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Abstract. This paper is a study into some properties and applications
of Moss’ coalgebraic or ‘cover’ modality ∇.
First we present two axiomatizations of this operator, and we prove these
axiomatizations to be sound and complete with respect to basic modal
and positive modal logic, respectively. More precisely, we introduce the
notions of a modal ∇-algebra and of a positive modal ∇-algebra. We
establish a categorical isomorphism between the category of modal ∇-
algebra and that of modal algebras, and similarly for positive modal
∇-algebras and positive modal algebras.
We then turn to a presentation, in terms of relation lifting, of the Vietoris
hyperspace in topology. The key ingredient is an F-lifting construction,
for an arbitrary set functor F, on the category Chu of two-valued Chu
spaces and Chu transforms, based on relation lifting.
As a case study, we show how to realize the Vietoris construction on
Stone spaces as a special instance of this Chu construction for the (fi-
nite) power set functor. Finally, we establish a tight connection with the
axiomatization of the modal ∇-algebras.
Keywords coalgebra, relation lifting, modal algebra, Vietoris hyper-
space, Chu space.

1 Introduction

This paper is a study into the algebraic properties of the coalgebraic modal
operator ∇, and some of its applications. The connective ∇ takes a finite1 set Φ
of formulas and returns a single formula∇Φ. Using the standard modal language,
∇ can be seen as a defined operator:

∇Φ = 2(
∨

Φ) ∧
∧

3Φ, (1)

where 3Φ denotes the set {3ϕ | ϕ ∈ Φ}.
Readers familiar with classical first-order logic will recognize the quantifi-

cation pattern in (1) from the theory of Ehrenfeucht-Fräıssé games, Scott sen-
tences, and the like, see [9] for an overview. In modal logic, related ideas made

? The research of both authors has been made possible by VICI grant 639.073.501 of
the Netherlands Organization for Scientific Research (NWO).

1 In this paper we restrict to the finitary version of the operator.



an early appearance in Fine’s work on normal forms [8]. As far as we know,
however, the first explicit occurrences of the nabla connective appeared roughly
at the same time, in the work of Barwise & Moss on circularity [4], and that
of Janin & Walukiewicz on automata-theoretic approaches towards the modal
µ-calculus [10].

The semantics of the nabla modality can be explicitly formulated as follows,
for an arbitrary Kripke structure S with accessibility relation R:

S, s  ∇Φ if for all ϕ ∈ Φ there is a t ∈ R[s] with S, t  ϕ, and
for all t ∈ R[s] there is a ϕ ∈ Φ with S, t  ϕ.

(2)

In other words, the semantics of ∇ can be expressed in terms of the relation
lifting of the satisfaction relation between states and formulas:

S, s  ∇Φ iff (R[s], Φ) ∈ P(). (3)

This insight, which is nothing less than a coalgebraic reformulation of modal
logic, led Moss [14] to the introduction of coalgebraic logic, in which (3) is general-
ized to an (almost) arbitrary set functor F by introducing a coalgebraic operator
∇F, and interpreting it using the relation lifting F() of the forcing relation.

In this paper we want to look at ∇ as an algebraic operator in its own
right. Our motivation for undertaking such a study, besides a natural intellectual
curiosity, was twofold: firstly, we hope that such a study might be a first step in
the direction of a ‘coalgebraic proof theory’ (we’ll come back to this towards the
end of this paper). And second, we belief that a thorough algebraic understanding
of the nabla operator might shed light on power lifting constructions, such as
the Vietoris hyperspace construction in topology. Let us address these issues in
some more detail, and on the way explain what we believe to be the contribution
of this paper.

Concerning the algebraic properties, the main issue that we address concerns
axiomatizations. We were interested in axiomatizing the properties of the nabla
operator in terms that only refer to ∇ itself and its interaction with the Boolean
connectives, but which does not involve the non-coalgebraic modalities 2 and
3. As we will see in the next section, such an ‘intrinsic’ axiomatization is indeed
possible. A remarkable feature of our axiomatization is that it is largely inde-
pendent of the Boolean negation, so that its natural algebraic setting is that of
positive modal algebras [7]. On the other hand, the nabla operator for the power
set functor interacts reasonably well with the complementation operator, so that
in fact we obtain two sound and complete axiomatizations for ∇, one in the set-
ting of positive modal logic, and one in the setting of classical (i.e., Boolean)
modal logic. Both of these results are formulated in terms of an isomorphism
between categories of algebras.

