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1 Introduction

Modern modal logic originated as a branch of philosophical logic in which the concepts of
‘necessity’ and ‘possibility’ were investigated by means of a single pair of dual, monadic
operators (2 and 3) that are added to a propositional or first order language. In subsequent
years, modal logic has received attention as an attractive approach towards formalizing such
diverse notions as time, knowledge, or action. Nowadays, modal logics are applied in various
disciplines, ranging from economics to linguistics and computer science. Consequently, there
is by now a large variety of modal languages, with an even greater wealth of interpretations.
In particular, many applications require a framework consisting of a language with a family of
modal connectives, and a semantics in which the associated accessibility relations are somehow
related.

Because of this enormous diversity in appearance and applications, there is a need for
unifying results in the mathematical theory of modal logics. Fortunately, this need has been
recognized and addressed by modal logicians. Roughly speaking, one can distinguish two
approaches in the literature on such unifying results in modal logic. One way is to abstract
from the number and arity of the modal operators and develop the general theory of modal
logic. This perspective was already taken in the classic paper Jónsson & Tarski [8] and
followed by for instance Goldblatt [5]; it also prevails in modern works such as the mono-
graph Kracht [9] and the recent textbook Blackburn et alii [3]. A second direction is to
compare various classes of modal logics, cf. Kracht & Wolter [10] for a survey. One can
distinguish two research lines in this direction; transfer theory comprises investigations of the
effect of extending modal languages with certain operators that are somehow related to the
old ones. In the second line of research, to which the present paper forms a contribution, one
studies simulations of one modal logic by another.

Let us briefly explain what a simulation is (a more precise definition is given in section 2).
Suppose that we are dealing with two modal languages, L1 and L2. A translation mapping L1-
formulas to L2-formulas is called an interpretation if it meets certain uniformity conditions.
Now we say that an L2-logic Λ2 simulates an L1-logic Λ1 with respect to the interpretation
(·)t if for all formulas ϕ in L1 we have that

ϕ ∈ Λ1 ⇐⇒ ϕt ∈ Λ2.

A simulation is a function mapping L1-logics to simulating L2-logics; simulations can and
have been used to derive results about (families of) L1-logics from results about L2-logics,
and vice versa. Obviously, the more properties a simulation preserves or reflects, the more
useful it is.

Gödel’s translation of intuitionistic logic in Grzegorczyk’s logic, cf. [4], provides a well-
known early example of a simulation. Important results in modal logic were obtained by
Thomason in the early seventies, cf. [16, 17]. Thomason showed how polymodal logics (that
is, normal modal logics in a language with a number of diamonds or unary modalities) can
be simulated by monomodal ones, and applies this result to prove certain (negative) results
concerning monomodal logics.

Thomason’s approach was taken up and developed further in Kracht & Wolter [10,
11]. In the second paper, which was in fact written earlier, the authors show that normal
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monomodal logics can simulate normal polymodal logics, (equational theories of lattices) and
non-normal monomodal logics. Concerning the first simulation operation, which is based
on Thomason’s ideas, Kracht and Wolter prove that several properties of modal logics are
transferred; that is, they show for various properties P that the normal polymodal logic
has property P if and only its simulating logic has P . Examples include various kinds of
axiomatizability, canonicity, first-order definability and interpolation. Although the results
in [11] are significant, they do not entirely justify the claim made in the paper’s title that
normal monomodal logics can simulate all others, since polyadic modal operators, which we
will discuss in a moment, are not considered.

In their second paper [10], Kracht and Wolter fill this gap by making a proposal for
a general simulation of polyadic logics by monadic ones (interpretations of specific binary
operators with unary ones were known for instance in algebraic logic). However, this article
is a survey paper rather than a research report, and the authors confine themselves to a very
rudimentary investigation of properties that are preserved or reflected by this simulation. To
be precise, they only prove reflection of canonicity and first-order definability. As far as we
know, the only other general interpretation of dyadic modalities by diamonds was developed
in the context of categorial grammar, cf. Kurtonina [12]. The main result in this paper
states that a certain simulation preserves Sahlqvist axiomatizability, but no other properties
of logics are considered. In other words, the question whether there is an adequate simulation
of polyadic modal logics by monadic ones is still open. It is our intention to provide a positive
answer to this question.

What are polyadic modal operators? Syntactically, an n-ary modal operator is just an
n-ary connective; what makes it modal is its intended interpretation, which uses accessibility
relations of arity n+1. Generalizing the definition of ordinary modal logic, the truth condition
for an n-ary operator ∇ reads as follows:

M, w  ∇(ϕ1, . . . , ϕn) iff there are v1, . . . , vn such that R∇wv1 . . . vn
and M, vj  ϕi for each j.

Here R∇ denotes the n + 1-are relation associated with ∇. Alternatively, one could give a
syntactic specification by defining the notion of a normal, polyadic modal logic, cf. section 2,
or start from an algebraic perspective by considering n-ary operators on Boolean algebras,
cf. Jónsson & Tarski [8]. Examples of such (binary) operators can be found in categorial
grammar (see Lambek [13], Roorda [15]), in temporal logic of intervals (see Venema [18],
Hansen & Zhou [6]) or in multidimensional modal logics such as arrow logic (see Marx

et alii [14]). A prime example in the theory of Boolean algebras with operators is the
composition operator in relation algebras, see Hodkinson and Hirsch [7]. It should be noted
here that interpretations of this specific operator using unary ones (cylindric and substitution
operators, to be precise) have been known in algebraic logic for a long time.

If we are after a simulation of arbitrary polyadic modal logics by monomodal ones, by the
results of Kracht and Wolter it suffices to find out how to simulate a polyadic modal logic by
a polymodal one. And since simulation results are usually based on semantic intuitions, the
starting point would be to encode an n + 1-ary relation (n ≥ 2) using a number of binary
relations. There are of course various ways to do so; our approach, which is independent and
different from the one in [10], and also differs from the approach followed in Kurtonina [12], is
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described in detail in section 3. We confine ourselves to a polyadic language L∇ with one single
dyadic operator ∇; our basic idea is to decompose the ternary accessibility relation T into
four binary relations that we will call S, R0, R1 and R2; accordingly, the polymodal language
L3 in which we interpret L∇ will have four diamonds 3s, 30, 31 and 32. The semantic
idea of simulating L∇-structures by L3-ones has a syntactic counterpart in an interpretation
function (·)3 mapping L∇-formulas to L3-formulas. Finally, using the completeness of normal
modal logics with respect to descriptive general frames, we are able to define a function (·)sim

mapping normal L∇-logics to L3-logics.
The main results of our paper are stated in the Theorems 5.3 and 5.4; the first theorem

states that the function (·)sim is indeed a simulation, while the second result lists a number
of important properties of modal logics that are transferred by this simulation — a concise
survey is provided in Table 1.

Finally, the only reason why we confine ourselves to a polyadic modal language with a
single modality of arity 2 is to keep our notation as simple as possible. It is entirely obvious
how to extend our results to modalities of arity bigger than two. Our approach does not
cover the case of a nullary modality or modal constant; however, the unary relation Uc that
is the semantic counterpart of such a constant c, can easily be encoded as the binary relation
IdUc = {(s, s) | s ∈ Uc}. Following this lead one easily shows how to simulate modal logics in
such a language by a normal modal logic in a diamond language. Since it is also obvious that
one can generalize our result to languages with a (possibly infinite) number of modalities of
various rank, this shows that normal polymodal logics can adequately simulate normal modal
logics in arbitrary modal languages. Combining this with the results of Kracht and Wolter,
it follows that (provided we confine ourselves to finite languages),

normal monomodal logics can indeed simulate all others.

It also follows that using our simulation, we can extend any interpretation of monomodal logic
to polyadic modal logics. As an example we mention the ‘box-as-power set’ interpretation
which maps the notion of derivability from a monomodal logic into the first-order notion of
derivability from the set theory Ω; we refer to van Benthem et alii [1, 2] for more details.

Overview The next section provides some background information on the theory of modal
logics with operators of arbitrary rank, and on the notion of one logic simulating another; we
also mention some specific definitions and notational conventions. In section 3 and 4 we ex-
plain the basic semantic ideas underlying our approach, defining simulation and unsimulation
maps that turn L∇-structures into L∇-structures, and vice versa. Section 5 forms the pivot of
the paper, containing the definition of the simulation operation (·)sim which maps L∇-logics
to L3-logics, and the two main theorems of the paper; this section also has the proofs of the
easy parts of these theorems, while the remaining sections are devoted to proofs of the harder
parts.

2 Preliminaries

Since not every reader may be familiar with polyadic modal operators, in this preliminary sec-
tion we briefly recall some basic notions concerning modal languages and logics with poyadic
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operators; for more detailed information, the reader is referred to [3]. We also fix some no-
tational conventions concerning the particular languages that we will be dealing with in this
paper.

Modal Languages A modal similarity type τ is a pair τ = 〈O, ρ〉, where O is a non-
empty set, whose elements are called modal operators, and ρ : O → N is an arity function.
With a modal similarity type τ and a set of propositional variables P we associate a modal
language Lτ (P ) whose symbols range over P ∪ O ∪ {>,∧,¬} ∪ {(, )}. Often, we will not
be specific concerning the set of propositional variables and write Lτ instead of Lτ (P ). We
will identify the modal language with its set of formulas which we define inductively as the
smallest superset of P ∪ {>} which contains ¬ϕ and ϕ ∧ ψ if ϕ and ψ are formulas, and
contains ∇(ϕ1, . . . , ϕn) if ∇ is an n-adic modal operator and ϕ1, . . . , ϕn are formulas.

Besides the standard abbreviations for the Boolean connectives, we use the symbol ∆ for
the dual operator to ∇; that is, ∆(ϕ1, . . . , ϕn) abbreviates ¬∇(¬ϕ1, . . . ,¬ϕn). We will use
diamonds, i.e., symbols of the form 3j , for monadic modal operators; their duals are boxes:
2jϕ abbreviates ¬3j¬ϕ.

Modal Semantics Given a modal language Lτ , a Kripke frame over Lτ , or briefly: an
Lτ -frame, is a tuple F = (W,R∇)∇∈τ , where W is a nonempty set, and every R∇ is a relation
on W of arity ρ(∇) + 1. A model is a pair M = (F , V ), where F is a frame and V is a
valuation; that is, a function assigning to each propositional variable p ∈ P a subset V (p) of
W . The notion of truth of a formula ϕ in M at a world w is defined in a standard way, the
clause for an n-adic modal operator ∇ being

M, w  ∇(ϕ1, . . . , ϕn) iff for some v1, . . . , vn such that R∇wv1 . . . vn
we have M, vi  ϕi.

The definitions of other semantic notions are also as usual. We would like to stress however
that in this paper we only consider the local consequence relation. For instance, if C is a class
of Lτ -frames, Σ is a set of Lτ -formulas, and ϕ is a Lτ -formula, then we say that ϕ is a
consequence of Σ over C if for every modelM that is based on a frame in C, and every point
w in M, we have that M, w  Σ only if M, w  ϕ.

Given an n+1-ary relation R on a set W , we define the operation mR : (P(W ))n → P(W )
by

mR(a1, . . . , an) = {w ∈W | Rwv1 . . . vn for some v1 ∈ a1,. . . , vn ∈ an}.

A general Lτ -frame is a pair G = (F , A), where F is an Lτ -frame and A is a collection of
subsets of W which is closed under the Boolean operations and under the operations mR∇

for each modal operator ∇. The definition of notions such as admissible sets and validity on
a general frame is as usual in modal logic.

A general Lτ -frame G = (F , A) is called differentiated if for all distinct points there is an
admissible set a containing precisely one of the two points; tight if for every modality ∇ and
for all points w1, . . . , wn ∈W for which R∇ww1 . . . wn does not hold, there are admissible sets
a1, . . . , an satsifying wi ∈ ai for all i but not w ∈ mR∇(a1, . . . , an); compact if every subset
A0 of A with the finite intersection property has a non-empty intersection. A general frame
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is called refined if it is differentiated and tight, and descriptive if it is refined and compact.
DΣ denotes the class of descriptive general frames in which Σ is valid.

Normal Modal Logics The minimal normal modal logic Kτ of similarity type τ is the
minimal set of formulas of the language Lτ which is closed under the rules of Modus Ponens,
Uniform Substitution, and Necessitation:

from ϕ, infer ∆(⊥, . . . , ϕ, . . . ,⊥),

while containing all propositional tautologies and the axioms
(K∇) ∆(p1 → q1, . . . , pn → qn)→ (∆(p1, . . . , pn)→ ∆(q1 . . . qn)) and
(Dual) ∇(p1, . . . , pn)↔ ¬∆(¬p1, . . . ,¬pn)

(The latter axiom is needed since we have taken the existential ∇ as our primitive operator.)
A normal modal Lτ -logic Λ is a set of formulae which contains Kτ and is closed under

Modus Ponens, Uniform Substitution and Necessitation. If Γ is a set of formulae, we define
Kτ .Γ as the minimal normal modal logic containing Γ.

