinate-wise (for instance, in the case
of a binary relationR, we putR(s1, s2)(t1,t2) if Ris1t; and Rgsats). A subframeZ of S; x S, is called a
zigzag product of S; andS; if Z is a hereditary subset of the product frame on which the projection maps are
surjective.

Clearly then zigzag products are substructures of direct products. A different perspective is that zigzag
products ofS; andS, are given by those bisimulatio#sbetweers; andS, that arefull, i.e., have domairs,
and range5;.
As an example of a zigzag product, consider two surjective bounded morphiséasvith 6; : S; — Sy.
Then the framéE(6,, 62) based on the sdi(s1,s2) € S1 x S2 | 61(s1) = 2(s2)} is a zigzag product d¥,
andS,. We call this the zigzag produdiduced by 6, andfs.
The following theorem, which is a generalization fromaRK [84] of a result by NMETI [B7], is useful
for proving that a canonical logic has interpolation.

Theorem 6.24 Let K be a class of Boolean algebras withframes, andC a class ofr-frames such that
Cst(K) € C, Cm(C) C K, andC is closed under taking zigzag products. Théhas the superamalgamation

property.

Proof. Suppose thak andC have the listed properties, and consider a V-formation

B <A S B, (25)

It follows from Theorem 5.3 'Mii) thaB, % A, i B.,. Now letE be the zigzag product @, andB/, induced
by the bounded morphisnag anda,. Note thafE belongs taC by the listed closure properties. Lettingand

7' be the (surjective!) bounded morphisms fréhontoB, andB,,, respectively, we see thit, LES B..
It then follows from Theorem 5.B[(ii) and Theorém %.15 that

! -

B ot + B
B B” — ET «— B'? — B (26)
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We claim that in fact,[{26) is a superamalgam[of (25), but leave further proof details for the reader. O

As a corollary of this theorem, suppose thdat a set of canonical formulas defining an elementary frame
class that is closed under taking direct products and substructures — for indiatmeesponds to a set of
universal Horn sentences. ThE.I" has Craig interpolation.

Chapter?? of HBML contains more information on interpolation. Related properties, such as Beth defs-
ability, also have algebraic characterizations; for details we refecto&LAND [69].
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7 Case study: canonical equations

7.1 Introduction

In this section we address the question, which equationsarenical that is, remain valid when we move
from aBAO A to its canonical embedding algehk&. In other words, we are interested in properties that move
to certainsuperalgebras

Earlier on we defined\“ via a concrete construction, namely, as the ‘double dU&J)™: the complex
algebra of the ultrafilter frame of. In this section we will take a rather more abstract approach in which
we first consider the canonical extensiBfi of the Boolean redudB of A; this B is not constructed but
axiomatically characterized as the (modulo isomorphism) unique completiBnirofvhich B is denseand
compact Then the property of density suggests a canonical way to extend the interpretation of the operators
onB to operations o’ thus providing the canonical extensiff of A.

This algebraic method originates with the origimalo paper HNSSON AND TARSKI [IZ0], but it differs
from the duality-based approach of for instaneav8IN & VACCARO [T00] that modal logicians usually take.
In order to compare the two approaches, consider the following picture, introducing the four main characters
of this story:

A A,
A7 |A,

(27)

In the duality-based approach, one compares the frame (frame-based) structures on the right hand side o
the picture, cf. the discussion on the notiorpefsistencén Chapter?? of HBML, while the algebraic method =«
stays purely on the left hand side, basically by encoding the relevant topological concepts into the algebraic
framework. An advantage of the duality-based method is that it allows a treatment of canonicity in tandem with
correspondence; on the other hand, the more abstract and ‘duality-free’ nature of the other approach enable
its transportation to a much wider setting than that of canonical extensions of Boolean algebras with operators.
In recent years, the algebraic approach has proven its usgtdioes expanded witharbitrary operations, and
has been applied to other kinds of completions than the perfect extensionssioh and Tarski.

Our exposition of this algebraic approach in the sect[ons 7[2}o 7.5 is based on wodkibgdN[69],

GEHRKE & JONSSON[B0/31[32] and GHRKE & H ARDING [Z8], while the very similar approach byHz-

LARDI & M ELONI [34] should also be mentioned here. In our presentation we try to be as general as possible
while keeping the section self-contained, and staying within the framework of Boolean algebras. Almost all
our formulations apply to lattice-ordered algebras as well, however; we will come back to this issue towards
the end of the section when we discuss further generalizations of the theory presented here.

For an outline, recall that the validity of equations can be formulated using term functions:

A= s~ tiff & =14 (28)
Hence, for the canonical extensionofwe find that
A% = s~ tiff &7 =27, (29)
Now suppose that we have developed a canonical way to extenchanmapf : A — A to ann-ary map
f7: (A2)" — A“; it then immediately follows from[(28) that
A= s~ tonlyif (s*)7 = (t4)°. (30)
Hence, in case andt arestableon A, that is, if (s*)7 = s%7 and (t*)? = t*°, then we may infer from
A = s ~ tthatA” = s ~ t. This motivates a careful analysis of the relation between the functitns
(the term function of in A%) and(s®)? (the extension t&\” of the term functiors*). This analysis crucially
involves the question, whicfiandg satisfy(fog)? = f? o g?. We will see that such cases(@f“ distributing
over function composition admit a satisfactory explanation in terms of ‘matching continuity properties’ of the

mapsf? andg?. For this purpose we will endow canonical extensions of Boolean algebras with topological
structure.
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7.2 Canonical extensions of Boolean algebras

In this section we define the canonical extension of a Boolean aldlasathe uniqueompletionof B in
which B is denseandcompact We introduce these notions one by one.

A Boolean algebr& is acompletionof a Boolean algebr® if C is complete andB is a subalgebra of.
If C agrees withB on all meets and joins, then we célla regular completion ofB, but in general we do not
require completions to be regular. Thus the notatidior finite joins is unambiguous, but not so for infinite
joins. Our convention will be thay X always denotey/“ X, that is, the join taken in the completion.

For an example of a completion, consider a field of Sets (S, A) and note that the power set algelst
is a completion of*.

Before we define the concept of density, we introduce some preliminary notions. Given a com@letion
of the Boolean algebr&, we call an element € C closed (open) if ¢ is the meet (join, respectively) i@ of
elements inB. We let Kc(B) andOc(B) denote the collections of closed and open elements, respectively.
Objects (such as the elements®f that are both closed and open are caltégben. This terminology is in
accordance with the topological perspective on fields of sets as in Rgmark 5.21. In the sequel, we may write
K¢, K(B), or evenkK, instead ofK¢(B), if the suppressed details are clear from context; and similarly for
the setO¢(B).

We say thai is meet-dense in C if K¢(B) = C, join-dense if Oc(B) = C, anddense if Kc(Oc¢(B)) =
Oc(Kc(B)) = C. Inwords, A is dense inC if every element ofC' is both a meet of open elements, and
a join of closed elements. As a simple example of join-density, note that a Boolean algebra is atomic iff the
collection of atoms forms a join-dense set. Building on this, we leave it as an exercise for the reader to verify
that a field of set§ = (5, A) is differentiated iffS* is dense irPS.

Now we turn to the notion of compactness. Given a complefiarf the Boolean algebrg, we say that
B is compact inC if for all sets X andY of closed and open elements, respectiv@lyX < \/Y implies
the existence of finite subse?s C X, Y, C Y such that\ X, < \/Y,. An alternative (but equivalent)
characterization of compactness is that, for any clgsaxd openy,

p<wuonlyifp <b<wuforsomeb e B,

as can easily be verified. Also note that, again, our definition of compactness coincides with standard topolog-
ical terminology; this easily follows from the observation that for any pai/ of collections of subsets of a
setS, we havg|C C U iff SC YU U Y{~sc|ce C}.

We are now ready to define canonical extensions.

Definition 7.1 A completionC of the Boolean algebr® is called acanonical extension of B if B is both
compact and dense {@.

It is in fact a rather strong property for one Boolean algebra to be the canonical extension of another. To
start with, every Boolean algebra hasmque canonical extension.

Theorem 7.2 LetB be some Boolean algebra. Then

(i) (existencep has a canonical extension;

(ii) (unicity) Any two canonical extensionsbare isomorphic via a unique isomorphism that restricts to the
identity onB.

Proof. Recall from the topological duality th&@, = (UfB, §> is a differentiated and compact field of sets.
By the comments made above it should be clearBéffB) is a canonical extension @f.

For unicity, suppose thdt is a canonical extension & We leave it as an exercise for the reader to verify
that, by compactness, the map+— A F forms a dual (that is, order-reversing) isomorphism between the
lattice (Fi(B), C) and the induced ordering on the 9étB) of closed elements. Its inverse is given by the
mapp — {a € B | a > p}. Similarly, there is a dual isomorphism between the lattice of ideal®, aind
the induced ordering of the open elements. Also, we have tosed and: open, thap < w iff there is an
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a € Bwithp < a < u,andthat, < piff a < bforall a andbin A with a <« andp < b. In other words, by
compactnesthe induced poset on the sEtU O of closed or open elements is completely determined by the
ordering ofB. This suffices to prove the theorem, sincedansity the elements of can be identified with the
pairs(L, U) of subsets of” such thatL is the collection of closed lower bounds@f andU is the collection

of open upper bounds df. Summarizing, we see that together, compactness and density completely fix the
order relation of the canonical extension. O

The above theorem justifies our speaking of ‘the’ canonical extension of a Boolean digéhisaalgebra
will be denoted a®“. Furthermore, we need the following facts.

Proposition 7.3 LetC be a canonical extension of the Boolean algeBralhen
(i) B= K(B)nO(B);thatis, B coincides with the set of clopen element€of

(i) the setK (B) forms a sublattice of which is closed under taking infinitary meets;
(iii) Cisatomic andAtC C K (B); that is, all atoms are closed.

We leave the proof of this proposition to the reader; note that by Thelorém 7.2, it suffices to restrict attention
to the double dudP( UfB) of B. For instance, parf (jii) follows almost immediately from the identification of
atoms ofP( UfB) with ultrafilters ofB.

As a last introductory remark, we note that canonical extensions interact well with finite products and order
duals. Concerning the latter notion, recall that tiader dual of a Boolean algebr& = (B, T, L, — A, V) is
the structuré3? = (B, L, T, —,V, A). The fact, tha3? is a Boolean algebra as well, enables us to shorten
quite a lot of definitions and proofs by referring to thanciple of order duality: Every fact concerning
Boolean algebras remains valid after swappingith 1, A with v, etc.

Proposition 7.4 LetB, ...,B, be Boolean algebras. Then
(i) By x---xB,)” 2B x--- xB;
(i) (B?)7 = (B7)%;
Proof. Both statements can be proved on the basis of Thegrem 5.37. As intermediate steps, one can prove
facts like K (By) x --- x B,,) = K(By) x --- x K(B,) andK (B?) = O(B). O

7.3 Extending maps to the canonical extension

In the introduction to this section we saw that in order to investigate the canonicity of an equationit is
useful to define extensions of the term functions @aa to maps on the canonical extension of #x. But
in fact, there are canonical ways to extendaglpitrary map between two Boolean algebrasndB, to a map
betweenA? andB?. This general definition will be discussed at the end of this section — for the time being
we will confine ourselves to extensionsmbnotone maps.
The easiest way to understand these definitions is to break them down in two steps. For a start, the definition

of closed and open elements suggests the following extensign éf — B to a mapyf defined onkK' (A) U
O(A):

f(p) == NMf(a) | p < a€ A} forp e K(A),

f(u) == \V{f(a) |u>ac A} foru e O(A).
Note that this is a correct definition becausen O = A by Propositiod 713(i), thaf (a) = f(a) fora € A by
monotonicity of f, and thatf itself is also order preserving.

Now for the second step of the construction. The fact that every element is both the join of the closed
elements below it, and the meet of the opens above it, suggestgays to proceed:

(31)

i - (32)
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The mapsf? and f™ are called théower andupper extension of f, respectively.
Let us first gather some basic facts concerning these definitions. The following proposition says that the
names ‘lower’, ‘upper’, and ‘extension’ are well chosen.

Proposition 7.5 Let f : A — B be a monotone map between Boolean algebras. Then
(i) both f7 and f™ extendf;
@iy f7 < f7, with equality holding on the closed and on the open elements.

Proof. The first statement is immediate by the definitions and the monotonicjtyfdr the second statement,
take, forz € A%, a closed < x and an opem > z. By compactness there is are [p, u] N A. This element
satisfiesf(p) < f(a) < f(u) by definition of f; hencef?(z) < f7(z) by definition of f° and f™. Finally,
for closedp we may derive from the first part of the proposition tifdtp) < f(p), and from the monotonicity
of f that f(p) = f°(p). Thus we obtain the desired equaljty = f™ on K. The result for opens follows by
order duality. O

Maps for which the lower and upper extension coincide are obviously of interest.
Definition 7.6 A monotone mag between Boolean algebras is caldoothf f7 = f7.

Example 7.7 As a first example of a smooth operation, considergiodal modalityg on a Boolean algebra
B, given byg(L) = L while g(b) = T for b > L, see Definitior 8]7. Itis easy to see tlgasatisfies these
conditions as well, whence it is equally easy to infer that tland¢™ coincide with the global modality of
B?; smoothness is then immediate. Similarly, one can prove thahdetandjoin operations oB are smooth,
and that their extensions coincide with the meet and the joBfofespectively.

For an operation that is not smooth, consider the composition of the global modality with the meet opera-
tion, i.e., the magf : B> — B given by f(a,b) = L if a Ab = L, while f(a,b) = T otherwise. Now ifB
is infinite, thenB must contain some elemenivhich is closed but not open; a straightforward verification
shows that for such@ we have thaf?(c, —c) = L, while f™(¢, —¢) = T. This shows that not even operators
are smooth.

While it may not be the case that the lower and the upper extension agree in all cases, both kinds of
extensions generally display good behavior; often they even improve on the original map. For the definitions
of the notions mentioned in the theorem below, see Definjfion 3.11and 5.1.

Proposition 7.8 Let f : A — B be a map between Boolean algebras. Then
() if fis monotone then so i#’;

(ii) if f is an operator thery? is a complete operator;

(ii) if f is additive or multiplicative therf is smooth.

Proof. The proof of the first statement is easy and hence omitted, while we postpone the proof of the last state-
ment (it is in fact a rather straightforward consequence of the Propodifions 7.3 dnd 7.14). For the remaining
part, we need to show that ffis normal and additive in each coordinate, th&nis normal and completely
additive in each coordinate. Leaving the easy proof for normality as an exercise for the reader, concerning
additivity, we will prove that iff : Ag x Ay — B is additive in its first coordinate and monotone in its second,
then f? preserves all non-empty joins in its first coordinate.

Fix elementsey € A7 andz; € AJ. By atomicity ofB?, and monotonicity off?, it suffices to prove, for
an arbitrary atonp of B°:

p < f7(xo,x1) only if there is ag € Aty with p < f7(q, z1), (33)

where At denotes the set of atoms &f belowz,. Note that sincef? (xo, z1) = V/{f7(co,c1) | i > ¢ €
K(A;)} we may safely assume that bath andz; are closed.
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Now suppose for contradiction thdt [33) fails. Then for some agooi B we havep < f7(xo,x1)
while for eachg € At there are, by definition of?, elementsi, o € Ay aboveq anda,; € A, abovex,
such thatp £ f7(aq,0,aq,1). It follows thatzg = \/ Aty < \V{aq0 | ¢ € Ato}, whence by compactness
zo < V{aqo | ¢ € F'} for somefinite setF” C Aty.

Now observe that the joing = \/{aq0 | ¢ € F'} isin Ay, and the meet; = A{a,1 | ¢ € F}isin A;.
Clearlyp £ f%(aq0,a1) for eachg € F'; sincep is an atom this means £ \/{f?(aq0,a1) | ¢ € F} =
f(ag, a1), where in the last identity we use the additivity oin its first coordinate.

On the other hand, fromy < ap andz; < a; it follows that f7(xg, 1) < f(ag,a1) which gives the
desired contradiction. 0

In the proof above we already used the fact that complete additivitf” aheans that it is completely
determined by its values on tlatomsof B?. Now recall that (in the concrete representationisf) the atoms
are nothing but theltrafilters of B. From this the following proposition is immediate.

Proposition 7.9 Let A be some Boolean algebra withoperators with underlying Boolean algebif&a Then
A% := (A,)" is isomorphic to the algebr®” expanded with the family(V4)? | V € 7} of complete
operators.

This proposition, which can be summarized &' = (V#)?’, will be used throughout the sequel, but
always implicitly.

7.4 Composite maps

We now investigate the interaction between composing maps between Boolean algebras and taking their canon
ical extensions. That is, we will take a look at the relation between the mgf)§ and ¢° f for maps
f:A— A’,andg : A’ — A”. We are obviously eager to find cases in which we Hgyge = ¢° 7, but also
conditions under which one of the inequalities ¢r >) apply will turn out to be of interest. As we will see
shortly, many of these conditions can naturally be describéobiologicalterms.

For this purpose, we will introduce no less than six topologies on eactf'sétortunately, these topologies
can be neatly organized in two families, each consisting of an upper, a lower and a join topology. As a
terminological convention, let us call a map between the algehfaand B (p, p')-continuous, if it is a
continuous function between the topological spac&s p) and(B7, p').

The first family is that of the Scott topologies. Although these can already be defined on arbitrary partial
orders, here we will only consider topologies on canonical extensiosa@$. Recall that a subsé? of a
partial order is calledp-directed, if every pair of elements ab has an upper bound iR.

Definition 7.10 Given a Boolean algebrg, call a subset/ of B? Scott open if U is an up-set such that
U N D # o for every up-directed sdb with \/ D € U. TheScott topology is defined as the collection' of
Scott open sets; the topology is given by the principle of order duality, and we define= {UNV | U ¢
71,V € 41} as the join ofy! andy! in the lattice of topologies oveB.