The connection between the nabla operator and powering constructions in
topology [13] is less obvious — we confine our attention to the Vietoris hy-
perspace. Formulations of the Vietoris hyperspace construction involving modal
logic are well-known [11, 18], and the importance of the Vietoris construction
on the interface of coalgebra and modal logic has already been the object of a



number of studies [1, 12, 15, 6]. Indeed, one may argue that the coalgebras of the
Vietoris endofunctor on Stone spaces provide an adequate semantics for all modal
logics since there is an isomorphism between the category of these coalgebras,
and the category of the descriptive general frames known in modal logic [12].
Here, however, we take a slightly different angle. Our goal was to somehow define
the Vietoris hyperspace construction in a way that would be relevant and use-
ful for coalgebraic applications and that would only refer to category-theoretic
properties of the power set functor. Analogous to Moss’ coalgebraic approach
to modal logic, this might enable one to generalize the Vietoris construction to
arbitrary set functors. The key idea in our approach is to formulate the Vietoris
construction in terms of the relation lifting ∈ := P(∈) of the membership relation
between points and (open/closed/clopen) sets.

As it turned out, Chu spaces provide a natural setting for this. A Chu space
is a triple S = 〈X, S,A〉 consisting of two sets X and A, together with a binary
relation2 S ⊆ X ×A. In itself, the connection with Chu spaces should not come
as a big surprise: as we will show in more detail further on, we may read (3)
as saying that the semantics of ∇ itself can be seen as a Chu transform, that
is, an arrow in the category Chu. In section 3, we give F-lifting constructions on
Chu spaces for arbitrary endofunctors F on Set. The main desiderata of these
constructions are functoriality and preservation of the full subcategory of normal
Chu spaces (see Definition 8 below). Since the latter is not met in general, we also
introduce a normalization functor on Chu spaces. We show that if F preserves
weak pullbacks, then its associated lifting construction, and also the finite version
of it, are functorial on Chu spaces. Then, as a case study in section 4, we show
how to realize the Vietoris construction on Stone spaces as a special instance of
this Chu construction for the (finite) power set functor (Theorem 4).

Finally, the two parts of the paper come together in Theorem 5, which es-
tablishes a tight connection between the Vietoris construction and the axioma-
tization of the modal ∇-algebras.

2 An axiomatization of ∇

In the introduction we mentioned that the nabla operator enables a coalgebraic
reformulation of standard modal logic. The aim of this section is to substantiate
this claim.

First of all, while we introduced the nabla operator as an abbreviation in the
language of standard modal logic, for a proper use of the word ‘reformulation’,
we need of course interdefinability of the nabla operator on the one hand, and
the standard modal operators on the other. It is in fact an easy exercise to prove
that with the semantics of ∇ as given by (2), we have the following semantic

2 We restrict attention to two-valued Chu spaces in this paper. In fact, these structures
are known from the literature under various names, including topological systems [18]
and classifications [5].



equivalences:
3ϕ ≡ ∇{ϕ,>}
2ϕ ≡ ∇∅ ∨∇{ϕ} (4)

In other words, the standard modalities 2 and 3 can be defined in terms of the
nabla operator (together with ∨ and >).

Taken together, (1) and (4) show that on the semantic level of Kripke struc-
tures, the language with the nabla operator is indeed a reformulation of standard
modal logic. This naturally raises the question whether this equivalence can also
be expressed axiomatically. That is, we are interested in the question whether
we may impose natural conditions which characterize those nablas that behave
like the ‘real’ ones defined using (1). From the semantic interdefinability of ∇
with respect to 2 and 3, it follows that a ‘roundabout’ axiomatization of the
nabla operation is possible. However, it is of course much more interesting to
try and find a more ‘direct’ axiomatization, in terms of the intrinsic properties
of the nabla operator, and its interaction with the Boolean connectives.

A good starting point for this would be to look for validities, i.e., ∇-formulas
that are true in every state of every Kripke structure, or, equivalently, for pairs of
equivalent formulas. As an example of such an equivalence, we give an interesting
distributive law; for a concise formulation we need the notion of relation lifting.

Definition 1. Given a relation Z ⊆ A × A′, define its power lifting relation
PZ ⊆ PA× PA′ as follows:

PZ := {(X, X ′) | for all x ∈ X there is an x′ ∈ X ′ with (x, x′) ∈ Z
& for all x′ ∈ X ′ there is an x ∈ X with (x, x′) ∈ Z}.

We say that Z ⊆ A×A′ is full on A and A′, notation: Z ∈ A ./ A′, if (A,A′) ∈
PZ. Observe that as a special case, ∅ ./ A = ∅ if A 6= ∅, while ∅ ./ ∅ = {∅}
(i.e., the empty relation is full on ∅ and ∅).

The distributive law that we mentioned concerns the following equivalence,
which holds for arbitrary sets of formulas Φ, Φ′:

∇Φ ∧∇Φ′ ≡
∨

Z∈Φ./Φ′

∇{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z}. (5)

For a proof of (5), first suppose that S, s  ∇Φ∧∇Φ′. Let Zs ⊆ Φ×Φ′ consist
of those pairs (ϕ, ϕ′) such that the conjunction ϕ ∧ ϕ′ is true at some successor
t ∈ R[s]. It is then straightforward to derive from (2) that Zs is full on Φ and Φ′,
and that S, s  ∇{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Zs}. The converse direction follows fairly
directly from the definitions.

