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Abstract

There exist modal logics that are validated by their canonical frames but are not sound
and complete for any elementary class of frames. Continuum many such bimodal logics
are exhibited, including one of each degree of unsolvability, and all with the finite model
property. Monomodal examples are also constructed that extend K4 and are related to the
proof of non-canonicity of the McKinsey axiom.

1 Introduction

A modal logic L is called canonical if it is valid in the canonical frame FL whose points are the
maximally L-consistent sets of formulas. These special Kripke frames were introduced in the
mid-1960’s by Lemmon and Scott [24], and independently by Cresswell [2] and Makinson [26],
as an extension of the method of completeness proof due to Henkin [17]. Any formula valid in
FL is an L-theorem, and so if FL satisfies some condition on frames for which L is sound, then
it follows that L is determined by (i.e., sound and complete for) the class of all frames satisfying
that condition.

By the early 1970’s numerous logics had been shown to be determined by Kripke frames via
the technique of using the proof theory of L to establish some first-order condition on FL for
which L is sound. A logic L will be called elementarily determined if there is at least one class of
frames determining L that is elementary, i.e., is axiomatized by some first-order sentences. Thus
these early results gave many proofs of canonicity which at the same time showed that the logic
concerned was elementarily determined. Moreover, the only examples of non-canonical logics
that were found were ones whose axioms expressed non-first-order properties of frames. The
first explicit such example would appear to be that in [4, p. 38], where Fine proves invalidity in
the canonical frame for the logic extending S4.3 by the Grzegorczyk axiom

�(�(p→ �p) → p) → p.

Validity of this formula in S4.3-frames is equivalent to the second-order condition that every
non-empty subset has a maximal element. Some years earlier Kripke [21] had noted that there
are formulas whose validity is not preserved in passing from a modal algebra A to the algebra
of all subsets of the frame whose points are the ultrafilters of A. This can also been seen as a
manifestation of non-canonicity. Kripke gave the example of Dummett’s Diodorean axiom

�(�(p→ �p) → �p) → (♦�p→ �p),

whose validity expresses discreteness of a linear ordering.
The absence of any elementarily determined instances of non-canonicity was soon explained

by the following theorem of Fine [5]:
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if a modal logic L is determined by some elementary class of frames, then it is valid
in the canonical frame FL.

Fine asked whether the converse was true. If a logic is canonical, must it be elementarily
determined? Many affirmative partial solutions have been produced for this question, which we
now briefly review. A modal formula is called r-persistent if it is validated by a Kripke frame
F whenever it is validated by some general frame based on F that is refined in the sense of
Thomason [29]. Every logic with r-persistent axioms is canonical. Lachlan [22] showed that
the class of validating frames for an r-persistent formula is definable by a first-order sentence,
and hence every r-persistent logic is elementarily determined.1 Sahlqvist [27] gave a syntactic
scheme specifying infinitely many formulas, each of which defines a canonical logic and has its
frame-validity equivalent to an explicit first-order condition. Fine [6] proved the elementary
determination of any canonical modal logic that is determined by a class of transitive frames
that is closed under subframes. Zakharyaschev [34] extended this to logics determined by a class
of transitive frames that is closed under cofinal subframes. Wolter [33] removed the transitivity
restriction in Fine’s result, and also proved [32] elementary determination of all canonical normal
extensions of linear tense logic. Jónsson [19] gave an algebraic analysis which implies that
a modal axiom of the form ϕ(p ∨ q) ↔ ϕ(p) ∨ ϕ(q) is canonical whenever ϕ(p) is a positive
formula, and Venema [31] showed that logics with such axioms are elementarily determined. In
[14] it is shown that the converse of Fine’s theorem holds for any logic that is validated by a
frame F whenever it is validated by some general frame based on F whose propositions include
the singleton subsets of F .

Fine’s theorem was strengthened to show that if L is determined by some elementary condi-
tions, then it is always determined by elementary conditions that are satisfied by FL (see [11]).
The result was also expressed algebraically to show [9] that if a variety V of Boolean algebras
with operators is generated by the algebras of subsets of the members of some elementary class
of relational structures, then V is closed under the perfect extension construction of Jónsson
and Tarski [20]. The converse of this algebraic formulation has been confirmed for numerous
varieties of cylindric, relation, and modal algebras.

In this paper we show that the converse of Fine’s theorem fails in general, and fails as badly
as it could. We exhibit 2ℵ0 different canonical logics that are not determined by any elementary
class of frames. These are bimodal logics, with one modality being of S5 type. All of the logics
have the finite model property and they include one of each degree of unsolvability. In addition
monomodal examples are constructed that are extensions of the logic K4 and are connected to
the non-canonicity proof in [10] for the McKinsey axiom �♦p→ ♦�p.

Our bimodal examples are related to the modal logic KMT, studied by Hughes [18], whose
validating frames are those directed graphs satisfying the non-elementary condition that the
children of any node have no finite colouring. KMT has an infinite sequence of axioms whose n-
th member rules out colourings that use n colours. But the logic is also elementarily determined
by the class of graphs whose edge relation R satisfies ∀x∃y(xRyRy), meaning that every node
has a reflexive child. The canonical frame for KMT satisfies this condition.

Here we also use axioms that impose reflexive points on canonical frames. But now a canoni-
cal frame is essentially the disjoint union of a family of directed graphs, and it is only the infinite
members of the family that are required to have a reflexive point to ensure canonicity. This is
a non-elementary requirement. To prove that our logics are never elementarily determined we
apply a famous piece of graph theory of Erdős [3], who showed that for each integer n there is a
finite graph Gn whose chromatic number and girth are both greater than n, the girth being the
length of the shortest cycle in the graph and the chromatic number being the smallest number
of colours needed to colour it. The essence of the application is that if a certain logic L were

1This result was independently proved also in [5] and [8].
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determined by an elementary class K, and infinitely many of the Gn’s validated L, then by a
compactness argument it would follow that K contained an infinite graph that had no cycles of
odd length. But such a graph can be coloured using only two colours, a property that invalidates
one of the axioms defining L. Hence the existence of K is impossible.

This paper is a companion to the article [16] which takes an algebraic approach to our
topic, making use of the duality between frames and modal algebras as well as the theory of
discriminator varieties.

2 Colouring Graphs

A graph is a structure G = (V,E) in which E is a symmetric and irreflexive binary relation on a
non-empty set V of “vertices”. A pair (x, y) in E may be thought of as an edge with vertices x
and y. G may also be viewed as a Kripke frame, and in that context symmetry of E is equivalent
to validity in G of the Brouwerian axiom p→ �♦p. But there is no modal formula whose validity
corresponds to irreflexivity, and it is that inability to rule out reflexive points that lies at the
heart of our canonicity proofs.