In practice it is sometimes easier to work with ttlesedsets in the Scott topology; these are precisely
the down-sets of that are closed under taking up-directed unions. From this observation one easily derives
the (well-known) fact that a map between partial orders is Scott continuous (ttwat,is, )-continuous) iff it
preserves up-directed joins. But this implies that a map is completely additive iff it is both additive and Scott
continuous, which may help to explain the relevance of the Scott topologies for our purposes.

We now turn to the second family of topologies. Recall from Examiple 4.4 that for an arbitrary element
of a Boolean algebr®, the set$1 andb| are defined a8 = {a € B |b < a}andb| = {a € B |a < b}.

Proposition 7.11 For any Boolean algebr®, the setsr! := {p1 | p € K} ando! := {u] | u € O} both
form a topology orA“; and so does the set:= {pTNu| | K > p < u € O}, which is in fact identical to the
join o' v ¢! in the lattice of topologies oA®.

In the sequel, we will writép, u| for the interval betweerp andu, that is,[p, u] = pT Nu].
41



Proof. The fact that! is a topology follows from the fact that the s&t( A) is closed under finitary joins and
arbitrary meets of\?, see Propositiop 4.3(ii). O

Remark 7.12 As suggested by notation, the topolagys closely connected to the kind of inclusion®fin

Be. Let us just mention a couple of salient facts here. First, it is easy to see that {he, éet a,b € B} isa
basisfor o. This reveals that the sét is topologicallydensen o, in the sense that evepropen set contains

an element of3. But also,B constitutes the collection adolated pointof o — recall that a point is isolated

in a topology if the singletokiz } is open. Itis the latter two properties that make it possible to extend arbitrary
maps between Boolean algebras to their extensions; we will come back to this at the end of this section.

The following proposition, which links the two topological families, will be crucial when it comes to
finding the ‘matching continuities’ mentioned in the introduction.

Proposition 7.13 Let A be a Boolean algebra. Theyi C ¢!, 7! C ol andy C 0.

Proof. Confining ourselves to the first claim, it suffices to prove that | J{p1 | p € UN K} for an arbitrary
Scott open sel/ C A°. The crucial observation here is that everg U is theup-directedjoin of the closed
elements below it. Further proof details are left to the reader. O

The following proposition is a first sign that these topologies can be useful.

Proposition 7.14 Let f : A — B be a monotone map between the Boolean algehrasdB. Then

(i) f° is the largest monotongr, v')-continuous extension ¢f
(i) fis smooth ifff is (o, ~v)-continuous;
(iii) if fis an operator therf? is (y',~")-continuous;
(iv) if f is additive thenf? is (o', o})-continuous.
(v) if f is multiplicative thenf? is (o1, o1)-continuous.

Proof. Concerning the first part of the proposition, we already know from Propodition 7.5fth& an
extension off. Now for z € A take an arbitrary Scott open set C B? with f?(x) € V. That is,
V{fe(p) |z >pe K(A)} € V. Now it is easy to see that the collectigh:= {f?(p) | = > p € K(A)} is
up-directed, s6) NV # @. In other words, there is a clospd x with f7(p) € V. But then by monotonicity
of f7 we have thatf?[p1] C V. Sincex € p! € o this suffices to prove that® is (o, v')-continuous, while
by Propositiorf 718 it is monotone.

In order to show thaf is the largest such map, take a monotémey')-continuous extension: A° — B
of f, and suppose for contradiction that:) £ f7(x) for somex € A?. By atomicity of B” there must be
anatomp of B° which lies belowg(z), but not belowf? (x). Becausgy(x) € pl € ~!, the continuity ofg
provides us with & € K such thate < z andg[c]] C p1. In other words, we find that < g(c) whence
by monotonicity it follows thap < g(a) for all « € A abovec. But then by the fact thag extendsf, and
the definition of /7, we may infer thap < f“(c). From this we obtain, as the required contradiction, that
p < f7(x).

For part [ii), it follows from part (i) by order duality that™ is the smallest monotone, ! )-continuous
extension off. Hence iff is smooth, therf = f™ is both(s, v1)- and(o, v} )-continuous, and hencér, v)-
continuous. Conversely, jf’ is (o, v)-continuous, then it is, a fortior{g, v!)-continuous. This implies, again
by the order dual of parf (i), that™ < f7; but then we have equality because of Propositiof{F.5(ii).

Concerning part[{jii), iff : A™ — A is an operator then by Proposition|7TJ8(ij)7 : (A7)" — A% is
additive in each coordinate. From this it is straightforward to derive thgireserves up-directed joins.

For part [i¥), suppose that: A — B is additive, and take an arbitrasy-open subset | of B, that is,
u € O(B). It follows by Propositiorj 718(ii) thaf? preserves all non-empty joins. From this one may derive
that the set f°)~![u]] is either empty, in which case it certainly belongsstoor else it is of the formy |,
wherev = \/(f?)~![u]] satisfiesf? (v) = u. In order to show that| is open inc, it suffices to prove that
is an open element af°.
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Consider an arbitrary closed element< v; then A fl[pT N 4] = f?(p) < f7(v) = u. Hence by
compactness there is a finite getC pT N A such that)\ f[F] < u. Puttinga, := A F we find thata,, € A,
p < ap anda, < vsincef(a,) < A f[F]. Clearlytherw = \/{p|v>pe K} <\{a,|v>pe K} <w
which shows that is identicalto the second join, and hence, open.

Finally, part (V) follows from part[{iv) by order duality. O

As we announced already in the introduction to this section, the following properties will be crucial in
proving canonicity results further on. The reason for this lies in the observation that for some, texenaay
apply Propositior 7.15[ii) by the fact that the term functién in the canonical extensiah’ can be decom-
posed ag®” = g7 o f° whereg? is (r,~!)-continuous andf? is (o, 7)-continuous, for some ‘intermediate’
topology~. This is the principle omatching continuitieshat we mentioned in the introduction.

Proposition 7.15 Let f : A — B andg : B — C be monotone maps between the Boolean algebhrdsand
C. Then

M) (9f)7 <9717
(iiy (gf)° > g° f° whenevey’ f° is (o,~!)-continuous.
Proof. Part (if) of the proposition is an immediate consequence of Propo§itioH] 7.14(i)gifi€as an exten-

sion of g f (andgf is monotone). Concerning palfi (i), we first show thaf)? (p) < ¢ f?(p) for closedp.
Note that

:/\{gfa |p<ac A},

9”7 ()= \{o(0) | f7(p) <be B}.
where the latter identity holds becaug€(p) is closed inA°. Now take ab € B with f7(p) < b. As
f7(p) = N{f(a) | p < a € A} is a down-directed meet, compactness provides somed with p < a and

f(a) <b. Then(gf)?(p) < gf(a) < gb; and hence(g f)? (p) < g7 f7 (p).
Now we turn to arbitrary: € A?. Note that

)=\/{(g)7(p) |z =p e K(A)},
917 (@) =\/{g" (@) | f7(2) = g € K(B)}.
Take an arbltraryy € K(A) withp < z; then(gf)?(p) < ¢° f?(p), as we just saw. Sincg’ (z) > f7(p) €
K (B), this shows that every joinand f)?(p) of (¢f)?(x) is below some joinang’(q) of ¢° f?(x). This
suffices to prove the desired inequality. O

7.5 Canonical equations

Time to harvest. The key idea for proving canonicity results for an equatisnt will be to use properties

of the term functionss® and¢*. Recall that for a ternt(x1, ..., ,), the term function® : A” — A'is
inductively defined as follows:
x;& =,
(b1, ta)) =R 0 (1, 1)
wheren? : (ai,...,an) — a; is thei-th projection function, and, for mapg,..., f, : X — Y, the map

(fi,-.-, o) : X = Y™isgiven by(f1,..., fu)(x) = (fi(x),..., fu(x)).

In the context of canonical extensions the following definitions are crucial.

Definition 7.16 A term ¢ is expandingon an expanded Boolean algebkaif (t4)” < ¢A”, contractingif
(t%)7 > t47, andstableif (t*)7 = t*°. We let these properties apply to classes of algebras in case they apply
to all members of the class.

Proposition 7.17 Let s andt be twor-terms, andK a class ofr-expanded Boolean algebras.slfs contract-
ing andt is expanding oK, then the inequality < ¢ is canonical orK.
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Proof. Consider an algebra in K such thatdA = s < t. In other words, we have® < t*, so that(s*)? <
(t*)°. But then by the assumptions erandt it follows thats*” < (s4)7 < ()7 < tA7, which shows that
A7 =s =<t O

So which terms are contracting, and which ones are expanding? Here the topologies prove their value.
Before moving on to these results, we need to get one technicality out of the way. Basically, the following
proposition states that the product mgp, . . ., f,,) behaves as well as one could hope for.

Proposition 7.18 Let f1,. .. ,f, be monotone maps between the Boolean algehrasdB. Then

<f17'~ 7fn>g = <ff7"')fg>7
and forallp, p’ € {7}, ~1,7,0%, 01,0} it holds that
(f1,-.., fn)is (p, p')-continuous iff eackf? is (p, p’)-continuous

We leave the rather tedious but not very difficult proof of this proposition to the reader, and move on to
more interesting facts. First we associate topological properties with term functions.

Proposition 7.19 Let A be ar-expanded Boolean algebra, ahd 7-term. Then
(i) If A interprets all connectives ihas operators, then” is (y!, v1)-continuous.
(ii) If A interprets all connectives ihas additive maps, thert” is (¢!, o})-continuous.
(iii) If A interprets all connectives ihas multiplicative maps, thett’ is (o', o1)-continuous.
Proof. All three statements can be proved by a straightforward term induction, using the Propdsitipns 7.14
and[7.IB for the induction step. For the induction base, note that the projection maps are both join- and meet

preserving, and hence, their canonical extensions have all the continuity properties mentioned in the statement
of this proposition. O

Here we arrive at the core of the algebraic approach towards the canonicity of equations. On the basis of
the syntactic shape of some terms we can see whether it is expanding or stable. In Thedrem 7.20 we give som
sample results; observe that the key idea in the proof of part (iii) is the principle of ‘matching continuities’ as
described before Propositipn 7.15.

Theorem 7.20 Let A be ar-expanded Boolean algebra, and r-term. Then

() If A interprets all connectives ihas monotone maps, theis expanding.
(ii) If A interprets all connectives ihas operators or dual operators, thens stable.
(iii) If ¢ is of the forms(u1, ..., u,) such thatA interprets all connectives in as operators, and all connec-
tives in each of the,; as meet-preserving operations, theis stable.

Proof. Part (i) is proved by term induction. The base case is immediate from the definitions. For the inductive
step, suppose that=s V(t1,...,t,), then

(t)7 = (VAo (18, ... 1))

< (VAY o (th, ... thye

= VA o ()7, . (t0)7)
< VA o (187, A7)

= A7,

Here the first and last step are by definition, the second step is by Prop@sitipih 7.15(i) and monotonicity,
the third step is by definition 672" = (V*)? and by Propositioh 7.18, and the fourth step is by the inductive
hypothesis and the monotonicity .
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For part [ii) and|(iii) it suffices to prove that” < (+*)7, since the opposite inequality holds by pdrt (i). In
the case of par{ii) this follows from a straightforward induction, whereas for part (iii) we need the principle
of matching topologies.

Let ¢ be as described in parf [ii)), ther” = 47 o (uf”, ..., ud") = (s%)7 o ((u})7,..., (ud)?)

with the second identity holding by paft (ii). Also, note that by Proposition| 7.14, the term functiois
(v7,~41)-continuous, and eact*” is (¢!, o")-continuous. From this we infer by Propositibn 7.18 that the

map ((u)?, ..., (ud)?) = (ut,...,ud)? is (o', oT)-continuous as well, whence by C o' itis (o1,~1)-
continuous. Thus théy', y7)-continuity of s*° matcheswith the (o', y")-continuity of (uf, ..., u2)°.
Hence, we may apply Propositipn 7.[5(ii), and find #at= (s*)7o(uf, ..., ub)7 < (shol(uf, ... ub))7 =
(t%)7, as desired. O

As a sample application, we show how Sahlgvist canonicity is an easy consequence of the previous theo-
rem.

Corollary 7.21 Sahlqvist equations are canonical over the class of all Boolean algebras-vaigerators.

Proof. First we treat inequalities of the form(31, ..., 3,) < 1, wherey only usesA, vV and modalities, all
0; are boxed atoms, anglis positive. But then it is immediate by the previous proposition {at, . . ., 5,,)
is stable, whiley is expanding. Hence the result follows from Proposifion]7.17.
Now consider an arbitrary Sahlgvist inequality. Without loss of generality we may assume that it is in fact
an equation of the form

@(ﬂlr"uﬂTwﬂwl)"'?_'d]k)%Jﬂ (34)

wherey and thes'’s are as before, while alb; are positive formulas. It is easy to see that this equation is
equivalent to the quasi-equation

( & xlg_"@bl) = @(ﬂla"'aﬂnv'xla"'axk)%J—a

1<i<n

which in its turn is equivalent to

<1<8iL<nmi ANY; = J.) = (p(ﬁl, ey By T1, . ,:Ek) ~ l. (35)
Now suppose that wadd a diamoncE to the language, and interpret this diamond as the global modality on
every algebra (see sectipn]8.2). Then clearly the quasi-equgfion (35) is equivalent to the formula

OBy By 1y 1) 2 \/ E(xi Ai). (36)

1<i<n

(Note that this reduction of a quasi-equation to an equivalent equation is a specific example of Proposi-
tion B.14.)

The result then follows by the observation thai (36) is a Sahlqvist inequality of the kind already treated,
together with the fact that the canonical extension of the global modality is again the global modality (see

Remark7717). O

7.6 Further remarks

The ideas described in this section allow for variations and generalizations in at least two directions.

To start with, the algebraic approach has already been put to work for a far wider class of structures than
just Boolean algebras with operators. In particular, nothing in the theory crucially depends Boalean
nature of the underlying order of the algebras. The notion of a canonical extension, with all the results in
section[ 72 pertaining to them, has been extended to (first distributive and then) arbitrary lattices, with work
on partial orders under way.

45



Furthermore, the restriction to monotone operations is not necessary eithiggry maps between lattices
can be extended to maps between their canonical extensions. First suppose that we are dealing with a dens
setX’ in a topology(X, p), and letf : X’ — C be a map fromX' to the carrierC' of a complete lattic&.
Then define

fo@) = VINFIUNXT |z €U € p},
f(@) = MV FIUNXT |z eU e p}.

In order to apply this definition for the canonical extension of a rfidgtween two lattices. andM, note
that (just like in the case for Boolean algebras, see Remark 7.12) the dadafi@r forms a dense subset of the
o-topology over the carrier.?. Also observe thatf? and f™ areextension®f f because all elements afare
isolatedpoints of f, and that formonotonef, (37) agrees with[(32).

Finally, it is not just the definitions that translate to the more general setting of lattice expansions (that
is, lattices with additional operations), the same holds for the theory. To mention just one example: one
may prove that any equation~ ¢t is canonical provided that all the primitive symbols (including the join
operationA) occurring ins andt are interpreted as operators. Details can be found in for instape®KE &
HARDING [?28].

(37)

The second generalization that we want to mention involves other ways of completing lattices and lattice
expansions, such as thacNeille completionwhich generalizes Dedekind’s construction of the reals from the
rationals to arbitrary partial orders. For a characterization in the style of this section, one may start by proving
that any latticel. has a (modulo isomorphism) unique completioty, its MacNeille completion, in which
L is both join- and meet dense. This way of extending lattices is obviously similar to that of the canonical
extension, but a substantial difference is that the MacNeille completion agrees with the original latadles on
meets and joins, whereas the canonical extension only agrees fimitidhenes.

In any case, it follows from join- and meet density, that any map between two lattices can be extended to a
map between their MacNeille completions, in two ways. In the casenadrgotoneoperationf between two
latticesL. andM, we define thdower extension f and theupper extension f by

fa)=\/{f(a) |z >ae L}
f@)=\{fl@) |z <aeL}

Clearly then, almost all questions concerning canonical extensions have an obvious counterpart for MacNeille
completions. Generally speaking, MacNeille completions are less well-behaved than canonical extensions; for
instances, unary operators (diamonds) are no longer smooth, and the variety of modal algebras is not close
under taking lower MacNeille completions. Probably for this reasoaNK [85] introduced the notion of the
MacNeille completion of ®A0 only for Boolean algebras wittompleteoperators. On the other hand, in case

the primitive operations aresiduated (see Propositiofl 8.5), the situation improves; for instanaeaBr &

VENEMA [36] show that the validity of all Sahlgvist equations is preserved under taking MacNeille comple-
tions oftensealgebras. As a final remark, there are interesting connections between the MacNeille completion
and the canonical extension of a lattice expansion: for instanEBR&E, HARDING & V ENEMA [29] prove

that the canonical extension of lattice expansiogan be embedded in the MacNeille completion of some
ultrapower ofA. As a consequence, every variety of lattice expansions that is closed under taking MacNeille
completions, is also canonical in the sense of canonical extensions.
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8 Special algebraic topics

In this final section on algebra we discuss the algebraic perspective on two further issues in modal logic.

8.1 Tense logic

Our first example concerrisnse logi¢as its name already indicates, this branch of modal logic originates in
the formal semantics of natural language, cf. Chap®of HBML . <

Definition 8.1 The modal similarity type of tense logic is fixed by its two diamonds® r and< p.