We have now arrived at one of the key definitions of the paper, namely that
of nabla algebras. Here we provide the desired direct axiomatization of the nabla
operator.

Definition 2. A structure A = 〈A,∧,∨,>,⊥,∇〉 is a positive modal ∇-algebra
if its lattice reduct A[ := 〈A,∧,∨,>,⊥〉 is a distributive3 lattice and ∇ : Pω(A)→
3 In this paper with a ‘lattice’ we shall always mean a bounded lattice.



A satisfies the laws ∇1 – ∇6 below. Here Greek lower case letters refer to finite
subsets of A.

∇1. If αP(≤)β, then ∇α ≤ ∇β,
∇2. If ⊥ ∈ α, then ∇α = ⊥,
∇3. ∇α ∧∇β ≤

∨
{∇{a ∧ b | (a, b) ∈ Z} | Z ∈ α ./ β},

∇4. If > ∈ α ∩ β, then ∇{a ∨ b | a ∈ α, b ∈ β} ≤ ∇α ∨∇β,
∇5. ∇∅ ∨∇{>} = >,
∇6. ∇α ∪ {a ∨ b} ≤ ∇(α ∪ {a}) ∨ ∇(α ∪ {b}) ∨ ∇(α ∪ {a, b}).

A structure A = 〈A,∧,∨,>,⊥,¬,∇〉 is a modal∇-algebra if 〈A,∧,∨,>,⊥,¬〉
is a Boolean algebra and the structure satisfies, in addition to the axioms ∇1 –
∇6 above, the following

∇7. ¬∇α = ∇{
∧

α,>} ∨∇∅ ∨
∨
{∇{a} | a ∈ α}.

The category of (positive) modal ∇-algebras with homomorphisms is denoted as
(P)MA∇.

Remark 1. It is not hard to see that the following formulas can be derived from
the axioms ∇1 – ∇6:

∇3′. If α 6= ∅, then ∇∅ ∧∇α = ⊥,
∇3n.

∧n
i=1∇αi ≤

∨
{∇Z∧ | Z ∈

⊙
i αi},

where, for a finite collection αi of finite subsets of A,
⊙

i αi := {Z ⊆ Πiαi |
πi[Z] = αi for every i}, and, for Z ∈

⊙
i αi, Z∧ := {

∧
i ai : (ai)i∈I ∈ Z},

∇6′. ∇α = ∇α ∪ {
∨

α},

For instance, ∇3′ follows by instantiating β with the empty set in ∇3, and ∇3n

is just the n-ary version of ∇3 and can be shown by induction on n. Recall from
Definition 1 that ∅ ./ α = ∅ in this case, and

∨
∅ = ⊥.

Definition 3. A structure A = 〈A,∧,∨,>,⊥,3,2〉 is a positive modal algebra
if the lattice reduct A[ := 〈A,∧,∨,>,⊥〉 is a distributive lattice, and 2,3 are
unary operations on A that satisfy the following axioms:

3(a ∨ b) = 3a ∨3b 3⊥ = ⊥
2(a ∧ b) = 2a ∧2b 2> = >
2a ∧3b ≤ 3(a ∧ b)
2(a ∨ b) ≤ 2a ∨3b
A modal algebra is an algebra A = 〈A,∧,∨,>,⊥,¬,3,2〉 such that A[ :=

〈A,∧,∨,>,⊥,¬〉 is a Boolean algebra and the operations 2 and 3 satisfy, in
addition to the axioms above:
¬3a = 2¬a.
We let MA and PMA denote the categories of modal algebras (positive modal

algebras, respectively) as objects, and algebraic homomorphisms as arrows.

Definition 4. Let A be a positive modal algebra (modal algebra, respectively).
Then we let A∇ denote the structure 〈A[,∇)〉, where ∇ is defined using (1).



Conversely, if B is a positive modal ∇-algebra (modal ∇-algebra, respec-
tively), we let B3 denote the structure 〈B[,3,2〉, where 3 and 2 are defined
using (4).

We let both (·)∇ and (·)3 operate as the identity on maps, i.e., f∇ := f and
f3 := f whenever applicable.

Theorem 1. The functors (·)∇ and (·)3 establish a categorical isomorphism
between the categories PMA and PMA∇, and between the categories MA and
MA∇.

Proof. We restrict ourselves to a proof of the following two claims, for an arbi-
trary positive modal ∇-algebra A:

1. A3 is a positive modal algebra;
2. (A3)∇ ∼= A.

1. ∇2 implies that 3⊥ = ⊥.
∇3 instantiated with α = {a} and β = {b} yields 2a ∧2b = 2(a ∧ b).
∇4 instantiated with α = {a,>} and β = {b,>} yields 3a ∨3b = 3(a ∨ b).
∇5 says that 2> = >.
∇6 instantiated with α = ∅ yields that ∇{a ∨ b} ≤ ∇{a} ∨ ∇{b} ∨ ∇{a, b}.

