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Abstract

This paper addresses the question for which varieties of boolean algebras with oper-
ators membership of an atomic algebra A is determined by its atom structure AtA. We
prove a positive answer for conjugated Sahlqvist varieties; we also show that the conju-
gation condition is necessary. As a corollary to the positive result and a recent result by
I. Hodkinson, we prove that the variety RRA of representable relation algebras, although
canonical, cannot be axiomatised by Sahlqvist equations.
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1 Introduction

Ever since Jónsson & Tarski [7] introduced the notion of a boolean algebra with operators
(a bao for short), the relation between atomic baos and their atom structures has received
attention. This note is concerned with the question, for which varieties of baos membership
of an atomic bao A is determined by the atom structure of A. For conjugated baos , we
can show that any Sahlqvist variety (i.e., a variety defined by Sahlqvist equations) has this
property. To be more precise, it is the main aim of the paper to prove the following theorem.
Examples of varieties that fall under its scope include relation algebras and cylindric algebras.

Theorem 1 Let A and B be atomic, conjugated boolean algebras with operators, such that
At A ∼= At B. Then for every Sahlqvist equation η:

A |= η ⇐⇒ B |= η.

This result, of which a proof will be supplied in section 3, adds to a list of nice properties
of Sahlqvist varieties. For instance, it was already known that any Sahlqvist equation η is:

canonical: η holds in an algebra A iff η holds in the canonical embedding algebra (or perfect
extension) of A, and

structure-elementary: there is a first-order formula ηs in the language of atom structures,
which is effectively obtainable from η, and such that for any relational structure F, η is
valid in the full complex algebra Cm F if and only if ηs is valid in F.

Together, these properties imply that any Sahlqvist variety V is canonical (closed under taking
perfect extensions), and that the class Str V of structures for V (that is, relational structures
F whose complex algebra Cm F belongs to V) is elementary; in fact, it is axiomatized by a set
of first order conditions which can be effectively obtained from the equational axiomatization
for V. We refer to de Rijke & Venema [2] for more information on Sahlqvist varieties, or
to Jónsson [6] for a fully algebraic discussion of their canonicity.

This all combines well with our Theorem 1. From the second property of Sahlqvist equa-
tions and Theorem 1 it follows that a Sahlqvist equation η holds in an atomic, conjugated
bao A if and only if ηs is true of the atom structure of A. From this, Corollary 1 below is
immediate. Let At V denote the class of atom structures of atomic algebras in V.

Corollary 1 Let V be a conjugated Sahlqvist variety of boolean algebras with operators. Then
Str V = At V; hence, At V is an elementary class, axiomatized by a set of conditions which can
be effectively obtained from the equational axiomatization for V.

And using the canonicity of Sahlqvist equations, we can easily derive the following corol-
lary to Theorem 1 — its proof is delayed again to section 3.

Corollary 2 Let V be a conjugated Sahlqvist variety of boolean algebras with operators. Then
V = S Cm At V.
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Let us agree to call a class K atom-canonical if Str K = At K. This name is explained by the
equivalent characterization that for any atomic algebra A in V, the complex algebra of its atom
structure should be in V as well. Such varieties are investigated in for instance Goldblatt

[3]; one of the main results of that paper is that any canonical variety with this property is
elementarily generated, that is, there is an elementary class F of relational structures such
that V = H S P Cm F. Goldblatt shows that atom-canonicity is not a necessary condition
for this result: he displays a canonical variety that is not atom-canonical but nevertheless
elementarily generated.

We will see in this paper that there are in fact very simple examples of this kind, and
thus, very simple examples of varieties that are not atom-canonical. To be more precise, there
exist an atomic bao A and a strictly positive equation η, such that A |= η while Cm At A 6|= η.
Since A and Cm At A have the same atom structure, viz., At A, this example shows that we
cannot do without the conjugation condition in Theorem 1. It also shows that the variety
defined by η is not atom-canonical; since η is positive (and hence, a Sahlqvist equation), it is
immediate that this variety is generated by the elementary class of all structures that satisfy
ηs. This example will be treated in detail in section 4, where the notion of atom-canonicity
is studied for the general case of not necessarily conjugated baos .

