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Abstract. Monk [1970] extended the notion of the completion of a Boolean
algebra to Boolean algebras with operators. Under the assumption that the
operators of such an algebra A are completely additive, he showed that the

completion of A always exists and is unique up to isomorphisms over A. More-
over, strictly positive equations are preserved under completions: a strictly
positive equation that holds in A must hold in the completion of A.

In this paper we extend Monk’s preservation theorem by proving that cer-
tain kinds of Sahlqvist equations (as well as some other types of equations and

implications) are preserved under completions. An example is given which

shows that arbitrary Sahlqvist equations need not be preserved.

In the study of Boolean algebras, it is often useful to pass from a given Boolean
algebra A to an extension of A that is complete (in the sense that every set of
elements, whether finite or infinite, has a supremum — a least upper bound —
and an infimum — a greatest lower bound — in A). Two rather different complete
extensions of A are known from the literature. The first is the canonical (or perfect)
extension: the Boolean algebra B of subsets of the collection of all ultrafilters of
A. The second is the (MacNeille or Dedekind) completion: the minimal Boolean
algebra C that extends A and is complete. Each of these has its advantages and
disadvantages. The advantage of the canonical extension B is that it is atomic.
The disadvantage is that all proper infinite joins which do exist in A are “broken”
in B; more precisely, if a is the supremum in A of an infinite set X, but not of any
finite subset of X, then a cannot be the supremum of X in B. (This property is
sometimes called compactness.) The advantage of the completion C is that all joins
which do exist in A are preserved in C: if a is the supremum in A of any (finite
or infinite) set X, then a is the supremum of X in C. The disadvantage is that
C cannot be atomic unless A itself is atomic; in fact, the only atoms in C are the
atoms of A.

Jónsson and Tarski [1951] extended the theory of canonical extensions to Boolean
algebras with additional operations that are additive in each coordinate, so-called
Boolean algebras with operators. They showed that every Boolean algebra with op-
erators A has a canonical extension B (an expansion of the canonical extension of
the Boolean part of A) that is unique up to isomorphisms over A. Moreover, they
also proved that every strictly positive equation — that is, every equation in which
the complementation symbol does not occur — which holds in A must hold in B;
in technical language, strictly positive equations are preserved under the passage
to the canonical extension. (They also noted that some implications are similarly
preserved.) Sahlqvist [1975] extended the Jónsson-Tarski preservation theorem to

Date: August 27, 2003.

1



2 GIVANT AND VENEMA

a class of equations known today as Sahlqvist equations (see Section 3). Recently,
Jónsson [1994] has given a simple and elegant treatment of the preservation theo-
rems for canonical extensions.

The task of extending the theory of completions from Boolean algebras to Boolean
algebras with operators was taken up by Monk [1970]. He showed that every
Boolean algebra with operators A in which the operators are completely addi-
tive in each coordinate (that is, additive with respect to infinite joins — if they
exist — as well as finite, non-empty joins) has a completion B (an expansion of the
completion of the Boolean part of A) that is unique up to isomorphisms over A.
He also proved that strictly positive equations are preserved under the passage to
the completion.

The purpose of this paper is to do for completions what Sahlqvist and Jónsson
did for canonical extensions, to the extent that this is possible. In particular, we
shall give a treatment, along the lines of Jónsson [1994], of Monk’s preservation the-
orems, and we shall show in Corollary 34 that certain kinds of Sahlqvist equations
are preserved under that passage from a Boolean algebra with completely additive
operators to its completion. This corollary generalizes a theorem in Venema [1997]
which states a similar result under the additional proviso that the algebra in ques-
tion be atomic. In the last section we present, in algebraic form, an example from
Venema [1993] which shows that arbitrary Sahlqvist equations are, in general, not
preserved.

Our development parallels that of Jónsson [1994]; we also need some lemmas from
Monk [1970] concerning complete extensions of operators. Jónsson’s approach can
actually be given an axiomatic formulation so that it applies not only to canonical
extensions and completions, but possibly also to other kinds of extensions that have
not yet been considered.

1. Positive and negative terms

Fix a class K of algebraic structures

A = 〈A , ≤ , − , fξ 〉ξ<α
of a given similarity type, where ≤ is a binary relation (on A), − is a unary
operation, and each fξ is an operation of rank nξ ≥ 0. (The relation ≤ does not
play a role in this section, but it will in Section 3.) Operations of rank 0 will
be identified with distinguished elements of A. We shall refer to − as negation
although it may have very few of the properties that are commonly associated with
negation or complementation. The law of double negation,

−− x = x for all x in A ,

will be used frequently.
The letter T shall be used to denote the set of all terms in some language

appropriate for the structures of K. Terms in which no variables occur are called
constant (or nullary) terms. A term in which exactly one variable occurs (perhaps
many times) is called a unary term.

The term that is the concatenation of the operation symbol fξ and the variables
v0, . . . , vnξ−1 , in that order, will be denoted by

fξ(v0, . . . , vnξ−1) .

For an arbitrary term τ in T the notation
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τ(v0, . . . , vm−1)
is meant to indicate that the distinct variables occurring in τ are among the vari-
ables v0, . . . , vm−1. If σ0, . . . , σm−1 are also terms in T , then the notation

τ(σ0, . . . , σm−1)

denotes the term obtained by simultaneously substituting σ0, . . . , σm−1 for the
variables v0, . . . , vm−1 in τ . A subset S of T is said to be closed under substi-
tution just in case, whenever τ(v0, . . . , vm−1) and σ0, . . . , σm−1 are terms in S,
then τ(σ0, . . . , σm−1) is also in S.

There are various notions of “positive” and “negative” that can be applied to
terms.
Definition 1. (i) A term in T is positive primitive if it is either a variable, a

constant term, or else has the form

fξ(v0, . . . , vnξ−1)

for some ξ < α.
(ii) A term in T is strictly positive if it is either a variable, a constant term, or

else has the form
fξ(σ0, . . . , σnξ−1)

for some ξ < α and some strictly positive terms σ0, . . . , σnξ−1.
(iii) A term in T is positive (respectively, negative) if it is a variable or a constant

term (respectively, a constant term) or else has one of the following two
forms:

fξ(σ0, . . . , σnξ−1) ,
where σ0, . . . , σnξ−1 are all positive (respectively, negative) terms and ξ <
α;

−τ ,
where τ is a negative (respectively, positive) term.

It is obvious that every positive primitive term is strictly positive and that every
strictly positive term is positive, and it is simple to show that none of the reverse
implications hold. For example, the term −fξ(−v0, . . . ,−vnξ−1) is positive, but not
strictly positive.

Here is an equivalent formulation of the notion of a strictly positive term: no
subterm beginning with the negation symbol contains an occurrence of a variable.
In other words, the negation symbol does not occur in the term unless it is part
of a constant term. In Henkin-Monk-Tarski [1971], p. 440, such terms are called
positive in the wider sense.

Both de Rijke-Venema [1995] and Jónsson [1994] adopt the definition that a term
is positive if each variable is in the “scope” of an even number of negations. We
have defined the notions of positive and negative by an interdependent recursion.
The two definitions are readily shown to be equivalent.
Lemma 1. Suppose that ρ(v0, . . . , vm−1) and γ0, . . . , γm−1 are terms in T . Then
the term

ρ(γ0, . . . , γm−1)
is positive if ρ and γ0, . . . , γm−1 are all positive or all negative , and it is nega-
tive if either ρ is positive and γ0, . . . , γm−1 are negative or else ρ is negative and
γ0, . . . , γm−1 are positive.
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Proof. The proof is by induction on the definition of positive and negative terms,
applied to ρ. Let κ denote the term ρ(γ0, . . . , γm−1). If ρ is a constant term, then
κ coincides with ρ and is both positive and negative (by definition), so the lemma
holds. If ρ is a variable, say vi , then κ coincides with γi , and hence it is positive
or negative according as γi is positive or negative.

Suppose that ρ has the form

fξ(σ0, . . . , σnξ−1) .

Assume first that σ0, . . . , σnξ−1 are all positive (so that ρ is positive). If γ0, . . . , γm−1

are all positive (negative), then each term σi(γ0, . . . , γm−1) is positive (negative),
by the induction hypothesis. Therefore the term

fξ(σ0(γ0, . . . , γm−1), . . . , σnξ−1(γ0, . . . , γm−1))

is positive (negative), by the definition of a positive (negative) term; this term is
just κ. The case when σ0, . . . , σnξ−1 are all negative is treated similarly.

Finally, suppose that ρ has the form −τ . Assume first that τ is negative (so
that ρ is positive). If the terms γ0, . . . , γm−1 are all positive (negative), then the
term τ(γ0, . . . , γm−1) is negative (positive) by the induction hypothesis; hence, the
negative of this term — that is, κ — is positive (negative). The proof for the case
when τ is positive is similar. �

It is obvious that the set of strictly positive terms is closed under substitution.
One consequence of the preceding lemma is that the set of positive terms is closed
under substitution.

In order to characterize the sets of positive and negative terms, we introduce the
notion of the dual of a term.
Definition 2. The dual of a term τ(v0, . . . , vm−1), which is denoted by τd , is
defined to be the term −τ(−v0, . . . ,−vm−1).