Since {b}P(≤){b,>} and {a, b}P(≤){b,>}, then by∇1,∇{b}∨∇{a, b} ≤ ∇{b,>}.
Hence∇{a∨b} ≤ ∇{a}∨∇{b,>}, from which we get 2(a∨b) ≤ 2a∨3b. In order
to show that 2a∧3b ≤ 3(a∧ b) we need to show that (∇{a}∨∇∅)∧∇{b,>} ≤
∇{a ∧ b,>}.

(∇{a} ∨ ∇∅) ∧∇{b,>} = [∇{a} ∧ ∇{b,>}] ∨ [∇∅ ∧∇{b,>}]
= [∇{a} ∧ ∇{b,>}] ∨ ⊥ (∇3′)
= ∇{a ∧ b, a ∧ >} (∇3)
≤ ∇{a ∧ b,>} (∇1)

The last inequality holds since {a∧b, a}P(≤){a∧b,>}. This completes the proof
that A3 is a positive modal algebra.

2. We need to show that ∇ coincides with the operator ∇̃ associated with
the ∇-induced modal operators. For every finite subset α of A,

∇̃α = [∇{
∨

α} ∨ ∇∅] ∧
∧
{∇{a,>} : a ∈ α}

=
∧
{[∇{

∨
α} ∨ ∇∅] ∧∇{a,>} : a ∈ α}

=
∧
{[∇{

∨
α} ∧ ∇{a,>}] ∨ [∇∅ ∧∇{a,>}] : a ∈ α}

=
∧
{[∇{

∨
α} ∧ ∇{a,>}] ∨ ⊥ : a ∈ α} (∇3′)

=
∧
{[∇{

∨
α, a}] : a ∈ α} (∇3)

=
∨
{∇Z∧ : Z ∈

⊙
a∈α{

∨
α, a}} (∇3n)

= ∇α ∪ {
∨

α} (∗)
= ∇α (∇6′)

Let us show the (∗)-marked equality: let α = {ai, i = 1 . . . , n} for every i, let
βi = {

∨
α, ai}. Then consider the following relation:

Z = {(bi)i ∈ Πiβi : for at most one i, bi 6=
∨

α}.



Then Z∧ = {
∨

α, a1, . . . , an}, and moreover it is not difficult to see that for every
W ∈

⊙
i βi, the pair (W∧, Z

∧
) belongs to the relation P(≤), so the statement

follows by ∇1. ut

Remark 2. As an easy corollary of Theorem 1, we can obtain a completeness
result for modal logic formulated in terms of the nabla operator.

Finally, in section 4 we will need the construction which can be seen as a kind
of power set lifting of a Boolean algebra A. Following terminology and notation
of [18], in the definition below we present a Boolean algebra by generators and
relations.

Definition 5. Let A be a Boolean algebra. Then

BA〈 {∇α | α ∈ PωA} : ∇1−∇7 〉

presents a Boolean algebra that we shall denote as AP.

In words, AP is the Boolean algebra we obtain as follows: first freely generate
a Boolean algebra by taking the set {∇α | α ∈ PωA} as generators, and then
take a quotient of this algebra, by identify those elements that can be proven
equal on the basis of the relations (axioms) ∇1–∇7. In section 4 we will see a
different characterization of this algebra: Theorem 5 states that AP is in fact
isomorphic to the algebra of clopens of the Vietoris hyperspace of the Stone
space which is dual to A.

3 Chu spaces and their liftings

Chu spaces [16] unify a wide range of mathematical structures, including rela-
tional, algebraic and topological ones. Surprisingly this degree of generality can
be achieved with a remarkably simple form of structure. As we mentioned al-
ready, in this paper we will only enter a small part of Chu territory since we
restrict attention to two-valued Chu spaces. These can be defined as follows.

Definition 6. A (two-valued) Chu space is a triple S = 〈X, S,A〉 consisting of
two sets X and A, together with a binary relation S ⊆ X × A. Elements of X
are called objects or points, and elements of A, attributes; the relation S is the
matrix of the space. Given two Chu spaces S′ = 〈X ′, S′, A′〉 and S = 〈X, S,A〉, a
Chu transform from S′ to S is a pair (f, f ′) of functions f : X ′ → X, f ′ : A→ A′

that satisfy the (generalized) adjointness condition

f(x′)Sa ⇐⇒ xS′f ′(a). (6)

for all x′ ∈ X ′ and a ∈ A. We let Chu denote the category with Chu spaces as
objects and Chu transforms as arrows.