First we turn to an application of Theorem 1 in the area of algebraic logic. Consider
the variety RRA of representable relation algebras — for definitions and some basic theory
concerning (representable) relation algebras the reader is referred to Maddux [8].

In Hodkinson [5] an example is given of two atomic relation algebras A and Cm At A

of which only A is representable.1 Note that since relation algebras are conjugated, this
implies that not every conjugated canonical variety is atom-canonical. Also, from the result
of Hodkinson and Theorem 1 the following is immediate.

Corollary 3 The variety RRA cannot be axiomatized by Sahlqvist equations.

This may be of interest for two reasons. First, from results in Monk [9] it has been
known for a long time that RRA does not allow a finite axiomatization. Monk’s result has
been considerably strengthened by others, to the effect that any equational axiomatization
of RRA must have a rather complex structure, see for instance Andréka [1]. Corollary 3
further lowers one’s expectations concerning the mathematical transparancy of any equational
axiomatization for RRA; it also generalizes a result by Andréka that RRA is not axiomatizable
by positive equations. Second, Corollary 3 relates to an open problem in the area of relation
algebras, namely, whether the class Str RRA is elementary — or, equivalently, whether it is
closed under ultraproducts. (These questions are equivalent since any class of the form Str V
is closed under ultraroots.) For, if RRA were a Sahlqvist variety, the earlier mentioned fact
that Sahlqvist equations are structure-elementary would immediately answer the question to
the positive. Now of course, Corollary 3 in itself does not provide a negative answer to the
problem, but it does give some evidence that a positive answer may be hard to find.

1In the most recent version of the paper, Hodkinson has transferred his results to finite-dimensional rep-
resentable cylindric algebras. Hence, it follows from these new results of Hodkinson and Theorem 1 that for
each n ≥ 3, the variety RCAn is not axiomatizable by Sahlqvist equations.
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Some results related to this paper can be found in Venema [13]; the main result of
that paper states that the class At V is elementary for any variety V that is conjugated.
Finally, there are interesting connections between the results reported on in this paper and
the notion of the completion a boolean algebra with operators as defined in Monk [10]. (This
connection was also pointed out by S. Givant.) We hope to report on this connection in a
future publication.

Acknowledgements The research of the author has been made possible by a fellowship
of the Royal Netherlands Academy of Arts and Sciences and a visiting fellowship of Victoria
Univerity Wellington. A first version of this paper appeared as Venema [12]. Thanks are
due to Rob Goldblatt for discussions and for making the visit to Wellington possible. Finally,
I am grateful to the anonymous referee for a number of very helpful comments.

2 Terminology and notation

We understand familiarity with boolean algebras and some standard notions related to them,
such as atomicity or infinite joins. The power set of a set W is denoted by P(W ), the power
set algebra by P(W ).

An operation on a boolean algebra A = (A,+,−, 0) is nothing but a function f : An → A
for some n ∈ ω. The dual of an operation f : An → A is defined as fδ(a1, . . . , an) =
−f(−a1, . . . ,−an). An operation f is normal if f(a1, . . . , an) = 0 whenever ai = 0 for one of
the arguments ai; additive if it is join-preserving in each of its arguments; completely additive
if it preserves arbitrary joins in each of its arguments; and monotonic if it is increasing in
each of its arguments. In this paper, an operation will be called an operator if it is normal
and additive (it is customary to require additivity only).

Two unary operations f and g on A are called conjugates if for all a, b in A it holds that
a · f(b) = 0 iff g(a) · b = 0. An equivalent characterization is that a ≤ fδ(b) iff ga ≤ b for all a
and b. The notion of conjugation extends to operations of arbitrary rank, but we only treat
the binary case here: three binary operations f1, f2 and f3 are called conjugates if for all a1,
a2 and a3, we have: a1 · f1(a2, a3) = 0 iff a2 · f2(a3, a1) = 0 iff a3 · f3(a1, a2) = 0. Conjugation
can also be expressed equationally (for unary operations, two axioms suffice: fgδx ≤ x and
gfδx ≤ x). A bao is conjugated if for each of its operators there are conjugates in the clone
of operations generated by the basic operations; for reasons of notational simplicity, in this
paper we always assume to be dealing with the special case in which the operators themselves
already come in conjugated tuples.