Notice that the dual of a constant term τ is simply −τ . The dual of a variable vi
is, by definition −−vi ; under the law of double negation, this is of course equivalent
to vi. Here is a more interesting example of the dual of a term: in Boolean algebra
the dual of the term v0 + v1 is the term −(−v0 +−v1), which is often taken as the
definition of v0 · v1.
Lemma 2. If a term is positive (negative), then its dual is positive (negative).

Proof. The proof is by induction on the definition of positive and negative terms.
Let ρ(v0, . . . , vm−1) be a term in T . If ρ is a constant term, then it and its dual are
positive and also negative (by definition), so the conclusion of the lemma is trivial.
If ρ is a variable, say vi , then ρd is −− vi . Since −vi is negative, by definition, the
term ρd is positive, by definition.

Now suppose that ρ has the form

fξ(σ0, . . . , σnξ−1) .

If each term σi is positive (negative), then σi(−v0, . . . ,−vm−1) is negative (positive)
by Lemma 1. Therefore,

fξ(σ0(−v0, . . . ,−vm−1), . . . , σnξ−1(−v0, . . . ,−vm−1))

is negative (positive), by Definition 1. Since ρd is just the negation of this last term,
it will be positive (negative).



THE PRESERVATION OF SAHLQVIST EQUATIONS IN COMPLETIONS 5

Finally, suppose that ρ has the form −τ . If τ is negative (positive), that is, if ρ
is positive (negative), then τ(−v0, . . . ,−vm−1) is positive (negative) by Lemma 1.
Since ρd is the negation of the negation of this last term, it will also be positive
(negative), by Definition 1. �

Corollary 3. Under the law of double negation , a term is equivalent to a positive
(negative) term if and only if its dual is equivalent to a positive (negative) term.

Proof. If a term τ is positive (negative), then τd is positive (negative) by the previ-
ous lemma. If τd is positive (negative) then (τd)d is positive (negative). But (τd)d

is equivalent to τ under the law of double negation. Therefore τ is equivalent to a
positive (negative) term. �

A proof of the preceeding corollary can also be based on the following simple
observation (the proof of which we leave to the reader). It asserts that the sub-
stitution of duals of terms into the dual of a term is equivalent to the dual of a
term.
Lemma 4. For all terms τ(v0, . . . , vm−1) and σ0, . . . , σm−1 in T the equality

τd(σ0
d, . . . , σn−1

d) ≈ [τ(σ0, . . . , σn−1)]d

is derivable from the law of double negation.
The next remark and the subsequent lemma are intended to clarify what is meant

by the dual of a term. For a moment, assume that our language has been expanded
to include the symbols fdξ (for ξ < α) as basic operation symbols. Take Ξ to be the
set of axioms consisting of the equations

fdξ (v0, . . . , vnξ−1) = −fξ(−v0, . . . ,−vnξ−1)

and the law of double negation. We shall say that a term is in standard form if the
only negation symbols that occur in it occur as parts of constant terms or occur
next to variables (that is, negation symbols only have constant terms or variables
as arguments). Then every term τ is equivalent (on the basis of Ξ) to a term in
standard form. The proof is by induction on terms. The key idea is that we can
use the equations in Ξ to bring all negations through to the variables, and then
use the law of double negation to cancel as many of the negations as possible. For
example, the terms

−fξ(ρ0, . . . , ρnξ−1) and fdξ (−ρ0, . . . ,−ρnξ−1)

are equivalent (on the basis of Ξ), so in the left-hand term we can bring the negation
symbol inside to the terms ρi if we change fξ to fdξ . Similarly, the terms

−fdξ (ρ0, . . . , ρnξ−1) and fξ(−ρ0, . . . ,−ρnξ−1)

are equivalent, so in the left-hand term we can bring the negation symbol inside to
the terms ρi if we change fdξ to fξ. We leave the details to the reader.
Lemma 5. Suppose that τ is a term in the expanded language and that τ∗ is the
term obtained from τ by interchanging all occurrences of fξ and fdξ for each ξ < α.
Then τd is equivalent to τ∗ on the basis of Ξ.

Proof. Again, the proof is by induction on terms. Here is the main idea. Since
τd is the term −τ(−v0, . . . ,−vm−1), we can bring the first negation symbol all the
way through, just as was described above; in this process, each occurrence of fξ
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becomes an occurrence of fdξ , and conversely. At the end of the process, we end up
with the term

τ∗(−− v0, . . . ,−− vm−1) ,

which of course is equivalent to τ∗. The details are left to the reader. �

Of course the symbols fdξ need not be basic operation symbols of our language.
The preceding lemma is still true (on the basis of the law of double negation alone)
provided that we understand τ∗ in the proper way. Namely, we always interpret a
term of the form

−fξ(−ρ0, . . . ,−ρnξ−1)

as
fdξ (ρ0, . . . , ρnξ−1) .

Here is a characterization of the strictly positive terms: a term is strictly positive
if and only if it belongs to every set of terms that contains the positive primitive
terms and is closed under substitution. The proof is a simple induction on the
definition of a strictly positive term. A similar characterization holds for positive
terms. To formulate it, let Ψ be the smallest set of terms that contains all positive
primitive terms and their duals, and is closed under substitution. Then a term
is equivalent to a positive term (under the law of double negation) if and only if
it is equivalent to a term in Ψ. The proof of this characterization is somewhat
more involved than in the case of strictly positive terms. It is actually necessary
to formulate a dual statement, just as was done in Lemma 1. The key implication,
namely the one from left to right in part (i), is Lemma 5.4 in Jónsson [1994].
Theorem 6. Assume that the law of double negation holds.

(i) A term is equivalent to a positive term if and only if it is equivalent to a
term in Ψ.

(ii) A term is equivalent to a negative term if and only if it is equivalent to the
negation of a term in Ψ.

Proof. The idea of the proof is similar to the proofs sketched previously. Because
this theorem plays an important role in our further development, we give a careful
proof (by induction on terms). Let Γ be the set of terms that are equivalent (under
the law of double negation) to a term in Ψ, and ∆ the set of terms that are equivalent
to the negation of a term in Ψ. We shall show that Γ coincides with the set of terms
equivalent to some positive term, and ∆ coincides with the set of terms equivalent
to some negative term.

Certainly the set of positive terms contains the positive primitive terms and their
duals (by Lemma 2) and is closed under substitution (by Lemma 1). Therefore Γ
is included in the set of terms equivalent to some positive term, and ∆ is included
in the set of terms equivalent to some negative term.

To show the reverse inclusions we proceed by induction on the definition of
positive and negative terms. Certainly all constant terms and variables are in
Γ since they are positive primitive. Also, every constant term is in ∆ since it
equivalent to the negation of a term in Ψ (it is equivalent to the negation of its own
negation).

Suppose that a term ρ has the form

fξ(σ0, . . . , σnξ−1) .
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Consider first the case when each term σi is positive. By the induction hypothesis
σi is in Γ and hence is equivalent to a term γi of Ψ. Then ρ is equivalent to the
term

fξ(γ0, . . . , γnξ−1) ,
which is obviously in Ψ (it is a substitution instance of the positive primitive term
fξ(v0, . . . , vnξ−1) and terms in Ψ). If σi is negative (for each i), then by the induc-
tion hypothesis it is in ∆, and hence is equivalent to a term −γi for some term γi
in Ψ. Then ρ is equivalent to the term

fξ(−γ0, . . . ,−γnξ−1) ,

which is obviously equivalent to

−− fξ(−γ0, . . . ,−γnξ−1) ,

that is, to
−fdξ (γ0, . . . , γnξ−1) .

Since
fdξ (γ0, . . . , γnξ−1)

is in Ψ, the term ρ is equivalent to the negation of a term in Ψ, and hence is in ∆.
Finally, consider the case when ρ has the form −τ . If τ is negative, then it is in

∆ (by the induction hypothesis) and hence equivalent to a term of the form −γ for
some term γ in Ψ. Therefore ρ is equivalent to γ, and hence is in Γ. If τ is positive,
then it is in Γ and hence equivalent to a term γ in Ψ. Obviously, ρ is equivalent to
−γ, and hence is in ∆. �

Corollary 7. A term ρ(v0, . . . , vm−1) is negative if and only if it is equivalent to
a term of the form γ(−v0, . . . ,−vm−1) for some γ in Ψ.

Proof. A term ρ is negative if and only if it is equivalent to −τ for some term τ in
Ψ, by the preceding theorem. Since τ is in Ψ, it is in standard form. Of course τ∗

(constructed in the proof of Lemma 5) is also in Ψ. The term −τ(−v0, . . . ,−vm−1)
is equivalent to τ∗ by Lemma 5. Therefore, −τ(v0, . . . , vm−1) is equivalent to
τ∗(−v0, . . . ,−vm−1). �

Here is another way of thinking about Theorem 6(i): it says that a term is
positive if and only if it is equivalent (on the basis of Ξ) to a strictly positive term
in the language that contains the symbols fdξ as basic operation symbols.