Given a normal logic Λ we say that a formula ϕ is a theorem of Λ, and we write `Λ ϕ, if
ϕ belongs to Λ. In accordance with our use of the local paradigm in the semantics, we say
that a formula ϕ is derivable from a set of formulas Σ in a normal modal logic Λ, notation:
Σ `Λ ϕ, if there exists a finite subset {σ1, . . . , σn} of Σ such that `Λ (σ1 ∧ . . . ∧ σn)→ ϕ.

For properties of normal modal logics such as elementarity, completeness or canonicity,
the usual definitions apply.

Simulations The following definitions are taken from Kracht & Wolter’s [11], but restricted
to our context. Given two modal languages Lτ and Lτ ′ , an interpretation of Lτ in Lτ ′ is a
map (·)F : Lτ → Lτ ′ which satisfies the following uniformity conditions (for all proposition
letters, Lτ -formulas and τ -operators involved):

qF = pF [q/p]
(ϕ1 ∧ ϕ2)F = (p1 ∧ p2)F [ϕFi /pi]
(¬ϕ)F = (¬p)F [ϕF /p]
(∇(ϕ1, . . . , ϕn))F = (∇(p1, . . . , pn))F [ϕFi /pi].

Given two normal modal logics Λ and Λ′ in Lτ and Lτ ′ , respectively, we say Λ′ simulates Λ
with respect to (·)F , if for all Σ ⊆ Lτ and ϕ ∈ Lτ :

Σ `Λ ϕ iff ΣF `Λ′ ϕ
F .

A simulation is a function mapping normal modal logics in one language to simulating logics
in another. For a property P of normal modal logics, we say that a simulation (·)s preserves
P if it holds that if Λ has P , then Λs has P . Similarly we say that (·)s reflects P if Λ has P
whenever Λs does. Finally, (·)s transfers P if it both preserves and reflects P .
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Specific definitions and notational conventions In this paper we propose a scheme
of interpretations to map modal languages with polyadic operators to modal languages with
diamonds only, and for each interpretation we define an associated simulation. For notational
convenience, we will be dealing exclusively with two modal languages, L∇ and L3, respec-
tively. L∇ has a single binary operator ∇, while L3 has four diamonds: 3s, 30, 31 and 32;
throughout this paper we reserve the symbol i to refer to an element of the set {0, 1, 2}. In
the semantics of L∇, we will denote the ternary accessibility relation for ∇ by T , and in the
semantics of L3, we will denote the relations for 3s, 30, 31 and 32 with S, R0, R1 and
R2, respectively. Given an L3-frame F = (W,S,R0, R1, R2) we will denote the associated
operations mS , mR0 , mR1 , mR2 as ms, m0, m1 and m2, respectively.

Throughout this paper we use the following notational convention: whenever we define a
map (·)q : A → B, then for any subset X of A we let Xq denote the set {xq | x ∈ X}. The
same convention applies, mutatis mutandis, to lifting operations on structures to operations
on classes of structures.

3 Simulating L∇-structures

3.1 The basic idea

The basic idea behind our simulation is the following. In the Kripke semantics of L∇, we
interpret the modal operator ∇ using a ternary accessibility relation T . If we want to simulate
∇ using diamonds, we have to encode the ternary relation using binary ones. There are a
number of ways to do this; of these options we have chosen the following.

Definition 3.1 Let F be the L∇-frame (W,T ). Its simulation frame F• is given as the
L3-frame F• = (W •, S, R0, R1, R2) where W •, S, R0, R1 and R2 are defined as follows:

W • = W ∪ T,
wSt iff t ∈ T and t0 = w,

tRiw iff t ∈ T and ti = w.

Here and in the sequel we use the following notation: whenever t is a triple of elements of W ,
we let ti denote the i-th coordinate of t; that is, we can write t = (t0, t1, t2).

When we are discussing such a simulation frame F•, the elements of W will be called old
or base points, the elements of T , new or middle points. �

In words, to obtain F• from F , we add each triple (u, v, w) of points from W to the
universe, provided that the relation T holds of u, v and w. The relation S holds of two points
w and t if w is an old point, t is a triple in T and w = t0; and for each i, the relation Ri holds
of two points t and w provided that w is an old point, t is a triple in T and w is the i-th
coordinate of t. Thus each T -triple (u, v, w) is added as a witness to the fact that (u, v, w)
indeed belongs to T , with the new relations holding as indicated in Figure 1. [htb]

This picture also explains our use of the terms ‘base’ and ‘middle’ points. Throughout
this paper we will make use of the fact that in any simulation frame we can distinguish the
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Figure 1: Adding a middle point

base points from the middle points through L3-formulas. Let m denote the formula 30>,
and b the formula ¬m; it is immediate from the definitions that for any model (F•, V ) and
any point w in F• we have

F•, V, w  m iff w is a middle point,
F•, V, w  b iff w is a base point.

The basic translation function mapping L∇-formulas to L3-formulas is closely related to
the semantic intuition of simulating a frame.

Definition 3.2 The translation function (·)t : L∇ → L3 is defined by the following formula
induction:

pt = p

(¬ϕ)t = ¬ϕt

(ϕ1 ∧ ϕ2)t = ϕt1 ∧ ϕt2
(ϕ1∇ϕ2)t = 3s(31ϕ

t
1 ∧32ϕ

t
2).

The map (·)3 : L∇ → L3 is defined as follows:

ϕ3 = b→ ϕt.

�

Remark 3.3 The map (·)3 is not an interpretation in the strict sense of the word — the
reader can easily check that, for instance, (¬q∇¬q)3 6= (p1∇p2)3[(¬q)3/pi]. Nevertheless,
we will pretend that it is an interpretation and also call it an interpretation.
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Our justification for this improper use of terminology is the following. Consider the
translation (·)+ : L∇ → L3 defined as follows:

p+ = b→ p

(¬ϕ)+ = b→ ¬ϕ+

(ϕ1 ∧ ϕ2)+ = b→ (ϕ+
1 ∧ ϕ

+
2 )

(ϕ1∇ϕ2)+ = b→ 3s(31ϕ
+
1 ∧32ϕ

+
2 ).

Clearly, (·)+ is an interpretation in the strict sense of the word. The point is that we could
have been working with (·)+ instead of with (·)3, and obtain the very same results. In fact,
the map (·)3 can be seen as a simplified version of (·)+; the difference, which lies in the fact
that in (·)3 we do not restrict to base points in every clause of the inductive definition, makes
that (·)3 is much easier to work with in practice.

The following proposition shows that the translation map (·)t is truth preserving.

Proposition 3.4 Let F be an L∇-frame, and let V and V ′ be valuations on F and F•,
respectively, such that V and V ′ agree on the base points of F•. Then for all states w of F ,
and for all L∇-formulas ϕ we have

F , V, w  ϕ iff F•, V ′, w  ϕt.

Proof. This proposition can be proved by a straightforward induction on the complexity of
ϕ. For the atomic case, we have that F , V, w  p iff w ∈ V (p) iff w ∈ V ′(p) iff F•, V ′, w  ϕ3.

For the inductive step, the case of the Boolean connectives is trivial. Assume then that ϕ
is of the form ϕ1∇ϕ2. First we suppose that F , V, w  ϕ. This implies the existence of points
u1, u2 in W such that Twu1u2, and F , V, ui  ϕi. From the inductive hypothesis we may infer
that F•, V ′, ui  ϕi. It follows from Twu1u2 that the triple t = (w, u1, u2) is a middle point in
F•; it is obvious that wSt, tRiui. But then we easily find that F•, V ′, w  3s(31ϕ

t
1 ∧32ϕ

t
2),

which is what we were after.
For the other direction, suppose that F•, V ′, w  ϕt. It is easy to see that this implies

the existence of points t, u1 and u2 in F• such that wSt, tRiui and F•, V ′, ui  ϕi. Using
the definition of F• we find that t is a middle point, that u1 and u2 are base points, that in
fact, t is the triple (w, u1, u2), and that since t belongs to T we have Twu1u2. The inductive
hypothesis gives that F , V, ui  ϕi. Hence we may conclude that indeed F , V, w  ϕ1∇ϕ2.
qed

As an immediate corollary we obtain that the map (·)3 transfers validity between a frame
and its simulation.

Proposition 3.5 Let F be an L∇-frame, and ϕ an L∇-formula. Then

F  ϕ iff F•  ϕ3.
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Proof. We only prove the direction from left to right. Suppose that F  ϕ but, for contra-
diction, that F• 6 ϕ3. That is, for some valuation V ′ on F• and some point w in F• we
have that F•, V ′, w 6 b→ ϕt. It follows that F•, V ′, w  b whence w must be a base point.
Now define the valuation V on F as follows:

V (p) = V ′(p) ∩W,

where W is the collection of old points (that is, the universe of F). Obviously, we may now
use Proposition 3.4 to infer from F•, V ′, w 6 ϕt that F , V, w 6 ϕ. This shows that F 6 ϕ.
qed

3.2 Simulating general frames

It is well-known that Kripke frames do not form a mathematically adequate semantics for
modal logics; hence, if we want to simulate arbitrary modal ∇-logics, including the ones that
are not complete, it would be good to extend our simulation to the kind of structures that
do provide a good semantics for modal logics, such as modal algebras or general frames. In
this paper we concentrate on general frames.

Definition 3.6 Let G = (F , A) be a general L∇-frame. Its simulation G• is defined as the
structure (F•, A•), where A• is the collection of subsets of F• given by

A• = {a ∪ (T ∩
⋃
j∈J

aj × bj × cj) | a, aj , bj , cj ∈ A, J finite }.

�

Proposition 3.7 Let G = (F , A) be a general L∇-frame. Then G• is a general L3-frame; in
fact, it is the general L3-frame based on F• which is generated by A.

Proof. In order to prove that G• is a general frame, it suffices to show that the collection A•

contains ∅ and W ∪ T , and that it is closed under the boolean and modal operations. We
only prove the part concerning closure under the modal operations.

Let d be an arbitrary element of A•, say, d = a∪ (T ∩
⋃
j∈J aj × bj × cj). We have to show

that msd and mid for i = 0, 1, 2 belong to A•. For mi this follows from

mi(T ∩ aj × bj × cj) = ∅,

which gives that mid = mia = {t ∈ T | ti ∈ a}. Thus we have that m0d = T ∩ (a×W ×W ),
m1d = T ∩ (W × a ×W ) and m2d = T ∩ (W ×W × a). In each case we obtain a subset of
W • which clearly belongs to A•. For closure under ms, we need the fact that

ms(T ∩ a0 × a1 × a2) = {w ∈W | there is a t in T ∩ a0 × a1 × a2 with wSt}
= {w ∈W | there are ti in W with w = t0, ti ∈ ai and Tt0t1t2},
= {t0 ∈ a0 | there are t1 ∈ a1, t2 ∈ a2 with Tt0t1t2},
= a0 ∩mT (a1, a2).
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For, this shows that

msd = msa ∪
⋃
jms(T ∩ aj × bj × cj)

= ∅ ∪
⋃
j(aj ∩mT (bj , cj)),

from which it is immediate that msd belongs to A ⊆ A•.
Finally, we leave it for the reader to verify that A• is the smallest set containing A which

is closed under the boolean and modal operations. qed

The following proposition will play an important role when we prove our basic simulation
result.

Proposition 3.8 Let G be a general L∇-frame, and ϕ an L∇-formula. Then

G  ϕ iff G•  ϕ3.

Proof. First we prove the direction from left to right. Assume that G is a general L∇-
frame such that G  ϕ. Now let V ′ be an arbitrary admissible valuation on G•; define the
valuation V on G as in the proof of Proposition 3.5; that is, put V (p) = V ′(p) ∩W for each
proposition letter p. It is easy to see that V is admissible on G: if V ′(p) is of the form
a ∪ (T ∩

⋃
j∈J aj × bj × cj) with J finite and a and each aj , bj and cj in A, then we find that

V (p) = a belongs to A. From the admissibility of V we may infer that G, V  ϕ; hence, using
Proposition 3.4 we find that G•, V ′  b→ ϕt; since V ′ was arbitrary this gives that G•  ϕ3.

The other direction is even simpler: assume that G•  ϕ3, and consider an arbitrary
admissible valuation V on G. It is immediate by the definition of G• that V is admissible on
G• as well. From this it is straightforward to prove the proposition. qed

3.3 Transfer of properties

In the sequel we will be working with descriptive general frames mainly. Hence, it is good
to know that the simulation operation behaves well with respect to this property of general
frames.

Proposition 3.9 Let G be a general L∇-frame. Then G is descriptive if and only if G• is
descriptive.

Proof. The right to left direction of this proposition follows from more general results that
we will prove later, cf. the Propositions 4.16 and 4.18 below.

In order to show that the simulation operation preserves descriptiveness, fix a general
frame G = (W,T,A). We first prove two claims that concern the differentiation and tightness
of G•.

If G is differentiated, then so is G•.(1)

Assume that G is differentiated and let u and v be two distinct points in W •. We have to
find an admissible set a ∈ A• such that one of the points belongs to a and the other one does

11



not. This is easy if one of the points, say u, belongs to W , while the other belongs to T , since
both T = ∅ ∪ (T ∩ (W ×W ×W )) and W = W ∪ (T ∩ (∅×∅×∅)) belong to A•. If both
u and v belong to W then by assumption there is an a ∈ A such that u ∈ a and v 6∈ a; this
suffices because A ⊆ A•. This leaves the case that both u and v belong to T . It follows from
u 6= v that ui 6= vi for some i ∈ {0, 1, 2}. Since G is differentiated there is an a ∈ A such that
ui ∈ a and vi 6∈ a. Clearly then u ∈ mia ∈ A• while v 6∈ mia. This proves (1).