A colouring of G is an assignment of colours to the points in V in such a way that the two
vertices of any edge are assigned different colours. An n-colouring is one that uses at most
n colours. This can be expressed more set-theoretically by defining a subset W of V to be
independent if it contains no edge, in the sense that there are no x, y ∈ W with xEy. An n-
colouring of graph G is then a partition of V into at most n independent subsets. The chromatic
number χ(G) is the smallest integer n, if it exists, for which G has an n-colouring, and ∞ if there
is no such n. Of course a finite graph has χ(G) no bigger than the number |G| of members of V ,
since we can always give every vertex a different colour. Observe that to obtain an n-colouring
it is enough to find n independent sets W1, . . . ,Wn that cover V , i.e., W1 ∪ · · · ∪Wn = V , for
then this can be refined to a partition of V into the independent sets

W1, W2 −W1, . . . ,Wn − (W1 ∪ · · · ∪Wn−1).

For k ≥ 3, a k-cycle, or cycle of length k, is a a sequence (x1, . . . , xk) of distinct nodes of V ,
such that (x1, x2), . . . , (xk−1, xk), (xk, x1) are all in E.2 An odd cycle is one of odd length.

Erdős [3] showed that for any integers n, k there is a finite graph G with χ(G) > n such that
G has no cycle of length k or less. He gave an existence proof by a revolutionary probabilistic
method whose power was evinced by the fact that it took a decade to find an actual construction
of such graphs [25].

Here is a summary of the facts from graph theory that we will use. This is essentially
standard material, but we give proofs for the sake of completeness.

Theorem 2.1

(1) A graph has a 2-colouring if, and only if, it has no odd cycles.

(2) If G = (V,E) and G′ = (V ′, E′) are graphs, and f : V → V ′ preserves edges, i.e., xEy
implies fxE′fy, then if G has an odd cycle of length n or less, so does G′.

(3) There exists a computable enumeration {Gn : n ≥ 2} of finite graphs Gn with χ(Gn) > n
and Gn having no cycle of length n or less, such that if 2 ≤ m < n, then |Gm| < |Gn| and
χ(Gm) < χ(Gn).

Proof.
2In graph theory, (x1, . . . , xk), (x2, . . . , xk, x1), and (xk, . . . , x1) are regarded as the same cycle; but this is not

important here.
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(1) If G has a 2-colouring, and x1, . . . , xk is any cycle in G, then the odd-indexed vertices
x1, x3, . . . must have the same colour, while xk has a different colour to x1, so k cannot be
odd.

For the converse, assume G has no odd cycles. Define a walk of length n from x to y to be
a sequence x = x0, x1, . . . , xn = y of vertices with xiExi+1 for all i < n. The length is the
number of edges in the walk, and we allow n = 0 here. If x0 = xn, the walk is closed. First
we show that G cannot have any closed walks of odd length. For if it did, we could pick
such a walk x0, x1, . . . , xn = x0 whose odd length n was least possible. Then the minimality
of n would ensure that x1, . . . , xn are distinct — for if 1 ≤ i < j ≤ n and xi = xj then both
xi, . . . , xj and x0, . . . , xi, xj+1, . . . , xn would be closed walks of length less than n, and one
of them would be of odd length since their combined edges are just the edges of the original
odd-length walk. It follows that x1, . . . , xn would be an odd cycle, contrary to hypothesis
on G.

Now a graph is connected if any two of its vertices have a walk connecting them. Any graph
is the disjoint union of connected subgraphs, each of which can be coloured independently.
Hence we can assume that G is connected. To define a 2-colouring, fix a vertex x of G and
then assign any vertex y colour 1 if there is an even-length walk from x to y, and colour 2
otherwise. For any edge (y, z) ∈ E, if y and z got the same colour, then from the definition
of the colour assignment and connectivity there would exists walks from x to y and x to z
whose lengths had the same parity (both even or both odd). But then taking the walk from
x to y, then following the edge (y, z) and finally the reverse of the same-parity walk from x
to z would give a closed walk of odd length — which we have just seen does not exist. Thus
y and z must get different colours, and the 2-colouring of G is established.

(2) If G has an odd cycle C with |C| ≤ n, restrict the edge relation of G to C to regard C as
a graph in its own right. Similarly, let the image-set f(C) = {fx : x ∈ C} be viewed as a
subgraph of G′. Now if G′ had no odd cycle of length ≤ n, then since |f(C)| ≤ n, f(C)
would have no odd cycle at all, and so by (1) would have a 2-colouring. Then assigning to
x ∈ C the same colour as fx would give a 2-colouring of C, since edges are preserved. But
that contradicts (1), since C is an odd cycle.

(3) Fix a recursive enumeration of all isomorphism types of finite graphs, in order of their
cardinality. If Gm (2 ≤ m < n) have been defined, define Gn to be the first graph in the
enumeration with no cycles of length ≤ n, chromatic number greater than both n and
χ(Gm) and |Gn| > |Gm| for all m with 2 ≤ m < n.

�

3 Frames and Models

Take a propositional language with two box-type modalities, denoted � and A. Their duals will
be denoted ♦ and E. A frame for this language is a structure F = (W,R

�
, R

A
) with R

�
and R

A

being binary relations on W . For any binary relation R we will use the notation Rx for the set
{y : xRy} of all R-alternatives of a point x. Recall that a model M on frame F is an assignment
to each propositional variable p of a set M(p) ⊆W , thought of as the set of points at which p is
true, or satisfied. This extends to assign a truth-set M(ϕ) to each formula ϕ, with the definitions
for the modalities given by M(�ϕ) = {x : Rx

�
⊆ M(ϕ)} and M(Aϕ) = {x : Rx

A
⊆ M(ϕ)}. ϕ

is valid in F , F |= ϕ, if M(ϕ) = W for all models M on F . ϕ is satisfiable in F if it is true
at some point of some model on F (i.e., F 6|= ¬ϕ), and is falsifiable in F if it is false at some
point of some model on F (i.e., F 6|= ϕ). For a class K of frames we write K |= ϕ to mean that
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F |= ϕ for all F ∈ K. For a logic L, an L-frame is any frame F that validates all L-theorems,
which we indicate by writing F |= L.

A frame F ′ = (W ′, R′
�
, R′

A
) is a subframe of F if W ′ ⊆W and R′

�
and R′

A
are the restrictions

to W ′ of R
�

and R
A

respectively. If further we have (R′
�
)x ⊆W ′ and (R′

A
)x ⊆W ′ for all x ∈W ′,

then F ′ is an inner subframe of F . In that case, any formula valid in F is valid in F ′. For each
point x of F there is a smallest inner subframe of F containing x, called the inner subframe
generated by x.