For each term τ(v0, . . . , vm−1) of T and each structure A in K, let τA denote the
operation on A of rank m induced by τ . For each operation g on A of rank m let
gd denote the algebraic dual of the operation g, that is, the operation of rank m on
A determined by the rule

gd(x0, . . . , xm−1) = −g(−x0, . . . ,−xm−1)

for all x0, . . . , xm−1 in A.
Lemma 8. Under the preceding hypotheses we have

(τA)d = (τd)A .

In other words, the dual of the operation induced by τ in A is the same as
the operation induced in A by the dual of the term τ . This is obvious from the
definitions of the dual of a term and the dual of an operation.
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2. Completions

The completion of a Boolean algebra A is the minimal extension of A that is
complete (in the sense that all sums and products of infinite sets of elements exist).
Mangani [1966] introduced the notion of the completion of a cylindric algebra and
showed that it is again a cylindric algebra. Monk [1970] carried out a general
study of completions of Boolean algebras with completely additive operators and
proved that strictly positive equations are preserved under completions. To extend
this theorem to other kinds of equations, we shall need a number of properties of
so-called “complete extensions” of operators on a Boolean algebra. Most of these
properties are proved in Monk’s paper or else in Jónsson-Tarski [1951]. Indeed,
Lemmas 9 and 19 below occur as Theorems 1.6 and 1.14 in Jónsson-Tarski [1951];
Lemmas 11, 13–16, 20 occur as Theorems 1.1, 1.2, 1.5, 1.8, and Corollary 1.11 in
Monk [1970] (and these are, in turn, the analogues, for completions, of theorems
proved for canonical extensions in Jónsson-Tarski [1951]). To save the reader the
time and trouble of consulting these other papers, we shall illustrate the proofs
with the case when the operator has rank 2.

Lemmas 18 and 21 are the essential new results in this section; they are the
analogues for dual operations of Lemmas 15 and 16.

Let A be a Boolean algebra and A its universe. An operation h of rank n on A
is said to be completely additive if it is completely additive in each coordinate. For
instance, a binary operation h on A is completely additive if, for all elements y in
A and all non-empty subsets X of A such that

∑
X exists, the sums∑

{h(x, y) : x ∈ X} ,
∑
{h(y, x) : x ∈ X}

exist, and

h(
∑
X, y) =

∑
{h(x, y) : x ∈ X} , h(y,

∑
X) =

∑
{h(y, x) : x ∈ X} .

Lemma 9. If h is a completely additive operation of rank n on A and if , for each
i < n , the set Xi is a non-empty subset of A such that

∑
Xi exists , then

h(
∑
X0, . . . ,

∑
Xn−1) =

∑
{h(x0, . . . , xn−1) : xi ∈ Xi for i < n} .

Proof. We illustrate the proof for the case n = 2. By invoking the complete ad-
ditivity of h, first for the zeroth coordinate and then for the first coordinate, we
obtain

h(
∑
X0,

∑
X1) =

∑
{h(x0,

∑
X1) : x0 ∈ X0}

=
∑
{
∑
{h(x0, x1) : x1 ∈ X1} : x0 ∈ X0}

=
∑
{h(x0, x1) : x0 ∈ X0 and x1 ∈ X1} .

�

The completion of the Boolean algebra A is a complete Boolean algebra A+ such
that A is a subalgebra of A+ and each element of A+ is the sum (in A+) of the
elements in A that are below it, in symbols

x =
∑
{a ∈ A : a ≤ x}.

The completion of A always exists and is unique up to isomorphisms over A (see
Section 35 in Sikorski [1964]). Moreover, if X is a subset of A whose sum (supre-
mum) exists in A, then this sum coincides with the sum of X in A+. A proof
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that the completion of A is just the minimal complete extension of A is given, for
example, in Theorem 35.2 of op. cit .

We continue to fix a Boolean algebra A and its completion A+.

Lemma 10. If h and k are completely additive operations on A+ (of the same
rank) that agree on A , then they agree on A+.

Proof. For i = 0, 1, let Xi be a non-empty subset of A such that the sum xi =
∑
Xi

exists. Using the previous lemma and the assumption that h and k agree on A, we
get

h(x0, x1) =
∑
{h(a0, a1) : a0 ∈ X0 and a1 ∈ X1}

=
∑
{k(a0, a1) : a0 ∈ X0 and a1 ∈ X1}

= k(x0, x1) .

�

The operations and relations on a Boolean algebra A extend in a natural way
to operations and relations on powers of A: the extensions are defined coordinate-
wise, of course. For example, if x and y are sequences in nA (the set of all sequences
of length n whose terms are in A), then write x ≤ y just in case xi ≤ yi for i < n,
and write

−x = (−x0, . . . ,−xn−1) , x+ y = (x0 + y0, . . . , xn−1 + yn−1) ;

if f and g are operations on A of the same rank n, then write f ≤ g just in
case f(x) ≤ g(x) for each x in nA. These extensions allow some simplification of
notation.

Definition 3. The complete extension of an operation h on A of rank n is the
operation h+ on A+ of rank n that is defined by

h+(x) =
∑
{h(a) : a ∈ nA and a ≤ x}

for every sequence x of length n from A+.

Recall that an operation h on A of rank n is said to be monotone (or isotone)
if h(x) ≤ h(y) for any two x, y in nA with x ≤ y. The proof of the next lemma is
easy and is left to the reader.

Lemma 11. If h is a monotone operation on A , then h+ is a monotone operation
on A+ and its restriction to A is just h.

Lemma 11 says that the complete extension of a monotone operation h really is
an extension of h in the algebraic sense of the word; if h is not monotonic, then
that won’t be true. For this reason we shall only speak about complete extensions
of monotonic operations.

Lemma 12. For each i < n , let Xi be a non-empty subset of A and xi =
∑
Xi (in

A+). If h is a completely additive operation on A of rank n , then

h+(x0, . . . , xn−1) =
∑
{h(a0, . . . , an−1) : ai ∈ Xi for i < n} .

In other words, in computing h+(x0, . . . , xn−1) we do not have to sum over all
of the elements ai that are below xi and in A; we only have to sum over those ai
that are below xi and in Xi .
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Proof. For i = 0, 1 set
Ai = {a ∈ A : a ≤ xi} .

Then Xi ⊆ Ai and therefore

h+(x0, x1) =
∑
{h(a0, a1) : a0 ∈ A0 and a1 ∈ A1}

≥
∑
{h(b, c) : b ∈ X0 and c ∈ X1} ,

by the definition of h+. To prove the reverse inequality, suppose that ai ∈ Ai for
i = 0, 1. Then ai ≤ xi, so

ai = ai · xi = ai ·
∑
Xi =

∑
{ai · b : b ∈ Xi} .

Hence

h(a0, a1) =
∑
{h(a0 · b, a1 · c) : b ∈ X0 and c ∈ X1}

≤
∑
{h(b, c) : b ∈ X0 and c ∈ X1}

by Lemma 9 and the monotonicity of h. Summing over all ai in Ai , we get∑
{h(a0, a1) : a0 ∈ A0 and a1 ∈ A1} ≤

∑
{h(b, c) : b ∈ X0 and c ∈ X1} .

Since the left-hand side is just h+(x0, x1), this is the desired inequality. �

Lemma 13. If h is a completely additive operation on A , then h+ is completely
additive on A+.

Proof. We illustrate the proof (in the case of rank 2) by showing that h+ is additive
in the zeroth coordinate. Fix a non-empty subset X of A+ and set u =

∑
X.

For each x in A+ put Ax = {a ∈ A : a ≤ x}. Then x =
∑
Ax , since A+ is the

completion of A, and therefore u =
∑

(
⋃
x∈XAx). (However, it is not necessarily

true that Au =
⋃
x∈XAx.) Thus, for any element v of A+ we have:

h+(u, v) =
∑
{h(a, b) : a ∈

⋃
x∈XAx and b ∈ Av}

=
∑
{
∑
{h(a, b) : a ∈ Ax and b ∈ Av} : x ∈ X}

=
∑
{h+(x, v) : x ∈ X} .

The first equality follows by Lemma 12 (with n = 2 and the sets
⋃
x∈XAx and

Av in place of X0 and X1), the second by Boolean algebra, and the third by the
definition of h+. �

An operation h on A+ (or A) of rank n is constant if h(x) = h(y) for all sequences
x, y of length n; h is the ith projection function if h(x) = xi for each sequence
x = (x0, . . . , xn−1). The unary operation h satisfying h(0) = 0 and h(x) = 1 for
x 6= 0 is called the unary discriminator. All such operations, as well as Boolean ad-
dition and multiplication, are well known to be completely additive. It follows that
these operations on A+ coincide with the complete extensions of the corresponding
operations on A. Indeed, the complete extension of a completely additive operation
on A is completely additive, by the preceding lemma, and two completely additive
operations that agree on A must agree on A+, by Lemma 10. Summarizing:
Lemma 14. Each of the following operations on A+ coincides with the complete
extension of the corresponding operation on A : Boolean addition , Boolean mul-
tiplication , the unary discriminator , any constant operation , and any projection
operation.
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If h is an arbitrary operation of rank n on the set A and if g0, . . . , gn−1 are
operations of the same rank m on A, then the composition of h with g0, . . . , gn−1

is defined to be the operation

h[g0, . . . , gn−1]

of rank m on A determined by

h[g0, . . . , gn−1](x) = h(g0(x), . . . , gn−1(x))

for each x in mA.
Lemma 15. If h is a monotone operation on A of rank n and if g0, . . . , gn−1 are
monotone operations on A of rank m , then

h[g0, . . . , gn−1]+ ≤ h+[g+
0 , . . . , g

+
n−1] .