If G is differentiated, then G• is tight.(2)

Assume that G is differentiated. We first prove tightness of G• with respect to the Ri relations.
Let u and v be points in W • such that for all a ∈ A• we have that v ∈ a implies u ∈ mia.
Then it follows from v ∈ W • that u ∈ T = miW

•, and from miT = ∅ that v 6∈ T . Hence, v
is a base point and u is a middle point of W •. Suppose, for contradiction, that Riuv does not
hold; by definition this means that v 6= ui, so differentiation of G gives a set a ∈ A such that
v ∈ a, ui 6∈ a. But then we have v ∈ a and u 6∈ mia which gives the desired contradiction.

Turning to the tightness of G• with respect to the relation S, we consider two points u
and v such that for all a′ ∈ A• we have that v ∈ a implies u ∈ msa. It is fairly easy to
see that u must be a base point, and v, a middle point. We claim that u = v0, from which
it is immediate that Suv. In order to prove that u = v0, by the assumed differentation of
G it suffices to show that for every a ∈ A we have that v0 ∈ a implies u ∈ a. So let a be
admissible in G and assume that v0 belongs to a; then the triple v belongs to a×W ×W , so
by assumption we have that u ∈ ms(a ×W ×W ). From ms(a ×W ×W ) = a ∩mT (W,W )
we obtain the desired membership of u in a. This proves (2).

Now assume that G is descriptive. It follows from (1) and (2) that G• is refined, so we
only have to show that G• is compact. Let C ⊆ A• be a collection of admissible sets with the
finite intersection property. We have to show that

⋂
C 6= ∅.

Define Cb = {c ∩ W | c ∈ C} and Cm = {c ∩ T | c ∈ C}; obviously, at least one of
these two sets has the finite intersection property. If this is the set Cb, then we may infer
that

⋂
Cb 6= ∅ from Cb ⊆ A and the compactness of G. So, assume that Cm has the finite

intersection property. Let τ be the topology on W that we obtain by taking A as a basis.
It is well known that τ is a Stone space; hence, the product topology (W 3, τ3) is a compact
Hausdorff space. It follows from the tightness of G that T is a closed subset of W 3 with
respect to this topology (in order to see this, show that its complement W 3 − T is open by
proving that W 3 − T =

⋃
{−mT (a, b) × a × b | a, b ∈ A}). But then the restriction of τ3 to

T is compact; from this it is immediate that
⋂
Cm 6= ∅. This proves the compactness, and

hence, the descriptiveness, of G. qed

It may have attracted the attention of the reader that in our proof of Proposition 3.9 we
did not show that the constituting properties of descriptiveness (differentiation, tightness and
compactness) are preserved one by one. For instance, when proving that G• is compact, we
needed G to be differentiated and tight as well. In fact, we have a number of counterexamples
showing that not all properties of general frames are transferred by the operation (·)•.

12



Remark 3.10 It can be the case that G is tight, while G• is not. For instance, suppose that
G is given as the structure (W,T,A) with

W = {x, y, y′, z},
T = {(x, y, z), (x, y′, z)},
A = {a ⊆W | y ∈ a iff y′ ∈ a}.

We leave it for the reader to verify that G is tight. In order to describe the general simulation
frame G•, let w denote the triple (x, y, z) and w′ the triple (x, y′, z). Then we have that
G• is of the form (W •, S, R0, R1, R2, B) with W • = {x, y, y′, z, w,w′}, the binary relations
as always, and B is given as the set of subsets of W • satisfying both y ∈ b iff y′ ∈ b and
w ∈ b iff w′ ∈ b. It is then easy to see that for all b ∈ B we have that y ∈ b implies w′ ∈ m1b,
while it certainly does not hold that w′R1y. This shows that G• is not tight.

Conversely, since we only needed differentiation of G in order to prove tightness of G•,
there are many non-tight general frames with a tight simulation. For instance, consider the
structure H = (W ′, T ′, A′) with

W ′ = N ∪ {ω},
T ′ = {(n, n, n)|n ∈ N},
A′ = {a ⊆W ′|a is finite and ω 6∈ a, or a is co-finite and ω ∈ a}.

H is not tight, since we have ω ∈ mT ′(a, b) whenever ω ∈ a and ω ∈ b, while T ′ωωω does not
hold. But H is clearly differentiated, whence H• is tight by (2).
H is also a counterexample to the conjecture that the operation (·)• preserves compactness.

For, it is not difficult to see that H is compact; now consider the collection B ⊆ A• of
admissible sets of the form T ∩ (a0 × a1 × a3) such that each ai is co-finite. It is not difficult
to show that B has the finite intersection property; in order to show that the intersection
of finitely many elements of B is not empty one just has to look for a large enough natural
number. However, the set

⋂
B is empty; for, (ω, ω, ω) is the only triple (t0, t1, t2) such that

each ti belongs to all co-finite sets. The problem is that (ω, ω, ω) does not belong to T .
This problem would not have occurred if H had been tight, as the last part of the proof of
Proposition 3.9 shows.

4 Unsimulating L3-structures

For various reasons it is not sufficient to have a structural operation that moves in one direction
only, taking L∇-structures into L3-structures. We also need an ‘unsimulation’ operation that
maps L3-structures to L∇-ones.

4.1 Axiomatizing simulation frames

One of the main applications of this unsimulation map is to help find a characterization of
the simulation frames, i.e., the L3-frames that are the simulation of some L∇-frame.
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Definition 4.1 Consider the following set of first order axioms:
(S0) ∀xy (Sxy ↔ R0yx)
(S1)i ∀xyy′(Rixy ∧Rixy′ → y = y′)
(S2)ij ∀x (∃yRixy → ∃y′Rjxy′)
(S3)ij ¬∃xyz (Rixy ∧Rjyz)
(S4) ∀x0x1x2yy

′ ((
∧
iRiyxi ∧

∧
iRiy

′xi)→ y = y′).
The formula S2 is defined as the conjunction

∧
ij S2ij , and similar definitions apply to S1

and S3. Let Sim denote the set {S0, . . . , S3}, and Sim+ the set {S0, . . . , S4}. An L3-frame
satisfying Sim is called a Sim-frame. �

In words, these axioms express the following. S0 states that the relations S and R0 are
each other’s converse; S1, that each relation Ri is a partial function; S2, that if a state belongs
to the domain of one of these three partial functions, then it belongs to the domain of each of
them. According to S3, if a point y belongs to the range of some of these partial functions, then
it cannot belong to the domain of any of them. Finally, given the other axioms, S4 expresses
the fact that points that belong to the domain of each Ri are completely determined by the
triple consisting of their R0, R1 and R2-successors.

It is not very difficult to prove that Sim+ completely characterizes (up to isomorphism) the
class of simulation frames, cf. Proposition 4.4 below. But if the Sim+-frames form the class of
simulation frames (modulo isomorphism) and, obviously, not all Sim-frames are Sim+-frames,
why are we interested in the Sim-frames? The reason is that although we have a first order
characterization of the class of simulation frames, we cannot characterize it in terms of modal
formulas — this follows from Proposition 4.10 below, together with the fact that the classes
of Sim-frame and Sim+-frames are distinct. The class of Sim-frames happens to be a good
approximation for the class of simulation frames, and it does allow a modal characterization.
In fact, Proposition 4.10 states that the Sim-frames form the class of bounded morphic images
of simulation frames. This explains the important role of this class in our work.

As we mentioned already, in order to prove the first order characterization result con-
cerning the simulation frames, we will use the definition of the unsimulation of a simulation
frame. However, we need to define this notion for arbitrary Sim-frames.

Definition 4.2 Let F = (W,S,R0, R1, R2) be a Sim-frame. A point w of F is called a middle
point if it has an R0-successor (or, equivalently, an R1 or an R2-successor) and a base point
if it has no R0-successor. The collection of base points is denoted as W•, the collection of
middle points by Wm.

It follows from the axioms S1 and S4 that for each i we may assume the existence of a
map ri : Wm →W mapping middle points to their unique Ri-successors.

Given a Sim-frame, we define its unsimulation as the L∇-frame F• = (W•, T ), where
Tuvw holds of three base points if there is a point m such that R0mu, R1mv and R2mw. �

In the following proposition we gather some useful information about Sim-frames. In the
sequel, these facts will be used without warning.

Proposition 4.3 Let F = (W,S,R0, R1, R2) be a Sim-frame.
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1. Each Ri-successor (of any point) is a base point; that is, the range of each map ri is
included in W•.

2. Each S-successor (of any point) is a middle point.

3. No point can have both S-successors and Ri successors for some i.

Proof. Left to the reader. qed

We leave the proof of Proposition 4.3 to the reader and turn to the first order characteri-
zation of the simulation frames.

Proposition 4.4 Let F be an L3-frame. Then F |= Sim+ if and only if F is isomorphic to
a simulation frame.

Proof. It is easy to check that each of the Sim+-axioms holds of every simulation frame,
so we do not go into detail here. For the other direction of the proof, consider an L3-frame
F = (W,S,R0, R1, R2) such that F  Sim+. We claim that

F ∼= (F•)•.

Clearly, for any middle point m of F the triple (r0m, r1m, r2m) belongs to the relation T
of F•. This means that the following map f : W → (W•)• is well-defined:

f(w) =
{
w if w is a base point,
(r0m, r1m, r2m) if w is a middle point.

It is fairly easy to see that f is a bijection: surjectivity is immediate by the definition of T ,
while injectivity follows from axiom S4.

The map is a homomorphism. To see this, first suppose that Rimw. Then m is a middle
point and w is a base point. Since w is the unique successor of m, we have that w = rim.
This shows that in (F•)• we have Rif(m)f(w), as required. But if f is a homomorphism with
respect to each Ri then also with respect to S, since in both F and (F•)•, R0 and S are each
other’s converse.

Finally, we show that f−1 is a homomorphism as well. Suppose that Rif(m)f(w) in (F•)•.
By definition of (·)•, this means that f(m) is a triple t = (t0, t1, t2) of points in W• such that
t ∈ T and f(w) = ti. By definition of T in F•, there must be a middle point m′ such that
R0m

′t0, R1m
′t1 and R2m

′t2; this shows that f(m′) = t = f(m), so by injectivity of f we find
that m and m′ are identical. Also, from f(w) = ti we easily infer that w is a base point and
that in fact, w = ti. We already saw that Rim′ti; now we know that this really boils down
to Rimw. Hence, f−1 is a homomorphism with respect to the Ri relations; but just like for
f we then easily infer f−1 to be a homomorphism with respect to S as well.

This shows that f is an isomorphism between F and (F•)• and thus finishes the proof.
qed
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Remark 4.5 It is possible to extend the simulation and unsimulation operations to adjoint
functors between the categories of L∇-frames and Sim-frames (both with bounded morphisms
as arrows). Using these functors one can show that the category of L∇-frames is equivalent to
the category of (isomorphic copies of) simulation frames. Since we will not need these results
further on, we do not provide the details here.

We do need the fact that the unsimulation operation behaves well with respect to the
translation maps we defined in the previous section.

Proposition 4.6 Let F be a Sim-frame, and let V and V ′ be valuations on F and F•,
respectively, such that V and V ′ agree on W•. Then for all L∇-formulas ϕ and all base points
w we have

F , V, w  ϕt iff F•, V ′, w  ϕ.

Proof. This proposition is proved by a straightforward induction on the complexity of L∇-
formulas. We only treat, of the inductive step, the case that ϕ is of the form ψ1∇ψ2. The
claim follows by the following chain of equivalences:

F•, V ′, w  ψ1∇ψ2

iff there are w1, w2 with Tww1w2 and F•, V ′, wi  ψi,
iff (def. T ) there are m, w1, w2 with R0mw, Rimwi and F•, V ′, wi  ψi,
iff (Ind. Hyp.) there are m, w1, w2 with R0mw, Rimwi and F , V, wi  ψti ,
iff F , V, wi  3s(31ψ

t
1 ∧32ψ

t
2).

qed

As an immediate corollary we obtain the following proposition.

Proposition 4.7 Let F be a Sim-frame. Then for all L∇-formulas ϕ we have

F  ϕ3 iff F•  ϕ.

To finish off this subsection, we discuss the precise relation between the Sim-frames and
the simulation frames. We will show in Proposition 4.10 below that the Sim-frames form the
class of bounded morphic images of the simulation frames. In our proof of this result we will
use the construction of unravelling a frame and a model. Since we will use this construction
later as well, we isolate the following definition and proposition.