The lettersCr and O p are mnemonic ofuture andpast, respectively. This already indicates that the
standard interpretation of this language is in frames representing a flow of time, suchzthaitains the
meaning ‘sometime in the future’, and duathp means ‘sometime in the past’. Tense logic thus forms a rather
simple example afemporallogic, cf. Chaptef? of HBML. Here we abstract from the temporal interpretations«
of tense logics; what is then left is that in the intended frames for this language, the two diamonds of the
language are interpreted along the two directionssifiglebinary relation.

Definition 8.2 A ¥-frameS = (S, Rp, Rp) is calledbidirectional if Ry andRp are each other’s converse.

This definition explains why &-frame is often represented simply as the gairR ). Turning to logic,
we define the following.

Definition 8.3 A modal ¢-logic L is a tense logic if both formulasp — Op<$pp andp — Oppp are
theorems ofl; the minimal tense logic is denoted Ks. Algebraically, atense algebra is a Boolean algebra
expanded with monoton&operations satisfying the corresponding equatiors 0O px andz < Oplpa.

It is easy to see th&™ is a tense algebra if and onlySfis a bidirectional frame. In the other direction,
it is not a priori clear whether we can extract a useful frame from an arbitrary tense algebra: First we must
show that tense algebras are Boolean algebras with operators. In fact, albeetyaN& TARSKI [70] show
something better.

Theorem 8.4 LetA=A= (A, T,L,— A, V,Op, <Op) be atense algebra. Then

(i) the operations> and< p are complete operators;
(i) the structured, is a bidirectional frame, and the algebi’ is again a tense algebra.

Proof. For part[i of the Theorem, let € A be the least upper bound of some sub¥ebf A. Then by
monotonicity,& ra is an upper bound of the sétz [ X]. Now suppose thdtis also an upper bound of this set,
thatis,Opa < bforall x € X. From this it follows, for eaclhr € X, thatx < Op<pa < Opb (here we use
monotonicity ofd0p, which is easily proven). Thus we see tha Opb by our assumption on. But then
by monotonicity ofCr we obtain thatb pa < CpOpb < b. This proves that> ra is in fact the least upper
bound of the se® [ X].

Concerning the second part of the theorem, #fais a tense algebra is a special of the Sahlqvist Canonicity
Theoren{ 6.14; the bidirectionality df, is then immediate sinc&? = (A,)*. O

There is a lot more to say about the complete additivity of the diamonds in tense algebras. To start with,
the definition of tense algebras can be reformulated using either of the algebraically more familiar notions of
conjugationor residuation

Proposition 8.5 LetA = (A, T, L, —, A, V, O, Op) be a monotond-expanded Boolean algebra. Then the
following are equivalent:

() Aisatense algebra,
(i) ©p and<Cp are conjugated operations, that is, they satisfy the following:

AEVzy(xANOpyr LS yAOprrx 1), (38)
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(i) ©p andOp form a residual pair, that is,
A EVry (Opr 2y < x <X Opy). (39)

This connection with residuation shows that from a general mathematical perspective, tense logic is not just
any bimodal logic: It provides the modal logic manifestation of the fundamental category theoretic concept
of adjoint functors Theoren{814(i) is thus a rather special case of the category theoretic fact that left adjoint
functors preserve all (existing) colimits.

Another nice property of tense logic that should be mentioned here is that somehow, tense algebras are
richer than ordinary Boolean algebras with operators. For instance, consider an atomic modal Algebra
and suppose thal satisfies some Sahlqvist equatipnThen it isnot guaranteed that the atom structutg
(see Definitior] 5]2) satisfies the first-order correspondenf 7, not even if the diamond of is completely
additive. However, in cas& is atense algebra, it contains sufficient information to enforce this.

Theorem 8.6 Let A be anatomictense algebra. Then for every Sahlqvist equatjioi |= 7 iff A, = ¢, iff
(Aa)T .

Proof. Clearly, the equivalence of the last two statements follows from Sahlqgvist correspondence theory. For
the implication from right to left, it suffices to observe thats a subalgebra dfA,)* because of the complete
additivity of the operators. This follows fromi {12) in the proof of Proposifion 5.3.

The remaining implication is a special case of the preservation of Sahlqvist equations under taking (lower)
MacNeille completions of tense algebras, see the end of sd¢tion 7 for some discussiony/am & V EN-
EMA [38] for proofs. O

Finally, tense algebras play a role in other part of universal algebra as well. For instandstianygan
be represented as the sublattice of a tense algebra that has the solution set of the eqeatiopd pa
as its carrier. This idea basically goes back t&B1OFF [[Z]; for more details, the reader is referred to
HARDING [BH].

Nevertheless, despite their rather special characteristics, just like all bimodal logics, tense logics can be
simulatedoy monomodal ones; for details we refer to Chapteof HBML. <

8.2 Global modality & discriminator varieties

Recent years have witnessed an increasing interest in formalisms that enhance the expressive power of standa
modal languages, see for instance Chap®af HBML. In such a pursuit, one naturally arrives at iebal or <«
universal modality E which has the global relatiofi x S of a frameS as its (intended) accessibility relation,

see GRANKO & PAssy [48]. But also, a large number of standard logics come with an intended semantics

in which the global relation interprets some more complex term of the language: as an example we mention
the compound modality < p in the tense logic over any linear flow of time.

Definition 8.7 Algebraically, we define thglobal modality or unary discriminator over a Boolean algebra
(with operators)B as the function given by

1L ifb= 1,
T ifb> L.

b—

The termry(z) is called aglobal modality or unary discriminator term over an expanded Boolean algelraf
it is interpreted as the global modality én

This notion can be seen as theo manifestation of the well-known algebraic concept afiscriminator,
see JPSEN[B] for a first explicit discussion of the connections.

Definition 8.8 We call a ternary termi a discriminator term over an algebra\ if it is interpreted as the
discriminator function om, that is, ifd*(a,b,c) = a if a # b, andd*(a,b,c) = cif a = b. Any varietyV
generated by a class of algebras with a common discriminator term, is callediiainator variety.
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Proposition 8.9 Let A be ar-expanded Boolean algebra.

(i) If vis a global modality forA, then the ternfy(—(z < y)) Ax) V (y(=(x < y)) A 2) is a discriminator
term for A.

(i) If d(z,y, z) is a discriminator term for, then the term-d(_L, z, T) is a global modality forA.

Before going into further detail of the connection with the global modality, let us, for future reference, list
some of the many nice properties that discriminator varieties have.

Theorem 8.10 LetK be a class of algebras with a discriminator tetinThen

() all algebras inK are simple;
(i) Var(K) is congruence-distributive and congruence-permutable;
(iii) all subdirectly irreducible algebras iWar(K) are simple, and vice versa,;
(iv) Var(K) is semi-simple; that is, every algebra ivar(K) is a subdirect product of simple algebras.
(v) dis adiscriminator term for every simple algebraVar(K).

Proof. For the first statement of the theorem, define the tetmy, u, v) := d(d(z,y,u),d(z,y,v),v). Itis
easy to see thatis a so-calledwitching term for K; that is, for everyA in K, and for alla, b, c andd in A:

c ifa=0b,

sA(a, b,c,d) =
d ifa#0.

Now let® # A 4 be a congruence df; then there are two elements# b with (a, b) € ©. But then we find
(c,d) = (s*(a,a,c,d),s*(a,b,c,d)) € O for everyc andd in ©. In other words, such @ must be the trivial
congruenced x A. But this clearly means that is simple. Details of the proof of the second statement, which
is similar to that of Theorem 4.2, are left to the reader.

For the third part of the theorem, it is not hard to verify thais a discriminator term fo6Pu(K) as
well, whenceSPu(K) consists of simple algebras by pdft (i). So by definition of simplicity, we find that
HSPu(K) = SPu(K); hence, all algebras iHSPu(K) are simple. However, by pdit ii we may appfn¥son’s
Lemma, which states that all s.i. memberd/ef(K) belong toHSPu(K). Thus every s.i. algebra Mar(K) is
simple.

Part (i¥) is immediate from parf{iii) by Birkhoff’s subdirect indecomposability theorem, while the final
statement follows from the fact that every simple algebra belon§B#¢K ), and thus shares the discriminator
term ofK. 0

In particular, since the notions of simplicity and subdirect irreducibility coincide in a discriminator vari-
ety, its subvarieties are completely determined by its simple members. Let us now see how these issues ar
axiomatized in normal modal logics.

Definition 8.11 A 7-formula~(z) is aglobal modality for a normal modat-logic L if the formulasl’
* V(x1,...,x,) — y(z;) foreveryV € 7,and everyi € {1,...,n};

sz — (), y(v(z)) = () andy(—y(-w)) — =;

are theorems of..

That is, L defines a global modality iff there is a tem(z) that satisfies th85 axioms, plus the inclusion
axiomViz — ~(x) for every induced diamon¥*. It is not hard to derive that such an axiomatically defined
global modalityy(z) also hasy(—v(x)) — —y(z), andr, #x — ~(z) for all compound diamondé.

The terminology of Definitiorf 8-11 is justified by the following Proposition, which is essentially taken
from JPSEN[GZ].

Proposition 8.12 Let L be a normal modat-logic, andvy(z) a 7-formula. Theny(z) is a global modality for
L ifand only ifBAO, (L) = Var(K) for some clas¥ of algebras sharingy as a global modality.
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Proof. The direction from right to left is immediate by the fact that any unary discriminator term satisfies all
the formulas listed in Definition8111.

For the other direction, by Theorgm 4.11 it suffices to show+hata unary discriminator term on subdi-
rectly irreducible algebras iBAO,(L). In order to prove this, suppose for contradiction thdtas a radical
elementp, while 4* is not the global modality oA. That is, some, € A satisfiess # | while v*(a) # T,
whence—~*(a) # L. Sincep is radical inA there are compound diamonds and 4, such thaip < ¢;a
andp < #2—~"(a). However, fromp < 41a we obtainp < v*(a), while fromp < #3—~*(a) we may infer
thatp < v*(—v*(a)) < —v*(a). This contradicts the fact that> |, and so we may conclude thais the
global modality onA. O

A very useful property of discriminators is that they allow the effective replacement of universal sentences
with equations. In the case BA0s, this works out as follows.

Definition 8.13 Suppose thaf(x) is a global modality term foK. Inductively we define a functioh mapping
guantifier-free formulas (in the first order languageabs) tor-terms:

st — (sA-t)V(msAtL),
~P — —y(\p),
P&Q — )\p\/)\Q.

Theorem 8.14 LetK be a class of Boolean algebras withoperators with a discriminator term. Then any
universal formulaP is equivalent oveK to the equatiom\pr ~ L, whereP”’ is the quantifier-free part oP.

Proof. A straightforward induction shows that for any algebkan K, any assignmentt on A and any
quantifier-free formulaP it holds that

A):apiﬁA):aAp%J_.
From this, the statement of the theorem is immediate. O

Working with discriminator classes has many advantages. For instanies, af discriminator class, then
we may generat®ar(K) from K just by taking products and subalgebras (that is, homomorphic images are
not needed). The result in this generality is due toABIT [35].

Theorem 8.15 LetK be a class of Boolean algebras with a common global modality tetm.
(i) If Pu(K) C S(K), thenSP(K) is a variety and5(K) is the universal class of simple algebrasSR(K).

(i) If K is axiomatized by a se of universal formulas, theBP(K) is axiomatized by the s¢t\p ~ L |
P € @}, together with the sdt of Definition[8.1]L.

Proof. Assume thaPu(K) C S(K), then it is easy to see that the cl&$) is closed under taking ultraprod-
ucts and subalgebras. It then follows by standard universal algebrd,see [17, Theorem 2.30K \lis&
universal class, that is, an elementary class axiomatized by universal formulas.

By assumption, the algebras i have a common discriminator term, and, hence, we find, reasoning
as in the proof of Theorern 8]10(iii), th&irVar(K) = SPu(K), whereSirVar(K) denotes the class of s.i.
members irVar(K). Thus by the assumption we find tHitVar(K) = S(K) and therefore$(K) is the class
of simple algebras iVar(K), since the notions of simplicity and subdirect irreducibility coincide. Finally
then, by Birkhoff's and Gnsson’s theorems, the variéar(K) is the class of subdirect products of algebras
in HSPu(K) = S(K); a straightforward calculation then will show thadr(K) = SP(K).

Part two of the theorem is a straightforward consequence of Propdsitian 8.12 and Theorem 8.14]

Finally, for more information on the global modality, the reader is referred to Chap&frHsMmL . <
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9 Coalgebras: an introduction

This section forms a brief introduction to the field@balgebra While certain kinds of coalgebras had already
been studied in the sixties, the field really took off after it was realized that coalgebra can be conceived as a
general and uniform theory of dynamic systems, taken in a broad sense.

Many structures in mathematics and theoretical computer science can naturally be represented as coalge
bras. Probably the first example was provided byzAL [2], who models transition systems and non-well-
founded sets as coalgebras. On the basis of Aczel's woslkRwBSE & M 0ss[I1] discuss a wide range
of phenomena involving the notions of circularity and self-reference, with applications ranging from theo-
retical economics to the semantics of natural language. A second paradigmatic specimen of coalgebras ir
computer science is given by (deterministic) automata, sgerBN [96]. Further important examples include
the representation of infinite data structures, and the formal modeling of objects and classes in object oriented
programming, see RCHEL [97] or JAcoBs[61]. But for modal logicians, it will be Kripke frames and mod-
els that provide the prime examples of coalgebras; this link goes back to at lerat&Ky [I]. In fact, the
model theory of modal logic is coalgebraic in nature, so modal logicians entering the field will have much the
same experience as group theorists learning about universal algebra, in that they will recognize many familiar
notions and results, lifted to a higher level of generality and abstraction.

For readers that want to learn more about coalgebras, the literature harbors some well written introductions
and surveys (although at the time of writing there is no text book or monograph available). We refer the
reader to dcoBs & RUTTEN [65] for a very accessible introduction, and to R'EN [94] or GumM [b0] for
comprehensive surveysHRINGER [60] has an appendix on coalgebras by Gumm. For more details on the
connection between coalgebra and modal logic, the reader may congritt[K5] or PATTINSON [90].

What then are coalgebras? The most concrete, state-based specimensysahed simply consist of a
setS endowed with some kind of transition, formally modeled as somedrfapm S to another sef2S. Here
Q is some functor constituting thtgpe or signatureof the coalgebra at stake. The transition map provides
some kind of structure of, but whereaslgebraicoperations are ways tonstructcomplex objects out of
simple ones, coalgebraic operations, gaiog of the carrier set, should be seen as waysrifwld or observe
objects. This explains the central role of the notiofehaviorin the theory of coalgebras.

More generally, given an endofunctron some base catego€y an()-coalgebra is a pairC = (C,~),
with C an arbitrary object irC, and~y a C-arrow fromC' to QC. The full functorial power of) comes in when
we turn)-coalgebras into a categofipalg(2) by introducing morphisms: A homomorphism froi@, ) to
(C',+") is an arrowf : C' — C" such thaty’ o f = (Q1f) o . This set-up enables the canonical definition of
two notions of equivalence between coalgebras, namely, bisimulation and behavioral equivalence. As we will
see as well, the definitions make the concept of a coalgebra very similar to that of an algebra. However, if one
makes this connection mathematically precise, it turns out that coalgebras over the base €ategdngal to
algebras over theppositecategoryC°?. This explains not only the name ‘coalgebra’, but, as we will see, also
many of the peculiarities afniversal coalgebrathat is, the general coalgebraic theory of systems.

Given the nature of coalgebra as a very general model of state-based dynamics, there is a natural place
for modal logicas a formalism for reasoning about behavior. It was3g[11,/86] who realized that one may
generalize the concept of modal logic from Kripke frames and models to coalgebras over arbitrary set functors.
Over subsequent years, the development and study of modal languages for the specification of properties o
coalgebras has been actively pursued and studied by various authors, indludimg [6264], Kurz [[/4/76],
PaTTINSON [B8/89], andRossiGeR [95]. In fact, as we will see, the link between modal logics and coalgebra
is so tight, that one may even claim that modal logic is the natural logic for coalgebras — just like equational
logic is that for algebra.

We now turn to the technical development of the topic, starting with the definitioroflgebra

Definition 9.1 Given an endofunctd? on a category{, an{2-coalgebra is a pairA = (A, ), whereA is an
object ofC called thecarrier of A, anda. : A — QA is an arrow inC, called thetransition map of A. In case
is an endofunctor oBet, (2-coalgebras may also be call@dsystems; a pointed Q2-system is a triple(A, «, a)
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such that{A4, «) is anf2-system, and is a state im, that is, an element oA.

As we mentioned already, the action of the functbon thearrows of the categoryC will be needed
when we introduce, in Definition 9.9 below, homomorphisms betwe&oalgebras. First we consider some
examples of systems.

Example 9.2 Probably the simplest example of a system is that af'ezolored set, that is, a paif,~ : S —
C). No matter where we start, this system can only display the color of the current state, and halt after doing
Sso.

A slightly more interesting example is provided by a black box machine which may be prompted to display
a value, or color, fronC, and to move on to a next state. These states are internal to the machine, that is,
invisible to an outside observer. Such a machine can abstractly be modeled as a cqalgkbra C' x M,
with 7o(u(s)) € C denoting the current value of the machine, anfl(s)) € M representing the machine’s
next internal state. (Hera, : C x M — C andm, : C x M — M are the projection functions.)

Example 9.3 For our second example, we turn to automata theory. Recaldgtatministic automatare
usually modeled as quintuplés= (A, az, C, J, F') such thatA is the state space of the automatoru; € A
is its initial state,C its alphabet, § : A x C' — A its transition function and finally, F C A its collection of
accepting states.

Now observe that we may represdritby its characteristic magr : A — 2 (with 2 denoting the set
{0,1}) which mapse € Ato1ifa € F, and to 0 ifa ¢ F. Furthermore, we can and will viedvas a map
from A — A®, whereA® denotes the collection of maps fromto A. Thus we see that we may represent a
deterministic automaton over the alphabeas a pointed system over the functr— 2 x S¢.