As a motivating example of a Chu transform, consider once more the seman-
tics of ∇. One may read (3) above as saying that the pair (R[·] : S → P(S),∇ :
Pω(Fma) → Fma) is a Chu transform from the Chu space (S, ,Fma) to its
power set lifting (PS, P(),Pω(Fma)). In a slogan: the semantics of ∇ is an
arrow in the category Chu of Chu spaces and Chu transforms.

Clearly, the generalized adjointness condition specializes to adjointness in
the right context, for example if partial orders 〈P,≤, 〉 are represented as the
Chu spaces 〈P,≤, P 〉, then the Chu transforms between two such structures are
exactly tuples of residuated maps.

Definition 7. Any Chu space S = 〈X, S,A〉 gives rise to an order on X, the
specialization order vS, defined as follows: x vS y iff for every a ∈ A (xSa ⇒
ySa). The specialization order then induces the following equivalence relation
≡S on X: x ≡S y iff x vS y and y vS x, i.e. iff for every a ∈ A (xSa⇔ ySa).

Normal Chu spaces A prominent role within Chu, from the point of view of
logic, is played by the so-called normal Chu spaces. Normal Chu spaces provide
a general and uniform setting for algebraic, set-based and topological semantics
of propositional logics.

Definition 8. A Chu space S = 〈X, S,A〉 is normal if A ⊆ P(X) and S is the
membership relation restricted to A, that is, xSa iff x ∈ a. NChu denotes the
full subcategory of Chu based on these normal spaces.

To mention an important example, any Stone space X = 〈X, τ〉 can be
represented as SX = 〈X,∈, C〉, C being the Boolean algebra of the clopen subsets
in τ . Then a map f between Stone spaces is continuous exactly when (f, f−1) is a
Chu transform between their associated Chu spaces. In fact, any Chu transform
from one normal Chu space to another is of the form (f, f−1).

Since not all our constructions on Chu spaces preserve normality, we shall
need a normalization operation on Chu spaces.

Definition 9. Given a Chu space S = 〈X, S,A〉 define the map ES : A→ P(X)
by putting ES(a) := S−1[a], that is:

ES(a) := {x ∈ X | xSa}.

Then the normalization of S is given as the structure N(S) = 〈X,∈, ES [A]〉.
Extending this definition to transforms, we define the normalization N(f, f ′) of
a Chu transform (f, f ′) : S′ → S as the pair (f, f−1).

Proposition 1. The normalization construction N is a functor from Chu to
NChu.

Proof. We confine ourselves to checking that the normalization of a Chu trans-
form is again a Chu transform. Suppose that (f, f ′) : S′ → S is a Chu transform
from S′ = 〈X ′, S′, A′〉 to S = 〈X, S,A〉. It is obvious that any elements x′ ∈ X ′



and Y ∈ ES [A] satisfy the adjointness condition (6) with respect to f and f−1.
The point is to prove that f−1 is a well-defined map from ES [A] to ES′ [A′]. For
this purpose, take an arbitrary element ES(a) = S−1[a] ∈ ES [A]. Then

f−1(S−1[a]) = {x′ ∈ X ′ | f(x′)Sa}
= {x′ ∈ X ′ | x′S′f ′(a)}
= (S′)−1[f ′(a)]
= ES′(a),

which shows that, indeed, f−1(S−1[a]) belongs to ES′ [A′]. ut

Strongly normal Chu spaces In the next section we will be interested in Chu
spaces that satisfy a strong form of normality that we will describe now. Normal
Chu spaces are extensional in that every attribute is completely determined by
the set of objects that it is related to, but they do not necessarily satisfy the
dual property of separation.

Definition 10. A Chu space S = 〈X, S,A〉 is separated if for every distinct
pair of points x and y in X there is an attribute a ∈ A separating x from y, in
the sense that it is either related to x and not to y, or related to y and not to x.

The following, slightly technical definition will be of use in section 4, when we
will understand the Vietoris construction as a special power lifting construction:

Definition 11. Let S = 〈X, S,A〉 be a Chu space. A subset Y ⊆ X is called a
representative subset of X, if Y contains exactly one representant of every ≡S-
cell of S (where ≡S is as defined in Definition 7). For any such Y , the strong
normalization NY (S) of S based on Y is the Chu space 〈Y,∈, EY

S [A]〉, where
EY

S : A→ P(Y ) is the map given by EY
S (a) := {y ∈ Y | ySa}.

It is not difficult to prove that for any representative subset Y of X the Chu
space NY (S) is strongly normal, and that the pair (ιY X , EY

S ) (with ιXY the
inclusion) is a Chu transform from NY (S) to S.

Remark 3. One of the referees pointed out that Proposition 1 can be expanded
to state that NChu is a coreflective subcategory of Chu, and that separated Chu
spaces form a reflective subcategory of Chu, cf. [2].