Definition 4.8 Let F = (W,S,R0, R1, R2) be an L3-frame, and let r be some point in F .
We define the unravelling of F from r, notation: ~Fr, to be the frame (W ′, S′, R′0R

′
1, R

′
2) given

as follows. W ′ is the set of all sequences w0 . . . wn (n ≥ 0) of elements in W such that w0 = r
and for all i < n: either wiSwi+1 or wiR1wi+1 or wiR2wi+1. Let last(w̄) denote the last item
of the sequence w̄, and let w̄s denote the result of adding s as a new last item to the sequence
w̄. The relations of F ′ are defined as follows:

w̄S′v̄ if v̄ = w̄s and last(w̄)Ss for some point s,
w̄R′0v̄ if v̄S′w̄,

w̄R′1v̄ if v̄ = w̄s and last(w̄)R1s for some point s,
w̄R′2v̄ if v̄ = w̄s and last(w̄)R2s for some point s.
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For an L3-model M = (F , V ), its unravelling from r is defined as the model ~Mr = ( ~Fr, ~V )
where ~V is the valuation given by ~V (p) = {w̄ ∈ ~Wr | last(w̄) ∈ V (p)}. �

Proposition 4.9 Let F = (W,S,R0, R1, R2) be an L3-frame, let M = (F , V ) be a model
and let r be some point in F . Then

1. the map last : ~Wr →W constitutes a bounded morphism from ~Fr to F .

2. the map last : ~Wr → W constitutes a bounded morphism from ~Mr to M mapping (the
sequence) r to r.

3. if F is a Sim-frame, and r is a base point, then ~Fr is isomorphic to a simulation frame.

Proof. The first two claims of the proposition are standard.
For the third part, it follows immediately from the definitions that unravellings of Sim-

frames validate the axiom S4. It is also fairly straightforward to check that if F is a Sim-frame,
then so is ~Fr — we leave the details to the reader. qed

This relation between the simulation frames and their modal approximations, the Sim-
frames, can be concisely formulated as follows.

Proposition 4.10 The Sim-frames form the class of bounded morphic images of the simu-
lation frames.

Proof of Proposition 4.10. First suppose that F = (W,S,R0, R1, R2) is a Sim-frame. It
is easy to prove from Proposition 4.9 that F is a bounded morphic image of the disjoint
union of the collection { ~Fr | r ∈W•} of its unravellings from base points. Since each of these
unravellings is isomorphic to a simulation frame, say ~Fr ∼= E•r , and an easy proof reveals that⊎
r∈W• E

•
r
∼= (

⊎
r∈W• Er)

•, this shows that F is a bounded morphic image of the simulation
frame (

⊎
r∈W• Er)

•.
For the other direction of the proposition, it suffices to prove that the class of Sim-frames

is closed under taking bounded morphic images. This can be proved directly, but it also
follows from the fact that this class allows a modal characterization (cf. Proposition 4.12)
and the fact that modally definable classes are closed under taking bounded morphic images.

qed

4.2 A modal axiomatization

It is fairly easy to give a modal axiomatization of the class of Sim-frames.

Definition 4.11 Consider the following set of modal axioms:
(A0) (p→ 2s33p) ∧ (p→ 233sp)
(A1)i 3ip→ 2ip
(A2)ij 3i> → 3j>
(A3)ij 2i2j⊥

Let Ax be the set {A0, A1, A2, A3} (with similar definitions of A1, A2 and A3 as in
Definition 4.1). We define Sim to be the basic modal logic K3 extended with the axiom set
Ax . �
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Proposition 4.12 Each of the axioms Akij is a Sahlqvist formula; its first order corre-
spondent is the formula Skij. As a corollary, the set Ax modally characterizes the class of
Sim-frames, and the logic Sim is canonical and strongly sound and complete with respect to
the class of Sim-frames.

Proof. Immediate by the syntactic shape of the modal axioms, and the properties of Sahlqvist
formulas. qed

From this result and the earlier established close connection between Sim-frames and
simulation frames, the following proposition is almost immediate.

Proposition 4.13 Sim is strongly sound and complete with repect to the class of simulation
frames.

Proof. Soundness is a consequence of Proposition 4.12. For completeness, suppose that
Σ is a set of L3-formulas and ϕ is an L3-formula such that Σ 6`Sim ϕ. It follows from
Proposition 4.12 that there is a modelM = (F , V ) based on a Sim-frame F , and a point r in
M such that M, r  Σ while M, r 6 ϕ. It easily follows from the results in Proposition 4.9
and the invariance of modal truth under bounded morphisms (on the level of models) that
~Mr, r  Σ while ~Mr, r 6 ϕ. Since ~Fr is isomorphic to a simulation frame, this shows that ϕ

is not a consequence of Σ on the class of simulation frames. qed

4.3 Unsimulating general frames

Now we extend the unsimulation to the level of general frames.

Definition 4.14 A general Sim-frame is a general frame based on a Sim-frame. Given such
a general Sim-frame G = (F , A), its unsimulation G• is defined as the structure (F•, A•),
where A• is the set {a ∩W• | a ∈ A}. �

Proposition 4.15 Let G be a general Sim-frame; then G• is a general L∇-frame.

Proof. Let G = (F , A) be a general Sim-frame. We have to show that A• contains the sets
W• and ∅ and that it is closed under the Boolean operations and under the operation mT .
We only treat the case of mT .

Suppose that a1 and a2 belong to A•; it suffices to prove that mT (a1, a2) ∈ T . It is
straightforward to show that in a Sim-frame we have that

mT (a1, a2) = ms(m1a1 ∩m2a2).

From this it follows that mT (a1, a2) belongs to A; but since in a Sim-frame it also holds that
msa ⊆ W• for any a ⊆ W , we find that mT (a1, a2) = mT (a1, a2) ∩W•. This means that
mT (a′1, a

′
2) ∈ A•. qed

That the name unsimulation is well chosen follows from the following proposition.

Proposition 4.16 Let G be a general L∇-frame; then G is isomorphic to (G•)•.
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Proof. Let G = (F , A) be a general L∇-frame. Since F• is a Sim-frame, the unsimulation
operation is defined on both F• and G•. It is straightforward to derive from the definitions
that F is isomorphic to (F•)•, and that A = (A•)•. From this the proposition follows
immediately. qed

Proposition 4.17 Let G be a general Sim-frame. Then for all L∇-formulas ϕ we have

G  ϕ3 iff G•  ϕ.

Proof. Let F be the underlying frame of G.
First suppose that G 6 ϕ3. That is, for some admissible valuation V and some point w in

G we have F , V, w 6 b→ ϕt. It follows immediately that w must be a base point. Define the
valuation V ′ on F by putting V ′(p) = V (p)′ ∩W•. Clearly, V ′ is admissible on G•, and since
V and V ′ meet the conditions of Proposition 4.6, we find that F•, V ′, w 6 ϕ. This shows that
G• 6 ϕ.

For the other direction, suppose that G• 6 ϕ. Then there is an admissible valuation V ′

on G• and a point w in F• such that F•, V ′, w 6 ϕ. Since the valuation V is admissible on G
as well, and since w, being a point of W•, is a base point of F , we may apply Proposition 4.6
which immediately gives F , V, w 6 ¬ϕt. Using the fact that F , V, w  b we find that G 6 ϕ3.
qed

4.4 Transfer of properties of general frames

Proposition 4.18 Let G be a general Sim-frame. If G is descriptive, then so is G•.

Proof. It is straightforward to show that the unsimulation operations preserves differen-
tiation and compactness, so we concentrate on tightness. Let G = (W,S,R0, R1, R2, A) be
a descriptive general Sim-frame. In order to prove that G• is tight, let u0, u1 and u2 be
points in W• such that for all a1 and a2 in A• we have that u1 ∈ a1 and u2 ∈ a2 imply that
u0 ∈ mT (a1, a2). We will prove that Tu0u1u2.

Consider the set

D = {m0a0 | u0 ∈ a0 ∈ A•} ∪ {m1a1 | u1 ∈ a1 ∈ A•} ∪ {m2a2 | u2 ∈ a2 ∈ A•}.

Our first claim is that D has the finite intersection property. Since for each i the set {mia |
ui ∈ a} is closed under taking intersections, it suffices to show that for each triple a0, a1, a2

in A• such that u0 ∈ a0, u1 ∈ a1 and u2 ∈ a2 we have that m0a0 ∩ m1a1 ∩m2a2 6= ∅. Take
such a triple; it follows from u1 ∈ a1 and u2 ∈ a2 that u0 ∈ mT (a1, a2) = ms(m1a1 ∩m2a2).
Hence, there is a point t in W such that R0tu0 and t ∈ m1a1 ∩m2a2. From Rtu0 if follows
that Su0t, since G is based on a Sim-frame; hence, from u0 ∈ a0 we may infer that t ∈ m0a0.
This shows that t ∈ m0a0 ∩ m1a1 ∩m2a2, so indeed, the latter set is not empty.

But then by compactness, we have that
⋂
D 6= ∅. Let t be an arbitrary point in the

intersection; obviously, t is a middle point of G. Fix an i ∈ {0, 1, 2}; it follows from t ∈⋂
{mia | ui ∈ A•} and the fact that mia = mi(a ∩W •) for each a ∈ A, that t ∈ mia for each

a ∈ A such that ui ∈ a. Then from tightness of G we may infer that Ritu. Since this applies
to each i, we find that t is a middle point of u0, u1 and u2; by definition of T we thus get
that Tu0u1u2. qed
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In the above proof, we used compactness of G in order to prove that G• is tight; this
is necessary, as is witnessed by the general L∇-frame H of Remark 3.10. For, the general
L3-frame H• is tight (but not compact), while its unsimulation H = (H•)• is not tight.

Finally, there are not many properties of general frames that are reflected by the unsimu-
lation operation. For instance, it is fairly easy to see that differentiation and compactness are
not reflected, by considering general frames that are based on a Sim-frame with three base
points and infinitely many middle points. Tightness is not reflected either, since it is not even
preserved by the simulation operation (cf. the general frame G of Remark 3.10).

5 Simulation results

In this pivotal section we define the simulation operation (·)sim which maps L∇-logics to L3-
logics, we prove that Λsim indeed simulates Λ and we state that several interesting properties
of logics transfer under (·)sim . In this section we will also provide some of the easier transfer
proofs; the more elaborate ones will be given in later sections.

In order to motivate our definition of the simulation operation, consider an L∇-logic
Λ. Since Λ is determined by the class DΛ of descriptive general L∇-frames for Λ, it seems
natural to define Λsim as the modal theory of a class K of descriptive general L3-frames that
is related to DΛ. A first choice would be to take the class (DΛ)• of simulations of frames in
DΛ. Unfortunately, although the theory of this class would constitute a simulation of Λ, it
turned out to be difficult to prove nice transfer results using this approach. Therefore, we
have chosen a slightly more involved definition.

Definition 5.1 Let C be a class of L∇-frames ; we define C? to be class of Sim-frames F
such that F• belongs to C. For a class C of descriptive general L∇-frames, we define C? to be
the class of descriptive general Sim-frames G such that G• belongs to C.

Now let Λ be an L∇-logic. Recall that DΛ denotes the class of descriptive general L∇-
frames for Λ. We define Λsim , the simulation of Λ, to be the set of formulas valid on (DΛ)?.
�

Remark 5.2 Note that the definition of Λsim is based on our semantic ideas. A perhaps more
intuitive syntactic approach would be to define Λsim as the extension of Sim axiomatized by
the set Λ3 of translations of Λ-theorems. Getting ahead of later results, in particular of
Proposition 5.5, we want to inform the reader already now that these two definitions are in
fact equivalent.

The following theorem reveals that our terminology is appropriate.

Theorem 5.3 (Simulation Theorem) Let Λ be an L∇-logic; then Λsim is indeed a simu-
lation of Λ. That is, for any set Σ of L∇-formulas, and any L∇-formula ϕ we have

Σ `Λ ϕ iff Σ3 `Λsim ϕ3.

In particular, we have that
ϕ ∈ Λ iff ϕ3 ∈ Λsim .(3)
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Proof. We first prove (3). For the left to right implication of (3), assume that ϕ3 does not
belong to Λsim . Then by definition of Λsim , there is a Sim-based descriptive general L3-frame
such that G•  Λ and G 6 ϕ3. It follows from Proposition 4.17 that G• 6 ϕ, whence by the
soundness of Λ with respect to the class of general frames for Λ we obtain that ϕ does not
belong to Λ.

For the other direction, assume that ϕ does not belong to Λ. By the completeness for
descriptive general frames it follows that there is a descriptive general L∇-frame G for Λ
such that G 6 ϕ. It follows from Proposition 3.8 that G• 6 ϕ3, while we may infer from
Proposition 3.9 that G• is descriptive. Since (G•)• ∼= G by Proposition 4.16, G• belongs to
the class (DΛ)?, so we find that ϕ3 does not belong to Λsim . This proves (3).

In order to derive the theorem from this, only propositional logic is required. For instance,
suppose that Σ `Λ ϕ. By definition there are formulas σ1, . . . , σn in Σ such that `Λ (σ1 ∧
· · · ∧ σn)→ ϕ. Thus by (3) we find that `Λsim b→ (σt1 ∧ · · · ∧ σtn)→ ϕt. Some propositional
manipulation reveals that this implies `Λsim ((b→ σt1)∧· · ·∧ (b→ σtn))→ (b→ ϕt). In other
words, we have `Λsim (σ3

1 ∧ · · ·∧σ3
1 )→ ϕ3, which by definition means that Σ3 `Λsim ϕ3. We

leave the other direction as an exercise to the reader. qed

Obviously, a simulation operation becomes more interesting the more properties it pre-
serves and reflects. Our earlier claim that the operation (·)sim behaves rather well is substan-
tiated by the following result.