Example 9.4 Our third example provides the crown witness when it comes to the connection between coalge-
bra and modal logics: We will now see tHfeamesandmodelsare in fact coalgebras in disguise. The crucial
observation is here that a binary relatitnC S x S can be represented by the functi@f] : S — P(5)
mapping a point to the collectionR[s] of its successors. Thus frames for the basic modal similarity type
correspond to coalgebras over the covariant power set fufttdr his functor maps a sét to its power set
P(S) and a functionf : S — S’ to the image mafP f given by(Pf)(X) := f[X|(={f(z) | z € X}).)

Similarly, a ternary relatio” C S® can be modeled as the functi@i] : S — P(S?) given byT[s] =
{(t1,t2) € S? | T'stity}. Thus for any modal similarity type, we can represent-frames as coalgebras for
the functorS — [y, P(S¥ V). Also note thaimage finite frames, that is, frames in whiclR[s] is a finite
set for all pointss, correspond to coalgebras over tihétary power set functo,,.

Concerning models, in this section we top denote the set of propositional variables. It is easy to
see that a valuatiol : Prop — P(S) on a frameS = (S, R) could equivalently have been defined as a
P(Prop)-coloring of S, that is, as the map sending a state the collectiorl/ ~![s] = {p € Prop | s € V(p)}
of proposition letters holding at. Thus models for the basic modal similarity type can be identified with
coalgebras of the functét given by X — P(Prop) x P(X).

Example 9.5 For our last example, 16 denote theontravariantpower set functor. This functor agrees with
the covariant power set functor on objects, while on arr@akesinverseimages. That is, fof : A — A’
the functionPf : PA’ — PA s given by(Pf)(X') := f'X'|(= {xz € A| f(z) € X'}). Note thatP is
not a functor fromSet to Set, and thus does not produce coalgebras. Its composition with itself, hovigver,
an endofunctor oBet, so that we may considé? o P-coalgebras. Because the transition functioof such a
coalgebrd S, o) is a functiono : S — PPS, the structurdS, o) may also be seen asaighborhood frame

Some variants of the functd? o P are of interest as well — we discuss the exampigsaand 7. Recall
thatP o P(S) = PP(S) is the set ofall collections of subsets of. U (S) denotes the set of allpward
closedcollections of subsets &, while 75(S) denotes the set of diilters of S. On arrows, these functors
coincide with? o ; more precisely, foif : S — S, we setds f andFs f as the restrictions dff o P)f to
Uy S andF S, respectively.

It is not hard to show that/; and 7 are indeed functorSet — Set. The reader may in fact be fa-
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miliar with (some) coalgebras for these functors. Thecoalgebras correspond exactly to tmenotonic
neighborhood framess can easily be verified. Prime examplesgfcoalgebras are the topological spaces.
To see this, represent the topologyon the setS by the function mapping a point € S to the collection
{U € o | s € U} of its neighborhoods.

Example 9.6 For each set functof?, the empty setz, with the unique map fron@ to @, provides an
Q-coalgebra.

The functors mentioned in the Examples 9.2] 9.3 @nd 9.4, are examples of sokagblesl polynomial
functorswhich share some pleasant properties as we will see further on.

Definition 9.7 The collection ofpolynomial functors is inductively defined as follows:
K :=7T|C|Ky+K;|KoxK;|KP. (40)

Here Z denotes the identity functor on the categ&rt; C the constant functoX — C; Ky + K; the
coproduct functorX +— Ko(X) + K1(X); Ko x K the product functor; and(” denotes the exponent
functor X — K(X)P.

Similarly, the collection oKripke polynomial functors is given by

K :=TI|C|Ky+K,|KyxK,|KP|PK, (41)

whereP K is the composition ok with the power set functdP. ReplacingP with thefinite power set functor
P.,, and demanding the exponeftin K to be finite, we obtain the collection déhitary Kripke polynomial
functors.

In each of these cases, the $e§ K of ingredient functors of a (Kripke) polynomial functoi is defined
by an obvious induction, with clausésg(Z) := {Z}, Ing(PK) := {PK} U Ing(K), etc.

With the notation of this definition, ExampleP.2 provides examples of coalgebras for the fu@chmis
7 x C. Deterministic automata over the alphabeare2 x Z¢-coalgebras. Kripke frames aRZ-coalgebras,
and Kripke models are coalgebras for the fun@@®rop x PZ. (Note that in the formaf{41), the power set
functor as such is not a Kripke polynomial functor: It has to be represented as the firctém the sequel,
we will keep working with Kripke frames &B-coalgebras, unless explicitly mentioned otherwise.)

After Set, the base category for coalgebras that carries most interest to modal logicians, is probably that of
Stone spaces

Example 9.8 Recall from Remark5.21 that a Stone space is Pair (S, o) such thav is a compact Haus-
dorff space with a basis of clopens. [%bne denote the category with Stone spaces as objects, and continuous
maps as arrows. We will show thdéscriptive general framesan be viewed aStone-coalgebras for the so-
called Vietoris functor V — for details on this observation, which is due t@®amMsky [lI], see KUPKE,

KURZ & V ENEMA [I74].

This functor, which forms the topological counterpart of the power set functor, is defined as follows. Given
a topological spack = (S, o), let K(S) denote the collection of closed subsetsSoind lets> C K (S) x S
denote the converse membership relation. Then (in accordance with our earlier notation), we define, for any
subsetU C S, the sets(3)U = {F € K(S) | FNU # @}and[3]U = {F € K(S) | F C U}. The
topology onK (S), generated by taking the collectidi>)U, [3]U | U € o} as a subbasis, is called the
Vietoris topology of o, and the resulting space, théetoris space V(S) associated witls.

The Vietoris construction preserves several properties of topological spaces; in particiiiaraifStone
space, then so iB(S). Also, we may extend it to a functor, by defining, for a continuous rhag — S/, the
functionV f as the image map given By f)(X) := f[X]. Here we omit the proof thatf is indeed an arrow
in the categonbtone, i.e., that it is acontinuousmap fromV(S) to V(S').

Now letG = (G, R, A) be a descriptive general frame (cf. Definition $.25), with associated Stone space
o4. Recall from Remark5.26 that the ma})-] mapping a point irGG to the collection of its successors, is a
function fromG to K ((G,04)). Itis not too hard to prove that this is in factantinuouamap from(G, o 4)
to its Vietoris space. Thus we may repres€ras the Stone coalgeb(&=, 0 4), R[]).
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Obviously, coalgebras are not studied in isolation; the following definition provides a natural notion of a
map between coalgebras that preserves the transition structure.

Definition 9.9 Let A = (A4,«) andA’ = (A’, ') be two coalgebras for the functér : C — C. Then
a homomorphism from A to A’ is an arrowf : A — A’ for which the following diagram commutes:

A—d oy
Oé\ Oé/

0
oM o

Example 9.10 The homomorphisms fgP-coalgebras coincide with the bounded morphisms between Kripke
frames. To see this, I& = (S, R) andS’ = (S’, R’) be two frames (for the basic modal similarity type), and
consider their respective coalgebraic representatiéns) and(S’, o’), as in Exampl¢ 9]4.

Now consider amag : S — S’. Itis straightforward to show that

[ satisfies the forth condition iffPf) o o(s) C o' o f(s) forall s € S,
f satisfies the back condition iffPf) o o(s) 2 0’ o f(s) forall s € S.

This shows thaif is a bounded morphism frofito S’ if and only if it is a coalgebra homomorphism from
(S,0) to (S, ¢'), and provides perhaps the most convincing argument that the notion of a bounded morphism
is a natural one.

Example 9.11 Let X and X’ be two topological spaces, represented as coalgéebras (X, ¢) andX' =
(X', ¢') for the filter functorF; of Examplg/95. We leave it for the reader to check that a fhag — S” is
anF-coalgebra homomorphism iff is continuous and open (i.e., not only do we reqyiré [U’] to be open
in X if U’ is open inX’, but alsof[U] must be open iX’ for all X-openU).

Likewise, one can prove that the coalgebraic notion of a homomorphism between monotone neighborhood
frames, represented as coalgebras for the furiétgrcorresponds to that of a bounded morphism for these
structures as defined in section 2.

It is easy to check that the collection of coalgebra homomorphisms contains all identity arrows and is
closed under arrow composition. Hence, fheoalgebras with their homomorphisms form a category.

Definition 9.12 For any functof? : C — C, we letCoalg(€2) denote the category with-coalgebras as objects
and the corresponding homomorphisms as arrows. The catégemalled thebase category of Coalg(f2).

The reader will already be familiar with a number of (isomorphic copies of) these categories. For instance,
Example[9.10 shows in fact that the categbry(of frames with bounded morphisms)ismorphicto the
categoryCoalg(P) of P-coalgebras. Likewise, elaborating Examlplé 9.8, one can prove that the cabegiory
(of descriptive general frames with continuous bounded morphisms, see Definitipn 5.27) is isomorphic to the
category of Stone coalgebras for the Vietoris functor. Of course, it is these isomorphisms that justify our
classification of modal structures as coalgebras, not so much the simple fact that the objects in isolation can be
presented in coalgebraic format.

Remark 9.13 Recall that amalgebra over a signaturd is a setA with an Q-indexed collection{ f* |
Aar(f) — A} of operations. These operations may be combined into a singleumaEfGQ Aar(f) — A,
where}” (., A"/ denotes theoproduct(or sum, or disjoint union) of the sets{ A*"(/) | f € Q}. Itis not
hard to verify that a map : A — A’ is an algebraic homomorphism between the algebras (A, «) and
A = (A’ o) iff the following diagram commutes:

A / Al
Q
QA / QA
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where we now view the signatufe as the polynomial seftmctorzfGQ 797(f). That is,(2 operates as well
on functions between sets. This naturally suggests the following generalization.

Given an endofunctof2 on a categonC, an{2-algebra is a paiA = (A, «) wherea : QA — Ais an
arrow in C. A homomorphism from af2-algebraA to anQ-algebraA’ is an arrowf : A — A’ such that
foa=ao(2f). The induced category is denotedAlg(f?).

Now the obvious similarities between the notions of algebra and coalgebra can be made very precise. The
basic observation, which also explains the name ‘coalgebra’, is that a coalgebr@’, v : C — QC') over a
base categor¢ can also be seen as an algebra indppositecategoryC°? — we will come back to this issue
in sectioIb. Note however, that universal coalgebra, dealing with arbitrary set functors, is more general than
(what is usually called) universal algebra, which involves only polynomial functors.
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10 Final coalgebras

Definition 10.1 A functor 2 : C — Cis said toadmit a final or terminal coalgebra if the categoryCoalg({2)
has a final object, that is, a coalgetitasuch that from every coalgebra in Coalg(2) there is a unique
homomorphismy, : A — Z.

Functors admitting a final coalgebra are of special interest. In the case of state-based coalgebras, one reasc
for this is that final coalgebras often provide an intuitive encoding of the notibelwdivior And in fact, many
interesting and well-known mathematical objects can be naturally associated with the final coalgebra of some
functor.

Example 10.2 Consider a black box machifd = (M, 1) as in Examplé 9]2. Starting from, say, state
the machine makes a transitipfizg) = (co, x1) and continues withu(x1) = (c1, x2), p(x2) = (c2, x3), €tc.
Since the statesy, =1, ... are internal to the machine, the only observable part of this dynamics is the infinite
sequence ostream beh(zg) = (co, c1, c2, .. .) € C¥ of values in the data s€t.
The collectionC* of all infinite words overC forms itself a system for the functar x Z. Simply endow
the setC“ with the transition structure splitting an infinite stream = cycjcs . . . into its head h(u) = ¢y and
its tail t(u) = cicacs ... Puttingy(u) = (h(u),t(u)), one easily proves that the behavior map- beh(x)
is the unique homomorphism froM to this coalgebrdC*, ~). This shows tha{C“, v) is the final object in
the categorCoalg(C x 7).

Example 10.3 For a second example, consider again the coalgebraic representation of a deterministic automa-
ton over the alphabef' as a2 x Z¢-coalgebra. Now we will see that the collecti®{C*) of all languages
over(C provides (the carrier of) the final coalgebra. We can turn thig’$ét*) into a coalgebra by imposing
on it the following transition function : P(C*) — 2 x P(C*)®. Writing A\(L) = (M\o(L), A1(L)), we define
Ao(L) := 1 iff the empty string belongs td,, and\;(L)(¢) := {w € C* | cw € L}. (The latter set is
sometimes called thederivative of L.)
We leave it for the reader to verify that with this definition, the struct@®éC*), A\) forms the final object
in Coalg(2 x Z¢). Given a2 x Z¢-coalgebra, the unique homomorphisty : A — (P(C*), \) maps a state
a € Atothe language that is accepted by the automaton that we obtain by te&@igitial state of\.

Example 10.4 An interesting example in modal logic is provided by the final coalgebra for the Vietoris func-
tor V of Example[918. The existence of a findlcoalgebra is in fact an immediate consequence of the iso-
morphismCoalg(V) = DGF, and the duality betweeDGF and MA (the category of modal algebras with
homomorphisms)MA has an initial object (namely, the Lindenbaum-Tarski algebra generated by the empty
set of variables, or, equivalently, the free modal algebra over zero generators), and so by@haddity,) must

have a final object. In fact, theanonicaldescriptive general frame, based on the set of maximal consistent
closed formulas, fulfills this role — a nice and perhaps quite unexpected application of this construction.

An important application of final coalgebras is provided by the principlecafiduction which is one of
the fundamental coalgebraic notions. There are two sides to this principle: it serves both as an important proof
tool and as an elegant means of providing definitions. As a definition principle, coinduction is based on the
existence of uniqgue homomorphisms into the fifladystemZ = (Z, (). For, suppose that we can endow a
setS with an2-coalgebra map : S — €S, thus obtaining th&-systentS. Then there is a unique function
fo =ls: S — Z which is consistent with the coalgebra specificatigrin the sense that it is a coalgebraic
homomorphism from{S, o) to Z. Thus the functiory, is defined by coinduction from (the specification)

Example 10.5 For instance, take the function that merges two streams by taking elements from either stream
in turn. For a coinductive definition of this map, define the transition map C“ x C¥ — C x (C¥ x C¥)
as follows:

zip(u, v) := (h(u), (v,t(u))),
whereh andt are the head and tail maps of Example]L0.2. Then by finality there is a unigue homomorphism
fap 1 C¥ x C¥ — C¥. One may verify that this indeed defines the map that zips two streams together.
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The previous example is fairly typical in that it uses coinduction to define a function from a product of
the final system to itself. It should also be noted that coinduction works particularly well for structures that
combine algebraic and coalgebraic features, such as streams of data objects which are subject themselves
algebraic operations.

Unfortunately, final coalgebras do not exist for every fun€lot~or instanceSet-endofunctors involving
the power set functor in a nontrivial way, will generally not admit a final coalgebra; in particular, there is no
final Kripke frame or model. By Cantor’s theorem, these results are immediate consequence of the following
proposition, which is due to Lambek79].

Proposition 10.6 Let Q : C — C be some functor admitting a final systéin= (Z,(). Then( is an
isomorphism (irC) between”Z and)~7.

Proof. Suppose thaZ = (Z,() is the final object ofCoalg(€2). It can easily be verified that is in fact
a coalgebra homomorphism frofito Z, := (Q2Z,Q¢). But then the compositioly, o ¢ is a coalgebra
homomorphism fron¥ to itself, just like the identity arrowid; on Z. Thus by uniqueness it follows that
!z, o ¢ = idz. For the reverse compositigho !z, we have, by the fact thdf, is a homomorphism, that
Colz, =Qlgz, 0 Q¢ =Q(lz, 0 ¢) = Qidz) = idqz. From this the result is immediate. O

So which functors admit final coalgebras? Some good sufficient conditions are known.

Definition 10.7 Let Q2 be some set functor, andsome cardinal. Call} x-small if
QS) = {(Q)[QA)] | 1: A S, |A] < &},
for all setsS # @. Q2 is small if it is small for some cardinat.

In words, the definition requires every elemenfxfS) to be in the range d. for an appropriate inclusion
map: : A — S. In casef) is astandardfunctor (meaning thaf2? maps inclusions : A — B to inclusions
(1) : QA — QB), the definition boils down to the requirement tiiytS) = (J{Q2(A4) | A C S,|4| < k}.
The notion of smallness is easily seen to be equivalent to the instantiatten afithe more general notion of
accessibility and it is also equivalent to the conceptmiundednessf. ADAMEK & PoRsT[6] for details.
Examples of small functors abound; for instance, whenever we replace, in a Kripke polynomial functor,
the power set functor by a bounded variant such as the finite power set functor, the result is a small functor.
For instance, the finite power set funcf@y is w-small. The following result, due to@zEL & M ENDLER [B]
and BaRrR [9], witnesses the importance of the notion.

Fact 10.8 Every small set functor admits a final coalgebra.

As one of the immediate corollaries of this fact, the categories of image finite frames and image finite
models, which can be represented as coalgebras for the fuAct@ndPProp x P, respectively, have final
objects.

Remark 10.9 ForSet-based functors that do not admit a final coalgebra, onearesatea final coalgebra — at
least, if one is willing to allow coalgebras with a class rather than a set as their carriSETée the category
that has classes as objects, and set-continuous functions as arrows. These are findfionsC’ between
classes with the property th#fC) = (J{f(S) | S € CandS is a se}. An endofunctor orbET is set-based
if for each clasg” and each: € Q(C) there is a seb C C such that € ()[Q2(5)], where, : S — C'is
the inclusion map. (If the set functor is standard, this boils down to requiringXtef set-continuous map
on objects.) Now &zEL & M ENDLER [B] proved that every set-based endofunéor SET — SET admits
a final coalgebra. The similarity to F4ct1]0.8 is no coincidencer®B[9] showed that the result of Aczel &
Mendler can in fact be reformulated as Facii0.8.