Proof. For each sequence x of length m from A+ we have (in the case n = 2)

h[g0, g1]+(x) =
∑
{h[g0, g1](a) : a ∈ mA and a ≤ x}

=
∑
{h(g0(a), g1(a)) : a ∈ mA and a ≤ x}

=
∑
{h+(g+

0 (a), g+
1 (a)) : a ∈ mA and a ≤ x}

≤ h+(g+
0 (x), g+

1 (x))

= h+[g+
0 , g

+
1 ](x) .

The first step follows from the definition of the complete extension of h[g0, g1], the
second and last from the definition of functional composition, and the third and
fourth from Lemma 11. �

The reverse inequality holds in the special case when h is completely additive.
Lemma 16. If h is a completely additive operation on A of rank n and if g0, . . . , gn−1

are monotone operations on A of rank m , then

h+[g+
0 , . . . , g

+
n−1] ≤ h[g0, . . . , gn−1]+ .

Proof. Fix a sequence x of length m from A+ and set

Sx = {a ∈ mA : a ≤ x} .

In the case n = 2 we have

h+[g+
0 , g

+
1 ](x) = h+(g+

0 (x), g+
1 (x))

= h+(
∑
{g0(a0) : a0 ∈ Sx},

∑
{g1(a1) : a1 ∈ Sx})

=
∑
{h+(g0(a0), g1(a1)) : a0, a1 ∈ Sx}

=
∑
{h(g0(a0), g1(a1)) : a0, a1 ∈ Sx}

The first equality follows from the definition of functional composition, the second
from the definition of the complete extension g+

i , the third from Lemma 9 and the
complete additivity of h+ (here we use the complete additivity of h and Lemma 13),
and the fourth from Lemma 11.

Observe that Sx contains the zero sequence and is closed under finite Boolean
sums. From this it follows that

(1) Sx = {a0 + a1 : a0, a1 ∈ Sx} .
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Therefore,∑
{h(g0(a0), g1(a1)) : a0, a1 ∈ Sx} ≤

∑
{h(g0(a0 + a1), g1(a0 + a1)) : a0, a1 ∈ Sx}

=
∑
{h(g0(a), g1(a)) : a ∈ Sx}

=
∑
{h[g0, g1](a) : a ∈ Sx}

= h[g0, g1]+(x)

by monotony, (1), the definition of functional composition, and the definition of the
complete extension of h[g0, g1]. �

Following Jónsson [1994], we say that an operation h on A of rank n is conser-
vative if

h[g0, . . . , gn−1]+ = h+[g+
0 , . . . , g

+
n−1]

whenever g0, . . . , gn−1 are monotone operations on A of the same rank m. To-
gether, Lemmas 15 and 16 assert that a completely additive operation h on A is
conservative.

We now turn to the study of complete extensions of dual operations.
Lemma 17. If h is a monotone operation , then so is hd.

Lemma 17 ensures us that it is reasonable to form the complete extension of a
dual operation.

Proof. Assume that h has rank n, and let x and y be sequences in nA such that
x ≤ y. Then −y ≤ −x and therefore h(−y) ≤ h(−x), since h is monotone. Hence,
−h(−x) ≤ −h(−y). In other words, hd(x) ≤ hd(y). �

Lemma 18. If h is a monotone operation on A , then (hd)+ ≤ (h+)d

Proof. Assume that h has rank n and that x is an n-termed sequence of elements
from A+ . Since

h+(y) =
∑
{h(a) : a ∈ nA and a ≤ y}

for any sequence y of elements from A+ (by definition of h+), it follows that

h+(−x) =
∑
{h(a) : a ∈ nA and a ≤ −x}

(take y = −x). On the other hand,

(hd)+(x) =
∑
{hd(b) : b ∈ nA and b ≤ x}

by definition. Hence,

(1) h+(−x) · (hd)+(x) =
∑
{h(a) · hd(b) : a, b ∈ nA and a ≤ −x , b ≤ x} ,

by the complete additivity of Boolean multiplication. Suppose that a ≤ −x and
b ≤ x. Then a ≤ −x ≤ −b and therefore h(a) ≤ h(−b), by monotony. Consequently,

h(a) · hd(b) = h(a) · −h(−b) = 0 .

It follows that each summand on the right-hand side of (1) is 0, so

h+(−x) · (hd)+(x) = 0 .

In other words,
(hd)+(x) ≤ −h+(−x) = (h+)d(x) ,

as was to be shown. �
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The reverse inequality in Lemma 18 does not hold in general, even when h is
completely additive.1 However, it does hold under the stronger assumption that h
is conjugated. Recall from Jónsson-Tarski [1951] that two unary operations h and
g on A are conjugates in case

x · h(y) = 0 if and only if g(x) · y = 0

for all elements x, y in A. A unary operation h on A is conjugated if it has a
conjugate. As an example, consider the unary discriminator k on A. Since

x · k(y) = 0 if and only if x = 0 or y = 0 ,

the operation k is its own conjugate. In particular, k is conjugated. (It is possible
to extend the notion of conjugates to operations of higher rank. For instance,
two binary operations h and g on a set A are left conjugates, or zeroth coordinate
conjugates, of one another if, for all elements x, y, z in A, we have

x · h(y, z) = 0 iff g(x, z) · y = 0 .

Right conjugates can be defined in a completely analogous manner. Since conju-
gated operations of higher rank will play no role in our subsequent development, we
shall assume, without always restating it, that conjugated operations are unary.)
Lemma 19. A conjugated operation is completely additive.

Proof. Suppose that h is a conjugated operation on A — say, g is its conjugate —
and let X be a non-empty subset of A such that the supremum x =

∑
X exists.

Then for each element a in A we have

a · h(b) = 0 for every b ∈ X iff g(a) · b = 0 for every b ∈ X
iff g(a) · (

∑
X) = 0

iff g(a) · x = 0

iff a · h(x) = 0

The first and last equivalence are a consequence of conjugacy, and the second follows
from the complete additivity of Boolean multiplication.

If a = −h(x), then certainly a · h(x) = 0, and therefore a · h(b) = 0 for every
element b in X (by the previous chain of equivalences). In other words, h(b) ≤ h(x)
for every b in X, or, put another way, h(x) is an upper bound for the set

H = {h(b) : b ∈ X} .

Let y be any other upper bound for H, and set a = −y. Obviously a · h(b) = 0 for
every b in X. Hence a · h(x) = 0 (by the chain of equivalences), so h(x) ≤ y. In
other words, h(x) is the least upper bound for H. �

Lemma 20. If h and g are conjugates , then so are h+ and g+.

1This follows from the example of Venema [1993] that is given in Section 4 below. There, a
completely additive unary operation f on a Boolean algebra A is constructed with the property

that the equation

(1) f(fd(v)) ≤ fd(f(v))

holds in algebra 〈A , f 〉, but not in its completion. If the reverse inequality in Lemma 18 were true

for completely additive functions, then the inequality (1) would hold in the completion 〈A+ , f+ 〉,
by the argument in the proof of Corollary 34(ii) below.
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Proof. Suppose that x0, x1 are elements in A+, and put Ai = {a ∈ A : a ≤ xi}.
Then

x0 · h+(x1) = 0 iff
∑
{a0 : a0 ∈ A0} ·

∑
{h(a1) : a1 ∈ A1} = 0

iff
∑
{a0 · h(a1) : a0 ∈ A0 and a1 ∈ A1} = 0

iff a0 · h(a1) = 0 for all a0 ∈ A0 and a1 ∈ A1

iff g(a0) · a1 = 0 for all a0 ∈ A0 and a1 ∈ A1

iff
∑
{g(a0) · a1 : a0 ∈ A0 and a1 ∈ A1} = 0

iff
∑
{g(a0) : a0 ∈ A0} ·

∑
{a1 : a1 ∈ A1} = 0

iff g+(x0) · x1 = 0 .

The first and last equivalence hold by the definition of a completion and of a
complete extension (of an operation), the second and sixth hold by the complete
additivity of Boolean multiplication, the third and fifth by Boolean algebra, and
the fourth because h and g are assumed to be conjugates. �

The preceding lemma can also be obtained as an immediate consequence of
Corollary 31(ii) below.
Lemma 21. If h is conjugated , then (h+)d ≤ (hd)+.

Proof. Fix any element x in A+. Since both (h+)d(x) and (hd)+(x) are elements
of the completion, they are both the sums of the elements of A that are beneath
them. To prove the lemma, then, it suffices to show that every element of A below
(h+)d(x) is below (hd)+(x).

Let a be an element of A below (h+)d(x). Then a ≤ −h+(−x), by definition of
(h+)d. Hence, a · h+(−x) = 0.

Suppose that g is the conjugate of h. By the previous lemma, g+ is the conjugate
of h+. Therefore g+(a) · −x = 0. Because g+ coincides with g on A, we see that

(1) g(a) ≤ x .