Theorem 5.4 (Properties of the simulation) The map (·)sim embeds the lattice of nor-
mal L∇-logics in the lattice of normal modal L3-logics extending Sim. This map preserves,
reflects and transfers properties as indicated in Table 1.

Property preservation reflection transfer
finite axiomatizability yes (5.5) yes (8.10) yes
recursive axiomatizability yes (5.5) yes (8.10) yes
Sahlqvist axiomatizability yes (5.5) ?? ??
completeness yes (7.2) yes (5.10) yes
canonicity yes (5.8) yes (5.11) yes
finite model property yes (7.2) yes (5.10) yes
first-order definability yes (5.7) yes (8.5) yes
decidability & complexity ?? yes (5.9) ??

Table 1: Properties of the simulation

Proof. Here we only prove the first part of the theorem — the statements in Table 1
concerning the preservation and reflection of properties are proved in the remainder of the
paper, as indicated by the entries in the table. (Each entry in the transfer column of the
table can easily be calculated as the conjunction of the preservation and reflection entries in
the same row).
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By definition, Ksim
∇ is the logic of the class of all descriptive general Sim-frames. Hence,

by Proposition 4.12, Ksim
∇ = Sim. The inconsistent L∇-logic is mapped by (·)sim to the

inconsistent L3-logic. It is immediate from Theorem 5.3 that the simulation map is injective.
It remains to be shown that (·)sim is a lattice homomorphism. It easily follows from

Proposition 5.5 that (Λ1 t Λ2)sim = Λsim
1 t Λsim

2 . In order to show that (Λ1 u Λ2)sim =
Λsim

1 u Λsim
2 , we will use the well-known fact that

Λ1 u Λ2 = Th∇(DΛ1 ∪ DΛ2 ).

Likewise, we have that Λsim
1 u Λsim

2 = Th3(DΛsim
1
∪ DΛsim

2
). But this gives that

Λsim
1 u Λsim

2 = Th3(D?
Λ1
∪ D?

Λ2
)

= Th3((DΛ1 ∪ DΛ2 )?)

The statement then follows from the observation that for any class C of descriptive general
L∇-frames it holds that (Th∇(C))sim = Th3(C?), cf. Proposition 7.9. qed

Before we move to the proofs of the easier results mentioned in Table 1, we briefly discuss
some properties that are conspicuous by their absence, and some further open questions
concerning our simulation approach.

1. We have not investigated the question whether the simulation reflects Sahlqvist axiom-
atizability; we conjecture that the answer to this question is positive, but the only proof
that we can think of would involve a very tedious investigation of the properties of the
residual map discussed in section 8. The question seems to be not very relevant since we
can show that the most useful properties of Sahlqvist logics (canonicity, completeness
and first-order definability) are reflected by the simulation operation anyway.

2. As we already mentioned in the preliminaries, we confine ourselves in this paper to the
local paradigm concerning the semantic consequence relation and our notion of deduc-
tion. We have not investigated the transfer of properties such as global completeness.

3. Although it easily follows from our Simulation Theorem and the simplicity of our trans-
lation that decidability is reflected by our simulation, we do not know whether this
property is preserved in all cases. An attempt to settle this problem in the positive
might proceed through a careful combinatorial analysis of the residual formulas dis-
cussed in section 8.

More can be said in those cases where decidability of Λ is proved using some kind of
finite model property (perhaps in combination with a finite or recursive axiomatizability
result). In such cases, some suitable combination of the Propositions 7.2 and 5.5 can
be used to prove the decidability of Λsim , in a straightforward manner. We leave the
details to the reader.

4. Table 1 does not mention any kind of interpolation property. Note that in our local
paradigm, the relevant notion is that of Craig’s interpolation property or cip. A logic Λ
has this property if for every pair of formulas ϕ and ψ such that `Λ ϕ→ ψ there is an
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interpolant; that is, a formula θ such that `Λ ϕ → θ and `Λ θ → ψ, while θ may only
use proposition letters that occur in both ϕ and ψ. Using the algebraic counterpart of
this property, viz. the superamalgamation property, it is fairly easy to show that our
simulation map reflects cip. We also have strong reasons to believe that (·)sim preserves
this property, but we hope to report on this at some other occasion.

5. Finally, we leave a study of the structural properties of the lattice of extensions of Sim
as a matter of further research.

In the remainder of this section we prove some of the easier results listed in Table 1.

5.1 Easy preservation results

We first see how we can find axiomatizations for Λsim given axiomatizations for Λ. The
following result states that if Γ ⊆ L3 axiomatizes a L∇-logic Λ, then Λsim is axiomatized over
Sim by Γ3.

Proposition 5.5 Let Γ be a set of L∇-formulas. Then

(K∇.Γ)sim = Sim.Γ3.(4)

Hence, if a L∇-logic Λ has a finite, recursive or Sahlqvist axiomatization, respectively, then
so has Λsim .

Note that since our translation map (·)3 is linear, it follows that if Λ has a finite axiom-
atization Γ, the size of the axiomatization Sim.Γ3, measured as the sum of the length of the
axioms, is linear in the size of Γ.

Proof. We first prove (4); let Λ denote the logic K∇.Γ. In order to show that Λsim =
Sim.Γ3, by the general completeness result of modal logics with respect to descriptive general
frames, it suffices to prove that for every descriptive general L3-frame G we have the following
equivalence:

G  Λsim iff G  Sim.Γ3.(5)

In order to prove the left to right direction of (5), let G be a descriptive general L3-frame
such that G  Λsim . It follows immediately from the definition of Λsim that G  Sim, so by
Proposition 4.12, G is based on a Sim-frame. Hence, the unsimulation of G is defined. From
G  Λsim and (3) it follows that G  Λ3; in particular this gives that G  Γ3 since Γ3 ⊆ Λ3.

For the other direction, assume that G  Sim.Γ3. It follows from G  Sim and Propo-
sition 4.12 that G is based on a Sim-frame, whence G• is defined. From G  Γ3 and Propo-
sition 4.17 we obtain that G•  Γ. Since Γ axiomatizes Λ this gives that G•  Λ, whence G
belongs to the class (DΛ)?. Thus by definition of Λsim we have that G  Λsim .

The second part of the proposition is immediate from (4). qed

The second ‘easy’ preservation result concerns first-order definability: we will prove that
if Λ defines an elementary class of frames, then so does Λsim . Let Lfo

∇ and Lfo
3 be the first

order frame languages (with equality) corresponding to L∇ and L3, respectively.
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Definition 5.6 We define a translation mapping Lfo
∇-formulas to Lfo

3 -formulas by the follow-
ing induction:

(x = y)e = (x = y)
(T (x, y, z))e = ∃w(R0wx ∧R1wy ∧R2wz)

(α ∧ β)e = αe ∧ βe

(¬α)e = ¬αe

(∃xα)e = ∃x(B(x) ∧ αe)

Here we use B(x) as an abbreviation for the Lfo
3 -formula ¬∃y R0xy; clearly, B(x) indicates

that x is a base point.
For a set Σ of Lfo

∇-formulas, we let Σe denote the set {σe | σ ∈ Σ}. �

Proposition 5.7 Let Λ be an L∇-logic. If the set Σ of Lfo
∇-formulas axiomatizes the class of

L∇-frames for Λ, then the set Sim ∪ Σe axiomatizes the class of L3-frames for Λsim .
Hence, if Λ is elementary (∆-elementary), then so is Λsim .

Proof. The key part of the proof is to show that for any Sim-frame F and any assignment
b mapping variables to base points of F , we have for every Lfo

∇-formula α:

F |= αe[b] iff F• |= α[b].(6)

The proof of (6) is by a straightforward induction on the complexity of α.
Given (6), the proposition follows from the following chain of equivalences, which hold for

every L3-frame F :
F is a frame for Λsim

iff (Prop. 5.5) F  Sim and F  Λ3,
iff (Prop. 4.7) F  Sim and F•  Λ,
iff (assumption) F  Sim and F• |= Σ,
iff (Prop. 4.12) F |= Sim and F• |= Σ,
iff (6) F |= Sim and F |= Σe. qed

The final preservation result that we prove in this section concerns canonicity.

Proposition 5.8 Let Λ be an L∇-logic. If Λ is canonical, then so is Λsim .

Proof. Assume that Λ is a canonical L∇-logic, and take a descriptive general L3-frame G
such that G  Λsim . We will show that F  Λsim , where F is the underlying frame of G.

To start with, it follows from the descriptiveness of G, the inclusion Sim ⊆ Λsim and
the canonicity of Sim, that F  Sim, whence F is a Sim-frame. Hence, the unsimulation
operation is defined for G. It follows from Proposition 4.17 that G•  Λ, and from Proposi-
tion 4.18 that G• is descriptive; hence, from the canonicity of Λ we may infer that Λ holds on
the underlying frame F• of G•. But then it follows from Proposition 3.5 that F  Λ3, so by
Proposition 5.5 we have that F  Λsim . qed
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5.2 Easy reflection results

In this subsection we state and prove three reflection result. Reflection of decidability is
almost immediate. Let Λ-membership be the problem whether a given formula ϕ (of the
appropriate similarity type) belongs to Λ.

Proposition 5.9 Let Λ be an L∇-logic. Then there is a linear time reduction of the Λ-
membership problem to the Λsim-membership problem. Hence, if Λsim is decidable, then so is
Λ.

Proof. Immediate by the Simulation Theorem and the fact that the translation (·)3 can be
computed in linear time. qed

The second poperty we treat here concerns completeness and the finite model property.

Proposition 5.10 Let Λ be an L∇-logic, and C a class of L3-frames. If Λsim is complete
with respect to C, then Λ is complete with respect to C•. Hence, if Λsim is complete, then so
is Λ, and if Λsim has the finite model property, then so does Λ.

Proof. Let Λ and C be as in the formulation of the proposition, and assume that Λsim =
Th3(C•). It follows from the following chain of equivalences that Λ = Th∇(C):

ϕ ∈ Λ
iff (Theorem 5.3) ϕ3 ∈ Λsim ,
iff (assumption) C  ϕ3,
iff (Prop. 4.7) C•  ϕ. qed

The last proposition of this section states that the simulation operation reflects canonicity.

Proposition 5.11 Let Λ be an L∇-logic. If Λsim is canonical, then so is Λ.

Proof. Assume that Λ is an L∇-logic such that Λsim is canonical. In order to prove that Λ
itself is canonical, consider an arbitrary descriptive general L∇-frame G such that G  Λ. We
will show that Λ holds as well on the underlying frame F of G.

Using the Propositions 3.8 and 5.5 we obtain that G•  Λsim . Moreover, from Proposi-
tion 3.9 it follows that G• is descriptive. Since Λsim is canonical we find that F•  Λsim , so
Proposition 3.5 gives that F  Λ. qed

6 Normal forms

In the following two sections we will be dealing with syntactic issues concerning L3-formulas.
Much of our considerations will be made simpler because we may assume that L3-formulas
are in a certain syntactic shape, viz., in normal form. In this section we will define these
normal forms and prove that every L3-formula can be effectively rewritten into an equivalent
formula in normal form.

Recall that we use the symbol m to denote the L3-formula 30>, and that this formula is
true precisely at the middle points of any L3-model.
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Definition 6.1 A formula of L3 is said to be a propositional list if it is a conjunction of
propositional variables and negations of propositional variables. A formula of L3 is said to be
in base normal form or a bnf-formula if it is a propositional formula, a Boolean combination
of formulas in base normal form, or of the form

3s(π ∧31θ1 ∧32θ2),

with π a propositional list and θ1 and θ2 bnf-formulas. The depth of a bnf-formula is defined
using the above inductive definition: depth(p) = 0, depth(¬θ) = depth(θ), depth(θ1 ∧ θ2) =
max(depth(θ1), depth(θ2)) and

depth(3s(π ∧31θ1 ∧32θ2)) = 1 + max(depth(θ1), depth(θ2)).

An L3-formula is in middle normal form or an mnf-formula if it is of the form 3iθ with
i ∈ {0, 1, 2} and θ a bnf-formula. Finally, a L3-formula is in normal form if it has the shape

(b ∧ θ0) ∨ (m ∧
∨
j∈J

(πj ∧30θ0,j ∧31θ1,j ∧32θ2,j)),(7)

where all the π formulas are propositional lists, all the θ formulas are in base normal form,
and J is some finite index set. We call the formula b ∧ θ0 the base disjunct or b-disjunct of
(7), and the other disjunct, the m-disjunct. �

Proposition 6.2 1. There is an effective procedure that rewrites any L3-formula into
a Sim-equivalent formula which is a boolean combination of bnf-formulas and mnf-
formulas.

2. There is an effective procedure (·)n that rewrites any L3-formula ϕ into a Sim-equivalent
formula ϕn which is in normal form.

Proof. Throughout the proof we will work modulo the logic Sim; that is, ‘equivalent’ will
always mean ‘equivalent in Sim’.