This fact can be used as follows. Given an endofun@ton Set, there is auniqgueway to extend? to a set
based endofunctd2™ on SET. (On objects, simply pu@*(C) := [J{(2)[Q(S) | ¢ : S — C, S aset.) The
theorem of Aczel & Mendler then guarantees the existence of a final dbjec€Coalg(2™). This coalgebra
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will be class-based if2 does not admit a final coalgebra, but it will be final, not only with respect to the
set-based coalgebras @walg(27), but also with respect to the class-based ones. As an important instance
of this idea, ACZEL [¢] showed that the class of non-well-founded sets provides the final coalgebra for (the
SET-based extension of) the power set functor.

Remark 10.10 Whether the functor admits a final coalgebra or not, one may always (try to) approximate it.
Thefinal or terminal sequence associated with a given set functoyis an ordinal indexed sequence of objects
(Zo) with mapsp§ : Zo — Zg for § < «, such that ()21 = Q2Z, andpgﬂ = Qpj, (ii) pg = idz, and

pg o pg = p5, (i) if Ais a limit ordinal, thenZ, with {p) | & < A} is a limit of the diagram with objects

{Zo | @ < A} and arrowsp§ | a, B < A}. (In particular, taking) to be a limit ordinal, we find thaf, = 1 is

some initial objectl of the categonbet.) It is not hard to prove that, modulo isomorphism, the final sequence
is uniquely determined by these conditions.

Intuitively, it can be seen as an approximation of the final coalgebr@ fdmat is, where elements of the
final coalgebra represent ‘complete’ behavior, elementg ofepresent behavior that can be performed: in
steps. To make this precise and formal, observe that fo€aogalgebras there is auniqueordinal-indexed
class of functions,, : S — Z, such thaty is fixed by the finality ofZ; in Set, !,+1 = (Q!4) o o, and for limit
A, ! is given as the unique mdp : S — Z, such thaty = p) o, for all & < . Itis not hard to prove that,
for instances, s =q S, s’ implies that,(s) = l,(s’) for all a.

The relation with final coalgebras can be made precise, as follows. On the one hand, if the final sequence
converges, in the sense that some argg! is a bijection, then the coalgebf&,,, (p>™1)~1) is a final
coalgebra fo2. And conversely, under some constraintsf@nADAMEK & K OUBEK [G] proved that ifQ
admits a final coalgebra, then the final sequence converges to it. More information on the final sequence of se
functors can be found in WRRELL [T09].
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11 Bisimulation & behavioral equivalence

In this section we discuss the most important notions of equivalence between systems: behavioral equivalence

and bisimulation. Both of these generalize the concept of a bisimulation between two Kripke models.
Probably the most intuitive notion of equivalence between systems is thatakiora) or observational

equivalence. The idea here is to consider two states to be similar if we cannot distinguish them by observations,

because they display the same behavior. For instance, we call two deterministic automata Qpgititee

coalgebras) equivalent if they recognize the same language. In case the faradarits a final coalgebra

Z, this idea is easily formalized by making statgin coalgebraS, equivalent to state; in coalgebraS; if

Is,(s0) = s, (s1). In case the functor does not admit a final coalgebra, we generalize this demand as follows.

Definition 11.1 LetS = (S, o) andS’ = (5’, ¢’) be two systems for the set functar Thens € S ands’ € S’
arebehaviorally equivalent, notation:S, s =q S, ¢’ if there is anQ2-systemX = (X, £) and homomorphisms
f:S—=Xandf :S — Xsuchthatf(s) = f'(s).

Remark 11.2 It is easily checked that in cage admits a final coalgebra, then indeBds =, S/, s’ iff

Is(s) = ls(s'). In the case thaf) does not admit a final coalgebra, then one may show that behavioral
equivalence is captured in the same way by the final coalgebra of the exténsioit to the categorgET,

see Remark10.9.

Remark 11.3 As a variation of behavioral equivalence, the final sequence can be used to study behavior, in a
way that is not unlike modal logic. For instance, call two poinfedystemsS, s) and(S', s’) a-equivalent

if 1o(s) = !a(s’). In the case of Kripke models, this notion coincides with that of bounded bisimilarity,
see Chapte?P? of HBML. One may prove that behavioral equivalence itself coincide with the intersection ef
a-equivalence for all ordinals.

In almost all cases of interest, behavioral equivalence can be characterized via the equally fundamental
concept ofbisimilarity, which is due to £zeL & M ENDLER [B]. The definition of bisimilarity and bisim-
ulations may not be so intuitive at first sight, but, as we will see, these notions have some rather elegant
mathematical properties.

Definition 11.4 LetS = (S, o) andS’ = (5’, ') be two systems for the set functar A relationB C S x 5’
is called abisimulation between S and¥/, if we can endow it with a coalgebra map: B — QB, in such
a way that the two projections : B — S andn’ : B — S’ are homomorphisms frorfiB, 3) to S andS/,

respectively:
/

§~—" _p—T" g
o ﬂ o’
Y /
g __qp O oy

If there exists a bisimulatio® with (s, s’) € B, we say that ands’ arebisimilar, notation:S, s < §', s’ (or
B:S,s < §/, s in case we want to make the bisimulatiBnexplicit).

Finally, if S = S’ we say thafB is a bisimulatioron S; if this B happens to be an equivalence relation, we
call it a bisimulation equivalence on'S.

Remark 11.5 Intuitively, bisimulation equivalences correspondtmgruences universal algebra. To make

this analogy somewhat more precise, call a relafio@ Ay x A;, linking the carrier sets of tw-algebras

Ag and A4, substitutive if there exists aralgebraic structurep : QR — R, such that the two projections

m; : R — A; are (algebraic) homomorphisms. This is clearly an algelwaitogue (rather than a dual
version) of a bisimulation, so that the correspondence between congruences and bisimulation equivalence:
obtains through the observation that a congruence is nothing but a substitutive equivalence relation.

Example 11.6 LetSy = (Sy, 09) andS; = (S1, o1) be two coalgebras over the func®Prop x P. Thatis,Sy
andS; are Kripke models in coalgebraic shape; wetés) = (\;(s), R;[s]), where);(s) is the collection of
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proposition letters true atin S;, andR;[s| is the successor set 8in S;, as in the examplds 9.4 ahd 9.10. Now
consider an arbitrary relatioB C Sy x S;. It is a very instructive exercise to check thats a bisimulation

in the coalgebraic sense if and only if it is a bisimulation in the sense of Kripke models. Recall that the latter
property means that for any pdiy, s1) € B:

(atom) p € A\g(s) iff p € A\1(s), for all p € Prop;
(forth) for all ty € Ry[so] there is some; € Ry[s1] with (to,t1) € B;
(back) for all t; € Ry[s1] there is some, € Ry[so] with (¢1,t9) € B.

One way to prove this equivalence uses the fact that bounded morphisms coincide with coalgebra morphisms
cf. Examplg[9.10. Details are left to the reader.

Example 11.7 Recall from Examplé 9.3 that deterministic automata over an alplialoain be represented
as2 x I¢-coalgebras. Now leh = (A, 0,v) andA’ = (A’,0,1') be two such automata. We leave it for
the reader to verify thaB C A x A’ is a bisimulation betweeA and A’ iff every pair (s, s’) € B satisfies
(i) o(s) = o'(s") and (ii) (v(s)(c),v'(s')(c)) € B for everyc € C. In this case it is easy to see that bisimilar
states are also behaviorally equivalent.

Example 11.8 For an arbitrary set functde, it is easy to see that for any coalgelStahe diagonal relation

Ag is a bisimulation equivalence ¢h Furthermore, the converse of a bisimulation is again a bisimulation.

However, the collection of bisimulations is not in general closed under taking relational composition.
Finally, homomorphisms can be seen as functional bisimulations. To be more precjse, $gt— S

be a function between the carriers of tecoalgebras, andS,. Recall that thezraph of f is the relation

Gy :={(s, f(s)) | s € S}. Thenit holds that

f is a coalgebraic homomorphism iff its graph is a bisimulation (42)

In order to see why this is so, first suppose ¥at: Sy < S;. Since the projection mag, : Gy — Spis a
bijective homomorphism, its invers%‘l is also a homomorphism. But thgn= m; o wgl, as the composition
of two homomorphisms, is also a homomorphism. For the other direction, suppogesfziomomorphism;
then it is straightforward to verify that the méQn,) ~! oo omg equips the sef ; with the required coalgebraic
structure.

Bisimulations admit an elegant alternative characterization which involves the notietatibn lifting.
As an example, consider the power set fund®r Recall thatB C Sy x S; is a bisimulation between
So = (So, Ro[-]) andS; = (S1, R1[-]) iff B satisfies the conditiongack)and(forth) of Example[11]6. Now
suppose that we define, for an arbitrary relatio Sy x S1, the relatiorP(R) C P(Sp) x P(S1) by putting

P(R) := {(Qo, Q1) | Vg0 € Qo Iq1 € Q1. (g0, 1) € RandVg1 € Q13q0 € Qo. (0, q1) € R}.  (43)

In other words, wiéift the relationR to the level of the power sets 6f andS;. The definition of a bisimulation
betweerfP-coalgebras can now be nicely characterized as follows:

B:Sy < S iff (Ro[So],Rl [51]) S ﬁ(B) for all <$0,81) € B.

This nice way of characterizing bisimulation via relation lifting is not limited to the power set functor — it
applies in fact teeveryset functor.

Definition 11.9 Let Sy andS; be two coalgebras for some set funcfar Given a relationR C Sy x Sq,
consider the following diagram, wherg : R — S; andp; : 1Sy x Q57 — Q.5; denote the projection maps.
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It follows from the category theoretic properties of the produst x Q.5; that there is a unique magk =
(Qmg, Q) from QR to QS x Q.S such thap; o pp = Qm; fori = 0, 1. We define theelation lifting of R
as the relation

QR = {((Qmo)(w), (m)(w)) | u € QR}, (44)
that is,Q0R is the image of2R underpp,.

The results listed in the following theorem, which summarize the most important properties of bisimula-
tions, basically date back todxEL & M ENDLER [3].

Theorem 11.10LetSy andS; be two coalgebras for some set functar
(i) B:So < Syiff (60(s0),01(s1)) € Q(B) forall (sg,s1) € B.
(ii) The collection of bisimulations betwe8p and S; forms a complete lattice under the inclusion order,
with joins given by unions.
(iii) The bisimilarity relation= is the largest bisimulation betwe&g ands;.

Proof. The first part of the theorem is an almost immediate consequence of the definitions, so we leave the
details to the reader.
The crucial observation in the proof of the other two parts is that

Q: P(Sy x S1) — P(2Sy x QS1) is a monotone operation (45)

For a proof, letR C R’ be two relations betweefly and S, with . : R — R’ denoting the inclusion
map. By definition of2, we may without loss of generality represent an arbitrary elemefi{ &) as a pair
pr(u) = ((Qmo)(u), (Qm1)(u)) for someu € QR. Definew := ()(u), thenu' belongs to2R’, and for
eachi we find that(Qn}) (u') = (7} o Q) (u) = (2w} 01)(u) = (Qm;)(w). Thatis,pr(u) = pr(u'), which
shows thapr(u) belongs ta2R’. This proves|(45).

Now for the proof of parf]i, recall that a partial order is a complete lattice if it closed under arbitrary
joins. Hence, it suffices to prove that the uniBnof a collection{B; | j € J} of bisimulations is again a
bisimulation. Take an arbitrary pafsg, s1) € B. Then(sp,s1) belongs toB; for somej € J. Hence, by
part[j, we find(so, s1) in ©(B;), so(so,s1) € Q(B) by the monotonicity of2. But thenB is a bisimulation
by part].

Finally, for part[iij, note that it is an immediate consequence of part ii thatbeing the union of all
bisimulations betweeBj; andS;, is a bisimulation itself. Hence, by definition, it is the greatest bisimulation
betweerf, andS; . In fact, it follows by the Knaster-Tarski theorem (on fixed points of monotone operations on
complete lattices), that is in fact the greatest fixed point of the map R — {(so,s1) | (c0(s0),01(s1)) €
Q(R)}. O

In the case of Kripke polynomial functors, relation lifting can be characterized usdchgtionon the
construction of the functor, cfatoBs[63].

Proposition 11.11 Let S and S’ be two sets, and® C S x S’ a binary relation betwees and S’. Then the
following induction defines the relation lifting’ (R) C K .S x K.S’, for each Kripke polynomial functak :
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I(R) =R,
C(R):=Ac,
Ko x K1(R) := {((x0, z1), (0, 7)) | (w0, 75) € Ko(R) and (1, 27) € K1(R)},
Ko + K1(R) := {(rozo, koxp) | (z0, ) € Ko(R)} U{(k121, k1) | (21,27) € K1(R)},
KD(R):={(f, f") | (f(d), f'(d)) € K(R) forall d € D},
PK(R):={(Q,Q") |Y¢e Q3¢ € Q. (¢,¢) € K(R)andVq € Q' 3g € Q.(q,¢) € K(R)}.

Now that we have defined these two notions of equivalence between coalgebras, the obvious question
is how they relate to each other. One direction is clear: bisimilarity is a sufficient condition for behavioral
equivalence.

Proposition 11.12 Let() : Set — Set be some functor, and le and s, be states of th&-coalgebrass, and
Sy, respectively. Thef, sg < Sq1, s1 impliesSy, sg =q Sy, s1.

Proof. The proof of this proposition is, in the general case, similar to the one of Thgorem 11.15 below (with
an application opushouts instead of pullbacks), so we omit details.

In the special case th& admits a final coalgebra, a very simple proof obtains. Assumezh&, < S,,
and lets : B — QB be a coalgebra map witnessing this. It follows from the definitions that gth
andls, o m; are coalgebraic homomorphisms frd®, 5) to the final coalgebra, so from finality it follows
that!s, o mp = !5, o 1. From this it is immediate thaB C =q. Hence in particular, since> is itself a
bisimulation, we see that C =q,. a

In general however, bisimilarity is a strictly stronger notion than behavioral equivalence. For instance,
the definition of bisimilarity presented inBML for monotone neighborhood frames really corresponds toe
behavioral equivalence for the functi@d. One can give a fairly simple example of such a relation between
two structures that inot al/-bisimulation in the sense of Definitign 1.4, seeN$EN & K UPKE [65] for
the details. In order to guarantee that the two notions do coincide, consider the following constraint on the
functor.

Definition 11.13 A weak pullback of two arrowsf, : Ag — B,
f1: A1 — Bin a categonyC is a pair of arrowsyy : W — Ay,
p1 : W — Aj such that (i)fy o po = f1 o p1, while (ii) for
every pairp, : W' — Ao, p} : W' — A, that also satisfies
foopy = fiopl, there is a mediating arrow’ : W’ — W such
thatpy o w’ = pf, andp; o w’ = pl.

A functorQ : C — C’ preserves weak pullbacks if for any weak .
pullback (po, p1) of any (fo, f1) in C, the pair(Qpo, Qp1) is a W"'.. 141
weak pullback of Q2 fp, Q2f1) in C'.

Note that the mediating arrow’ need not be unique: adding this requirement to the definition would give
the more familiar, and stronger, notion opallback. The categonbet has pullbacks: forfy : 49 — B and
fi + A1 — B, we can take the projections #y and A; from the setpb( fo, f1) := {(ao,a1) € Ao x A1 |
folao) = fi(a1)}.

Many but not all endofunctors det in fact preserve weak pullbacks.

Proposition 11.14 All polynomial functors preserve pullbacks, and all Kripke polynomial functors preserve
weak pullbacks.

This prima facie rather exotic property is of great importance in the theory of universal coalgebra. The main
reason for this is tha® preserving weak pullbacks is equivalenfi@ommuting with relational composition,
that is, satisfying2(R o R') = Q(R) o Q(R’). In fact, one may show that any set funcfopreserves weak
pullbacks if and only if2 is an endofunctor on the category with sets as objects and binary relations as arrows.
This result is often attributed toARBONI, KELLY & W 00D [1Y9], but it already follows from earlier work by
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Trnkova [104/1056] and BarrI10]. In any case, the importance of the notion in the theory of coalgebras lies in
the results from BTTEN [94] that are given in the next theorem.

Theorem 11.15Assume that the functd? : Set — Set preserves weak pullbacks. Then the collection of
bisimulations is closed under taking relational composition, and the notions of bisimilarity and behavioral
equivalence coincide.

Proof. We leave the proof of the first statement as an exercise for the reader, and concentrate on the seconc
statement. Lety ands; be states of th@-coalgebra§, andS;, respectively. We need to prove tisat so <
S1, 81 iff Sp, 80 =q S1, s1. Because of Propositidn ITT]12 it suffices to prove the direction from right to left.
Let fo : Sop — X andf; : S; — X be two homomorphisms such th&f(so) = fi(s1). Then inSet, the
setB := {(so,s1) € So x S1 | fo(so) = fi(s1)}, together with the projection functions : B — Sy and
m : B — S7 constitutes a pullback ofy and f1, cf. the square in the foreground of the picture. Becduse
preserves weak pullbacks, the diagram in the background of the picture is a weak pullback diaggam in
Now consider the two arrows; o 7; : B — Q(S;). First observe

thatQf; o o; = £ o f; for eachi, because eacl; is a coalgebra Q.S 2/o 99.¢
homomorphism. Hence, chasing the diagram we find that Uy‘ ;i f/’
g 0
Qfpocgom =Eo foomo=Eo from =Qfiooom. " Qg Qf

SinceQmy andQmr; form a weak pullback of2 fy and2 f1, this f

implies the existence of a mediating functiGn B — QB such 0 OB ! Qs
that Qm; o § = o; o . In other words,B := (B, () is an T Qmy /
Q-coalgebra, and the projection mapg andw; are homomor- B".' p g 91
phisms fromB to Sg andS+, respectively. 1 !