A similarity type is a pair τ = (I, ρ) such that I is a set of operation symbols and ρ : I → ω
is a map assigning to each operation symbol a finite rank. A boolean algebra with τ -operators,
short: a τ -bao, is an algebra A = (A,+,−, 0, fi)i∈I such that each fi is a ρ(i)-ary operator
on the boolean algebra (A,+,−, 0). A relational τ -structure is a structure F = (W,Ti)i∈I
such such that each Ti is a ρ(i)+1-ary relation on W ; elements of W will be called states of
F. Notions concerning atoms pertain to a bao as to its underlying boolean algebra; the set
of atoms of an atomic bao A is denoted by At A. Given an n-ary operator f on the atomic

4



boolean algebra A, the n+1-ary relation Rf on At A is defined by2

Rfab1 . . . bn iff a ≤ f(b1, . . . , bn).

The atom structure of the atomic τ -bao A = (A,+,−, 0, fi)i∈I is the τ -structure At A =
(At A, Rfi)i∈I . The canonical structure of a τ -bao A = (A,+,−, 0, fi)i∈I is defined as the
τ -structure Cs At = (Uf A, Qfi)i∈I , where Uf A is the set of ultrafilters of (the boolean reduct
of) A, and Qfi is defined by

Qfiuu1 . . . un iff fi(b1, . . . , bn) ∈ u whenever b1 ∈ u1, . . . , bn ∈ un.

Conversely, an n+1-ary relation T on a set W induces an n-ary operation mT on P(W ):

mT (X1, . . . , Xn) = {w ∈W | Tww1 . . . wn for some w1 ∈ X1, . . . , wn ∈ Xn }.

Then, given a relational τ -structure F = (W,Ti)i∈I , the full complex algebra Cm F of F is
defined as the power set algebra P(W ) endowed with an operation mTi for each relation Ti.
A complex algebra is just any subalgebra of a full complex algebra. Such operations mT are
always completely additive operators; hence, every complex algebra is a bao. The canonical
embedding algebra of a bao A is the algebra Cm Cs A.

Given a class K of τ -baos, we define At K as the class of atom structures of atomic
algebras in K. Similar, or familiar definitions apply to the class operations Cm , H , S and P .
Str K := {F | Cm F ∈ K} is the class of structures for K.

Now we turn to the algebraic language to describe τ -baos. Besides the boolean symbols,
this language has a ρ(i)-adic function symbol for each element i of I. We may write fA for
the interpretation of the function symbol f in the algebra A, but usually we will be sloppy
concerning the distinction between symbols and their interpretations. From these symbols
and a set of variables, τ -terms and τ -equations are defined as usual. Now a τ -term is called
strictly positive if it does not contain any negation symbol; positive (negative, resp.) if every
variable occurs in the scope of an even (odd, resp.) number of negation symbols; and a boxed
variable if it is of the form f1

δ . . . f
n
δ x (n ≥ 0), where x is a variable and each f iδ is the dual

of a unary function symbol. A τ -term is untied if it is obtained from boxed variables and
negative terms by applying +, · and the τ -symbols only; we call it weakly untied if the boxed
variables are really variables (i.e., n = 0 in the definition of a boxed variable).

An equation is called strictly positive if there are no occurrences of the negation sign.
A Sahlqvist equation is of the form s ≤ t, where s is untied and t is positive3; in a simple
Sahlqvist equation, s should be weakly untied.

As an example, consider one of the conjugation axioms, say, fgδx ≤ x. The term gδx is
a boxed atom, whence fgδx is untied; since x is positive, we have a Sahlqvist equation here.
For more information on and examples of Sahlqvist equations, the reader is referred to de

Rijke & Venema [2] (but note that this paper uses a slightly wider definition of a Sahlqvist
equation).