We first show how to prove the second part of the proposition from the first one. That
is, we will prove how any Boolean combination of bnf- and mnf-formulas can be effectively
rewritten into normal form. Let ϕ be such a Boolean combination; rewrite ϕ as a disjunction
of conjunctions of proposition letters, bnf-formulas in the shape 3s(π ∧ 31θ1 ∧ 32θ2), mnf-
formulas, and negations of such formulas. Without loss of generality we may assume that
every disjunct has either m or b as a conjunct (any disjunct ψ that would not have such a
conjunct may be split into (ψ ∧m) ∨ (ψ ∧ b)).

First consider the disjuncts containing b. Observe that any formula of the form b∧3iχ∧γ
is Sim-inconsistent, and that any formula of the form b∧2iχ∧γ is equivalent to b∧γ. (Readers
having suspicions about these claims are advised to prove them using the Completeness of
Sim with respect to the class of Sim-frames, see Proposition 4.13). Use these observations
to replace each b-disjunct with a formula of the form b∧ θk, with each θk being a conjunction
of proposition letters, bnf-formulas in the form 3s(π ∧ 31θ1 ∧ 32θ2), and negations of such
formulas. Clearly then, each θk is a bnf-formula. Now group together all these disjuncts and
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take out the b conjunct, obtaining the equivalent formula b ∧
∨
k θk which will form the base

disjunct of the normal form of ϕ.
Now we can turn to the disjuncts containing m as a conjunct. Consider an arbitrary such

disjunct, say m ∧ δ. All we need to know about δ is that it is a conjunction of proposition
letters, mnf-formulas, formulas of the form 3sθ, and negations of such formulas. We will step
by step simplify δ using the following Sim-equivalences (here, as always, i is one of the indices
in {0, 1, 2}):

m ∧3sψ ∧ χ ∼ m ∧ ⊥
m ∧ ¬3sψ ∧ χ ∼ m ∧ χ
m ∧ ¬3iψ ∧ χ ∼ m ∧3i¬ψ ∧ χ.

What we are left with in the end is a disjunct of the form m ∧ δ′ with δ′ a conjunction of
(negated) proposition letters and formulas in middle normal form. Then we may use the fact
that the 3i-diamonds distribute over conjunctions to rewrite m∧δ′ into a formula of the form
m ∧ πj ∧ 30θ0,j ∧ 31θ1,j ∧ 32θ2,j with πj being a propositional list, and each θ in bnf-form.
Finally, grouping all the m-disjuncts together in the same way as we did with the b-disjuncts,
we find an m-disjunct of the form m ∧

∨
j(πj ∧30θ0,j ∧31θ1,j ∧32θ2,j).

Clearly, ϕ is equivalent to the disjunction of these two formulas; that is, ϕ is in normal
form.

The first part of the proposition is proved by a straightforward formula induction. The
base step and the boolean cases of the induction step are straightforward, so assume that ϕ
is of the form 3ψ, where 3 is one of the diamonds of the language L3. By the inductive
hypothesis we may assume that ψ is in normal form, say, ψ is the formula (7).

First suppose that 3 is one of the diamonds 3i, with i ∈ {0, 1, 2}. Since 3i distributes
over disjunctions, it suffices to look at each of the two disjuncts of (7) separately. Treating
the base disjunct (b ∧ θ0) first, it is easy to see that 3i(b ∧ θ0) is equivalent to the formula
3iθ0, a formula is in mnf-form. Now consider the m-disjunct of (7). It easily follows from
the Sim-axiom 2i2j⊥ that for any χ, the formula 3i(m ∧ χ) is equivalent to ⊥. From these
observations it follows that ϕ is equivalent to the formula 3iθ0 ∨ ⊥, and hence, to b ∧ 3iθ0

which meets the requirements.
Now suppose that 3 is the diamond 3s. Again, it suffices to look at each of the two

disjuncts of (7) separately. Using the Sim-theorem 3sb↔ ⊥ one easily sees that 3s(b ∧ θ0)
is equivalent to ⊥, whence we may turn to the m-disjunct of (7). We first rewrite this into
the equivalent ∨

j

(m ∧ πj ∧30θ0,j ∧31θ1,j ∧32θ2,j);

now distribute 3s over
∨
j , and treat each of the new disjuncts separately. Using the com-

pleteness theorem for Sim with respect to the class of simulation frames (Proposition 4.13),
it is not difficult to prove that

`Sim 3s(m ∧ πj ∧30θ0,j ∧31θ1,j ∧32θ2,j) ↔ θ0,j ∧3s(πj ∧31θ1,j ∧32θ2,j).
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From this it follows that 3sψ is equivalent to the formula∨
j

(θ0,j ∧3s(πj ∧31θ1,j ∧32θ2,j)),

which is clearly in bnf-form. Finally, we find that ϕ = 3sψ is equivalent to the formula
b ∧

∨
j(θ0,j ∧3s(πj ∧31θ1,j ∧32θ2,j)) which is in normal form. qed

7 Preservation of completeness

This section will be devoted to the fairly involved proofs concerning the preservation of
completeness properties by our simulation map. In the first subsection we concentrate on
frame completeness and the finite model property, in the second part we discuss completeness
with respect to classes of general frames.

7.1 Frame completeness

In order to make the statement concerning the preservation of frame completeness a bit more
precise we need the following definition.

Definition 7.1 An Sim-frame is middle finite if there are at most finitely many middle points
in between any triple of base points. Given a class C of L∇-frames, we define C?mf to be the
class of middle finite Sim-frames F such that F• belongs to C. �

Recall that a logic has the (strong) finite model property if every formula which is satisfiable
in a model based on a frame for Λ is satisfiable in a finite model based on a frame for Λ (of
which the size is recursively bounded by the size of the formula).

Proposition 7.2 Let Λ be a L∇-logic which is complete with respect to a class C of L∇-
frames. Then Λsim is complete for C?mf . Hence, if Λ has the (strong) finite model property,
then so does Λsim .

The entire subsection is devoted to a proof of Proposition 7.2. Observe that the result
concerning the finite model property follows from the main statement in the proposition and
the fact that if C is a class of finite frames, then so is C?mf . To obtain the preservation of the
strong finite model property, a close inspection of the proof below reveals that the number
of middle points present between any triple of base points in the C?mf -frame constructed, is
bounded by the size of the formula that we want to satisfy in C?mf .

The aim of our proof is to show that any Λsim -consistent formula is satisfiable in C?mf . It
follows from the proposition below that without loss of generality we may assume that the
formula at stake is of the form b ∧ θ with θ in base normal form.

Proposition 7.3 Let γ be an L3-formula. Then there is a bnf-formula θ such that

1. γ is Λsim-consistent iff b ∧ θ is Λsim-consistent.
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2. γ is satisfiable in C?mf iff b ∧ θ is satisfiable in C?mf .

Proof. Since the formula γn is equivalent to γ on the basis of Sim, we may work with γn

instead of with γ. Suppose that γn is of the form (7). We claim that the formula

θ := θ0 ∨
∨
j∈J

(θ0,j ∧3s(πj ∧31θ1,j ∧32θ2,j)),

which clearly is in base normal form, satisfies the required properties. This follows from the
fact that for any L3-model M based on a Sim-frame, we have that

γn is satisfiable in M iff θ is satisfiable at a base point of M.(8)

In order to prove (8), first suppose that γn is satisfiable inM, say at the point w. If w is
a base point, this means that M, w  θ0, from which it is immediate that M, w  θ. If, on
the other hand, w is a middle point, then we have that M, w  πj ∧30θ0,j ∧31θ1,j ∧32θ2,j

for some j. In this case, recall that r0w is the (unique) R0-successor of w. It is easy to see
that M, r0w  θ0,j ∧3s(πj ∧31θ1,j ∧32θ2,j), which makes that M, r0w  θ.

For the other direction, suppose that θ is satisfiable at the base point w inM. IfM, w  θ0

it follows immediately that M, w  γn, so suppose that for some j we have that M, u 
θ0,j ∧3s(πj ∧31θ1,j ∧32θ2,j). By the truth definition there must be a middle point m such
that wSm andM,m  πj ∧31θ1,j ∧32θ2,j . It then follows from wSm andM, w  θ0,j that
M,m  πj ∧30θ0,j ∧31θ1,j ∧32θ2,j which immediately gives that M,m  γn. This proves
(8) and thus concludes the proof of the proposition. qed

For the remainder of the section we fix a formula θ in base normal form such that b ∧ θ
is Λsim -consistent; we will prove that there is a frame F in C?mf in which b ∧ θ is satisfiable.
Let Θ be the collection of those subformulas of θ that are in base normal form; clearly, Θ is
finite.

The idea of our proof is as follows. From the consistency of b∧θ we may infer that θ holds
at some base point Γ of the canonical Λsim -model. We will unravel this canonical model from
Γ and gather some information concerning an initial part of this unraveled tree model; this
information will be encoded in L∇-formulas, but in order to obtain sufficient information we
have to expand the language with new proposition letters. The formula χr that we can thus
associate with the root of the unraveled, expanded model, will be Λ-consistent, and thus by
assumption satisfiable in some frame F that that belongs to C. Finally, we will use this frame
F to construct a frame F ′ such that F ′• = F and in which θ is satisfiable.

First, we introduce some notational conventions. For a set of formulas Σ and a point s in
a model M, we define Σs = {ϕ ∈ Σ | M, s  ϕ} as the set of formulas in Σ that hold at s.
(The model M will always be clear from context.) Given two sets of formulas A and B such
that A ⊆ B, define

ΩA|B =
∧
ϕ∈A

ϕ ∧
∧

ϕ∈B\A

¬ϕ.

In words, ΩA|B says that of the formulas in B, precisely those in A are true. Note that
it follows that for any set of formulas Σ and any point s in any model M we have that
M, s  ΩΣs|Σ.
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Since b ∧ θ is Λsim -consistent, the formula θ is satisfied at some base point Γ in the
canonical model. Let N = (N,S,R0, R1, R2, V ) be the unravelling of the canonical model
from this state Γ, cf. Definition 4.8. It easily follows from the properties of unravellings
(cf. Proposition 4.9) that N itself is a model for Λsim ; that N is based on a Sim-frame; and
that its root r satisfies θ.

We need some terminology concerning points in N . The height of a base point s in N is
simply the distance from r to s (measured in number of S ◦ Ri-steps). A base point is near
r if its height does not exceed the depth of θ (as defined in Definition 6.1); a middle point
is near r if its immediate base successors are near r. Let N− be the set of points in N that
are near r. N− is not necessarily finite since N will generally not be finitely branching. We
say that a base point s is on the edge of N−, or briefly: on the edge, if height(s) = depth(θ).
Note that ‘being on the edge of N−’ is not the same notion as ‘having no successors in N ’.

We now extend the language, as follows. Let P = {p1, . . . , pn} be the finite set of propo-
sitional letters occurring in θ; we will use the letter p to refer to a generic element of P . Let
Q = {q(I,Θ1,Θ2) | I ⊆ P,Θi ⊆ Θ} be a set of new propositional letters; observe that Q is finite.
We will use the letter q to refer to a generic element of Q.

The idea underlying our use of the proposition letter q(I,Θ1,Θ2) is the following. In our
proof we will need to transfer the information provided by L3-formulas into the language
L∇. It is obvious that in a bnf-formula of the form 3s(π ∧ 31θ1 ∧ 32θ2), the propositional
information stored in π is relevant. Unfortunately, there is no direct way to transfer this
information to L∇ since in L∇ there is no access to middle points. Even if θ1 and θ2 are the
translations of L∇-formulas, say of ψ1 and ψ2, respectively, then the formula ∇(ψ1, ψ2) would
be as close as we could get; however, in its translation (∇(ψ1, ψ2)t = 3s(31θ1 ∧ 32θ2) all
propositional information about middle points is lost. It is here that the new propositional
variables come in: the idea is simply to encode all relevant information (relevant in the sense
of pertaining to subformulas of θ) into the q variables. To be a bit more precise, the variable
q(I,Θ1,Θ2) should be read as the encoding of the formula 3s(ΩI|P ∧31ΩΘ1|Θ ∧32ΩΘ2|Θ) into
propositional logic.

The model N will be expanded to this new language, by defining the valuation V ′ :
P ∪Q→ P(N) as follows:

V ′(p) = V (p)
V ′(q(I,Θ1,Θ2)) = {w ∈ N | N , w  3s(ΩI|P ∧31ΩΘ1|Θ ∧32ΩΘ2|Θ)}.

The following lemma shows that even in the expanded language we are still dealing with
a model for Λsim at the root of which the formula b ∧ θ holds, while we have indeed encoded
sufficient relevant information in the new propositional variables.

Proposition 7.4 Let N ′ be the model (N,S,R1, R2, V
′).