We finish the section with a brief discussionaginductionas a coalgebraic proof principle. This principle
states, for a systef), that< C Ag; or equivalently, that every bisimulation is a subset of the diagdnal
The importance of this principle is that, when applicabl&tan order to prove the identity of two states in
S, it suffices to show that they are linked by some bisimulation. It is not hard to provértabhtoalgebras
if existing, satisfy the principle of coinduction. This principle has surprisingly powerful applications. For
instance, since the class of non-well-founded sets i€§irig(P "), cf. Remark 10]9) the final coalgebra of
the power set functor, bisimilarity may serve as a notion of identity between setsczee [?]. As a second
example, RTTEN [96] is a presentation of the theory of deterministic automata and (regular) languages in
which coinduction on the final coalgebra of Example10.3 is the basic proof principle.
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12 Covarieties

What is the coalgebraic analog of a variety? In other words, what are natural closure operations on classes o
coalgebras? We start with homomorphic images.

Definition 12.1 Let 2 be some endofunctor &et. If p : A — B is a surjective homomorphism between the
Q-coalgebras\ andB, then we say thdb is ahomomorphic image of A.

In universal algebra, one finds a one-one correspondence between homomorphic images and congruence
Something similar applies here, but the analogy is perfect only in the case of functors that preserve weak
pullbacks.

Proposition 12.2 LetS = (S, o) be anQ2-coalgebra for some set functé). Then

(i) Given a bisimulation equivalendg on', there is a unique coalgebra structwé on S/ E such that the
quotient map- : S — S/E is a homomorphism.

(i) If © preserves weak pullbacks, theer(y) is a bisimulation equivalence for any homomorphigm
S —¥§'.

Proof. For partfli, the coalgebra mag can be defined by putting’([s|g) := () o o(s). Further proof
details can be found in RrTEN [97]. For the second part of the proposition, observe Heaty) is the
relational composition of the graph gfwith its converse. The result then follows from Theoriem 111.151

The next class operation that we consider is that of taking subcoalgebras.

Definition 12.3 Let A = (A, «) andS = (S, 0) be two2-coalgebras, such thatis a subset ofd. If the
inclusion map. : S — A is a homomorphism fromS, o) to (A, «), then we say tha$ is open with respect
to A, and we call the structurgs, a|g) a subcoalgebra of A.

Interestingly enough, the transition map of a subcoalgebra is completely determined by the underlying
open set:

Proposition 12.4 LetSy = (S, 0¢) andS; = (S, o1) be two subcoalgebras of the coalgetdraThenoy = 0.

Proof. The case of5 being empty is trivial, so suppose otherwise. Then from the assumptioftiaaidsS
are subcoalgebras @&f, we may infer that{2.) o 0p = a0 v = () o o1, wherev is the inclusion map of
into A. It follows from the functoriality of) that€). is an injection, so that we may conclude thgt= ¢1. O

Some further observations concerning subcoalgebras are in order. First of all, the topological terminology
is justified by the following proposition.

Proposition 12.5 Given a coalgebrad for some set functof?, the collectiont, of A-open sets forms a
topology.

Proof. Closure ofr, under taking (arbitrary) unions follows from Theorém 11.10, together with the observa-
tion that
S C Ais open with respect ta iff Ag is a bisimulation o, (46)

which in its turn is an immediate consequence[of (42). We skip the proof of the fact thatdivection of
two opens is open, since it requires a little more work. We refer the readewntov&: SCHRODER [b4] for
the details. O

It follows from the Proposition above that, given a subSaif (the carrier of) a coalgebra, there is a
largest subcoalgebra @&f (of which the carrier is) contained i#t: Its universe is given as the union of all open
subsets of. It also follows from Proposition 2.5 that the collectignof open subsets of forms acomplete
lattice under set inclusion. Hence, given a sulssef A, there is an open sét C A which is themeetof the
collection{@ € 74 | S C @}. However, there is no guarantee thats also thentersectiorof this collection,
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or, indeed, thatS is actually a subset df. Thus we may not in general speak of the smallest subcoalgebra
containing a given subset, as the following example frooM® [b0] withesses.

Example 12.6 Consider the standard Euclidean topology on the real numbers, seen as a coalgebra for the
filter functor 75, cf. Examplg9]5. One can show, that a Seif reals is open in the topological sense iff it is

open in the sense of Definitign IR.3 — in fact, this holds for any topology. Now take an arbitrary- poiRt
Obviously, we have that thmeetof all open neighborhoods containings the empty set.

Before we turn to further coalgebraic constructions, consider the following natural link between homomor-
phic images and subcoalgebras.

Proposition 12.7 Given a coalgebraic homomorphism: A — B, there is a (unique) subcoalgebggA] of
B such thatp : A — ¢[A] is a surjective homomorphism.

Proof. For a proof of this proposition, le$ := ¢[A] be the (set-theoretic) image of undery, and let
f S — A be aright inverse ob, that is,o(f(s)) = s for all s € S. Now definesc : S — QS by
o = Qpoao f. It can be shown that the resulting structirés always a subcoalgebra @& and that
¢ : A — Sis a surjective homomorphism; for details the reader is referredstor BN [94]. O

Our last example of a coalgebraic construction concerns the straightforward generalization of the disjoint
union of Kripke models and frames. The idea is as follows. Recall th&tina concrete representation
of the coproduct of a collectiofi4; | i € I} of sets is given by the disjoint unidg; A;, together with
the inclusions/embeddings : A; — |; A;. Hence, the defining property of coproducts provides the key
ingredient of the coalgebraic notion of a coproduct, or sum of a family of coalgebras.

Definition 12.8 The sum [[; A; of a family {A; | i € I} of coalgebras for some set funct@r is defined
by endowing the disjoint uniod := |4; A; with the unique magp : A — QA which turns all embeddings
e; : A; — Ainto homomorphisms.

We have now gathered all the basic class operations needed to define the notion of a covariety, which was
introduced in RTTEN [94] as the natural dual of a variety in universal algebra.

Definition 12.9 Let 2 be some endofunctor ddet. A class ofQ2-coalgebras is aovariety if it closed under
taking homomorphic images, subcoalgebras and sums. The smallest covariety containingkaatl&ss
coalgebras is called the covariefynerated by K, notation:Covar(K).

As in the case of universal algebra, in order to obtain a more succinct characterization of the covariety
generated by a class of coalgebras, one may develop a calculus of class operations.

Definition 12.10 Let H, S andX: denote the class operations of taking (isomorphic copies of) homomorphic
images, subcoalgebras, and sums, respectively.

On the basis of these (and other) operations one may investigate the validity of ‘inequalitiétS like&H
(meaning thatHS(K) C SH(K) for all classe of coalgebras). Results of these kind lead to the following
coalgebraic analog of Tarski's HSP-theorem in universal algebra, duetwG SCHRODER [b3].

Theorem 12.11 LetK be a class of2-coalgebras for some set funct@r ThenCovar(K) = SHX(K).

Proof. Itis straightforward to prove the theorem on the basis of the idempotency of the class opdtafions
and, together with the following three ‘inequalitiesHS < SH, XS < S¥, andXH < HX. For proofs of
these (and more) inequalities, the reader is referredum i & SCHRODER [B3]. O

As in the case of varieties, one may wonder about the basic building blocks of varieties. Dualizing the
notion of subdirect irreducibility, we arrive at the following definition. It uses the notion of a conjunct sum,
which is known, in the case of Kripke frames, under the nantsoohded union
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Definition 12.12 Let A be somé?-coalgebra for some set funct@r A conjunct representation A by a family
{A; | i € I} of coalgebras is a family of embeddinfis : A; — A | i € I} suchthatd = | J,.; e;[A;]. Inthis
case we call\ aconjunct sum of the A;. A coalgebraA is calledconjunctly irreducible if each of its conjunct
representations is trivial in the sense that one of the embeddings is an isomorphism.

Covarieties are easily seen to be closed under taking conjunct sums — we will use this fact without further
notice.

Given the results on dualizing the notion of subdirect irreducibility in se€tion 5, in particular, Thgorem 5.29,
one would expect that conjunct irreducibility can be explained in terms of roots. Call & sthtesystent a
root of S if S itself is the only subcoalgebra Sfthat contains. It is then fairly easy to prove that a coalgebra
is conjunctly irreducible if and only if it has a root. Howevery@m [b0] proves that there is no analog of
Birkhoff’s s.i. theorem here, at least not for an arbitrary functor. For instance, expanding Example 12.6, one
easily shows that a topological coalgebra will generally not be a conjunct sum of rooted coalgebras.
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13 Modal logic and coalgebras

If coalgebras are mathematical structures that represent the essence of dynamics, then there is an obvious nel
for logics to represent and reason about properties of such structures. This is of particular importance for
computer scientists who are interested in the formal specification and verification of the behavior of a system.
Thekind of properties that one wants to describe formally may differ from one application to another, but it
seems natural to restrict attention to properties that are invariant under behavioral equivaless¢Tg86]
was the first to realize that such properties can be conveniently formalized in a versiodalflogig properly
generalized from Kripke structures to systems for an arbitrary set functor. This connection between modal
logic and coalgebra has provided a quite active research area. At the time of writing, quite a few proposals for
coalgebraic modal logics are around; most of them are roughly based on one of the approaches to be discusse
in this section.

We start with Moss’ original approach, which is also the most general. In order to introduce his formalism,
we first put ordinary modal logic in a slightly different perspective by introducing a new conndéctivitdhe
meaning of this modality, which takes get of formulas as its argument, can be summarized by presenting the
formulaV®, with ¢ a set of formulas, as the following abbreviation:

Vo :=0\/oa oD, (47)

where<$® denotes the siCy | ¢ € @}, and\/ and /\ denote disjunction and conjunction. We do not want
to exclude the possibility thak is an infinite set — coalgebraic logic is generally of an infinitary nature. The
operatorV pops up in a number of areas in modal logic,eBML. We may also decide to treat thisas <«
a primitive connective. As long as we keepand T in our language, both the standard diamond and box
connective are definable in terms@f since we have the following equivalences:

Co=V{p, T},
De=VoV V{e},

so that we may in faaeplacethe diamond and box with this new modality.

Spelling out the truth definition of/®, we see that it can in fact be expressed in terms ofré¢tegion
lifting that we defined in sectign]11. For, Bt= (S, A, R[]) be a modal model in coalgebraic shape. Then
it is straightforward to verify tha$, s I- V@ if and only if the pair(R[s], ®) belongs to the relation lifting
P(Iks) of the satisfaction relatioftrs C S x ®: Everyy € ® must hold at some succesgoe R[s], and at
every successarof s somey € ® must hold, see[{43). This fundamental insight paves the way for Moss’
development o€oalgebraic logi¢in which the same principle is applied to an arbitrary (but fixed) set functor
Q). Basically, the idea is to have

S, s kg VPIiff (P,o(s)) € Q(IFsg).

Note that in this perspective, the satisfaction relation is much like a bisimulation between a language and a
coalgebra; this observation was first made and exploiteduTBs [8].

In order to provide a more precise definition, recall from Renfiark 10.9 that we may uniquely €xtend
a set based endofunctfrt on the categorngET that has classes as objects, and set-continuous functions as
arrows. For convenience, we follow ds[88] in that we confine our attention gtandardset functors, that
is, functors that map inclusions to inclusions.

Definition 13.1 Let 2 : Set — Set be a standard set functor that preserves weak pullbacks. Ihethe
language otoalgebraic formulas for €2, is defined as the least claGssuch that ()\ ® € Lo if ® C Lgisa
setof formulas, and (ilVP € L forany P € Q7 (Lq).

Categorically{Lq, A\, V) can be characterized as théial algebraof the functor(P+)*. This explains
our move to the categolSET: if we want to guarantee thexistencef such a structure, for reasons similar as
given in the discussion following Propositipn 10.6, we need to allow class-based algebras.
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Definition 13.2 Let Q2 : Set — Set preserve weak pullbacks. Given &acoalgebraS = (S, o), define
IFs € S x Lq as the least relation satisfying

slks [\ @ if sl-s @ forallp € @,
slks VP if (P,o(s)) € Q(W) for some setV C Ir.

Example 13.3 Consider the functoPProp x P of Kripke models. Unraveling the definitions, we find that
an arbitrary element dR* (L) must be of the forn{ A4, ®) with A C Prop a set of proposition letters, and
d C L a set of formulas. It is not hard to verify that

S,s - V(A,@)iff S,s Ik N AA N\ =(Prop\ A) AT\/ @A N 0D,

where /A —(Prop \ A) denotes the formuld\{—-p | p € P\ A}. Itis instructive to observe the difference
between this and{#7) which displays an arbitr&isformula for the functofP of Kripke frames as opposed to
models.

Example 13.4 For another example, an arbitrary element of the cf&as6L,), where( is now the functor
7 x Z, must be gair of formulas, say(yg, ¢1). Clearly then we have

S,S I V(@Oa@l) iff S>7T0(U<S)) I %0 andSa 7[-1(0-(8)) I ¥1-

This in fact implies thaall formulas are true all states ofall coalgebras; in other words, in the absence of
propositions, the languagé, may be rather uninteresting.

Obviously, many variations of this language exist, or may be defined. For instance, it is easy to develop fini-
tary versions of the language, while independently of this, one may add Boolean connectives like negation or
(infinitary) disjunction. Interestinglytq, on its own is already powerful enough to characterize behavior. The-
orem[I3.p below shows that it has tHennessy-Milner propertfcf. Chapter?? of HBML): non-bisimilarity <«
of two points is withessed by some formula in the language.

Theorem 13.5 Let() : Set — Set preserves weak pullbacks, and $eandS’ be two2-coalgebras. Then for
any pair of states € S, s’ € S”:

S,s < §, 5 iff s ands’ satisfy the samg --formulas

Proof. The direction from left to right is proved by induction on the complexity of formulas. That is, we define
© to be the class of formulas on which all bisimilar pointsSiandS’ agree. Then we prove théx = L, by
showing tha® is closed undey\ andV (in the sense thgh ® € O for all subsetsP C O, and thatV P € ©
forall P € Q(©)). We leave the fairly straightforward details as an exercise for the reader.

The proof for the other direction is analogous to that of Karp’s Theorem for modal logic (see CP@pter
so we confine ourselves to a brief sketch here. Giveft-aystenS, by ordinal induction we define a family
¢S+ S — Lg as follows (we omit the superscript):

po(s):=T
Pat1(s) = V(Qpa)(0(s)),
ox(s) ::/\{goa(s) | a < A}

One approach to the proof would then be to show that the relatiordefined vias =, ¢ if po(s) = pa(t)
for all o, is itself a bisimulation. O

Moss’ definition provides powerful languages, of which syntax and semantics uniformly depend on the
coalgebraic signature, but his systems are not very welcoming to our intuitions on modal languages as ex-
tensions of propositional logic with diamonds and boxes that are interpreted via accessibility relations. B
TAG [B] introduces variants of Moss’ language in which the connectivgs® and A\ < of (&7) are (sep-
arately) generalized from Kripke frames to arbitrary functors, but also his formalism is far too abstract for
practical purposes. It therefore seems worthwhile to develop more ‘concrete’ and practical alterndliyes to
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In the case of Kripke polynomial functors, the concrete, inductive definition of the functor allows for more
down to earth modal languages, as was first observedurszK77]. Here we present a formalism that was
introduced in RESSIGER[95], and studied byAtoBs [62]. From the perspective of modal logic, its only
non-standard feature is that both its syntax and semanticoerslby the seting K of ingredient functors of
K.

Definition 13.6 Fix a Kripke polynomial functo#(. We define the languagémax = UAelng(K) Fmag(A)
of K -sorted modal formulas, by the following induction. (All functors appearing in the definition below are
supposed to be ingredient functorsof)

1 € Fmag(A) for everyA € Ing(K);

e if p, 9 € Fmag(A)then—p, oV € Fmag(A);

e if ce Cthenc € Fmag(C);

o if p € Fmag(A;) thendy, o € Fmag (Ao + Ay);

o if o € Fmag(A;) then$r,o € Fmag(Ag x Ay);

o if p € Fmag(A) thenOgp € Fmax (AP) foralld € D;
e if o € Fmag(A) thenOsp € Frnag (PA);

e if p € Fmag(K)then®y € Fmag(Z).

We say thatp is of sort A if ¢ € Fmax(A) — note that this sort need not be unique.

How do we interpret these formulas in coalgebras? Intuitively, with daatoalgebraS, we associate
a multi-sorted frame based on the §¢{.,,x) A(S). The accessibility relations of this frame (which we
will not make explicit) are completely determined by the shape of the functor. For instance, to link the set
(Ao + A1) (S) to Ap(5), we lay down the relatioR,., = {(xos0, S0) | so € Ao(5)}. Likewise, the converse
membership relatios provides the accessibility relation frofA (.S) to A(S).

Definition 13.7 LetS = (S, o) be aK-coalgebra for some Kripke polynomial functar. By formula induc-
tion we define a sorted satisfaction relation= ¢ (k) IFa, With IFx © A(S) x Fmag (A):
slka L @ never
slka —p if s A o (buts € A(S)),
slka oV if sy @ orsibp 4,
sl e if s =c,
slFag+a; Ok, i s = kK;(t) for somet € A;(S) with ¢ 14, ¢,
slFagxa, Om if s = (so,s1) ands; IFa, ¢,
slkap Oap if s(d) IFa o,
slkpp Os¢ if there is some € swith ¢ IFy o,
sk Op if a(s) IFk ¢.
Furthermore we employ the usual terminology concerning validity, etc.

Example 13.8 Consider the functdR = PProp x P(Z x Z) corresponding to Kripke models based on frames
with a ternary accessibility relatidfi. In the standard modal language for such models, we would be working
with a binary modality®, whereas here, we are dealing with four unary modalities<s, <, and <, .