All results and definitions in this paper are understood to be indexed by a similarity type
τ mentioning of which will be suppressed from now on.

2Algebraists tend to write Rfb1 . . . bna instead of Rfab1 . . . bn.
3The inequality s ≤ t is equivalent to the equation s ·−t = 0, and the term s ·−t is untied iff s is untied and

t is positive. Therefore, Sahqvist equations could equivalently have been defined as being of the form s = 0,
with s untied.
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3 The conjugated case

In this section we give the proof of Theorem 1. For this aim, let A and B be two atomic,
conjugated baos (with the understanding that the conjugated operators of A correspond to
those of B). Assume that F is the common atom structure of A and B, i.e., F = At A = At B.

From Lemma 1 below we may infer that both A and B can be embedded in the full
complex algebra Cm F of F. In order to apply this lemma, we need the fact that conjugated
baos are completely additive.

Lemma 1 Let C be an atomic, completely additive boolean algebra with operators. Then the
map r : C → P(At C) given by

r : c 7→ {a ∈ At C | a ≤ c}

preserves infinite joins and embeds C into Cm At C.

Proof. The result that r is an embedding seems to be folklore, (cf. Goldblatt [3]), while
Hirsch & Hodkinson [4] prove that r preserves arbitrary joins. Let us just show here that
r is a homomorphism with respect to an arbitrary unary operator f , i.e., that

r(fc) = mRf (r(c)). (1)

First,
r (fc) = r (f (

∑
c≥b∈At C

b)) = r (
∑

c≥b∈At C

fb), (2)

because C is atomic and f is completely additive. Second, since r preserves arbitrary joins,
we have that

r (
∑

c≥b∈At C

fb) =
⋃

c≥b∈At C

r(fb). (3)

Combining (2) and (3) yields:

r (fc) = {a ∈ At C | ∃b ∈ At C (b ≤ c & a ∈ r(fb))}.

Thus, using the definitions of the map r and the relation Rf on At C, we obtain

r (fc) = {a ∈ At C | ∃b ∈ At C (b ∈ r(c) & a ≤ fb)}.
= {a ∈ At C | ∃b ∈ At C (b ∈ r(c) & Rfab)},

which by definition of mRf is nothing but (1) itself. qed

Remark As we mentioned before, Lemma 1 implies that both our conjugated, atomic al-
gebras A and B embed in the full complex algebra of their common atom structure F. Now
consider the subalgebra of Cm F that is generated by its atoms: a rather easy argument shows
that this algebra embeds in both A and B. The embedding into, say, A, is given by

tCm F({a1}, . . . , {an}) 7→ tA(a1, . . . , an),
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where t is a term in the algebraic language and a1, . . . , an are atoms of A. In other words, A

and B have both a common subalgebra and a common superalgebra.

Since equational classes are closed under taking subalgebras, it follows immediately from
Lemma 1 that any equation holds in both A and B whenever it is valid in Cm F. One of the
very nice properties of Sahlqvist equations is that their validity also moves the other way
around:

Theorem 2 Let C be a conjugated atomic boolean algebra with operators. Then for any
Sahlqvist equation η:

C |= η ⇒ Cm At C |= η.

Proof. This theorem is an immediate corollary of Theorem 3.5 in Venema [11]. In order
to see why this is so, let us rephrase the content of that theorem in terms of conjugated
baos . For simplicity, assume that the similarity type contains only one pair of conjugated,
unary operators. Let us call a complex algebra over a relational structure F discrete if it
contains all the singleton sets of states in F. A tense frame for this similarity type is any
relational structure for which the binary relations corresponding to the operations are each
other’s converse. Now Theorem 3.5 of [11] states that for any discrete complex algebra A over
a tense frame F, and any Sahlqvist equation η, validity of η in A implies validity of η in Cm F.