Lifting Chu spaces Many category-theoretic operations can be defined on Chu
spaces, for instance orthogonality, tensor product, transposition (see [16] for an
overview). Here our focus will be on lifting constructions; our aim is to define, for
an arbitrary set functor F and for an arbitrary Chu space S = 〈X,∈, A〉, a Chu
space F̃(S) which is based on the set F(X). Although we are mainly interested
in a lifting construction for normal Chu spaces, we take a little detour to first
define a functorial power lifting construction on the full category Chu. For that



purpose we need the notion of relation lifting for an arbitrary set functor. Recall
that in Definition 1 we gave the power set lifting of a binary relation.

For the definition of relation lifting with respect to a general set functor F,
consider a binary relation Z ⊆ S × S′, with associated projections π, π′:

S
π←− Z

π′

−→ S′

Applying F to this diagram we obtain

FS
Fπ←− FZ

Fπ′

−→ FS′

so that by the properties of the product FS × FS′, we may consider the product
map (Fπ,Fπ′) : FZ → FS × FS′. This map need not be an inclusion (or even an
injection), and FZ need not be a binary relation between FS and FS′. However,
we may consider the range F(Z) of the map (Fπ,Fπ′) which is of the right shape.

Definition 12. Let F be a set functor. Given two sets S and S′, and a binary
relation Z between S × S′, we define the lifted relation F(Z) ⊆ FS × FS′ as
follows:

F(Z) := {((Fπ)(ϕ), (Fπ′)(ϕ)) | ϕ ∈ FZ},

where π : Z → S and π′ : Z → S′ are the projection functions given by π(s, s′) =
s and π′(s, s′) = s′.

Definition 13. Let F be a set functor, and let S = 〈X, S,A〉 be a Chu space.
Then we define the F-lifting of S to be the Chu space

F̃S := 〈F(X),F(S),F(A)〉.

Given a Chu transform (f, f ′) from S′ = 〈X ′, S′, A′〉 to S = 〈X, S,A〉, we define
F̃(f, f ′) as the pair (Ff,Ff ′) of maps.

We need some of the properties of relation lifting. Given a function f : A→
B, we let Gr(f) denote the graph of f , i.e., Gr(f) := {(a, b) ∈ A×B | b = f(a)}.

Fact 2 Let F be a set functor. Then the relation lifting F satisfies the following
properties, for all functions f : S → S′, all relations R,Q ⊆ S × S′, and all
subsets T ⊆ S, T ′ ⊆ S′:
(1) F extends F: F(Gr(f)) = Gr(Ff);
(2) F preserves the diagonal: F(IdS) = IdFS;
(3) F commutes with relation converse: F(R )̆ = (FR)̆ ;
(4) F is monotone: if R ⊆ Q then F(R) ⊆ F(Q);
(5) F distributes over composition: F(R ◦Q) = F(R) ◦ F(Q), if F preserves weak
pullbacks.

For proofs we refer to [14, 3], and references therein. The proof that Fact 2(5)
depends on the property of weak pullback preservation goes back to Trnková [17].

Theorem 3. If F preserves weak pullbacks, then F̃ is an endofunctor on Chu.



Proof. We restrict our proof to showing that F̃ turns Chu transforms into Chu
transforms. Let S′ = 〈X ′, S′, A′〉 and S = 〈X, S,A〉 be two Chu spaces, and let
f : X ′ → X and f ′ : A → A′ be two maps. It is easily verified that (f, f ′) is a
Chu transform iff

Gr(f) ◦ S′ = (Gr(f ′) ◦ S)̆ .

But then it follows from the properties of relation lifting for weak pullback
preserving functors that

Gr(Ff)) ◦ F(S′) = F(Gr(f) ◦ S′)
= F((Gr(f ′) ◦ S)̆ )
= (Gr(Ff ′) ◦ F(S))̆ .

In other words, (Ff,Ff ′) is a Chu transform as well. ut

Unfortunately, normality of a Chu space is not preserved under taking liftings
of Chu spaces. But clearly, we can combine lifting with normalization.

Definition 14. Assume that F preserves weak pullbacks. Then F̂ denotes the
endofunctor on NChu defined by F̂ := N ◦ F̃.

Remark 4. It will be useful in the next section to have a more concrete definition
of the normalization operation for Chu spaces of the form F̃S, where S is normal.
Suppose that S = 〈X,∈, A〉, then F̃S = 〈F(X),∈,F(A)〉, where we write ∈ for
the lifted membership relation F(∈). Now the normalization map E∈ is given by

E∈[α] = {ϕ ∈ F(X) | ϕ∈α}.

4 Stone spaces

As a case study, let us show how the Vietoris construction on Stone spaces
naturally arises in the framework that we have developed in the previous two
sections.