We leave it for the reader to verify that the modal formula® 5 in the first language can be rendered as
OO5(Cr1 A Or,p2) in the second. That is, we have

S, s ): ®<>9(<>7r0g01 A (pg) iff there arety, to with T'st1ts andsS, t; IF ;.

Bisimulation invariance of this language is easily proved:
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Proposition 13.9 Assume thafl is some Kripke polynomial functor, and tandS’ be two K -coalgebras.
Then for any pair of statesc S, s’ € S”:

S,s < §', s only if s and s’ satisfy the same formulas #mna .

Proof. Fix a bisimulationB betweer§s andS’. We claim that for any formula of type A € Ing(K), it holds
for any pair(s,s’) € A(S) x A(S’) that

S,sla iff S, 8" Ik o,

provided that(s, s') belong to the relation lifting\(B) of B. The proof is by a straightforward formula
induction. O

The basic modal theory of this formalism has been developed. For instance, analogous to TH&orem
of HBML, one may prove that if{ is afinitary Kripke polynomial functor, then the languadgéna i has the <«
Hennessy-Milner property. Also, results concerning completeness and decidability are known. The interested
reader is referred to ®&sIGER[95] and AcOBS [64].

We now move to the third approach towards coalgebraic modal logicTIRSON [BY] combines the
generality of the first formalism with the concreteness of the second. That is, the approach applies to arbitrary
set functors, but provides languages with standard diamonds and boxes. First we present a simplified version
which is based on the idea tatract diamonds out of the natural transformations from the coalgebra functor
Q to the power set functdP. Recall that a natural transformatian 2 — P provides an arrowg : (S) —

P(S) for each sef5, in such a way that for each functigh: S — S’, the following diagram commutes:

s 05— .pg

o
Aar

s Qs—F pgr

Thus if we have af)-coalgebrd5 = (S, o), we may define a relatioR, C S x S for such a\ by putting
Rystif t € Ag(o(s)). We may then introduce a diamore, which takes thisk, as its accessibility relation.
Natural transformationa : 2 — P thus literally transfornf2-coalgebras int@>-coalgebras, that is, Kripke
frames.

Similarly, if we want to haveatomic propositionsn our language, consider any natural transformation
from 2 to the constant functd?rop. We then make € Prop true ats depending on whetheris an element
of the setvg(o(s)) or not. Itis as if we add the valuatidn, to S given byV,,(p) :={s € S| p € vs(o(s))}.

Definition 13.10 Let €2 : Set — Set be some functory : @ — Prop some natural transformation, and
some collection of natural transformatiofis— P. Then., , is the standard modal language we obtain by
takingProp as the collection of propositional variables, and:= {<y | A € A} as the modal similarity type.

It will now be obvious how these formulas are interpretedtcoalgebras. We confine ourselves to the
following clauses of the inductive truth definition:

S,slEpif pewv(o(s)),
S,slF O if St I ¢ for somet € Ag(o(s)).

In other words, af2-coalgebre is treated as the Kripke modé$, { R | A € A}, V,). The reason to require
the transformations to beaturalis to guarantee invariance under behavioral equivalence.

Proposition 13.11 Let(2, v and A be as in Definitioi 13.10. Then for any p&irS’ of 2-coalgebras, and any
pair of statess € S, s’ € 5"

S,s =q §, s’ only if s and s’ satisfy the somg&,, ,-formulas
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Proof. It suffices to prove that for any coalgebraic homomorphjsaS — S’, each state in S satisfies the
same’,, y-formulas asf(s) in S'. This inductive proof is in fact straightforward, the crucial observation being
that the naturality of the transformations guaranteesthat bounded morphism between the Kripke models
associated witl$ andS’. 0

For the more general picture, Pattinson useslicate liftings(from P.S to P.S) to obtain modal opera-
tors. In order to introduce these, note that the semantics of the modal opesatould have been expressed
as follows:

S, s - O iff a(s) € pg([]),

wherepy : PS — PQS is given byA — {T' € QS | Ag(I') N A # @}, and[y] denotes the extension of
in S. In fact, it can be shown th:}a,tA is a natural transformation from the contravariant power set furietior
the functorP o Q2. Generalizing this, we arrive at the following definition.

Definition 13.12 A predicate lifting for a set functof is a natural transformatiom : 7 — P o Q. With each
predicate lifting we can associate a modal operéatpywith the following semantics:

S, s Ik Oapiff o(s) € ps([v])-

And as before, it is the naturality of the transformation that ensures that this language is invariant under
behavioral equivalence.

In order to finish this section, a number of remarks are in order. First, the above mentioned versions of
coalgebraic logic are open for the standard expressive enhancements that we know from extended modal logic
As examples we mentiomd@oBs[64], who adds past operators (as in secfioh 8.1) to a variant of the formalism
defined in the Definitions 13.6 and 13.7, andNEMA [I07], who develops a finitary fixed point version of
Moss’ logic.

Second, it should be mentioned that for cergailynomialfunctors, coalgebraic specification languages
have been developed of aguationalrather than modal nature. Very roughly, the idea is that coalgebras
for such a polynomial functof can be represented by a structured collection of partial functions on the
carrier of the coalgebra. From the perspective of Definifion] 13.7, this can be explained by the observation
that in the absence of the power set functor, each and every accessibility relation of the multi-sorted frame is
in fact (the graph of) a partial function. Lacking the space for an appropriate survey of this more equational
perspective, we only mention one interesting idea which adds soatal flavorto equational logic. In
coalgebraic approaches towards specification theory, such as tmdtleh algebraa state equation t1 ~ to
holds of a state in a coalgebrd if 3(s) andt5(s) evaluate tdvisimilar (rather than identical) states
We refer the reader to @ DBLATT [42/43] and R su [94] for more details; in particular, GLDBLATT [43]
contains a clear discussion of this overlap area between modal and equational logic.

Third, KURZ & PATTINSON [[Z8] establish a link between coalgebraic predicates andinhésequence
see RemarkI0.10: they argue that finitary predicates correspond to subsets of sBn@detite) occurring
in the final sequence. This work is in fact closely related to that BfL@rRDI [33], even though the word
‘coalgebra’ is not mentioned in the latter work.

Finally, there is an interesting connection between Hennessy-Milner results and final coalgebras: Gold-
blatt [45] proves that a set functér admits a final coalgebra iff there is a coalgebraic modal languade,for
which has the Hennessy-Milner property and is based set@ather than a proper class) of formulas.

71



14 Co-Birkhoff theorems and cofree coalgebras

In order to give the reader some impression of universal coalgebra at work, we discuss one result, or better, one
cluster of results, in some detail. The topic that we have chosen concerns the coalgebraic version of Birkhoff’s
variety theorem; recall that this result in universal algebra states that a(clafsslgebras is aariety, (that

is, closed under the class operatidhsS andP), if and only if it is equationally definable. Thus in essence,
Birkhoff established a link between two different ways of characterizing algebraic classes: a logical one, in
terms of the validity of certain formulas, and a structural one, in terms of certain class operations.

If we are after a co-Birkhoff result, two roads seem open to us. Since we have already developed the
concept of a covariety, the most obvious thing to do would be to try and find out what corresponds to it,
logically. An alternative approach would be to investigate the structural counterpart of the logical languages
developed in the previous section. Here we follow the first road, but interestingly, it leads us to (very natural
generalizations of) modal languages! This provides justification for our earlier claim that modal logic is dual
to equational logic.

In the proof of Birkhoff’s theoremiree algebras play a key role; thus it will come as no surprise that we
will be looking atcofreecoalgebras here. However, these structures do not serve as proof tools only, they
have a quite intuitive meaning as well. To explain this, first note that many set functors provide coalgebraic
structures that come with a notion ofitput For instance, the black box machines of Exanjplg 9.2 may be
prompted to display some value, the states of the automata of Examiple 9.3matpgudepending on whether
they are final or not, and the states of a Kripke model satisfy some set of propositional variables. For a general
functor(2 : Set — Set, such a notion of output may not be available. However, nothing prevents us from
addingan extra output feature to the functor.

Definition 14.1 Let ) be some set functor, arid a set of objects that we will cadolors. A C'-coloring of an
Q-coalgebrad = (A, «) isamapy : A — C; the structurd A, «, ) will be called the coalgebra colored

by ~.

As a prime example, Kripke models can be see®Bsop-colored Kripke frames. In general;-colored
-coalgebras may be identified wifb-coalgebras, wher@. is the functorC' x ; this provides us with a
category ofC-colored(2-coalgebras. Spelling it ouf,: S — S’ is @ morphism from(S, o, v) to (S’, o’,+'} if
f is anQ2-coalgebra homomorphism frof, o) to (S’, ¢’) such thaty(s) = +/(fs) forall s € S.

Colors can be seen as the coalgebraic duals of variables, colorings as the duals of assignments. This bring
us to the definition of a cofree coalgebra, which is the formal dual of the notion of a free algebra. We recall
the latter notion, for the purposes of the present context, as follows2 L&et — Set be some set functoX’

a set of variables, arfl = (T, 7 : QT — T') somef-algebra such that: X — T is some kind of injection.
(Here we deviate from the more standard presentation, whisreken to be an inclusion map.) Th&nwith
e, is calledfree over X if for every Q-algebraA = (A, a) and every assignmetft: X — A, there is a unique
homomorphisny : T — A such thatf = foe.

Definition 14.2 Let Q2 be a set functor”' a set of colors, and

somef2-coalgebra with a coloring : Z — C. ThenZ (with ~ v
) is called(absolutely) cofree ovef' if for every (2-coalgebra '
A = (A, «) and every coloring : A — C of A, there is a unique
homomorphisny : A — Z such thaty = vy o g.

Observe that the diagram above is not properly typed (it mixes arrows from different categories). A more
proper formulation of the notion of cofreeness would involve the right adjoint to the forgetful functor from
Coalg(2) to Set.

It is immediate from the definitions that &rcoalgebra with coloring : T — C is cofree ovelC iff the
structure(T', 7, ) is afinal coalgebra for the functdec = C' x Q. This explains that we may view the carrier
Z of such a cofree coalgebra as the collection obalavior patterngxpressible in the output sét. And
this perspective paves the way for a dual version of Birkhoff’s variety theorem, by providing a natural means
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for characterizing classes of coalgebras in terms of permitted, or forbidden, behaviors.

Definition 14.3 Let €2 be some set functor, and &t with coloringy : Z — C, be the cofree coalgebra over
some set” of colors. Given a sef) in Z, let Cov(Q) be the class of2-coalgebras\ such that)[A] C @ for
all homomorphismg : A — Z.
And conversely, given a clasé of Q-coalgebras, definBhv(K) C Z to be the union of all imageg A]
in which g arises from somé’-coloring g of some coalgebra in K.

There are all kinds of interesting facts concerning these two maps. For instance, it is fairly obvious from
the definitions thaBhv and Cov form a (dual) Galois connection: For any clas®f (2-coalgebras, and any
set() of behavior patterns, we have

Bhw(K) C Qiff K C Cov(Q). (48)

We will have use for this fact in the proof of a first co-Birkhoff result, which is basically duestorRN [97].
In the remainder of this section we restrict our attentiosrtwll functors, in order to ensure the existence of
final and cofree coalgebras.

Theorem 14.4 Let ) be some endofunctor &et which isk-small for some cardinak. Then for any set’
of sizex, the cofree coalgebra ovér exists, and a clasK of 2-coalgebras is a covariety if = Cov(Q) for
some sef) of behavior patterns.

Proof. It follows from the assumption oft that the functof2- = C' x 2 has a final coalgebra. However, we
already observed that this structure may be represented as g #igley) such thaZ = (Z, {), with coloring
v, is the cofred)-coalgebra ove€'. We fix thisZ and~ for the remainder of the proof.

In order to show tha€ov(Q) is a covariety, one needs to subsequently prove closure under taking ho-
momorphic images, subcoalgebras, and sums. Here we restrict our attention to the proof for subcoalgebras
because that is the only part where the cofreeneZsi®tised.

Suppose thah is a subcoalgebra @, with inclusion:, while B belongs toCov(Q); we need to show
that A also belongs to this class. For that purpose, consider a homomorphistn— 7, and observe that
von: A — Cisacoloring ofA. Clearly this coloring can be extended to a coloring B — C of B. Let
g : B — Z be the unique homomorphism such that v o ¢ — such a map exists by the cofreenes&.of
Now g = vo g, sothatyo go: = g o Butgwas chosen so
thatg ot = v on. Hence we find thaty o go v = y o, so by

\ / l the cofreeness df with respect to colorings aof, we find that
L Y

g ot = n, that is,g extendsy. From this it is immediate that
n[A] = gl4[A] C g[B], so thaty[A] C @ by the assumption that
B belongs taCov(Q).

For the other direction of the theorem, suppose khesta covariety; we claim that
K = Cov(Bhv(K)). (49)

The inclusionC is immediate from[(48). For the opposite inclusion, it easily follows from the definitions that
Bhv(K) is Z-open. LetBk be the (unique) subcoalgebra®iwith carrier setBhv(K). It is not hard to prove
thatB is a conjunct sum of algebras iy which implies thaBBk actually belongs t& since covarieties are
closed under taking conjunct sums. Hence, in order to prove the remaining inclusib(@9), it suffices to
show that

every coalgebra i€ov(Bhv(K)) is a conjunct sum of subcoalgebrasiy. (50)

Take an arbitrary coalgebra in Cov(Bhv(K)). From thex-smallness of2 it may be derived thah is the
conjunct sum of coalgebras;, each of size at most. Clearly then it suffices to prove that eathbelongs to
K, since covarieties are closed under taking conjunct sums.

Fix somei € I; clearly Cov(Bhv(K)), being closed under taking subcoalgebras, contains Since
|A;] < k = |C], there is an injective coloring; : A; — C. Hence by cofreeness @ there is a unique
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homomorphisne; : A; — Z such thate; = v o €;. Thise; must also be injective, which implies that is
isomorphic to its image;[A;]. But, sinceA; belongs toCov(Bhv(K)), the structure;[A;] is a subcoalgebra
of Bk, and thus, belongs tl. From this it is immediate that eadk; belongs toK, and thus, so does the
conjunct sum. O

Clearly, not only the statement, but also the proof of Theorem 14.4 is dual to that of Birkhoff's variety
theorem. For instance, the coalgel#a clearly fulfills the role of thecofree coalgebrafor the class K over
the color set”. What seems to be missing from Theorem [14.4, however, is some notion of logic, involving
syntax (It should be noted that also in the algebraic case, the straightforward characterization of varieties in
terms of equations only obtains in the case of relatively simple functors.) Since we are discussing a dual of
Birkhoff’s theorem, the question this raises is: what@esquation3

Given the nature of systems as state-based models of dynamics, it seems natural to require that formula
describebehavior This would provide natural constraints on possible coequational languages, namely, that
formulas are evaluated at states, in such a way that truth is invariant under behavioral equivalence. Further-
more, we allow the use of colors in order to obtain sufficient expressive power. It was an insighkpfK8]
that these requirements may also be read as a nalefialtionof coalgebraic modal logic.

Definition 14.5 Let(2 be some set functor. £oalgebraic modal language for € consists of a sef' of colors, a
classC¢ of formulas, and, for eacfi-colored(2-coalgebras, g), a truth or satisfaction relatior®>9C Sx L
such that is invariant under behavioral equivalence. That iSSifg), s =q. (T, h),t, thenS,s =, T, ¢,
where the latter notation indicates tlah (S, g) andt in (T, k) satisfy exactly the samé&c-formulase.

In the sequel we will use notation and terminology from modal logic. For instance, we(@rig, s IF ¢
instead ofs IF59 ¢, and we definé, g I+ » andS IF ¢ by quantifying over all elements and all valuations,
respectively.

How can we link such modal languages to the cofree coalgebra? The idea here is that modal formulas
correspond to subcoalgebrasZifwith C-coloring~y is a cofree coalgebra ovér, then define

[e]*" :={2 € Z | Z,7,2 I ¢}.

Using the behavioral invariance of the logic, it is not hard to see [thit(we usually omit superscripts)
is alwaysZ-open. Now one way to obtain nice co-Birkhoff results is to require the modal language to be
expressive enough for the converse to hold as well.

Definition 14.6 Let Q2 be somes-small set functor, and I€C, L, IF-), with |C| = « constitute a coalgebraic
modal logic for2. This modal logic is calle@xpressive if every open set of th€'-cofree coalgebr& is of
the form[,] for some formulap.

This may seem a strong requirement on a language, but expressive languages are not hard to come by.

Example 14.7 Under some mild additional assumptions Qnone may show that Moss’ logic of Defini-
tion [L371 and 13]2, extended with infinitksjunctions is expressive. For a proof sketch: strengthen Theo-
rem[13.5 by proving that for any pointé-system(S, s), there is a formula,>* such that for all pointed
Qc-system(S', s') one has thal', s’ I ¢ iff S',s' =, S,s. Then, given an open sét of the cofree
Qc-coalgebréZ, one may define? := \/{¢?" | u € U}.

Now the next theorem bears witness to the tight link between modal logic and coalgebras. It is due to
KURz [I6], while a very similar result was proved inuGIM & SCHRODER [b3].

Theorem 14.8 Let 2 be someC-small set functor, and lefC, L, I-) constitute an expressive coalgebraic
modal logic for(2. Then a clas¥ of (2-coalgebras is a covariety iff for some formutaK is the class of all
Q-coalgebrass such thatS I+ .