We will work from now on with basic frames, defined as those for which R
A

is an equivalence
relation, R

�
⊆ R

A
, and R

�
is symmetric (n.b.: we do not require R

�
to be irreflexive.) The R

A
-

equivalence classes are usually called clusters. Each cluster is an inner subframe of F , because
Rx

�
⊆ Rx

A
, and can be viewed as a basic frame in its own right on which R

A
is universal. Hence

any basic frame on which R
A

is universal will simply be called a cluster. If ϕ is true at some
point in a model on a cluster, then Eϕ is true everywhere in the cluster. Dually, if ϕ is false at
some point, then Aϕ is false everywhere in the cluster in that model.

Each graph G = (V,E) will be treated as a basic frame by putting R
�

= E and R
A

= V ×V .
Thus any graph is a cluster, and any R

�
-irreflexive cluster is a graph. Observe that in any

model M on G, a truth-set of the form M(ϕ∧�¬ϕ) is an independent set, since it can contain
no R

�
-edge.

Now fix two disjoint infinite lists p1, p2, . . . and q1, q2, . . . of propositional variables. For
m ≥ 1, let Em be the formula

Ep1 ∧ E(p2 ∧ ¬p1) ∧ · · · ∧ E(pm ∧ ¬p1 ∧ · · · ∧ ¬pm−1).

For n ≥ 1, let χn be the formula

E
(
(q1 → ♦q1) ∧ · · · ∧ (qn → ♦qn)

)
.

If Em is true at a point x in a model on a basic frame, then the cluster Rx
A

contains distinct
points x1, . . . , xm with pi true at xi for all i ≤ m. Conversely, if a cluster has at least m points
then we can define a model on it that satisfies Em.

The formula χn is a variant of the axiom MTn of [18]. Note that if n ≥ m, then the formula
χn → χm is valid in all frames. If a cluster contains a reflexive point x, i.e., xR

�
x, then no

formula of the form ϕ → ♦ϕ can ever be falsified at x, and so the cluster validates χn for all
n ≥ 1. In the case of a graph G, if χn is falsifiable in some model M on G, then for each point
x there must be some i ≤ n with qi true and ♦qi false at x. Hence the n independent sets
M(qi ∧ �¬qi) cover the graph and so can be refined to an n-colouring. Conversely, given an
n-colouring of G we can associate a variable qi with each colour (independent set) to obtain a
falsifying model on G for χn.

For m,n ≥ 1, let χ[m,n] be the formula Em → χn.

Lemma 3.1

(1) Em is satisfiable in a cluster F iff F has at least m elements.

(2) χn is falsifiable in a graph G iff χ(G) ≤ n. Equivalently, G |= χn iff χ(G) > n.

(3) For any m,n ≥ 2, χ[ |Gm|,m] is valid in Gn.

Proof. Parts (1) and (2) summarize the above observations. For (3), if the antecedent E|Gm|
of χ[ |Gm|,m] is true at some point in a model on Gn, then by (1), Gn has at least |Gm| elements,
so n ≥ m. Since χ(Gn) > n, we then have χ(Gn) > m so by (2), Gn validates the consequent χm

of χ[ |Gm|,m]. �
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4 Canonical Logics With the FMP

If our propositional language is generated by an infinite set of variables of size κ, then canonical
frames built from this language will typically be of size 2κ. The canonicity results of this paper
hold with κ any infinite cardinal here: all that is required is that there be at least a countably
infinite set of variables.

By a basic logic we will mean any normal propositional bimodal logic L, in the language of
� and A, that obeys the rule of uniform substitution of formulas for variables and includes the
following axioms:

S5A: Ap→ p, Ep→ AEp
Sub: Ap→ �p
B�: p→ �♦p.

A frame validates these axioms if, and only if, it is a basic frame.
Recall that the canonical frame FL = (WL, R�

, R
A
) for a normal logic L has WL as the set of

all maximally L-consistent sets of formulas, with

xR
�
y iff {ϕ : �ϕ ∈ x} ⊆ y iff {♦ϕ : ϕ ∈ y} ⊆ x,

and likewise xR
A
y iff {ϕ : Aϕ ∈ x} ⊆ y iff {Eϕ : ϕ ∈ y} ⊆ x.

For each formula ϕ, let ‖ϕ‖L = {x ∈ WL : ϕ ∈ x}. The canonical model ML has ML(ϕ) =
‖ϕ‖L. In general, a formula is an L-theorem iff it belongs to every maximally L-consistent set,
so if FL |= ϕ, then ML |= ϕ so ‖ϕ‖L = ML(ϕ) = WL, and thus L ` ϕ.

Lemma 4.1 For any finite sequence x1, . . . , xm of distinct points of WL there exist formulas
ϕ1, . . . , ϕm such that ϕi ∈ xj iff i = j. Hence if S is any finite subset of WL, then for each set
X ⊆ S there is a formula ϕX such that X = ‖ϕX‖L ∩ S.

Proof. If i 6= j, there exists ϕij ∈ xi with ϕij /∈ xj . Put ϕi =
∧

i6=j ϕij . Then if S =
{x1, . . . , xm} and X = {xi1 , . . . , xik}, put ϕX = ϕi1 ∨ · · · ∨ ϕik . �

Lemma 4.2 Let L be a normal logic obeying the rule of uniform substitution. If F is a finite
inner subframe of FL, then F |= L.

Proof. This is standard: a finite inner subframe of any canonical frame for any normal logic
validates that logic. To see why, let M be a model on F , and suppose F has underlying set S.
For each variable p there is, by Lemma 4.1, a formula ϕp such that M(p) = ‖ϕp‖L ∩ S. Then
an induction on formation of formulas shows that for any formula ψ, M(ψ) = ‖ψ∗‖L ∩S, where
ψ∗ is the result of uniformly replacing each variable p of ψ by ϕp. But if L ` ψ, then L ` ψ∗, so
‖ψ∗‖L ∩ S = S. Hence any L-theorem is true at every point of every model on F . �

Now let L be a basic logic. The axioms S5A ensure that R
A

is an equivalence relation on WL,
axiom Sub enforces R

�
⊆ R

A
, and B� makes R

�
symmetric, so FL is a basic frame.

Lemma 4.3 Let L be any basic logic with the property that there are infinitely many n for which
there exists an m such that L ` χ[m,n]. If F is any infinite cluster of FL, then F contains an
R

�
-reflexive point.

Proof. Take any point x in F , and let

y0 = {ϕ : Aϕ ∈ x} ∪ {ψ → ♦ψ : ψ is a formula}.
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If y0 is L-consistent, then it extends to a set y ∈WL. Then xR
A
y, so y belongs to the cluster F ,

and {♦ψ : ψ ∈ y} ⊆ y, so yR
�
y as desired.