As we mentioned earlier, any Stone space 〈X, τ〉 can be represented as a Chu
space S = 〈X,∈, A〉. The Boolean algebra A of the clopen subsets of X is a
base for the topology τ , so for instance, for every Y ⊆ X, the τ -closure of Y is
Y • =

⋂
{a ∈ A | Y ⊆ a}.

Definition 15. Given a Stone space S = 〈X,∈, A〉, we let K(S) denote the col-
lection of closed sets of S. We define the operations 〈3〉, [3] : P(X)→ P(K(S))
by

[3]a := {F ∈ K(S) | F ⊆ a} ,

〈3〉a := {F ∈ K(S) | F ∩ a 6= ∅} .

We let V (A) denote the Boolean subalgebra of P(K(S)) generated by the set
{〈3〉a, [3]a | a ∈ A}. V (A) is the Boolean algebra of clopen subsets of the Vietoris
topology on K(S).



Modal logicians will recognize the above notation as indicating that [3] and
〈3〉 are the ‘box’ and the ‘diamond’ associated with the converse membership
relation 3 ⊆ K(S)×X.

It is well-known that the Vietoris hyperspace of a Stone space S = 〈X,∈, A〉
is a Stone space, so V (A) is a base for the Vietoris topology. Then V (S) =
〈K(S),∈, V (A)〉 is the Chu-representation of the Vietoris hyperspace of S.

For the remainder of this section fix a Stone space S = 〈X,∈, A〉. Here is a
summary of our approach:

1. First, as a minor variation on Chu power set lifting, consider the Chu space
P̃ω(S) := 〈P(X),∈,Pω(A)〉 where ∈ denotes the relation lifting P(∈), re-
stricted to P(X) × Pω(A). Thus the variation consists in taking the finite
power set Pω(A) rather than the full power set P(A).

2. We then show that every equivalence class of the relation ≡∈ contains exactly
one closed element, so that we may take the collection K(S) as the ‘canonical
representants’ in order to define a strong normalization P̂ω := 〈K(S),∈, Q〉
of 〈P(X),∈,Pω(A)〉 (see Definition 11).

3. We then prove that the Boolean algebra generated by Q is identical to the
Vietoris algebra V (A).

4. Finally we prove that the Vietoris algebra is isomorphic to the algebra AP

(defined in section 2 as the Boolean algebra generated by the set {∇α | α ∈
Pω(A)} modulo the ∇ axioms).

Definition 16. Given a Stone space S = 〈X,∈, A〉, let ∈ denote the relation
lifting P(∈), restricted to P(X) × Pω(A). Define the Chu space P̃ω(S) as the
structure 〈P(X),∈,Pω(A)〉.

For the following proposition, recall that the closure of a set Y ⊆ X is
denoted by Y •, and that for any Chu space T = 〈P, T,B〉, the specialization
order vT on X induced by T is given by p vT q iff (pTb⇒ qTb) for all b ∈ B.

Proposition 2. Let v and ≡ be the specialization order and the equivalence
relation associated with the Chu space P̃ω(S), respectively. Then, for every set
Y ∈ P(X), its closure Y • is the maximum element of the ≡-cell Y/≡. In partic-
ular, Y • is the unique closed set in Y/≡.

Proof. Clearly it suffices to prove that

Y v Z ⇒ Y • ⊆ Z• (7)

and
Y ≡ Y •. (8)

For (7), suppose that Y • 6⊆ Z• =
⋂
{a ∈ A | Z ⊆ a}. Then, since every

clopen is closed and Y • is the smallest closed set that contains Y , there must
be some a ∈ A such that Z ⊆ a and Y 6⊆ a. Let α = {¬a,X} ∈ Pω(A): it holds
that Y ∈α but Z 6∈α, hence Y 6v Z.



For (8), if α ∈ Pω(A) and Y ∈α, then a∩Y 6= ∅ for every a ∈ α and Y ⊆
⋃

α.
Then, as Y ⊆ Y •, we get a ∩ Y • 6= ∅ for every a ∈ α. Also, as

⋃
α ∈ A is in

particular closed, from Y ⊆
⋃

α we get Y • ⊆
⋃

α, which proves that Y •∈α.
This shows that Y v Y •. Conversely, if Y •∈α then Y ⊆ Y • ⊆

⋃
α. In addition,

for every a ∈ A, Y • ∩ a 6= ∅ implies Y ∩ a 6= ∅, for if not, then Y ⊆ ¬a ∈ K(S),
which would imply Y • ⊆ ¬a, contradiction. ut

The proposition above says that K(S) is a representative subset of P(X) (see
Definition 11). So we can consider the strong normalization of P̃ω(S):

Definition 17. Given a Stone space S = 〈X,∈, A〉, define P̂ω(S) as the strong
normalization of P̃ω(S) w.r.t. K(S), i.e. P̂ω(S) is the normal and separated
Chu space

〈K(S),∈, Q〉,

where Q = E[Pω(A)] and E : Pω(A) → P(K(S)) is the map given by E(α) :=
{F ∈ K(S) | F ∈ α}.