Proof. Let Z, with coloringy : Z — C, be the cofreé)-coalgebra ove€'. Given a formulap, it is a direct
consequence of cofreeness and truth invariance, that fof2aeyalgebraS with C-coloring g, and for any
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states in S, we have
S,g,s - ¢iff g(s) € [¢], (51)
from which one easily derives that for afy:-formula:

Cov([¢]) is the class of alf2-coalgebra$ such thas I+ . (52)

From (52) the direction<’ of the Theorem is immediate. For the other direction, supposeKtiata co-
variety. Then by expressivenesBhv(K) = [¢] for some formulap, so by [4D) and[(32) it follows that
K = Cov(Bhv(K)) = Cov([¢]), as required. O

Although this theorem, being formulated in terms of a fairly general notion of modal logic, may still
seem to be rather abstract, it does provide a useful tool to provide more concrete results. For instance, giver
Example[TIZ4]7, as a corollary to Theorém 14.8 one may obtain very general modal co-Birkhoff results for
Moss’ coalgebraic logic. Or, to give an even more concrete corollary of Theprem 14.8, call an (ordinary)
modal framex-boundedior some cardinak if every point has less thassuccessors.

Corollary 14.9 A classK of k-bounded frame is (within the class of aHbounded frames) definable by means
of infinitary modal formulas, if and only K is closed under taking generated subframes, homomorphic images
and disjoint unions.

The reader who compares the above two result to the Goldblatt-Thomasson Theotem 5.40, may be puzzlec
by the absence of ultrafilter extensions here. The explanation for this absence is of course that such Stone
type completions are not relevant in the presence of infinite disjunctions and conjunctions. If one takes the
alternative road to co-Birkhoff theorems and starts, not from the notion of a covariety, but ffimitasy
coalgebraic logical formalism, one will find that notions like ultrafilter extensions or ultraproducts are needed
in the characterization of definable classes of coalgebras. Results in this direction can be found in for instance
GOLDBLATT [42/43] or Rosu [94].

Finally, the search for coalgebraic versions of Birkhoff's variety theorem has received considerable atten-
tion in the coalgebraic literature, as is withessed by many contributions (n[66,93(20,52,4]. Peunapg53]
should get some special mentioning for developing an alternative coequational syntax based on equivalence
classes of infinite labeled trees.
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15 Duality of algebra and coalgebra

Various other coalgebraic topics may be of interest to modal logicians, but here we confine ourselves to a brief
discussion of the duality between algebra and coalgebra.

In remark[9.1]3 we already observed that some of the similarities between algebra and coalgebra are base
on the fact that a coalgebfa = (C,~v : C — QC) over an endofunctaf2 : C — C can also be seen as an
algebra in theppositecategoryC°?. In fact, it is a trivial exercise to show that

Coalg(Q) = (Alg(Q°P))°P. (53)

That is, the category dR-coalgebras is dually isomorphic to the category of algebras over the funétor
(which acts on objects and arrows just lRedoes, the difference being thaf? is an endofunctor oQ°P).

This duality between algebras and coalgebras has been a major guideline in the development of universa
coalgebra, see R'TEN [9/]. To mention just one example (many more can be found in the text): whereas
initial algebras play an important role in universal algebra, it idithed objects that are relevant in coalgebra.

For instance, whereas the principle of induction is based on the fact that initial algebras have no proper sub-
algebras, the duabinduction principle boils down to the fact that final coalgebras have no proper quotients.
However, it is important to realize that in (53) thasecategory has been dualized. This means, for instance,
that systems, dset-coalgebras, correspond, not so much to algebrasSateas to algebras over the opposite
categonySet® (which happens to be equivalent to the category of complete and atomic Boolean algebras with
complete homomorphisms). As a consequence, a general theory of systems cannot be obtained by a straigh
forward dualization of universabgt-based) algebra. On the other hand, the fact that systems are, just like
standard algebras, ‘sets with structure’, indicates that many universal algebraic concepts may apply to coal-
gebra byanalogyrather than by duality — see for instance Proposifion]|12.2. Thus, the universal coalgebraic
theory of systems is an interesting mix of dualized and non-dualized universal algebra, with, of course, some
characteristics of its own.

In case that there is an informatideality for the base category, more can be said of {b3). This applies
for instance to the just mentioned duality of the catedsay but for the present purpose we prefer to focus
on the categorptone of Stone spaces. The point is, that siseene is dually equivalent to the well-known
categoryBA of Boolean algebras, every endofuncibon Stone induces an endofunctér* := (), o Qo (-)*
on BA. It is then an immediate consequence [of (53) that the categbogg(€2) and Alg(2*) are dually
equivalent:

Coalg(£2) = Alg(£2"). (54)

For an example of this, consider the Vietoris fundtoof Exampleg[98. Concretely, the behavior of its dual
functorV* : BA — BA on objects is as follows. To a Boolean algeBra assigns the Boolean algebyé(B)
freely generated by the séb | b € B}, subject to the axiome L = L and<a vV &b = <&(a Vv b). Since
the categoryCoalg(V) is dually equivalent to that of modal algebras, we thus see that the latter catéigary,
may be represented as an algebraic cateddgy)’*). This insight in fact provided the very first connection
between modal logic and coalgebra, seerRAMSKY [0]. Recently, the duality tha{{b4) provides between
algebra and coalgebra has been used to prove results on coalgebraitagiodalvhere we now use the word
‘logic’ in the technical sense. For instancecdBs [67] and KUPKE, KURZ & V ENEMA [IZ4] use dualities
in the style of [54) to prove completeness results for the multi-sorted modal logic of Definition 13.6 and 13.7.
KUPKE, KURZ & PATTINSON [IZ3] apply the above framework in order to characterize properties of arbitrary
coalgebraic modal logics.

Let us finish the chapter with the observation thath of the fundamental dualities underlying the math-
ematical theory of modal logic are nontrivial instances of an algebra/coalgebra duality. This means that the
algebraic and the coalgebraic approach towards modal logic may be fruitfully operated in tandem. We believe
that a thorough study of the interaction of algebra and coalgebra will provide a better understanding, not only
of modal logic itself, but also of its mathematical surroundings.
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A Basics of universal algebra and category theory

This section provides some technical preliminaries to this Chapter; we briefly review notation and terminology
on universal algebra and category theory.

If we equip a set with a collection of finitary operations, we call the resulting structuségabra; two
such structures are callednilar if their operations correspond in number and rank. In order to formalize this
notion we introduce the notion of @milarity type as a seb of function symbols each of which comes with
a nonnegative integer to be called itsik or arity. The arity of a function symbof is denoted asr(f).
Function symbols of rank zero are calleghstants.

The similarity type of (bounded) lattices is the $etit = {T, L, A,V} whereT (‘top’) and L (‘bottom’)
are constants, and (‘meet’) andv (‘join’) are binary symbols. As the similarity type for Boolean algebras
we take the seBool = {T, L,—,A,V} whereT, L, A andV are as before, and (‘complementation’) is a
unary symbol.

A X-algebra is then a paih = (A, ), in which theinterpretation I assigns to each function symbol
f € ¥ an operation of arityur(f) on thecarrier A of the algebra. Usually we writ¢* rather than(f),
and denote the algebda = (A, 1) by A = (A, {f* | f € £}). As an example, let, for a s&, P(S) =
(P(S),S,2,~g,N,U) be the power set algebra, wherg denotes the unary operation of complementation
with respect ta5. An algebra is calledrivial if it has just one element; this completely determines the behavior
of the operations.

A homomorphism from a Y-algebraA to a similar algebr@ is a mapf : A — B that preserve&-
structure, in the sense that, for dlie X, and allay, . .., a, in A (Wheren = ar(f)):

0(f*(ar,...,an)) = f2(0ai,...,0a,). (A1)

An injective homomorphism is called ambedding and a surjective one, apimorphism; an isomorphism
is a bijective homomorphism. A homomorphism with the same source as target algebra is caliddnasr-
phism in general, and anutomorphisms if it is bijective.

Homomorphisms are closely related to special equivalence relati@oagaience on A is an equivalence
relation~ satisfying, for allf € X:

ifap ~by & ... & a, ~ by, thenf(a1,...,an) ~ f2(b1,...,bn), (A.2)

wheren is the rank off. Given a congruence on A, the quotient algebra ofA by ~ is the algebra\ /~
whose carrier is the set/~ := {[a] | a € A} of equivalence classes df under~, and whose operations are
defined by

fay~laa], - an]) = [falar, - an)].

(This is well-defined by[(A]2).) The close connection between homomorphisms and congruences is formed
by the fact that iy : A — B is a homomorphism, itkernel ker(0) := {(a,b) € A x A | 6(a) = 0(b)} isa
congruence o\, while, on the other hand, for any congruenreen A, the associatedatural map v.. taking

an element € A to its equivalence clags| is a surjective homomorphism frofonto A /~.

The set of congruenceSgA of an algebra\ forms in fact a complete lattice under the subset ordering;
this lattice is denoted a&Sg(A ); the meet operation of this lattice is simply their intersection, while the join of
two congruences is givenlfy; VO, =01 U (©1002) U (©1002001)U---.

A Y-algebraA is asubalgebra of a X-algebraB if A C B and for allf € ¥, the operatiory® coincides
with the restriction off® to A. Thedirect product A = [I;c; A of a family of X-algebras is an algebra with
carrier] [, ; A; and such that fof € ¥ anday, ..., a, € [[;c; Ai

fA(al, coyap) (i) = fAi(al (1),...,an(7))

We assume familiarity with the notions of ultraproduct and ultrapower.
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Given a clasK of algebras, we leitl(K) denote the class of homomorphic images of algebrs B(K)
is the class of isomorphic copies of subalgebras of algebrigsamd likewise definitions applies for the class
operation® (products)Pu (ultraproducts) an@w (ultrapowers).

A class of algebras is calledvariety if it is closed under taking subalgebras, homomorphisms, and prod-
ucts; the smallest variety containing a cl&ss called the varietyenerated by K, notation: Var(K). Using
inequalities likeSH < HS (meaning that, for any class of algeb#sSH(K) is a subclass dfiS(K)), together
with the idempotence of the class operatiSnsl andP, one can prove Tarski’'s Theorem stating that

Var(K) = HSP(K) (A.3)

for any class of algebrds.

Given a similarity typeX and a set of variableX, we define the sefers(X) of X-terms over X by a
straightforward induction: it is the smallest includig which containsf(¢1,...,t,) whenever it contains
ti,...,t, andf € ¥ is a function symbol of rank. (In particular, Tery (X) contains all constants iB.) In
this chapter we adopt the convention that unless explicitly indicated othedidenotes a countably infinite
set of variables; we often omit explicit referenceXo writing for instanceTery, rather thanTery (X), etc.
Also, writing s(z1, . .., z,,) for a terms, we indicate that the variables occurringsiare amongey, . . . , Zp,.

Given an assignmeiat of a setX of variables to (the carried of) an algebra\, we inductively define the
meaning &(s) of a terms as follows:

a(z) = a(x) (A4)
a(f(tis. .. tn)) = fAa(tr),- .., a(tn)).
Thus any terns(z1, . . ., z,,) induces am-ary term function s* on A, given bys®(ay, ..., a,) = a(s), where

«a is any assignment mapping eachto a;. (Of courses* can also be given an inductive definition.)

Using the close resemblance between the second clauge of (A.4) anhd (A.1), we can turn the meaning
function into a real homomorphism by imposikigalgebra structure on the s@ery(X), obtaining theterm
algebra Ters;(X). The idea is to interpret the function symbok X as follows:

fTerE(X) Sty tn) = f(t1, . ).

Elaborating on this perspective, l¢be a class oE-algebras, antl aX-algebra generated by a s€tC F.
Suppose that for evenft in K and every map : X — A there is a homomorphisia : F — A extending
«. Then we say thaF has theuniversal mapping property for K over X, or thatF is free for K over X. The
identities of [A.4) thus reveal thatery.(X) is free overX for the class ofll ¥-algebras; for this reason it is
often referred to as thabsolutely free algebra over X.

Free algebras have a number of important properties of which we mention the following:

e every algebra ifK is a homomorphic image of a free algebra over an appropriately large set of generators;
* all free algebras foK belongs to the classP (K);

 if F andF’ are free forK over the generator sef§ and X’, respectively, and{ and X’ have the same
cardinality, therF andF’ are isomorphic.

Universal algebra may on the one hand be seen as generalizing the study of individual classes of algebras
such as groups, fields, or lattices. On the other hand we may consider it as a rather special branch of mode
theory in which one is interested in structures for a language without relation symbols. The standard language
for talking about such structureseguational

An equation is nothing but a paics, t) of terms, always denoted as~ ¢. The equations ~ ¢ (with
s,t € Ters(X)) is true or holds in the algebra\ under the assignment o : X — A, notation:A =, s ~ t if
s andt obtain the same meaning funderq, that is, ifa(s) = a(t). An equations = ¢ holds in the algebra
A, or, equivalently, the algebra satisfies the equatiors ~ t, notation:A = s ~ t, if A =, s ~ t for every
assignmentv.
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The relation= induces a Galois connection between sets of formulas and classes of algebras; the polarities
of this connection are given as the mapg: andMod, where Equ(K) is the set of all equations that hold in
K, andMod(E) denotes the class of algebras that satisfy every equatiéh The classes of algebras that are
stable under this connection, that is, the clagée$§the formMod(E) for some se¥ of equations, are called
equational classes. An important result by Birkhoff states that this notion coincides with that of a variety, and
that for any clas¥ of algebras it holds that

Mod(Equ(K)) = Var(K). (A.5)

The relation
s=kt <= KEs~t

corresponding to the sétyu(K) is in fact acongruencen the term algebréery,. The algebrdlers;(X)/ =k
has the universal mapping property férover [X] (the set of equivalence classesXfunder=g), which,
together with the third fact on free algebras listed above, explains why we call fitesthelgebra for K over
[X].

A category C consists of a clas®b(C) of objects, and for each pair of objectd, B, a family C(A, B)
of arrows. If f belongs to the latter set, we wrife: A — B, and callA the domain and B the codomain
of the arrow. The collection of arrows is endowed with some algebraic structure: for every dbgfat
there is an arrowid, : A — A, and every paitf : A — B, g : B — C can be uniquelitomposed to an
arrowgo f : A — (. These operations are supposed to satisfy the associative law for composition, while
the appropriate identity arrows are left- and right neutral elements. An gfrosd — B is aniso if it has
aninverse, that is, an arrowy : B — A such thatf o g = idg andg o f = ids. Examples of categories
areSet, the class of sets with functions, and, for every similarity typehe clasAlg(>) of X-algebras, with
homomorphisms as arrows. Thgposite categoryC°? of a given categor{ has the same objects @swhile
C°?(A, B) = C(B, A) for all objectsA, B from C, and the operations on arrows are defined in the obvious
way.

An object X is initial in a categoryC if for every objectA in C there is a unique arrow : X — A,
andfinal if for all A there is a uniquex : A — X. In Set, the empty set is initial, and the final objects are
precisely the singletons. product of two objects4, and A; in a categoryC consists of a tripld A, o :

A — Ap,a1 : A — Ay), such that for every tripléA’ af, : A — Ap, o} : A — A;) there is a unique
arrow f : A’ — A such thaty; o f = o for bothi. Coproductsof Ay and A; are defined dually as triples
(A,ap : Ag — A,a1 : Ay — A), such that for every tripl¢A’, o, : Ag — A', 0} : Aj — A') thereis a
unique arrowf : A — A’ such thatf o «; = o, for eachi. The categonpet has both products and coproducts
— that is, every paifSy, S1) of sets has both a product (for which we may take the cartesian prglucits;
together with the two projection functions : Sy x S1 — 5;), and a coproduct (for which we may take
the disjoint unionSy W S; = Sy x {0} U S; x {1} together with the coproduct mapg andx; given by
ki(s) = (s,1)).

A functor 2 : C — D from a categoryC to a categoryD consists of an operation mapping objects and
arrows ofC to objects and arrows dd, respectively, in such a way th&f : QA — QBif f : A — B,
Q(ida) = idoa andQ(g o f) = (Qg) o (2f) for all objects and arrows involved. A functoy: C — D is
sometimes called eontravariant functor fromC to D. An endofunctor on C is a functor(2 : C — C.

As examples we consider the followingt functors (that is, endofunctors o$et): (i) for a fixed set”, the
constant functor mapping all sets t6' and all arrows tad¢; this functor is denoted a8, (ii) the power set
functor P, which maps any sef to its power sePS, and any magf : S — S’ to the mapPf : PS — PS’
given byPf : X — {fz | x € X}, and (iii) for every cardinak, the variantP, of the power set functor,
which maps any sef to the the collectior?,S := {X C S | k > |X|}, and agrees witP on the arrows
for which is defined. Furthermore, given two functéts and 2y, their product functor Qs x € is given
(on objects) by(©2p x 91)S := QoS x 0.5, while for f : S — S, the map(Qp x Q1)f is given as
(0 x 21)f)(00,01) == ((Q0f)(00), (21f)(01)). Thecoproduct functor is defined similarly. Finally, every
categoryC admits theidentity functor Z¢ : C — C which is the identity on both objects and arrowsof
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Let C andD be two categories, and |€andW¥ be two functors fronC to D. A natural transformation
from Q to ¥, notationr : €2 = ¥, consists oD-arrowst, : QA — WA such thatrg o Qf = U f o1y for
eachf: A— BinC.

Finally, letQ2 : C — D and¥ : D — C be two functors linking the categori€sandD. 2 andW¥ constitute
anequivalence betweenC andD if their compositions are naturally isomorphic to the identity functors, that is,
if there are natural transformatioas Z¢c = VQ andr : Zp = QWU such that all arrows 4 : A — ¥QA and
T : B — QU B are isos. If sucl2 and¥ exist, then the categori€sandD are callecequivalent; if 2 andW
are in fact each other’s inverse (both on maps and on arrows)Gtaen D areisomorphic. If 2 and¥ form
a dual equivalence between the categori€sandD, that is, an equivalence between the categdriaadD°?,
then we say that the categories duel or dually equivalent to each other.
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