Now assume that C is a conjugated bao, and η is a Sahlqvist equation such that C |= η.
It follows from Lemma 1 that C is a discrete complex algebra over the frame At C. It is also
rather easy to see that At C is in fact a tense frame, since for any two atoms a, b of C, we have

Rfab ⇐⇒ a ≤ f(b) ⇐⇒ a · f(b) 6= 0 ⇐⇒ g(a) · b 6= 0 ⇐⇒ b ≤ g(a) ⇐⇒ Rgba.

But these are precisely the conditions needed to ensure that Cm At C |= η.

For readers unfamiliar with the terminology and techniques from modal logic, we treat a
simple yet characteristic example here, using algebraic methods only.

Let f and g be conjugated operators on the atomic boolean algebra (C,+,−, 0); denote
C = (C,+,−, 0, f, g) and C• = Cm At C. The operators mRf and mRg of C• will be abbreviated
by f• and g•, respectively. It is not difficult to verify that f• and g• are conjugates as well;
the easiest proof would use the fact that At C is a tense frame. Note that restricted to the
universe C of C, f• and g• are just the operators f and g — this is because C is a subalgebra
of C• by Lemma 1. In the sequel, we will write fc instead of f•c once we know that c is an
element of C, and likewise for g.
Now assume that the equation

(γ) ffδx ≤ fδfx

holds in C; we will prove that it holds in C• as well.

Let d be an arbitrary element of C•; since C• is atomic it suffices to show that

∀a ∈ At C• (a ≤ f•f•δ d ⇒ a ≤ f•δ f•d). (4)
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Hence, let a be an arbitrary atom of C• such that a ≤ f•f•δ d. Since f• is completely additive,
there is an atom b of C• such that a ≤ f•b and b ≤ f•δ d. Since At C = At C•, the elements a,
b and f•b = fb actually belong to C. Thus, by the conjugacy of f• and g•, b ≤ f•δ d gives
us that gb(= g•b) ≤ d. This element gb plays an important role in this proof: the essentially
trivial but crucial observation about gb is that it too is an element of C. Hence, from the
assumption that γ holds in C it follows that

ffδ(gb) ≤ fδf(gb). (5)

By conjugation, gb ≤ gb implies that b ≤ fδgb; since a ≤ fb, this gives a ≤ ffδgb. So, from
(5) we may infer

a ≤ fδf(gb). (6)

Now we turn to the right hand side, fδfx, of the Sahlqvist equation, or inequality. The key
observation now is that fδfx is a positive term. A well-known property of positive terms
is that they will be interpreted by monotonic operations. In the particular case of C•, this
amounts to

C• |= y ≤ z → f•δ f
•y ≤ f•δ f•z.

But then (with gb for y and d for z), gb ≤ d implies

fδfgb ≤ f•δ f•d.

Combining this with (6), we obtain the desired a ≤ f•f•δ d. This implies (4). qed

With the help of Theorem 2 we now have a very simple proof of Theorem 1.

Proof of Theorem 1. If the Sahlqvist equation η holds in A, then by Theorem 2 it holds
in Cm F. And since B is a subalgebra of Cm F by Lemma 1, we find that η is valid in B. This
shows that

A |= η ⇒ B |= η.

The converse implication is of course proved in the very same way. qed

Proof of Corollary 1. The inclusion Str V ⊆ At V is immediate from the definitions.
For the other direction, let F be a relational structure in At V. Then by definition there is
an atomic algebra A in V such that F = At A. By the assumption that V is a conjugated
Sahlqvist variety, Theorem 2 implies that Cm F belongs to V. But then, by definition, F is in
Str V. qed

Proof of Corollary 2. The inclusion ‘⊆’ is immediate by the canonicity of V. For, let
A be an algebra in V; by canonicity of V, the canonical embedding algebra A′ := Cm Cs A

of A is in V as well. But then At A′(= Cs A) is in At V, whence A′ = Cm At A′ is in Cm At V.
This implies that A, being a subalgebra of A′, is in S Cm At V. The reverse inclusion follows
immediately from Corollary 1. qed
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4 The non-conjugated case

Finally, what happens if we drop the conjugation condition from Theorem 1 or the related
results? The following Theorem shows that even for strictly positive equations the Theorems 1
and 2 will no longer hold.