The following theorem states that the Vietoris construction of a Boolean
space can indeed be seen as an instance of power lifting.

Theorem 4. Let S = 〈X,∈, A〉 be a Stone space. Then V (A) is the Boolean
algebra generated by the set Q ∈ P(K(S)), where Q is the set of attributes of
P̂ω(S).

Proof. For every F ∈ K(S) and every α ∈ Pω(A),

F ∈ E(α) iff F ∈ α iff F ∈ [3](
⋃

α) ∩
⋂

a∈α〈3〉a,

which means that E is the nabla operator defined from [3] and 〈3〉. Hence
Q ⊆ V (A), and moreover for every a ∈ A, [3]a = E({a}) ∪ E(∅) and 〈3〉a =
E({a,>}), which makes Q a set of generators for V (A). ut

To see where does the material of the second section come in: The ∇-axioms
are an important ingredient for the following representation theorem for the
lifted Boolean algebra AP:

Theorem 5. Let S = 〈X,∈, A〉 be a Stone space. Then V (A) is isomorphic to
the power lifting AP of A.

Proof. It is not difficult to see, given the axioms ∇1–∇7, that an arbitrary
element of AP can be represented as a finite join of generators. Now define the
map ρ : AP → P(K(S)) by putting

ρ(∇α1 ∨ . . . ∨∇αn) := E(α1) ∪ . . . ∪ E(αn),

where E is the strong normalization map of P̂ω(S), given by

E(α) = {F ∈ K(S) | F ∈ α}.



In order to establish the theorem, it suffices to prove our claim that

ρ is an isomorphism.

We omit the argument why ρ is a homomorphism and only sketch the proof
that it is an injection. Given a homomorphism between two Boolean algebras,
in order to prove injectivity, it suffices to show that the homomorphism maps
nonzero elements to nonzero elements. So let ∇α1 ∨ . . . ∨ ∇αn be an arbitrary
nonzero element of AP, then at least one of the ∇αi, say ∇α, is nonzero. Then
it follows from axiom ∇2 that ⊥ 6∈ α.

Now consider the set Y =
⋃

α. Y is a finite union of clopens and hence,
certainly closed. Since ⊥ 6∈ α, it is also straightforward to verify that Y ∈α. In
other words, we have found that Y ∈ E(α) = ρ(∇α) ⊆ ρ(∇α1 ∨ . . . ∨ ∇αn).
Hence we have proved indeed that ρ maps an arbitrary nonzero element of AP

to a nonempty set of closed elements, i.e., a nonzero element of the algebra
V (A). ut

The point of carrying out the Vietoris construction in terms of the nabla
operator rather than the standard modalities [3] and 〈3〉 is that the former is
coalgebraic in nature, and the latter are not. This will be advantageous when
it comes to generalizing the Vietoris construction to other functors (and other
categories).

5 Conclusions

We presented an algebraic study of the coalgebraic modal operator ∇, and we re-
lated this to a presentation of the Vietoris power construction on Stone spaces.
We believe the main contribution of the paper to be threefold. First, on the
algebraic side, we gave an axiomatization for ∇ that characterizes the class of
∇-algebras that is category-theoretically isomorphic (see Theorem 1) to the (pos-
itive) modal algebras. Second, using the concept of relation lifting, we showed
how an arbitrary set functor F naturally gives rise to various lifting constructions
on the category Chu of two-valued Chu spaces. These constructions are functo-
rial in case F preserves weak pullbacks (Theorem 3). And finally, we showed how
to realize the Vietoris construction on Stone spaces as a special instance of this
Chu construction for the (finite) power set functor (Theorem 4), and linked this
approach to the axiomatization of the modal ∇-algebras (Theorem 5).

In the future we hope to expand the work presented here in various directions.
Because of space limitations we have to be brief.

1. First of all, there is no strong reason to confine ourselves to a finitary setting.
The first natural generalization of this work is to move to a ‘localic’ setting
and study the case of logical languages with infinitary conjunctions and/or
disjunctions, and an infinitary version of the nabla operator.

2. In such a generalized setting, it would make sense to look at power con-
structions for other topologies than just Stone spaces, and to formalize these
constructions not in terms of clopens but in terms of closed or open sets.



3. We think it is very interesting to try and generalize the results in this paper
to other functors than P. This is the reason why we have taken care to
formulate all our results as generally as possible, see for instance our remark
following the proof of Theorem 5.

4. We already mentioned in the introduction that our first motivation was to
pave the way for a ‘coalgebraic proof theory’, by which we mean to try and
give an algebraic and syntactic account of nabla operators associated with
weak pullback-preserving endofunctors. As a first step in this direction, we
are currently working on a Gentzen-style derivation system for the modal
nabla operator.
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