But if y0 were not consistent, then since the set {ϕ : Aϕ ∈ x} is closed under finite conjunc-
tions it would follow that there are formulas Aϕ ∈ x, and ψ1, . . . , ψk for some k ≥ 1, such that
L ` ϕ→ ¬

(
(ψ1 → ♦ψ1)∧ · · · ∧ (ψk → ♦ψk)

)
. By the given property of L there must be an n ≥ k

and an m such that L ` χ[m,n]. For k < j ≤ n put ψj = ψk, so then

L ` ϕ→ ¬
(
(ψ1 → ♦ψ1) ∧ · · · ∧ (ψn → ♦ψn)

)
.

Since L is normal this implies that

L ` Aϕ→ A¬
(
(ψ1 → ♦ψ1) ∧ · · · ∧ (ψn → ♦ψn)

)
,

and hence as Aϕ ∈ x we get

E
(
(ψ1 → ♦ψ1) ∧ · · · ∧ (ψn → ♦ψn)

)
/∈ x. (1)

But F is infinite, so we can choose m distinct points x1, . . . , xm in F . Let ϕ1, . . . , ϕm be the
formulas given by Lemma 4.1. Then (ϕi ∧

∧
1≤j<i¬ϕj) ∈ xi, and so as R

A
is universal on F ,

E(ϕi ∧
∧

1≤j<i¬ϕj) ∈ x, for all i ≤ m. Hence∧
1≤i≤m

E(ϕi ∧
∧

1≤j<i¬ϕj) ∈ x. (2)

However (1) and (2) contradict the fact that every substitution instance of χ[m,n] belongs to
x. It follows that y0 is L-consistent. �

Theorem 4.4 Let L be a basic logic defined by additional axioms of the form χn or χ[m,n].
If there are infinitely many n for which there exists an m such that L ` χ[m,n], then L is a
canonical logic that has the finite model property and is determined by a class of finite clusters.

Proof. FL is the disjoint union of its clusters. Let F be any cluster. If F is finite, then F |= L
by Lemma 4.2. If F is infinite, then it contains an R

�
-reflexive point by Lemma 4.3. Hence

F |= χn for every n ≥ 1, and so F validates every χ[m,n]. Thus F is a basic frame validating
every additional axiom of L, so again F |= L. Altogether FL is the disjoint union of a set of
frames that each validate L, so FL |= L, i.e., L is canonical.

For the finite model property, suppose that L 6` ϕ. We have to show that ϕ is falsifiable in
a model on a finite L-frame. Now there is some x ∈ WL with ϕ /∈ x, so ϕ is false at x in the
canonical model ML. Let F = (S,R

�
, R

A
) be the cluster of x in FL, and M the restriction of

ML to F , i.e., M(p) = ML(p) ∩ S. Then ϕ is false at x in M. If S is finite, then F |= L and
we are done.

If however S is infinite, then it contains an R
�
-reflexive point. We then carry out a standard

filtration process through the finite set Γ of all subformulas of ϕ, to get a falsifying model for ϕ
on a finite basic frame that also has a reflexive point and so validates L. This is done by defining
an equivalence relation ∼ on S by putting y ∼ z iff y ∩ Γ = z ∩ Γ. Let S′ be the quotient set
S/∼, and f : S → S′ the natural map. Put F ′ = (S′, R′

�
, R′

A
), where fyR′

�
fz iff y′R

�
z′ for

some y′ ∼ y and some z′ ∼ z, and similarly for R′
A
. Putting M′(p) = f(M(p)) for all p ∈ Γ

gives a model on F ′ such that M′(ψ) = f(M(ψ)) for all ψ ∈ Γ. It follows that fx /∈M′(ϕ), so
ϕ is false at fx in M′.

M′ is what is known as the least filtration of M through Γ. Its underlying set S′ is finite,
with at most 2|Γ| elements. The symmetry of R

�
and the universality of R

A
on S transfer to
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R′
�

and R′
A

on S′, respectively, so F ′ is a finite cluster. But there is some y ∈ S with yR
�
y, and

hence fyR′
�
fy, so F ′ has a reflexive point, which is enough to force F ′ |= L as explained above.

To sum up, we have seen that every non-theorem of L is falsifiable on a finite L-frame that
is a cluster. �

As a first example of a logic fulfilling this Theorem, let EG be the basic logic3 with additional
axioms {χ2} ∪ {χ[ |Gn|, n] : n > 2}. (The role of χ2 will be explained in the next section.)

Theorem 4.5 EG is a decidable logic.

Proof. From the computable enumeration {Gn : n ≥ 2} (Theorem 2.1(3)) we obtain a com-
putable enumeration of the formulas {χ[ |Gn|, n] : n > 2}. Since there are only finitely many
other axioms of EG, it follows that the set of all axioms is computably enumerable, and therefore
so is the set of all EG-theorems.

Now a finite cluster F validates EG iff it either contains an R
�
-reflexive point, or else is a

graph with χ(F) > 2 and also χ(F) > n for all n > 2 such that |Gn| ≤ |F| (see Lemma 3.1).
There are finitely many such n, so it is decidable whether F |= EG. Hence we can computably
enumerate the (isomorphism types of) finite EG-clusters. By simultaneously enumerating all
formulas and checking whether they are valid in finite EG-clusters, we can obtain a computable
enumeration of the set of all formulas that are falsifiable in some finite cluster that validates EG.
By Theorem 4.4, this is an enumeration of the set of all non-theorems of EG.

Since every formula appears in just one of these two enumerations, either that of the theorems
or that of the non-theorems, the set of EG-theorems is decidable. �

We will now construct continuum many logics fulfilling Theorem 4.4. We write [2) for the
set {n ∈ ω : n ≥ 2}. For each subset J of [2) let EGJ be the basic logic with additional axioms

{χ2} ∪ {χ[ |Gn|, χ(Gn)] : n ∈ J}.

The formula χ[ |Gn|, χ(Gn)] can be interpreted as asserting of a graph that if it has at least as
many vertices as Gn then its chromatic number is greater than the chromatic number χ(Gn) of
Gn. If J is infinite, then by Theorem 4.4 EGJ is canonical and has the finite model property.

Lemma 4.6 Let m,n ∈ [2) and J ⊆ [2).

(1) Gn |= χ[ |Gm|, χ(Gm)] iff m 6= n.

(2) If n /∈ J , then Gn |= EGJ .

(3) n ∈ J if, and only if, EGJ ` χ[ |Gn|, χ(Gn)].