The function h, being completely additive (by Lemma 19), must be monotone. It
follows that hd is monotone, by Lemma 17, and hence that (hd)+ is monotone, by
Lemma 11. Applying (hd)+ to both sides of (1), we get

(2) (hd)+(g(a)) ≤ (hd)+(x) .

On the other hand, g(a) ·−g(a) = 0, whence, by conjugacy, a ·h(−g(a)) = 0. Thus,

a ≤ −h(−g(a)) = hd(g(a)) = (hd)+(g(a)) .

Combining this with (2), we arrive at the desired conclusion: a ≤ (hd)+(x). �

Lemmas 19 and 20 and their proofs can easily be extended to conjugated oper-
ations of higher rank. However, we shall give an example in Section 4 to show that
Lemma 21 fails for conjugated operations of higher rank.

Suppose that
A = 〈A , + , − , fξ 〉ξ<α

is a Boolean algebra with completely additive operators. An algebra

B = 〈B , + , − , gξ 〉ξ<α
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is said to be a completion of A provided that 〈B , + ,−〉 is the Boolean algebraic
completion of 〈A , + ,−〉, each of the operators gξ is completely additive, and

gξ(x) =
∑
{fξ(a) : a ∈ nξA and a ≤ x}

for each x in nξB. It follows from the last condition that gξ agrees with fξ on A,
and hence, by Lemma 10, that gξ = f+

ξ . Since 〈B , + ,−〉 is uniquely determined
up to isomorphisms over 〈A , + ,−〉, it follows that B is uniquely determined, up to
isomorphisms over A. We shall therefore speak of the completion of A and denote
it by

A+ = 〈A+ , + , − , f+
ξ 〉ξ<α .

3. The preservation theorems

Jónsson [1994] gives a proof that Sahlqvist equations and inequalities are pre-
served under canonical (that is, perfect) extensions. His approach uses ideas that
go back to Jónsson-Tarski [1951], but it is much more streamlined and elegant.
The approach can be adapted to obtain preservation theorems for completions. In
fact, Jónsson’s approach is really a kind of axiomatic approach to the preservation
theorems. To make this clear, suppose for the moment that K is a class of structures

A = 〈A , ≤ , − , fξ 〉ξ<α
as in Section 1, and assume that there is a construction which associates with each
reduct 〈A , ≤ ,−〉 an extension 〈A+ , ≤ ,−〉, and with each operation h of rank
n on A an operation h+ of rank n on A+. Set

A+ = 〈A+ , ≤ , − , f+
ξ 〉ξ<α .

If we adopt as axioms for this construction the requirement that the operations fξ
of A are monotone, the law of double negation, the laws for ≤ of transitivity and
anti-monotonicity (if x ≤ y, then −y ≤ −x), and the conclusions of Lemma 11,
Lemma 14 for projection and constant operations, Lemma 15, Lemma 16 for the
basic operations fξ of A (in place of h), and Lemma 18, then it is possible to derive
almost all of the lemmas and theorems in Sections 1, 4, and 5 of Jónsson [1994].

Virtually all of the results in this section are the analogues for completions of
results proved (explicitly or implicitly) in op. cit . for canonical extensions, and
the same proofs work in both cases. In particular, Lemma 23, Lemma 24, Corol-
lary 26, Lemma 27, Lemma 28, Theorem 29, Theorem 30, and Theorem 32 below
are the analogues of Lemma 4.3(i),(ii), Theorem 4.4, Theorem 5.1, Theorem 5.5,
and Propositions 1.1–1.5 in op. cit . We repeat Jónsson’s proofs for the convenience
of the reader.

What is new in this section is (1) the realization that the same theorems and
proofs go through for the case of completions (and perhaps other constructions as
well) and (2) the use of the lemmas in the previous section (in particular, Lemmas
18 and 21) to prove a restricted form of Sahlqvist’s preservation theorem.

From now on, assume that K is a class of Boolean algebras with completely
additive operators (or, if the reader is so inclined, a more abstract class of structures
as indicated above; some further remarks regarding this approach will be made at
the end of the section). We will use the same symbol fξ to denote a certain operator
of an algebra in K and the corresponding operation symbol of the logical language
associated with K.
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The following terminology is essentially from op. cit ., p. 474.

Definition 4. A term τ in T is

(i) monotone (over K) if τA is monotone for all A in K .
(ii) conservative (over K) if τA is conservative for all A in K .
(iii) expanding (over K) if (τA)+ ≤ τA+

for all A in K.
(iv) contracting (over K) if τA

+ ≤ (τA)+ for all A in K.
(v) stable (over K) if τA

+
= (τA)+ for all A in K.

The reference to the class K will usually be suppressed.
Our first goal is to show that the set Φ of monotone, stable, conservative terms

includes the positive primitive terms and is closed under substitution. The terms
v0 + v1 , v0 · v1 , and fξ(v0, . . . , vnξ−1) for ξ < α are monotone since the opera-
tions they denote are completely additive. They are stable by Lemma 14 (applied
to Boolean addition and multiplication) and the remark at the end of the pre-
ceding section (saying that the operation gξ coincides with f+

ξ ). Lemma 15 (with
h = fξ) and Lemma 16 ensure that they are conservative. Constant terms are
trivially monotone, stable, and conservative. (More generally, terms denoting con-
stant operations are trivially monotone, and they are conservative and stable by
Lemma 14.) The variable vi is obviously monotone. It is stable by the assertion in
Lemma 14 regarding projection operations. To see that it is conservative, suppose
that g0, . . . , gn−1 are monotone operations on A. Then

(vAi [g0, . . . , gn−1])+ = (gAi )+

= vA
+

i [(gA0 )+, . . . , (gA0 )+]

= (vAi )+[(gA0 )+, . . . , (gA0 )+].

The final equality uses the stability of the variable vi. Thus, Φ contains all positive
primitive terms.

The next three lemmas secure the closure of Φ under substitution. The proof of
the first is easy and is left to the reader.

Lemma 22. The collection of monotone operations on a set A contains the pro-
jection functions and the constant functions , and is closed under functional com-
position.

Lemma 23. If f is a monotone , conservative operation of rank n on A and if
g0, . . . , gn−1 are monotone , conservative operations of rank m on A , then

f [g0, . . . , gn−1]

is a conservative operation of rank m on A.

Proof. To prove the lemma let k0, . . . , km−1 be monotone operations on A of rank
p. We denote the sequences

(g0, . . . , gn−1) and (k0, . . . , km−1)
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by ḡ and k̄ respectively. Then(
(f [ḡ])[k̄]

)
+ = (f [g0[k̄], . . . , gn−1[k̄])+

= f+[g0[k̄]+, . . . , gn−1[k̄]+]

= f+[g0
+[k0

+, . . . , km−1
+], . . . , gn−1

+[k0
+, . . . , km−1

+]]

= (f+[g0
+, . . . , gn−1

+])[k0
+, . . . , km−1

+]

= (f [g0, . . . , gn−1])+[k0
+, . . . , km−1

+]

The first equality holds by definition of the composition
(
(f [ḡ])[k̄]

)
. The second

holds because f is assumed to be conservative and the compositions g0[k̄], . . . , gn−1[k̄]
are monotone operations by Lemma 22. The third equality holds because the oper-
ations g0, . . . , gn−1 are assumed to be conservative. The fourth holds by definition
of the composition

(f+[g0
+, . . . , gn−1

+])[k0
+, . . . , km−1

+] .

The fifth holds because f is assumed to be conservative and g0, . . . , gn−1 monotone.
�

Since the notion of a complete extension of an operation h is well behaved only
when h is monotone, the same applies to the induced operations τA. Therefore, in
what follows we shall suppose — without always restating it — that terms assumed
to be expanding , contracting , stable , or conservative are also assumed to be mono-
tone (over K). Of course, if a term has a certain concrete form (for example, if it
is positive), then in proving that the term has a certain property like stability we
must also prove that it is monotone; in such cases we will state this explicitly.
Lemma 24. If τ(v0, . . . , vn−1) is a stable , conservative term and if σ0, . . . , σn−1

are stable terms , then τ(σ0, . . . , σn−1) is stable.

Proof. Fix a structure A in K. Then

τ(σ0, . . . , σn−1)A
+

= τA
+

[σ0
A+
, . . . , σn−1

A+
]

= (τA)+[(σ0
A)+, . . . , (σn−1

A)+]

= (τA[σ0
A, . . . , σn−1

A])+

=
(
τ(σ0, . . . , σn−1)A

)
+

The first and fourth equalities hold by the definition of the interpretation of a term
in a structure. The second holds because all of the terms are assumed to be stable.
The third holds because the term τ is assumed to be conservative and the terms
σ0, . . . , σn−1 are assumed to be monotone. (The term τ(σ0, . . . , σn−1) is monotone
by Lemma 22.) �

The previous lemma continues to hold if we replace the term “stable” everywhere
by the term “contracting” or everywhere by the term “expanding” (leaving the
assumption that τ is conservative unchanged). The proof is nearly the same, but
in the second step (where “=” must be replaced by “≤” or by “≥”) we also make
use of the assumed monotony of τ .