1. N ′ is a model for Λsim .

2. Let u and v be two base points in N ′. Then Pu = Pv and Qu = Qv only if Θu = Θv.

3. The formula b ∧ θ holds at the root r of N ′.
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Proof. For the first part of the proposition, consider a formula ψ in Λsim , and an arbitrary
point v in N ′. For each L3-formula χ, let χ′ be the formula obtained from χ by uniformly
substituting each variable q(I,Θ1,Θ2) by the formula 3s(ΩI|P ∧31ΩΘ1|Θ ∧32ΩΘ2|Θ). Since ψ′

then belongs to Λsim as well, and all variables in ψ′ are in P , we must have that N , v  ψ′.
However, an easy inductive proof shows that our definition of V ′ ensures that for every L3-
formula χ and every point w in N we have

N , w  χ′ iff N ′, w  χ.

From this it is immediate that N ′, v  ψ, which proves the first part of the proposition.
For part 2, suppose that u and v are base points in N ′ such that Pu = Pv and Qu = Qv;

that is, u and v agree on the truth of all proposition letters. We prove by induction on
the complexity of bnf-formulas that for each formula ψ in Θ we have that N ′, u  ψ iff
N ′, v  ψ. First suppose that ψ is a proposition letter; this means that ψ is an element of
P . But then we obtain the desired result from the assumption that Pu = Pv. The Boolean
case of the induction step is easy and left to the reader. Now assume that ψ is of the form
3s(π ∧31ψ1 ∧32ψ2). It follows immediately that π is a propositional list and that each ψi
belongs to Θ. By symmetry it suffices to prove that

N ′, u  ψ only if N ′, v  ψ.(9)

Assume that N ′, u  ψ. Then there are a middle point m and base points u1, u2 such that
Sum, Rimui, N ′,m  π and N ′, ui  ψi. Recall that Pm denotes the set of propositional
variables in P that are true at m, and that Θui is the set of formulas in Θ true of ui.
Obviously, we have that N ′,m  ΩPm|P ∧31ΩΘu1 |Θ∧32ΩΘu2 |Θ. It follows by definition of V ′

that N ′, u  q(Pm,Θu1 ,Θu2 ), so by assumption this proposition letter holds at v as well. Hence,
there are a middle point k and base points v1 and v2 such that SvK, Rikvi, N ′, k  ΩPm|P
and N ′, vi  ΩΘui |Θ. It is straightforward to prove that this implies N ′, k  π and N ′, vi  ψi.
From this it is immediate that N ′, v  ψ. This proves (9) and thus finishes the proof of the
second part of the proposition.

Finally, the last part of the proposition is immediate by the fact that θ only uses old
proposition letters, and for these we have that V (p) = V ′(p). Thus the truth of θ is not
affected by moving from N to N ′. qed

Now we can work towards the L∇-logic Λ. With each base point u in N− we will associate
a characteristic L∇-formula χu: this formula is supposed to give a description of u in terms
of L∇-formulas. These formulas are defined by a downward induction on the height of u. The
idea is that the closer we get to the root of N ′, the more information we need to gather;
hence, the complexity (in terms of ∇-depth) of χu will increase as we move towards the root
of N ′.

If u is on the edge of N− we define

χu := ΩPu|P ∧ ΩQu|Q;

that is, we only need propositional information for points on the edge.
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Now assume that u is a base point in N− of height less than depth(θ). We will define χu
as the conjunction of four formulas, of which the third and fourth require some explanation
and introduction. The well-definedness of these two conjuncts (and thus, of χu) will be based
on the inductive assumption that for all points v of greater height than u, the formula χv has
been defined and depth(χv) ≤ depth(θ) − height(v). Clearly this is true for any point v on
the edge. Let C(u) = {(w1, w2) | ∃m(Swm ∧ R1mw1 ∧ R2mw2)} be the set of pairs of base
successors of w. Define

Au = {(χv1 , χv2) | (v1, v2) ∈ C(u)}.

It follows from the inductive assumption and the fact that the collection P∪Q of propositional
variables is finite, that Au is finite although C(u) may be infinite. Now define, for any finite
set A = {(αi, βi) | i ∈ I} of pairs of L∇-formulas, the formula σA as follows:

σA =
∧
J⊆I

∆(
∨
j∈J

αj ,
∨
i∈I\J

βi).

The meaning of this formula is expressed by the following lemma.

Proposition 7.5 Let A = {(αi, βi) | i ∈ I} be a finite set of pairs of L∇-formulas. Let M
be an L∇-model, and let r be a point in M. Then M, r  σA if and only if for all pairs of
points s, t such that Trst, there is some i ∈ I such that M, s  αi and M, t  βi.

Proof. Assume that A, M and r are as in the statement of the proposition.
For the direction from left to right, assume that M, r  σA and that s and t are points

such that Trst. First take J = I. ThenM, r  ∆(
∨
j∈I αj ,

∨
i∈∅ βi) implies (by the definition

of ∆) that M, s  αj for some j ∈ I or else M, t  ⊥. Thus we find that M, s  αj for
some j ∈ I. Hence, if we define J0 = {j ∈ I | M, s 6 αj}, we clearly have that J0 is
distinct from I. But it follows from M, r  ∆(

∨
j∈J0

αj ,
∨
i∈I\J0

βi) and M, s  ¬
∨
j∈J0

αj
thatM, t 

∨
i∈I\J0

βi. This implies that there is some i 6∈ J0 such that t  βi. By definition
of J0 we also have s  αi, so clearly this is the (kind of) i that we were looking for.

For the other direction, suppose that for all pairs of points s, t such that Trst, there is
some i ∈ I such that M, s  αi and M, t  βi. In order to prove that M, r  σA, let J
be an arbitrary subset of I, and let s and t be arbitrary points such that Trst. Let i ∈ I
be the index such that M, s  αi and M, t  βi. Hence, if i belongs to J we obtain that
s 

∨
j∈J αj , while if i 6∈ J we find that t 

∨
i∈I\J βi. In either case, we have shown that

s 
∨
j∈J αj or t 

∨
i∈I\J βi. This suffices to prove that M, r  ∆(

∨
j∈J αj ,

∨
i∈I\J βi), and

thus, that M, r  σA. qed

Now that we have established this, we are ready for the definition of χu. Define the
following formulas:

χ3
u = σAu

χ4
u =

∧
(w1,w2)∈C(w)

∇(χw1 , χw2)

χu = ΩPw|P ∧ ΩQw|Q ∧ χ
3
u ∧ χ4

u.
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It is clear from this definition that the ∇-depth of χu is at most one higher than the highest
depth of the formula associated with any of its immediate successors; hence, we have that
depth(χu) ≤ depth(θ)− height(u), so the inductive assumption will remain valid.

C(u) may be empty — this indicates that u is a blind world in the tree N , that is, it does
not have any successor. For such a blind world the third conjunct of χu simply boils down to
∆(⊥,⊥).

The following proposition shows that the characteristic formulas are at least correct de-
scriptions.

Proposition 7.6 For each base point w in N− we have that N ′, w  χ3
w.

Proof. By a straightforward downward induction on the height of w. qed

The last proposition takes us into an area where we may use the assumed completeness
of Λ. For, it follows from Proposition 7.6 that N ′, r  χ3

r . But since N ′ is a model for Λsim

this means that χ3
r is Λsim -consistent. Thus, it follows from the Simulation Theorem that χr

is Λ-consistent. Hence, by completeness of Λ with respect to the frame class C, we may infer
that χr is satisfiable in C — in fact, the same holds for all the χw’s.

Let F = (F, T ) in C be a frame in which χr is satisfiable; that is, for some w0 ∈ F and
some valuation U we have that

F , U, w0  χr.

It follows from Proposition 3.5 that χ3
r is satisfiable in F•, but this is of marginal interest

only. What we are after is a C?mf -frame F ′ in which θ will turn out to be satisfiable. Analogous
to our definition of F• we will obtain F ′ from F by adding middle points; the difference with
F• will be that for a triple (s0, s1, s2) in T we may now want to add several middle points.
To determine the number and names of these middle points we turn to the points in N− for
information.

Let t = (t0, t1, t2) be a triple of points in F such that Tt0t1t2, and let m be a middle point
in N−. We say that t resembles m if F , U, ti  χrim for each i (the partial maps ri were given
in definition 4.2). The point m is minimal for t if t resembles m while t resembles no m′ with
Pm = Pm′ that is closer to the root of N ′ (more formally, this condition can be expressed by
requiring that there is no m′ with Pm = Pm′ such that height(r0m

′) < height(r0m)).
In order to give a formal definition of F ′, we first associate a set Xt with each triple t ∈ T .

For an arbitrary such triple t = (t0, t1, t2), distinguish the following cases.

• If t resembles no middle point in N−, then define Xt to be some singleton set, say,

Xt := {∗}.

• If on the other hand, t does resemble some middle point in N−, then put

Xt := {(Pm,Θr1m,Θr2m) | m is minimal for t}.
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The idea will be that each element a of Xt determines one middle point that we insert
between t0, t1 and t2, and that we will make a variable p true at such a middle point (t, a) if
the first coordinate of a is a set of propositional variables that tells us to do so.

Formally, the frame F ′ = (W ′, S′, R′0, R
′
1, R

′
2) and the valuation U ′ will be obtained from

the frame F and the valuation U as follows.

W ′ = W ∪ {(t, a) | t ∈ T, a ∈ Xt},
R′i = {((t, a), ti) | t ∈ T, a ∈ Xt}
S′ = (R′0)−1

U ′(q) = U(q)
U ′(p) = U(p) ∪ {(t, (I,Θ1,Θ2)) | t ∈ T, (I,Θ1,Θ2) ∈ Xt and p ∈ I}.

The following proposition ensures that F ′ indeed belongs to the class C?mf and that with
respect to translated L∇-formulas, F ′ and U ′ display the right behaviour.

Proposition 7.7 1. (F ′)• = F . Hence, F ′ belongs to the class C?mf .

2. For each base point t0 of F ′ and each L∇-formula ψ we have

F , U, t0  ψ iff F ′, U ′, t0  ψ3.(10)

3. As a corollary, we have that F ′, U ′, w0  χ3
r .

Proof. The first part is immediate from the definitions and the fact that, for each t ∈ T , the
set Xt is finite. Part 2 then follows from Proposition 4.6, while the last part of the proposition
is an immediate consequence of Proposition 7.6. qed

However, we already mentioned that it is not enough to prove that χ3
r is satisfiable in

F ′: we want to prove that our original formula b ∧ θ is satisfied in F ′. It is here that the
characteristic formulas χu are of crucial importance. Roughly speaking, we will show that
whenever F ′, U ′, s  χu, then s (in (F ′, U ′)) and u (in N ′) satisfy the same formulas in Θ,
up to a certain depth. More precisely, we will establish the following result.

Proposition 7.8 Let s be a point in F ′, U ′ and let u be a base point in N− such that F , U, s 
χu. Then for all formulas ψ in Θ we have that

N ′, u  ψ iff F ′, U ′, s  ψ,(11)

provided that height(u) + depth(ψ) ≤ depth(θ).

Proof. The proof is by induction on the complexity of ψ (as a bnf-formula). If ψ is proposi-
tional, then (11) is immediate by the fact that F , U, s  χu implies that s in (F ′, U ′) and u in
N satisfy the same P -variables. The Boolean cases of the inductive step are trivial. Hence,
by our definition of Θ as being a set of bnf-formulas, we may restrict our attention to the case
that ψ is of the form 3s(π ∧ 31ψ1 ∧ 32ψ2). Assume that height(u) + depth(ψ) ≤ depth(θ).
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Since depth(ψ) > 0, this means in particular that we may assume that height(u) < depth(θ);
that is, u is off the edge of N−. It is convenient for us to write t0 instead of s. We will prove
that

N ′, u  3s(π ∧31ψ1 ∧32ψ2) iff F ′, U ′, t0  3s(π ∧31ψ1 ∧32ψ2).(12)

First assume that N ′, u  ψ. Then there are a middle point m and base points u1 and u2

in N ′ such that Sum, N ′,m  π and Rimui, N ′, vi  ψi for i = 1, 2.
Since u if off the edge, χu has a conjunct of the form χ3

u =
∧

(w1,w2)∈C(u)∇(χw1 , χw2).
Hence, it follows from F , U, t0  χu that F , U, t0  ∇(χv1 , χv2). This means that there must
be points t1 and t2 in F such that Tt0t1t2 and F , U, ti  χvi for i = 1, 2. Thus t = (t0, t1, t2)
resembles m. Also, for i = 1, 2 we may apply the inductive hypothesis to the formula ψi, with
respect to the points ti and vi. For, while the height of vi is one bigger than that of u, the depth
of ψi is at least one smaller than that of ψ; this means that height(vi)+depth(ψi) ≤ depth(θ),
as required for applying the inductive hypothesis. This yields that F ′, U ′, ti  ψi, for each i.

Moreover, by definition of F ′, between t0, t1 and t2 there must be a middle point k = (t, a)
such that a ∈ Xt is of the form (Pm′ ,Θv′1

,Θv′2
) with Pm′ = Pm. (Note that a need not

necessarily be of the form (Pm,Θv1 ,Θv2); it may be of the form a = (Pm′ ,Θr1m′ ,Θr2m′) such
that m′ is closer to the root r of N ′ than m. However, there must be at least one a ∈ Xt of
the described form, i.e., with Pm′ = Pm.) Then by definition of U ′ we know that t in F ′ and
m in N ′ make precisely the same P -variables true, so from N ′,m  π if is immediate that
F ′, U ′, t  π. Hence we may conclude that indeed F ′, U ′, t0  ψ.