Proof. Note that Gn |= χ2 by Lemma 3.1(2), since χ(Gn) ≥ χ(G2) > 2. Let cm = χ(Gm).

(1) Suppose Gn |= χ[ |Gm|, cm]. Then if m = n, the antecedent of χ[ |Gm|, cm] is satisfied in Gn,
so Gn |= χcn , which by Lemma 3.1(2) gives the absurdity χ(Gn) > cn. Hence m 6= n.

Conversely, suppose m 6= n. If m > n, then the formula χ[ |Gm|, cm] is valid in Gn because
its antecedent E|Gm| cannot be satisfied in Gn. But if m < n, then the formula is again valid
in Gn because χ(Gn) > cm and therefore the consequent is valid in Gn.

(2) Suppose n /∈ J . Then if m ∈ J , we get Gn |= χ[ |Gm|, χ(Gm)] from part (1).

(3) If n ∈ J , then χ[ |Gn|, χ(Gn)] is an axiom of EGJ . But if n /∈ J , then we have Gn |= EGJ by
part (2) and Gn 6|= χ[ |Gn|, χ(Gn)] by part (1), so EGJ 6` χ[ |Gn|, χ(Gn)] by soundness.

3EG stands for “Erdős graphs”.
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Part (3) of this lemma immediately gives

Corollary 4.7 If J 6= J ′, then EGJ 6= EGJ ′. �

Theorem 4.8 If J is an infinite subset of [2), then J and EGJ have the same degree of unsolv-
ability.

Proof. We show that each of the properties “n ∈ J” and “EGJ ` ϕ” is decidable relative to
an oracle for deciding the other property.

For any n ≥ 2 we can effectively find the formula χ[ |Gn|, χ(Gn)], so by Lemma 4.6(3), relative
to an oracle that decides provability in EGJ we can decide membership of J .

The converse is similar to the proof of Theorem 4.5. From the computable enumeration
{Gn : n ≥ 2} we obtain, relative to an oracle for deciding membership of J , a computable
enumeration of {χ[ |Gn|, χ(Gn)] : n ∈ J}. Hence the set of all axioms of EGJ is computably
enumerable relative to this oracle for J , and therefore so is the set of all EGJ -theorems.

But a finite cluster F validates EGJ iff it either contains an R
�
-reflexive point, or else is a

graph with χ(F) > 2 and also χ(F) > χ(Gn) for all n ∈ J such that |Gn| ≤ |F|. Hence relative
to J it is decidable whether F |= EGJ . This implies, similarly to 4.5, that there is a computable
enumeration of the set of all formulas that are falsifiable in some finite cluster that validates
EGJ . Since J is infinite this is an enumeration of the set of all non-theorems of EGJ , by Theorem
4.4.

Altogether then, given an oracle for J we can computably enumerate both the set of theorems
and the set of non-theorems of EGJ , and so we can decide theoremhood in EGJ . �

5 Failure of Elementary Determination

We are going to show that certain of the logics EGJ are not sound and complete with respect
to any elementary class of frames. For this purpose we use the notion of a homomorphism
f : F → F ′ between two clusters, defined as a function that preserves the R

�
relations, i.e.,

xR
�
y implies fxR′

�
fy.

Lemma 5.1 Let K be any class of basic frames, and LK = {ϕ : K |= ϕ} the logic it determines.
Then for any n ≥ 2 such that Gn |= LK there exists a frame Fn ∈ K and a cluster Cn of Fn for
which there is a homomorphism fn : Cn → Gn.

Proof. Suppose the elements of Gn are x1, . . . , xk. Take variables p1, . . . , pk, and let ∆n be
the finite set consisting of the following formulas.

A(p1 ∨ · · · ∨ pk)
A¬(pi ∧ pj) for 1 ≤ i < j ≤ k
A(pi → �¬pj) for all i, j such that not xiR�

xj .

Take a model Mn on the cluster Gn with Mn(pi) = {xi} for all i ≤ k. Then every member
of ∆n is true at all points in the model, hence so is the conjunction δn of the members of ∆n.
Since Gn |= LK, it follows that LK 6` ¬δn, so there must be a model M based on a frame in K
having a point t such that δn is true at t in M. Hence all members of ∆n are true at t.

Let Cn be the cluster of t in M. Then for each point x in Cn there is exactly one i such that
pi is true at x in M. Put fn(x) = xi ∈ Gn, to define fn : Cn → Gn. The formulas A(pi → �¬pj)
ensure that fn is a homomorphism. �
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Theorem 5.2 Let K be any class of basic frames that validate χ2. If there are infinitely many
n such that Gn |= LK, then K is not an elementary class.

Proof. Suppose, for the sake of contradiction, that K is elementary. Then there is a set Σ of
sentences in the first-order language of frames F = (W,R

�
, R

A
) such that F |= Σ iff F ∈ K.

Add to the first-order language a unary relation symbol C, and let δ be the sentence

∃xCx ∧ ∀x(Cx→ ¬xR
�
x) ∧ ∀x

(
Cx→ ∀y(Cy ↔ xR

A
y)

)
asserting that the interpretation of C in F is an irreflexive cluster, and hence is a graph.

For each k, let γk be the sentence

∃x1 · · · ∃xk

( ∧
1≤i6=j≤k(Cxi ∧ xi 6= xj) ∧

∧
1≤i<k xiR�

xi+1 ∧ xkR�
x1

)
asserting that the interpretation of C contains a k-cycle. Put

∆ = Σ ∪ {δ} ∪ {¬ γk : k is odd}.

We will show that ∆ has a model. This model must be of the form (F , C), where F |= Σ and C is
an irreflexive cluster of F that contains no odd cycle. Then F ∈ K and so by hypothesis F |= χ2,
hence C |= χ2 as C is an inner subframe of F . But as C has no odd cycle it is 2-colourable, and
therefore C 6|= χ2 by Lemma 3.1(2). This contradiction shows that K cannot be an elementary
class after all.

It remains to prove that ∆ has a model. Now take any n with Gn |= LK. By Lemma 5.1
there is an Fn ∈ K and a cluster Cn of Fn with a homomorphism fn : Cn → Gn. Since reflexive
points are preserved by homomorphisms, and Gn has no reflexive points, it follows that Cn is
irreflexive. Also if Cn had an odd cycle of length ≤ n, then by Theorem 2.1(2) so too would Gn,
which is false. Hence

(Fn, Cn) |= Σ ∪ {δ} ∪ {¬ γk : k is odd and k ≤ n}.