The result established so far is summarized in the following theorem.
Theorem 25. The collection of (monotone) stable , conservative terms contains
the positive primitive terms and is closed under substitution.
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The following corollary is consequence of the previous theorem and the charac-
terization of strictly positive terms that was given just before Theorem 6.
Corollary 26. Every strictly positive term is monotone , stable , and conservative.

Our next goal is to show that the set Φ of (monotone) expanding terms includes
all positive terms. The proof is similar in character to the proof of Theorem 25,
but uses the characterization of positive terms that was given in Theorem 6. The
following lemma ensures the closure of Φ under substitution.
Lemma 27. The collection of expanding terms is closed under substitution.

Proof. Suppose that τ(v0, . . . , vn−1) and σ0, . . . , σn−1 are expanding. Then

(τ(σ0, . . . , σn−1)A)+ = (τA[σA0 , . . . , σ
A
n−1])+

≤ (τA)+[(σA0 )+, . . . , (σAn−1)+]

≤ (τA)+[σA
+

0 , . . . , σA
+

n−1]

≤ τA
+

[σA
+

0 , . . . , σA
+

n−1]

= τ(σ0, . . . , σn−1)A
+

The first and last steps follow from the definition of the interpretation of a term in
a structure. The second step follows from Lemma 15 and the assumption that the
terms are monotone. For the next step, we use the assumption that the terms σi
are expanding, and also the fact that the operation (τA)+ must be monotone (this
follows from Lemma 11, since τA is assumed to be monotone). The fourth step
uses the assumption that τ is expanding.

Thus, τ(σ0, . . . , σn−1) is expanding. It is monotone by Lemma 22. �

Lemma 28. If τ is a stable term , then τd is (monotone) expanding.

Proof. By assumption, τA is monotone. Therefore, so is (τd)A, by Lemma 17.
Hence,

((τd)A)+ = ((τA)d)+ ≤ ((τA)+)d = (τA
+

)d = (τd)A
+
.

The first and last equalities use Lemma 8; the inequality follows from Lemma 18
and the monotonicity of τ ; and the next equality holds because τ is stable. �

Theorem 29. Every positive term is monotone and expanding.

Proof. Let Φ be the set of (monotone) expanding terms. If a term is positive
primitive, then it is monotone and stable, by Theorem 25. Hence, it is expanding
by definition, and its dual is monotone and expanding by Lemma 28. This shows
that the positive primitive terms and their duals are in Φ. Since Φ is closed under
substitution, by Lemma 27, it follows that the smallest set of terms containing the
positive primitive terms and their duals and closed under substitution is included
in Φ. Therefore Φ includes all positive terms, by Theorem 6. �

We are now in a position to prove one of two preservations theorems. A formula
is said to be preserved under completions (over K) if its validity in an algebra A
of K implies its validity in the completion A+. A formula is strictly positive if it
contains no occurrences of the (logical) negation symbol.
Theorem 30 (First Preservation Theorem). (i) An equation σ ≈ τ is pre-

served under completions whenever σ and τ are stable terms.
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(ii) More generally , an implication ϕ → σ ≈ τ is preserved under completions
whenever σ and τ are stable terms and ϕ is a Boolean combination of
equations of the form ρ ≈ 0 with ρ stable.

(iii) An inequality σ . τ is preserved under completions whenever σ is a con-
tracting term and τ is an expanding term.

(iv) More generally , an implication ϕ → σ . τ is preserved under completions
whenever σ is a contracting term , τ is an expanding term , and ϕ is a
strictly positive Boolean combination of equations of the form ρ ≈ 0 with ρ
expanding.

Proof. The proof of (i) is easy. If the equation σ ≈ τ is valid in A, then σA = τA,
and therefore (σA)+ = (τA)+. By stability σA

+
= τA

+
; hence σ ≈ τ is also valid

in A+.
The proof of (iii) is quite similar, but uses the definitions of expanding and

contracting instead of the definition of stability.
We illustrate the proof of (ii) with some examples. Expand A by adjoining its

unary discriminator k as an additional operator. Consider, as a first example, the
implication

(1) ρ ≈ 0→ σ ≈ τ .

It is valid in either A or A+ if and only if the equation

(2) σ + k(ρ) = τ + k(ρ)

is valid in the corresponding expanded algebra. The terms ρ, σ, and τ are stable by
assumption, and the terms v0 +v1 and k(v0) are positive primitive and hence stable
by Theorem 25 (here we use the fact that the operation k is completely additive).
It follows that the terms on both the right-hand side and the left-hand side of (2)
are stable. Thus, (2) is preserved under completions (by part (i)), and hence so is
(1).

As a second example, consider the implication

(3) (ρ0 ≈ 0 ∧ ρ1 ≈ 0 ∧ ρ2 6≈ 0 ∧ ρ3 6≈ 0)→ σ ≈ τ .

It is valid in either A or A+ if and only if the equation

(4) [σ · k(ρ2) · k(ρ3) + k(ρ0) + k(ρ1)] ≈ [τ · k(ρ2) · k(ρ3) + k(ρ0) + k(ρ1)]

is valid in the corresponding expanded algebra. As in the case of (2), the terms
on both the right-hand side and the left-hand side of (4) are stable. Thus, (4) is
preserved under completions (by part (i)), and hence so is (3).

The previous example shows how to handle the case when the formula ϕ in the
implication

(5) ϕ→ σ ≈ τ

is a conjunction of equations and negations of equations of the specified form. Sup-
pose, next, that ϕ is a disjunction of formulas ϕi (for i < n) that are conjunctions
of equations and negations of equations as specified. Then the implication (5) is
logically equivalent to the conjunction of the implications ϕi → σ ≈ τ . We have
just seen that each of the latter formulas is preserved under completions. Hence, so
is their conjunction, and therefore also (5). Finally, if ϕ is any Boolean combination
of equations of the specified form, then it is logically equivalent to a disjunction
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ψ of conjunctions of such equations and their negations. Since, as was shown, the
implication ψ → σ ≈ τ is preserved under completions, so is (5).

Part (iv) is a consequence of (iii), and its proof is similar to that of (ii). For
example, to prove that the implication

(ρ0 ≈ 0 ∧ ρ1 ≈ 0)→ σ . τ

is preserved under completions, use the fact that it is valid in either A or A+ just
in case the equation

σ . [τ + k(ρ0) + k(ρ1)]

is valid in the corresponding expanded algebra. Since the term v0 +k(v1) +k(v2) is
strictly positive, it is expanding (and, in fact, stable) by Corollary 26. Therefore the
substitution instance τ+k(ρ0)+k(ρ1) is expanding by Lemma 27. Because the term
σ is contracting by assumption, part (iii) applies. The general case is handled just as
in the preceding paragraph, using the fact that every positive quantifier-free formula
is logically equivalent to a disjunction of conjunctions of atomic formulas. �

Parts (ii) and (iv) of the preceding theorem also hold for canonical extensions.
They generalize Propositions 1.2 and 1.4 in Jónsson [1994].

The following is an immediate corollary of the previous theorem and Theorems
25 and 29. Part (i) is due to Monk [1970]; a weaker version of part (ii), in which ϕ is
assumed to be either a conjunction or else a disjunction of equations ρ ≈ 0 and their
negations (with ρ strictly positive), is stated there without proof. For the proof
of part (v), observe that the term 1 is stable, and hence contracting. Therefore,
the inequality 1 . τ is preserved under completions. The reverse inequality is
universally valid.

Corollary 31. (i) An equation σ ≈ τ is preserved under completions when-
ever σ and τ are strictly positive terms.

(ii) More generally , an implication ϕ → σ ≈ τ is preserved under completions
whenever σ and τ are strictly positive terms and ϕ is a Boolean combination
of equations of the form ρ ≈ 0 with ρ strictly positive.

(iii) An inequality σ . τ is preserved under completions whenever σ is a strictly
positive term and τ is a positive term.

(iv) More generally , an implication ϕ → σ . τ is preserved under completions
whenever σ is a strictly positive term , τ is a positive term , and ϕ is a
strictly positive Boolean combination of equations of the form ρ ≈ 0 with ρ
positive.

(v) The equation τ ≈ 1 is preserved under completions whenever τ is a positive
term.

Theorem 32 (Second Preservation Theorem). Suppose that σ0, . . . , σn−1 are con-
tracting terms , τ0, . . . , τm−1 expanding terms , and ρ a contracting and conservative
term. Then the identitity

(1) ρ(σ0, . . . , σn−1,−τ0, . . . ,−τm−1) ≈ 0

is preserved under completions.