Theorem 3 There exist two atomic boolean algebras with operators A′ and A ∼= Cm At A′, and
two strictly positive (and hence, Sahlqvist) equations η0 and η1 such that

A′ |= η0 but A 6|= η0,
A |= η1 but A′ 6|= η1.

Proof. We will work in a similarity type with three unary operator symbols, f , g and d; the
corresponding operators of A and A′ will be presented in the same order.

We start with A; its boolean part is just the power set algebra of Z , the set of all integer
numbers. In order to define the operators of A, let, for a given subset X ⊆ Z , X+, X− and
∆X denote the following sets:

X+ = {z + 1 | z ∈ X},
X− = {z − 1 | z ∈ X},

∆X =


? if X = ?
Z \ {z} if X = {z}
Z otherwise.

Then A is simply defined as the algebra

A := (P(Z ),∪,−, ? , (·)+, (·)−,∆).

It is easy to verify that (·)+, (·)− and ∆ are operators. In fact, we may observe that X+ =
mP (X), X− = mS(X) and ∆X = m6=(X), where P , S and 6= are the predecessor relation
(yPz iff y = z + 1), the successor relation and the inequality relation, respectively. Hence, A

is a full complex algebra:
A = Cm (Z , P, S, 6=).

The definition of A′ is more involved — we need some auxiliary definitions first. A set
X ⊆ Z is called cofinite if its complement (wrt Z ) is finite; we denote by P∗(Z ) the collection
of finite and cofinite subsets of integers. Then, X ⊕ Y denotes the symmetric difference of X
and Y , i.e., X ⊕ Y = (X \ Y ) ∪ (Y \X). E and O denote the sets of all even and all odd
numbers, respectively. Now we define A′, the carrier set of A′:

A′ = {X ⊆ Z | X ∈ P∗(Z ) or E ⊕X ∈ P∗(Z )}.

It may be useful to note that −(E ⊕X) = O ⊕X and that

X ∈ A′ iff one of: X, −X, E ⊕X or O ⊕X, is finite. (7)

These two observations may facilitate the rather tedious (but not very difficult) proof that
A′ is closed under taking unions and complements — the actual proof is left to the reader.
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Now consider the following operations on P(Z ):

X> =

{
X+ if either X or E ⊕X is finite
Z otherwise

X< =

{
X− if either X or O ⊕X is finite
Z otherwise.

In other words, X> = X+ iff X is ‘almost everywhere’ the same as either ? or E. It is quite
easy to show that A′ is closed under the three operations just defined; hence, the following
correctly defines an algebra (the operation ∆ is as defined above):

A′ := (A′,∪,−, ? , (·)>, (·)<,∆).

On the other hand, it is another quite tedious task to check that A′ is a bao. For instance,
in order to check the additivity of (·)>, we need to show that for arbitrary sets of integers X
and Y in A′:

(X ∪ Y )> = X> ∪ Y >. (8)

The proof of (8) proceeds by distinguishing cases, as to the nature of X and Y with respect
to (7). We only treat one example here: suppose that E ⊕X and O ⊕ Y are finite. In other
words, there are only finitely many places where X differs from E, and likewise with Y and
O. But then surely X ∪ Y must be a cofinite set. Thus

(X ∪ Y )> = Z = X+ ∪ Z = X> ∪ Y >.

This indicates how to prove (8).
A′ is clearly atomic: its set of atoms consists of the singleton subsets of Z . In other words,

At A′ = At A. Now take an arbitrary atom {z}; we have {z}> = {z}+ since {z} is finite;
likewise, {z}< = {z}−. Hence, At A′ = At A, and since A is a full complex algebra, we have
now established that A′ and A meet the first requirements of the theorem:

A and A′ are atomic baos such that A ∼= Cm At A′.