Since by assumption there are arbitrarily large n for which Gn |= LK, this suffices to show that
every finite subset of ∆ has a model, and hence by Compactness that ∆ itself has one too. �

Theorem 5.3 There are exactly 2ℵ0 distinct basic logics that are canonical and have the finite
model property but are not sound and complete for any elementary class of frames. They in-
clude the decidable logic EG and logics having every possible degree of unsolvability, as well as
undecidable logics that have decidable axiomatizations.

Proof. Let J be any subset of [2) that is infinite and coinfinite, i.e., the complement [2) − J
is also infinite. By Theorem 4.4, EGJ is canonical and has the finite model property. Suppose
that EGJ is determined by a class of frames K, i.e., EGJ = LK. Since EGJ is a basic logic and
has χ2 as an axiom, each member of K is a basic frame validating χ2. But by Lemma 4.6(2),
the set {n : Gn |= LK} includes [2) − J and so is infinite. In that case K is not elementary by
Theorem 5.2.

Now there are 2ℵ0 distinct subsets J of [2) that are infinite and coinfinite, and each defines
a distinct logic EGJ by Corollary 4.7. Since there are 2ℵ0 logics altogether, this proves the first
statement of the Theorem. The case of EG is similar, since {n : Gn |= EG} = [2). The case of
the different possible degrees of unsolvability follows from Theorem 4.8, since every degree is
the degree of some infinite coinfinite subset of [2).

Finally, let J be any computably enumerable but undecidable subset of [2). Then J is infinite
and coinfinite. Since J is undecidable, so too is EGJ by Lemma 4.6(3). From the enumerability
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of J we obtain a computable enumeration ϕ1, ϕ2, ϕ3, . . . of the axioms of EGJ , and then by
Craig’s trick we get {ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∧ ϕ2 ∧ ϕ3, . . . } as a decidable set of axioms for EGJ . �

The inclusion of the Brouwerian axiom p → �♦p in basic logics ensured that their frames
have the symmetry property enjoyed by the edge relations of graphs, and this led to a proof
of Theorem 5.2 by a simple compactness argument together with some accessible graph theory.
The analysis could be carried through without the symmetry assumption, but that would require
a more involved proof of the appropriate version of 5.2. What really lies in the background here
is the following fact, which provides a criterion for failure of elementary determination that
applies to logics in any kind of modal language.

Theorem 5.4 Let L be a normal modal logic for which there exists a set {Fi : i ∈ I} of finite
L-frames and an ultrafilter D on I such that the ultraproduct

∏
D Fi is not an L-frame. Then L

is not determined by any elementary class of frames.

Proof. (Sketch.) This is shown in [15] for a monomodal logic, but the result holds in general.
One approach to it is to use the fact, which follows from [13, 4.12] or [12, 11.4.2], that if L is
determined by some elementary class of frames, then it is determined by an elementary class K
that is closed under inner subframes and has FL ∈ K. But every finite L-frame is isomorphic
to an inner subframe of FL, so this implies {Fi : i ∈ I} ⊆ K. Then

∏
D Fi ∈ K as elementary

classes are closed under ultraproducts. But that contradicts the fact that
∏

D Fi 6|= L and L is
sound for K.

To see why the assertion about finite L-frames holds, let F be any such frame, and take
a model M on F such that for each element x of F there is a variable p with M(p) = {x}.
Put fx = {ϕ : x ∈ M(ϕ)}. Since F |= L, fx is maximally L-consistent, so this gives a map
f : F → FL. It is straightforward to check that f is an isomorphism between F and a subframe
of FL that is inner (the latter requires the finiteness of F). �

We will use the criterion of this Theorem in the next sections to demonstrate further failures of
elementary determination.

6 Monomodal Examples

By applying a translation of bimodal logic into monomodal logic due to Thomason [30] it would
be possible to convert the logics EGJ into single-modality logics that are canonical but not
elementarily determined. Here instead we give more natural examples by adapting some ideas
that were used in [10] to prove the non-canonicity of the McKinsey axiom �♦p → ♦�p, or
equivalently ♦(♦p→ �p).

We define a sequence {Hn : n ≥ 1} of finite monomodal frames Hn = (Wn, Rn), depicted as

En
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0
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Here En = {k ∈ ω : 1 ≤ k ≤ n2n} (as will become apparent, any set with n2n elements would
do for En). Then Mn = {S ⊆ En : |S| = n} is the set of all n-element subsets of En, and
Wn = {0} ∪Mn ∪ En. Thus |Hn| = 1 +

(
n2n

n

)
+ n2n. The binary relation Rn is specified by

R0
n = Mn ∪ En

RS
n = S for S ∈Mn

Re
n = ∅ for e ∈ En.

The frame Hn is generated by the point 0 whose Rn-alternatives are all points of Wn except
itself. The members of Mn are the middle-points of Hn. The alternatives of each S ∈ Mn are
just the members of S. The members of En are end-points of Hn and have no Rn-alternatives.
Note that

every middle-point of Hn has exactly n alternatives, (3)

a fact that will be crucial below (in the proof of Lemma 6.7). It is readily checked that Rn

is transitive. Hence Hn validates the logic K4, which is the normal modal logic with axiom 4:
�p→ ��p, valid in precisely the transitive frames.

We use a single diamond modality ♦ with dual �. For m ≥ 1, let ∃m be the formula

♦p1 ∧ ♦(p2 ∧ ¬p1) ∧ · · · ∧ ♦(pm ∧ ¬p1 ∧ · · · ∧ ¬pm−1).

∃m is satisfiable at x in a frame (W,R) iff |Rx| ≥ m.
For n ≥ 1, let µn be the formula

♦2> → ♦
(
♦> ∧ (♦q1 → �q1) ∧ · · · ∧ (♦qn → �qn)

)
,

where ♦2> abbreviates ♦♦>.

Lemma 6.1 (1) Hn |= µm for all m ≤ n.

(2) For n ≥ 2, Hn |= µm iff m ≤ n.

Proof.

(1) It is enough to show that Hn |= µn, since µn → µm is valid whenever m ≤ n. The antecedent
♦2> of µn is satisfiable just at the generator 0 in Hn, so the only issue is whether the
consequent of µn is also satisfied at 0. That depends on the truth-values of variables at
end-points.

There are 2n possible truth-value assignments to the list of variables q1, . . . , qn. Given a
model M on Hn, by labelling each end-point by the valuation it gives to these variables we
get a partition of En into at most 2n subsets, with all the members of any one partition-set
assigning the same values to q1, . . . , qn. One of these ≤ 2n subsets must have at least n
elements, or else there could be at most (n − 1)2n end-points altogether, contradicting the
fact that |En| = n2n. Hence there exists an n-element set S, i.e., a middle-point of Hn,
such that all members of S assign the same values to q1, . . . , qn. Thus each qi has a constant
truth-value on RS , and therefore (♦qi → �qi) is true at S for all i ≤ n. But ♦> is also true
at S, by (3), so S makes the consequent of µn true at the generator 0 in the arbitrary model
M on Hn, as desired.