Proof. Let u0, . . . , um−1 be distinct variables that do not occur in (1) and that are
distinct from the variables v0, . . . , vm−1. The term v0 · u0 + · · · + vm−1 · um−1 is
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strictly positive and hence monotone expanding (in fact, stable) by Corollary 26.
Therefore, the substitution instance

γ = τ0 · u0 + · · ·+ τm−1 · um−1

is expanding, by Lemma 27. The term

δ = ρ(σ0, . . . , σn−1, u0, . . . , um−1)

is contracting, by the remark following Lemma 24 (the terms σi are assumed to
be contracting, the variables ui are strictly positive and therefore stable by Corol-
lary 26, and the term ρ is assumed to be contracting and conservative). It is not
difficult to check that the validity of (1) is equivalent to the validity of the impli-
cation

(2) γ ≈ 0→ δ . 0

in any algebra. (Indeed, suppose that (2) holds. Substituting the term −τi for ui
(for each i < m) in (2) we obtain a substitution instance of (2) whose antecent
is trivially true. Therefore the consequent must be true, and the consequent is
obviously equivalent to (1). Now suppose that (1) is valid, and assume that the
antecedent of (2) holds. Then ui . −τi must hold. Therefore

δ . ρ(σ0, . . . , σn−1,−τ0, . . . ,−τm−1)

holds, since ρ is monotone. If the right-hand side of this inequality is equivalent to
0, then obviously so is the left-hand side.) Since the implication (2) is preserved
under completions, by Theorem 30(iv), so is the equation (1). �

We shall call a unary term τ conjugated (over K) if it denotes a conjugated
(unary) operation in each structure in K. We do not require the operation that is
conjugate to the operation τA (for A in K) to be denotable by a term.
Lemma 33. The dual of a stable , conjugated term is stable.

Proof. Let τ be a unary term. Then

(τd)A
+

= (τA
+

)d = ((τA)+)d = ((τA)d)+ = ((τd)A)+ .

The first and last equalities follow from Lemma 8, and the second from the assump-
tion that τ is stable. The third equality (and this is the crucial one) follows from
Lemmas 18 and 21, and from the assumption that τ is conjugated. �

It should be emphasized that the conjugated term in the preceding lemma is
assumed to be unary; in other words, it has just one variable. The lemma does not
extend to terms with more than one variable, as an example in the next section
shows.
Definition 5. (i) A generalized Sahlqvist term is a term of the form

ρ(σd0 , . . . , σ
d
n−1,−τ0, . . . ,−τm−1) ,

where ρ is a strictly positive term, σ0, . . . , σn−1 are strictly positive unary
terms, and τ0, . . . , τm−1 are positive terms.

(ii) A simple Sahlqvist term is a term of the form

ρ(σ0, . . . , σn−1,−τ0, . . . ,−τm−1) ,

where ρ and σ0, . . . , σn−1 are strictly positive (but not necessarily unary)
terms and τ0, . . . , τm−1 are positive terms.
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(iii) A generalized Sahlqvist equation (respectively, a simple Sahlqvist equation)
is an equation of the form τ ≈ 0, where τ is a generalized Sahlqvist term
(respectively, a simple Sahlqvist term).

(iv) A generalized Sahlqvist inequality (respectively, a simple Sahlqvist inequal-
ity) is an inequality of the form σ . τ , where σ is a generalized Sahlqvist
term (respectively, a simple Sahlqvist term) and τ is positive.

In the definition of a simple Sahlqvist term there is no loss of generality in
assuming that the terms σi are actually variables, since the designated strictly
positive terms may be viewed as part of ρ. For example, the simple Sahlqvist term

fξ(v0 + v2 , v1 · v3 ,−(v1 + v4))

can be thought of as having the form ρ(σ0 , σ1 ,−τ), where ρ is the term fξ(v0 , v1 , v2),
σ0 is v0 + v2 , σ1 is v1 · v3 , and τ is v1 + v4 . Alternatively, it can be thought of
as having the form ρ(v0 , v1 , v2 , v3 ,−τ), where ρ is the term fξ(v0 + v2 , v1 · v3 , v4)
and τ is as before; here the terms σ0 and σ1 defined above are being viewed as part
of the term ρ . It follows that any simple Sahlqvist term may be thought of as a
generalized Sahlqvist term in which the terms σi are just variables.
Corollary 34. (i) Every simple Sahlqvist equation and inequality is preserved

under completions.
(ii) Every generalized Sahlqvist equation and inequality in which the designated

strictly positive unary terms are conjugated (over K) is preserved under
completions.

Proof. To prove the first assertion in (ii), suppose that

ρ(σd0 , . . . , σ
d
n−1,−τ0, . . . ,−τm−1) ,

is a Sahlqvist term in which the terms σ0, . . . , σn−1 are strictly positive, conjugated,
and unary. Then these latter terms are stable by Corollary 26, and hence so are their
duals, by Lemma 33. The terms τ0, . . . , τm−1 are positive and therefore expanding,
by Theorem 29. The term ρ is strictly positive and therefore conservative and stable,
by Corollary 26. The assertion now follows directly from the second preservation
theorem.

The second assertion of (ii) follows from the first. A generalized Sahlqvist in-
equality σ . τ is equivalent to the generalized Sahlqvist equation σ · −τ ≈ 0, and
any condition on the designated unary terms of σ transfers from the inequality to
the equation.

The proof of part (i) is quite similar, but uses Corollary 26 instead of Lemma 33.
We leave the details to the reader. �

In the usual definition of a Sahlqvist term, the terms σdi are replaced by terms
of the form

(1) fd0 (fd1 (. . . fdn−1(v) . . . )) ,

where f0, . . . , fn−1 are basic operation symbols of rank 1 that are different from
negation. The term in (1) is obviously equivalent (by the law of double negation)
to the dual of the strictly positive unary term

(2) f0(f1(. . . fn−1(v) . . . )) .

If the operations denoted by f0, . . . , fn−1 are conjugated, then so is the operation
denoted by the term in (2); indeed, if gi is the conjugate of hi for i < n, then the
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composition of gn−1, gn−2, . . . , g0 (in that order) is the conjugate of the composi-
tion of h0, h1, . . . , hn−1. Thus, the hypotheses of Corollary 34(ii) are satisfied, in
particular, when in the Sahlqvist term

ρ(γ0, . . . , γn−1,−τ0, . . . ,−τm−1)

the terms γi have the form (1) and the operations denoted by the symbols fi are
conjugated in each structure in K.

Lemma 22 through Theorem 29, and parts (i) and (ii) of the First Preservation
Theorem and its corollary, are valid in the context of abstract classes of structures
satisfying the conditions set forth in the first paragraph of this section. The re-
maining results in the section require the additional assumption that, among the
fundamental operations of the structures, there are two completely additive bi-
nary operations + and · , and two distinguished elements 0 and 1, satisfying the
following conditions for all elements x, y in each structure:

x+ 0 = 0 + x = x , x · 0 = 0 · x = 0 ,
x+ 1 = 1 + x = 1 , x · 1 = 1 · x = x ,

x+ y = 0 iff x = 0 and y = 0 ,
x · y = 0 iff x ≤ −y .

Specifically, the properties expressed in the first two lines of the displayed equations
are need to prove the remaining parts of the First Preservation Theorem and its
corollary. The other requirements, as well as the reflexivity of ≤ , are needed to
derive the Second Preservation Theorem and Corollary 34. Finally, the proofs of
Lemma 33 and Corollary 34 require the addition of Lemma 21 to the list of basic
assumptions about the properties of the extension construction.

4. Equations that are not preserved under completions

We now give, in algebraic form, an example from Venema [1993] of a Sahlqvist
equation that is not preserved under completions. In this example, the term f(v) in
equation (1) below (the designated strictly positive unary term in the formulation
of Corollary 34(ii)) denotes an operation that is completely additive, but not conju-
gated. Thus, the assumption that these terms are conjugated cannot be weakened
to the assumption that they are complete additive.

Take S to be the set of ordinals less than or equal to ω + 2 (where ω is the first
infinite ordinal) and take R to be the binary relation on S consisting of the (ordered)
pairs (0, n) for n < ω, the pairs (2n, ω) for 0 < n < ω, the pairs (2n+ 1, ω + 1) for
n < ω, and the pairs (ω, ω + 2), (ω + 1, ω + 2) (see Figure 1). Let

B = 〈B , ∪ , ∼ , h 〉

be the complex algebra of the relational structure 〈S ,R 〉. Thus, the elements of B
are just the subsets of S, and h is a completely additive unary operation on B that
is defined on singletons by the rule

h({x}) = {y : (x, y) is in R} .
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Figure 1. The binary relation R.

It is easy to compute that

h({0}) = {n : n < ω},
h({2n}) = {ω} for 0 < n < ω,

h({2n+ 1}) = {ω + 1} for n < ω,

h({ω}) = h({ω + 1}) = {ω + 2},
h({ω + 2}) = ∅.

From these calculations it follows that, for any subset X of S, the set h(X) is
finite (in fact, it is a subset of {ω, ω+ 1, ω+ 2}) if 0 6∈ X, and it is cofinite (in fact,
it contains every natural number) if 0 ∈ X. Thus, the collection A of all finite and
cofinite subsets of S is closed under the operation h. Let g denote the restriction
of h to A. Then the structure

A = 〈A , ∪ , ∼ , g 〉

is an atomic Boolean algebra with a completely additive unary operator g, and it
is easy to check that B is the completion of A. In particular, h = g+.

Let f denote a unary operation symbol that is interpreted as h in B and as g in
A. We shall show that the (positive) Sahlqvist equation

(1) f(fd(v)) . fd(f(v))

is valid in A, but fails to be valid in the completion B. (Strictly speaking, (1) is
not an equation. However, it is well known that, in a theory of Boolean algebras
with operators, every inequality is equivalent to an equation.)