We will now discuss a strictly positive equation that is valid in A, but not in A′. To be more
precise, we will show that

A |= fgx ≤ gfx, while A′ 6|= fgx ≤ gfx. (9)

First we show that the equation is valid in A; let X be an arbitrary subset of A, then

fAgA(X) = (X−)+ = X ⊆ X = (X+)− = gAfA(X).

On the other hand, if we consider the element E in A′, we find:

fA′gA′(E) = (E<)> = Z> = Z ,

while
gA′fA′(E) = (E>)< = (E+)< = O< = O− = E.
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This proves (9). Finally, we will show that conversely, there is a strongly positive equation
which is valid in A′, but not in A:

A′ |= dx ≤ fdx, while A 6|= dx ≤ fdx. (10)

First consider A: if we take the singleton {1} for x, the left hand side of the inequality adds
up to the set Z \{1}, while the right hand side yields the set (∆{1})+ = (Z \{1})+ = Z \{2};
this shows the inequality not to hold in A.

Now, turning to A′, let X be an arbitrary element of A′. Distinguish the following cases:

(a) X = ? . Then both sides of the inequality give the empty set.

(b) X = {z} for some integer z. It suffices to show that the right hand side (rhs) of the
inequality will amount to the top set Z of the algebra:

fA′dA′(X) = (∆{z})> = (Z \ {z})> = Z .

(c) |X| > 1. Again, the rhs gives Z :

fA′dA′(X) = (∆X)> = Z> = Z .

This proves (10), and hence, finishes the proof of Theorem 3. qed

Note that the algebras A and A′ defined in the just given proof also constitute a coun-
terexample to a ‘non-completely-additive version’ of Lemma 1: although A = Cm At A′, there
is no way to embed A′ in A. This observation might lead one to wonder whether an analogue
of Theorem 1 does hold when A and B are subalgebras of the full complex algebra of their
common atom structure. This is not the case, as the following Theorem shows.

Theorem 4 There exist completely additive, atomic boolean algebras with operators B′ and
B = Cm At B′ with B′ a subalgebra of B, and a Sahlqvist equation γ such that

B′ |= γ but B 6|= γ.

Proof. This Theorem is an immediate consequence of Lemma 6.7 in Venema [11]. For,
consider the relational structure F = (W,R) which is as in Figure 1. To be more precise,
the set of states is given as W = {u, v, w, x} ∪ {vn, wn | n ∈ ω}, and the relation R holds as
follows: Ruv, Ruw,Rvvn and Rwwn, all n, Rvnx and Rwnx, all n, and Rxx.

Now B is defined as the full complex algebra of the structure F, and B′ is the subalgebra
generated by the atoms of B. Finally, γ is the formula ffδx ≤ fδfx (precisely the example
we treated in the proof of Theorem 2). Details of the proof that γ holds in B′, but not in B,
can be found in the proof of Lemma 6.7 in the cited paper. qed

One may now wonder under which conditions a non-conjugated version of Theorem 2 does
hold. Here is a positive result:
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Figure 1: Atom structure.

Theorem 5 Let C be a completely additive, atomic bao. Then for every simple Sahlqvist
equation η:

C |= η iff Cm At C |= η.

Proof. For the direction from right to left we apply Lemma 1 to ensure that C is a subal-
gebra of Cm At C. The other direction is, just like Theorem 2, an immediate consequence of
Theorem 3.5 in Venema [11]. For, in the context of ordinary (not necessarily conjugated)
baos , a tense frame is just any ordinary relational structure for the similarity type, and a
Sahlqvist tense formula is the modal correspondent of a simple Sahlqvist formula. Obviously,
one could also give a rather easy algebraic proof for this direction, in the same style as our
example in the proof of Theorem 2. qed

Thus, we seem to have a fairly complete answer to the question for which atomic baos A

and which Sahlqvist equations η we have that A |= η implies Cm At A |= η: if A is conjugated
and η is any Sahlqvist equation, or if A is completely additive and η is any simple Sahlqvist
equation, then the answer is positive. For the other cases we have established counter-
examples.
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