(2) For n ≥ 2 it holds that (n − 1)2n+1 ≥ n2n, so there exists a partition of En into at most
2n+1 sets each of size at most n − 1. Associate with each partition-set X a distinct truth-
valuation of q1, . . . , qn+1, and let each member of X assign this valuation to these variables.
The result is a model in which there is no n-element set of end-points whose members all
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give the same valuation to these variables. Indeed if S is any middle-point of Hn, then S is
larger than any partition set, so there must exist at least two elements of S that belong to
different partition-sets, so assign a different truth-value to qi for some i ≤ n+ 1. For that i,
♦qi → �qi is false at S, therefore so is

♦> ∧ (♦q1 → �q1) ∧ · · · ∧ (♦qn → �qn+1).

But this last formula is also false at all points of En, since those points falsify ♦>, and
therefore altogether the formula is false throughout R0

n. This shows that the consequent of
µn+1 is false at the generator 0, and so Hn 6|= µn+1. It follows that Hn 6|= µm for all m > n.

�

For m,n ≥ 1, let µ[m,n] be the formula ∃m → µn.

Lemma 6.2 For any m,n ≥ 1, µ[ |Hm|,m] is valid in Hn.

Proof. If the antecedent of µ[ |Hm|,m] is true at some point in a model on Hn, then Hn has
at least |Hm| elements, so n ≥ m. Hence Hn |= µm by Lemma 6.1(1). �

Let µR(x) be the first-order formula

∃y
(
xRy ∧ ∃z∀w(yRw ↔ w = z)

)
asserting that there exists y ∈ Rx with |Ry| = 1. It is evident that if µR(x) holds of a point x in
a frame, then for all n ≥ 1, the consequent of µn will be true at x in any model on that frame.
Thus the elementary condition

∀x(∃z(xR2z) → µR(x))

(where xR2z iff ∃y(xRyRz)) is sufficient for validity of µn. It is not in general necessary, as
µR(0) fails in Hn for n > 1.

Lemma 6.3 Let L be any normal extension of K4 such that there are infinitely many n for
which there exists an m such that L ` µ[m,n]. Let x be a point in the canonical frame FL that
generates an infinite inner subframe and has ♦2> ∈ x. Then µR(x) holds in FL.

Proof. (This is analogous to Lemma 4.3.) Let FL = (WL, R). Put

y0 = {ϕ : �ϕ ∈ x} ∪ {♦>} ∪ {♦ψ → �ψ : ψ is a formula}.

If y0 is L-consistent, it is included in some y ∈ WL. Then xRy; ♦> ∈ y and so |Ry| ≥ 1;
and (♦ψ → �ψ) ∈ y for all formulas ψ, which ensures that |Ry| ≤ 1 and establishes µR(x) as
required.

But if y0 were not L-consistent, there would be some ϕ with �ϕ ∈ x, and some formulas
ψ1, . . . , ψk, for some k ≥ 1, such that

L ` ϕ→ ¬
(
♦> ∧ (♦ψ1 → �ψ1) ∧ · · · ∧ (♦ψk → �ψk)

)
.

By assumption there is some n ≥ k and some m such that L ` µ[m,n]. Putting ψj = ψk for
k < j ≤ n and applying normality of L then leads to

L ` �ϕ→ �¬
(
♦> ∧ (♦ψ1 → �ψ1) ∧ · · · ∧ (♦ψn → �ψn)

)
,

and so as �ϕ ∈ x,

♦
(
♦> ∧ (♦ψ1 → �ψ1) ∧ · · · ∧ (♦ψn → �ψn)

)
/∈ x. (4)
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Since L ` �p → ��p, the relation R in FL is transitive (and hence FL |= �p → ��p).
Transitivity ensures that the inner subframe generated by x is based on the set {x} ∪Rx. Since
this subframe is infinite, Rx must be infinite, so we can choose m distinct points x1, . . . , xm in
Rx. Then there are formulas ϕ1, . . . , ϕm with ϕi ∈ xj iff i = j. Then (ϕi ∧

∧
1≤j<i¬ϕj) ∈ xi for

all i ≤ m, and so ∧
1≤i≤m ♦(ϕi ∧

∧
1≤j<i¬ϕj) ∈ x.

Together with (4) and the fact that ♦2> ∈ x, this contradicts the fact that every instance of
µ[m,n] belongs to x. So y0 is L-consistent, and the proof is complete. �

Theorem 6.4 Let L be any normal extension of K4 that is defined by additional axioms of
the form µn or µ[m,n]. If there are infinitely many n for which there exists an m such that
L ` µ[m,n], then L is canonical.

Proof. Let F be the canonical frame of L. The K4 axiom �p→ ��p is canonical so is valid
in F (as explained in the proof of Lemma 6.3).

Now let x ∈ F . If the inner subframe Fx generated by x is finite, then it validates L (by the
proof of Lemma 4.2), so L cannot be falsified at x in any model on F . Alternatively, if ♦2> /∈ x,
then in any model on F the antecedent ♦2> of every µn is false at x, so every µn is true at x,
and hence so is every µ[m,n].

This leaves the case that Fx is infinite and ♦2> ∈ x. But then by Lemma 6.3 the condition
µR(x) holds at x in F , which ensures that every µn, and hence every µ[m,n], is true at x in all
models on F .

Thus F validates the axioms of L. �

Now let D be a non-principal ultrafilter on {n : n ≥ 1}, and
∏

D Hn the associated ultra-
product of the frames Hn = (Wn, Rn). Recall that

∏
D Hn = (

∏
D Wn, R) where

∏
D Wn is the

quotient set of the direct product
∏

n≥1Wn by the equivalence relation ≡ defined by: f ≡ g iff
{n : f(n) = g(n)} ∈ D. We write fD for the ≡-equivalence class of any f ∈

∏
n≥1Wn. Then

fDRgD in
∏

D Hn iff {n : f(n)Rng(n)} ∈ D.
We are going to show that µ1 is falsified in some model on the ultraproduct

∏
D Hn. To do

this we use the following criterion, adapted from [10, Theorem 1].

Lemma 6.5 Let F be a frame containing a point r such that the set

[Rr] = {y ∈ Rr : Ry 6= ∅}

is non-empty and for any y ∈ [Rr], Ry is an infinite set that is at least as large in cardinality
as [Rr]. Then µ1 is falsifiable at r in some model on F .