We begin by showing that (1) is valid in A. Let X be an arbitrary finite or
cofinite subset of S, and suppose that x is any element of S. We must show that if
x is in the set

g(gd(X)) = g(∼g(∼X)) ,
then it is in the set

gd(g(X)) = ∼g(∼g(X)) .
Consider, first, the case when the element x = ω+ 2 is in g(∼g(∼X)). From the

definition of g (see the definition of h) it follows that at least one of the elements ω
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and ω + 1 must be in the set ∼g(∼X), since these are the only two elements that
are mapped to ω + 2 by g; suppose that ω is in the set (the case when ω + 1 is in
the set is completely analogous). Then ω is not in g(∼X), so none of the elements
2n, for 0 < n < ω, can be in ∼X (each of these elements is mapped to ω by g).
Therefore, they must all be in X. This forces X to be infinite and hence cofinite.
It follows that 2n+ 1 is in X for some (and, actually, for almost all) n < ω. Hence,
ω+ 1 is in g(X); also, ω is in g(X), since, e.g., 2 is in X. As a consequence, neither
of ω, ω + 1 is in ∼g(X), so ω + 2 cannot be in g(∼g(X)). This means that ω + 2
must be in ∼g(∼g(X)), as desired.

Now consider the case when x is one of the elements less than ω+ 2. A straight-
forward computation, using the definition of g, establishes the following chain of
equivalences for any subset Y of S:

0 ∈ Y iff {n : n < ω} ⊆ g(Y )

iff ∼ g(Y ) ⊆ {ω, ω + 1, ω + 2}
iff g(∼g(Y )) ⊆ {ω + 2}.

Suppose that x is in the set g(∼g(∼X)); then this set contains an element different
from ω + 2 (namely x). The above chain of equivalences (with Y = ∼X) shows
that 0 cannot be in ∼X; hence, it is in X. Applying again the above equivalences
(with Y = X), we see that the set g(∼g(X)) contains at most the element ω + 2.
In particular, it does not contain x, so x is in ∼g(∼g(X)).

This completes the verification that equation (1) holds in A. To show that it
fails in B, let X be the set of positive, even integers. Then ∼X is the set of odd
integers, together with 0, ω, ω + 1, and ω + 2. Successive computations give:

h(∼X) = S ∼ {ω} , ∼h(∼X) = {ω} , h(∼h(∼X)) = {ω + 2} .
On the other hand,

h(X) = {ω} , ∼h(X) = S ∼ {ω} , h(∼h(X)) = S , ∼h(∼h(X)) = ∅ .

Therefore, h(∼h(∼X)) is not included in ∼h(∼h(X)).

The following remarks are intended to illuminate some of the intuitions underly-
ing the preceding construction. The argument in the penultimate paragraph above
(starting with “Now consider”) actually shows that for any subset X of S, each
element of h(∼h(∼X)) — except possibly ω + 2 — must be in ∼h(∼h(X)). The
basic reason for this is the following characterization of the elements x of S that
are different from ω + 2: any two predecessors u, v of x (in R) have a common
predecessor y (namely 0). If x were in h(∼h(∼X)) and also in h(∼h(X)), then it
would have a predecessor u in ∼h(∼X) and a predecessor v in ∼h(X). In which
set — X or ∼X — would the common predecessor y of u and v be? If it were in X,
then v would be in h(X), and if it were in ∼X, then u would be in h(∼X). Both
of these conclusions lead, of course, to contradictions.

The distinguishing feature of ω + 2 is the fact that it has two predecessors,
ω and ω + 1, each of which has an infinite family of predecessors, and none of
these infinitely many predecessors is a common predecessor of both ω and ω + 1.
If ω + 2 is in h(∼h(∼X)), then one of its two predecessor is not in h(∼X), so
none of the infinitely many predecessors of that predecessor is in ∼X. In the case
when we admit only finite and cofinite sets, this forces X to be cofinite, so that
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both predecessors of ω + 2 must be in h(X); hence ω + 2 must be in ∼h(∼h(X)).
However, in the case when all infinite subsets of S are admitted, we can choose X
to be the set of predecessors of just one of the predecessors of ω + 2. Because the
two predecessors of ω + 2 do not have a common predecessor, this forces one of
them to be in h(X) and the other one to be in ∼h(X), causing ∼h(∼h(X)) to be
empty.

Is it necessary, in Corollary 34(ii), to assume that the designated strictly positive
terms (the terms σ0, . . . σn−1 in the definition of a Sahlqvist term) are in fact
unary? In other words, does the assertion continue to hold when these terms
denote operations of rank > 1 that are conjugated in each coordinate? The next
example shows that this need not be the case, even when the operations have rank
2, and even when they are their own conjugates in each coordinate.

Take S to be the set of ordinals less than or equal to ω and take R to be the
ternary relation on S consisting of the (ordered) triples (n, n, n) for n < ω and all
permutations of the triples (2n, 2n + 1, ω) for n < ω. (For instance, the triples
(ω, 2n, 2n+ 1) and (2n+ 1, ω, 2n) are in R for all n < ω.) The relation R is totally
symmetric in the sense that every permutation of a triple in R is again in R.

Let
B = 〈B , ∪ , ∼ , h 〉

be the complex algebra of the structure 〈S ,R 〉. As in the previous example, the
elements of B are just the subsets of S, and h is a completely additive binary
operation on B that is defined on pairs of singletons by the rule

h({x}, {y}) = {z : (x, y, z) is in R} .

For all n < ω we have

h({n}, {n}) = {n},
h({2n}, {2n+ 1}) = h({2n+ 1}, {2n}) = {ω},
h({2n}, {ω}) = h({ω}, {2n}) = {2n+ 1},
h({2n+ 1}, {ω}) = h({ω}, {2n+ 1}) = {2n},

and

h({x}, {y}) = ∅

for all other pairs of elements x, y from S.
The operation h is self-conjugate in the sense that it is its own left- and right-

conjugate:

h(X,Y ) ∩ Z = ∅ iff h(Z, Y ) ∩X = ∅ iff h(X,Z) ∩ Y = ∅

for all subsets X,Y, Z of S. Indeed, it is easy to check that the complex operation
derived from a totally symmetric relation is always self-conjugate (no matter what
the rank of the relation is).

The set A of finite and cofinite subsets of S is closed under the operation h. To
see this, suppose that X and Y are subsets of S. If both of them are finite, then
the previous computations show that h(X,Y ) is also finite. If just one of them
is finite, but does not contain ω, then again h(X,Y ) is finite. If one of them is
cofinite — say it includes the set Ck = {n : k ≤ n < ω} for some k < ω — and the
other contains the element ω, then h(X,Y ) is cofinite, since it must contain Ck+1.
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Finally, if both sets are cofinite, then they both contain Ck for some k < ω, so of
course the same is true of h(X,Y ).

Take g to be the restriction of h to A. Then the structure

A = 〈A , ∪ , ∼ , g 〉

is an atomic Boolean algebra with a conjugated binary operator g, and B is the
completion of A.

Suppose that f is a binary operation symbol that denotes the operation h in B
and the operation g in A. We shall show that the (positive) Sahlqvist equation

(2) fd(u, v) . f(u, u) + f(v, v)

is valid in A, but not in its completion B.
To show that (2) is valid in A, let X and Y be finite or cofinite subsets of S,

and consider an arbitrary element x in ∼g(∼X,∼Y ). Then x is not in g(∼X,∼Y ).
In case x is a natural number, this means that x cannot be in both ∼X and ∼Y
(since g({x}, {x}) = {x}); consequently, x must either be in X or else in Y , and
hence in g(X,X) or in g(Y, Y ). In case x = ω, it means that for no natural number
n do we have both 2n in ∼X and 2n + 1 in ∼Y (since g({2n}, {2n + 1}) = {ω});
therefore, the two sets ∼X and ∼Y cannot both be cofinite, or, put another way,
either X or Y is cofinite. Suppose X is cofinite. Then for some natural number n
we have 2n and 2n + 1 in X, so ω is in g(X,X). The case when Y is cofinite is
completely analogous.

This completes the proof that equation (2) is valid in A. To see that it fails in
B, take X and Y both to be the set of even (natural) numbers. Then ∼X and ∼Y
are both the set of odd numbers, together with ω. A simple computation shows
that h(∼X,∼Y ) is precisely the set of all natural numbers. (It contains the even
numbers because h({2n+1}, {ω}) = {2n}, and it contains the odd numbers because
h({2n+ 1}, {2n+ 1}) = {2n+ 1}.) Therefore, ∼h(∼X,∼Y ) consists of just ω. But
h(X,X) and h(Y, Y ) are both the set of even numbers. Thus, ∼h(∼X,∼Y ) is not
included in their union.

We have just seen that equation (2) is not preserved under completions. Since
the term on the right-hand side of the equation is stable (it is strictly positive), the
term on the left-hand side cannot be stable, by part (iii) of the First Preservation
Theorem. This shows that the dual of a stable, conjugated term need not be
stable. In other words, Lemma 33 does not generalize to conjugated terms of
higher rank. The proof of that lemma depends essentially on Lemmas 18 and 21.
Moreover, Lemma 18 holds for arbitrary monotone operations, and in particular for
conjugated operations of arbitrary rank. Thus, Lemma 21 must fail for conjugated
operations of higher rank.
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