Proof. Let κ be the cardinality of [Rr], and let {yλ : λ < κ} be an indexing of the members
of [Rr] by the ordinals λ less than κ. For each λ, distinct points yλ0, yλ1 ∈ Ryλ will then be
defined in such a way that {yλ0, yλ1}∩{yµ0, yµ1} = ∅ whenever λ 6= µ < κ. Then declaring q1 to
be true just at the points in {yλ1 : λ < κ} defines a model on F in which q1 is false at yλ0, and
true at yλ1, making ♦q1 → �q1 false at yλ. Since this is the case for every member yλ of [Rr],
while ♦> is false at every member of Rr − [Rr], it follows that ♦(♦>∧ (♦q1 → �q1)) is false at
r in this model. On the other hand, ♦2> is true at r, since [Rr] 6= ∅. Hence µ1 is false at r.

It remains then to show that the yλi can be defined as claimed. Fix λ < κ, and suppose
inductively that yµi has been defined for all µ < λ and i ∈ {0, 1}, such that yµi 6= yνj whenever
µ 6= ν < λ and j ∈ {0, 1}. Let

Yλ = {yµ0, yµ1 : µ < λ}.
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Then if λ is a finite ordinal, Yλ is a finite set, so as Ryλ is infinite by hypothesis, distinct points
yλ0, yλ1 can be selected from Ryλ − Yλ. If however λ is infinite, then the cardinality of Yλ is
at most that of λ, and hence is less than κ. But Ryλ has cardinality at least κ, so again the
selection of yλ0, yλ1 ∈ Ryλ can be made to ensure that yµi 6= yνj for all µ 6= ν ≤ λ. Hence the
construction extends to λ, and so goes through by induction.

�

We also need the following fact about cardinalities of ultraproducts that is due to [7, Theorem
1.28] (the proof can also be found in [1, Theorem 6.3.12]):

Lemma 6.6 If {Xn : n ≥ 1} is a collection of finite sets, and {n : |Xn| = k} /∈ D for all k ∈ ω,
then |

∏
D Xn| = 2ℵ0. �

Lemma 6.7 µ1 is falsifiable in
∏

D Hn.

Proof. Let r = 〈rn : n ≥ 1〉D in
∏

D Hn, where rn = 0 ∈ Wn. Notice that in Hn, the set
[R0

n] = {x ∈ R0
n : Rx

n 6= ∅} is just the set Mn of middle points. Hence [R0
n] 6= ∅ for all n ≥ 1,

and so [Rr] 6= ∅ in
∏

D Hn. Indeed if g ∈
∏

n≥1Mn, then gD ∈ [Rr]. Moreover, each y ∈ [Rr] is
equal to gD for some g ∈

∏
n≥1Mn.

Since D is non-principal, it contains only infinite sets. Thus as |Wn| is a strictly increasing
function of n, it is not constant on any set in D, so by Lemma 6.6 it follows that

∏
D Hn has

|
∏

D Wn| = 2ℵ0 elements. But if y ∈ [Rr] in
∏

D Hn, we can similarly show that Ry is of size 2ℵ0 ,
so that r satisfies Lemma 6.5, giving the desired result that µ1 is falsifiable at r. To see this, let
y = gD for some g ∈

∏
n≥1Mn. Then for each h ∈

∏
n≥1R

g(n)
n we have g(n)Rnh(n) for all n ≥ 1,

so yRhD in
∏

D Hn, i.e., hD ∈ Ry. This shows that the natural injection
∏

D R
g(n)
n �

∏
D Wn

has its range included in Ry. But for each n ≥ 1, g(n) is a middle-point of Hn, so |Rg(n)
n | = n

by (3). So |Rg(n)
n | is a strictly increasing function of n, hence cannot be constant on any set in

D, which ensures that |
∏

D R
g(n)
n | = 2ℵ0 , hence |Ry| = 2ℵ0 . �

Now let H be the normal extension of K4 with axioms µ1 and µ[ |Hn|, n] for all n ≥ 2.

Theorem 6.8 H is canonical but not determined by any elementary class of frames.

Proof. Canonicity follows from Theorem 6.4. The frame Hn validates the logic H for all n ≥ 1,
but the ultraproduct

∏
D Hn does not, since it invalidates the axiom µ1. Failure of elementary

determination then follows from Theorem 5.4. �

These constructions can be adapted to show that there are 2ℵ0 distinct normal extensions of K4
that are canonical but not elementarily determined. For each set J of positive integers let HJ be
the normal extension of K4 with axioms µ1 and µ[ |Hn| − 1, n+ 1] for all n ∈ J . Using Lemma
6.1 it can be shown that if n /∈ J then Hn |= HJ , and that

J = {n : HJ ` µ[ |Hn| − 1, n+ 1]}.

If J is infinite, then HJ is canonical by Theorem 6.4. If J is also coinfinite then we can take
a non-principal ultrafilter on {n : n /∈ J}, and then the resulting ultraproduct of the family
{Hn : n /∈ J} of HJ -frames will falsify µ1, showing that HJ is not elementarily determined. It
is left to the reader to verify the details of these claims.

Now let H+ be the normal extension of H by the additional axiom �3⊥ whose validating
frames are defined by the condition ∀x∀y¬(xR3y). An H+-frame has depth at most two, where
the depth of a frame is the length of its longest cycle-free R-path. If V is any finite set of
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propositional variables, then up to provable equivalence in H+, there are only finitely many non-
equivalent formulas whose variables come from V. This property was established in [28, Theorem
II.6.5] for any frame-complete normal logic L extending K4 that has a fixed finite upper bound
on the depth of L-frames. It implies that the Lindenbaum algebra of L generated by V is finite,
and hence, since Lindenbaum algebras are free, that every finitely generated L-algebra is finite.
Then any L-algebra is locally finite, meaning that all of its finitely generated subalgebras are
finite.4

The interest in H+ is that it shows that even the strong hypothesis of local finiteness of
algebraic models does not imply the converse of Fine’s theorem. H+ is canonical, but is not
elementarily determined because all of the frames Hn validate H+. Note that local finiteness
readily implies that H+ has the finite model property.

We end now with some questions for further investigation. First, is there a canonical but
not elementarily determined logic that is Halldén complete? Recall that Halldén completeness
of L means that for any two formulas ϕ and ψ that have no variables in common, if L ` ϕ ∨ ψ
then either L ` ϕ or L ` ψ. The axioms of the form χ[m,n] and µ[m,n] show that none of the
logics discussed in this paper are Halldén complete.

Second, is every canonical normal extension of K4.3 elementarily determined? As already
mentioned, it was shown in [32] that every canonical normal extension of linear tense logic is
elementarily determined, so the question asks: does this hold for the future fragment of tense
logic? A counter example including S4.3 would be of particular interest, since all extensions of
S4.3 are finitely axiomatizable.
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