For the other direction, assume that F ′, U ′, t0  ψ. Then there are a middle point k and
base points t1 and t2 such that St0k, Rikti, F ′, U ′, k  π and F ′, U ′, ti  ψi for i = 1, 2. From
the definition of F ′ it follows that in F we must have Tt0t1t2.

By Proposition 7.5 it follows from F ′, U ′, t0  χ3
u that there are points v1 and v2 in N ′

such that (v1, v2) ∈ C(u), F ′, U ′, t1  χv1 and F ′, U ′, t2  χv2 . Hence, t = (t0, t1, t2) resembles
the (unique) middle point m of u, v1 and v2.

Hence, by definition of F ′, the point k must be of the form k = (t, (Pm′ ,Θr1m′ ,Θr2m′))
where m′ is such that t resembles m′, Pm′ = Pm and height(r0m

′) ≤ height(u). Abbreviate
u′ = r0m

′; since t resembles m′ we have that F ′, U ′, t0  χu′ . By our assumption that
F ′, U ′, t0  χu and the definition of the characteristic formulas, it follows that u and u′ agree
on the truth of all proposition letters. Hence, by part 2 of Proposition 7.4, u and u′ agree on
the truth of all formulas in Θ. Thus, it suffices to prove that N ′, u′  ψ.

From the fact that u and u′ agree on all proposition letters we may draw another interesting
conclusion, namely, that N ′, u′  q(Pm,Θv1 ,Θv2 ). By definition of the valuation V ′ in N ′,
this implies that there are base points w1, w2 and a middle point n in N ′ such that Su′n,
Rinwi, Pn = Pm and Θwi = Θvi . Since for each i, we have that height(wi) + depth(ψi) ≤
(height(u′)+1)+(depth(ψ)−1) = height(u′)+depth(ψ) ≤ height(u)+depth(ψ) ≤ depth(θ), we
may apply, for i = 1, 2, the inductive hypothesis to ψi, for the points si and wi, respectively.
This gives that N ′, wi  ψi.

Also, from the fact that Pn = Pm = Pm′ and the definition of U ′ we may infer that k and
m agree on the truth of all proposition letters in P ; hence, we find that N ′, n  π.

From this it is immediate that N ′, u′  ψ, and from our earlier observation this gives that
N ′, u  ψ, as required. This proves (11) and thus finishes the proof of the proposition. qed
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From the above propositions it is immediate that F ′, U ′, w0  b ∧ θ, which shows that
indeed, the formula b ∧ θ is satisfiable in the class C?mf . This finishes the proof of Proposi-
tion 7.2.

7.2 Preservation of general completeness

In this subsection we discuss a preservation result concerning completeness with respect to
classes of descriptive general frames. Recall that we needed this result in order to show that
(·)sim distributes over meets of logics, cf. the proof of Theorem 5.4.

Proposition 7.9 Let Λ be a L∇-logic which is complete with respect to a class C of descriptive
general L∇-frames. Then Λsim is complete for C?.

Proof. Since the proof of this proposition is a variation on the proof of Proposition 7.2, we
allow ourselves to be fairly sketchy. We will show that for an arbitrary bnf-formula θ such
that b ∧ θ is Λsim -consistent, we can satisfy θ in a descriptive general frame that belongs to
C?.

Copying the proof of Proposition 7.2 and using its definitions and notation, we arrive at a
descriptive general frame G = (F , A) which belongs to C and in which the formula χr can be
satisfied under some admissible valuation U . We will define a descriptive general Sim-frame
G′′ such that G′′• = G and in which θ is satisfiable under an admissible valuation U ′′. The
definition of G′′ will be a ‘multiple middle point’ version of G•, in much the same way that
we defined F ′ as a variation on F•. The frame F ′′ underlying G′′ will indeed look very much
like F ′, but it will not be exactly the same: in F ′′ we cannot have two distinct middle points
of the form (t, x) and (t, x′) that make the same proposition letters true.

Formally, we will define F ′′ as follows. Let T1 be the set of triples t ∈ T that resemble
some middle point m in N−, and define T2 = T \ T1. Observe that a triple t ∈ T belongs to
T1 if and only if for some middle point m in N− we have that F , U, ti  χrim for each i. Since
there are only finitely many formulas of the form χu, and since U is an admissible valuation
in G, this shows that in G• the set T1 (and hence, also T2) is admissible.

Define, for any t ∈ T :

X ′′t =
{
{∗} if t ∈ T2,
{I ⊆ P | t resembles some m with Pm = I} if t ∈ T1.

and put T ′′j = {(t, x) | x ∈ Xt} for j = 1, 2.
Now we can define the frame F ′′ = (W ′′, S′′, R′′0 , R

′′
1 , R

′′
2) and the valuation U ′′ as follows.

W ′′ = W ∪ T ′′1 ∪ T ′′2 ,
R′′i = {((t, x), ti) | t ∈ T, x ∈ Xt},
S′′ = (R′′0)−1,

U ′′(q) = U(q),
U ′′(p) = U(p) ∪ {(t, I) | t ∈ T1, I ∈ Xt and p ∈ I}.
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It is easy to see that the model (F ′′, U ′′) is in fact a bounded morphic image of (F ′, U ′)
under the map that identifies middle points which make the same proposition letters true.
From this it is immediate that the formula b ∧ θ is satisfiable in (F ′′, U ′′).

Now, to complete the definition of G′′, we call a subset of W ′′ admissible if it is of the
form a ∪ b ∪ c with: a ⊆ W is an admissible set of G; c ⊆ T ′′2 is such that {t ∈ T | (t, ∗) ∈ c}
is admissible in G•; and b is of the form T ′′1 ∩ U ′′(π) for some propositional formula π.

We first show that G′′ = (F ′′, A′′) is a general frame. The only non-trivial part of this proof
is to show that A′′ is closed under the operation ms. Consider an arbitrary element a ∪ b ∪ c
of A′′, with a, b and c as described above. Clearly we have that ms(a ∪ b ∪ c) = msb ∪msc.
It is not hard to see that msc belongs to A, whence it is admissible in G′′. In order to prove
that b = T ′′1 ∩ U ′′(π) is admissible we have to work harder. The crucial observation, which
we leave for the reader to prove, is that a state w belongs to msb if and only if there is some
point u off the edge of N− such that F , U, w  χu and N ′, u  3sπ. From this observation it
follows that msb is a (finite!) union of sets U ′′(χu) and since U is admissible in G this gives
that msb belongs to A′′.

We also leave it for the reader to verify that G′′ is descriptive; note that for differentiation
we need the new definition of X ′′t , in order to show that any two distinct points (t, I) and
(t, I ′) can be separated by an admissible set of the form T ′′1 ∩ U ′′(p) for some propositional
letter p.

Since it is obvious that G′′• = G we find by Proposition 4.17 that G′′  Λsim . And since
U ′′ is admissible, it follows from the satisfiability of b ∧ θ in G that b ∧ θ is satisfiable in G′′.
This proves that indeed Λsim is complete with respect to C?. qed

8 Unsimulating a logic

In order to prove reflection results concerning our simulation map, it is useful to define an
unsimulation, that is, a function mapping L3-logics extending Sim to L∇-logics.

Definition 8.1 Let Θ be an L3-logic extending Sim. Define Θsim to be the L∇-logic con-
sisting of those L∇-formulas that are valid on the class of unsimulations of descriptive general
Θ-frames: Θsim := {ϕ ∈ L∇ | (DΘ)•  ϕ}. �

The connection between the maps (·)sim and (·)sim is concisely summarized by the follow-
ing proposition.

Proposition 8.2 Let Λ be an L∇-logic, and Θ an L3-logic extending Sim. Then

1. Θsim = {ϕ | ϕ3 ∈ Θ};

2. Λ ⊆ Θsim iff Λsim ⊆ Θ;

3. (Θsim)sim ⊆ Θ;

4. (Λsim)sim = Λ.
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Proof. Part 1 of the proposition is immediate from the following chain of equivalences:
ϕ ∈ Θsim iff (by definition) G•  ϕ for all G in DΘ iff (by Proposition 3.8) G  ϕ3 for all G in
DΘ iff (by completeness) ϕ3 ∈ Θ.

Now consider part two of the proposition. First assume that Λ ⊆ Θsim . Since Λsim is
axiomatized by Λ3 ∪ Sim and Sim ⊆ Θ by assumption, it suffices to prove that Λ3 ⊆ Θ.
Hence, take an arbitrary ϕ ∈ Λ. By assumption, ϕ belongs to Θ. It follows from part 1 of
this proposition that ϕ3 ∈ Θ. Since ϕ was arbitrary this shows that Λ3 ⊆ Θ.

For the other direction, assume that Λsim ⊆ Θ. In order to prove that Λ ⊆ Θsim , consider
an arbitrary formula ϕ in Λ. Since ϕ3 ∈ Λsim by Theorem 5.3, we have that ϕ3 ∈ Θ by our
assumption. Thus ϕ belongs to Θsim by the first part of the Proposition.

Part 3 of the proposition is immediate by part 2 and the observation that Θsim ⊆ Θsim .
Likewise, the right to left inclusion of part 4 is immediate by part 2 and the fact that

Λsim ⊆ Λsim . For the other, left to right, inclusion, suppose that ϕ is a theorem of (Λsim)sim .
It follows from part 1 that ϕ3 ∈ Λsim , whence ϕ ∈ Λ by Theorem 5.3. qed

8.1 Reflection of axiomatizability

In this subsection we will see how to find an axiomatization for an arbitrary L∇-logic Λ on the
basis of a given axiomatization for Λsim . Since Λ is the unsimulation of Λsim , it will pay off to
look at the more general question how we can obtain an axiomatization for the unsimulation
Θsim of an arbitrary L3-logic Θ, once we know that Θ is axiomatized by a set of L3-formulas
Γ. The basic idea underlying our approach is that given an L3-formula γ we want to encode
its ‘effect’ on the language L∇; this effect, or residual as we will call it, (notation: Res(γ))
will be defined as a set of L∇-formulas that can be obtained effectively from γ. The main
technical result of this section (Proposition 8.9) states that if an L3-logic Θ is axiomatized
by a set of formulas Γ, then the collection

⋃
γ∈Γ Res(γ) axiomatizes Θsim . From this it is not

very difficult to derive the reflection under (·)sim of finite and recursive axiomatizability.
The formal definition of residuals is fairly complicated; let us provide some intuitions

first. To start with, when dealing with L3-formulas we are hindered by the fact that although
semantically there is a clear and useful distinction between base points and middle points, the
proposition letters of our language may be interpreted at base points and middle points alike.
For some purposes it would be much more convenient if we were working in a sorted modal
language in which the proposition letters were separated into two sorts, of base variables and
middle variables, respectively.

Remark 8.3 There is no need for formalizing such a sorted version of L3, but it might be
useful to look at the following definition and observation, which, strictly speaking, are not
used further on.

Given a set Var of propositional variables for L3, let Vars be the set {pm, pb | p ∈ Var}.
For a propositional formula π, let πm (πb) denote the formula we obtain from π by replacing
all occurrences of a proposition letter p by the variable pm (by pb, respectively). For an L3-
formula in base normal form, say θ, we define its sorted variant θs by the following induction:

ps = pb,
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(¬θ)s = ¬θs,
(θ1 ∧ θ2)s = θs1 ∧ θs2,

3s(π ∧31θ1 ∧32θ2)s = 3s(πm ∧31θ
s
1 ∧32θ

s
2).

For an L3-formula θ in normal form, say, θ is of the form (7), we define θs to be the formula

(b ∧ πb0 ∧ θs0) ∨ (m ∧
∨
j∈J

(πmj ∧30θ
s
0,j ∧31θ

s
1,j ∧32θ

s
2,j)).(13)

Clearly, the idea underlying these definitions is that we replace each ‘base occurrence’ of
a proposition letter p by pb and each ‘middle occurrence’, by pm. Obviously, L3-formulas
are not equivalent to their sorted versions, but nevertheless, we can prove that the sorted,
normalized version of a collection of formulas axiomatizes the same logic as the set itself.
That is, for any set Γ of L3-formulas Γ we have that

Sim.Γ = Sim.Γs.

(Here Γs = {(γn)s | γ ∈ Γ} denotes the collection of sorted variants of the normalized formulas
in Γ.)

The second crucial intuition underlying our definition of residuals is based on the require-
ment that we want Res(γ) to be a set of L∇-formulas. This means that we somehow have
to get rid of the propositional lists that have ‘middle occurrences’ within an L3-formula in
normal form. Our solution to this problem is fairly straightforward, but technically rather
involved: the best way to explain it is by saying that first, we simply replace such middle
occurrences with suitable substitution instances, and that second, we show that the resulting
formulas are equivalent to translated L∇-formulas. For each suitable substitution τ we thus
obtain a function resτ (·) mapping (normal forms of) L3-formulas to L∇-formulas. Let us now
turn to the technical details.

Definition 8.4 A sorting substitution is an L3-substitution replacing each propositional
variable p with a formula of the form

(b ∧ pb) ∨ (m ∧
∨
j∈Jτp

(30p
0,j ∧31p

1,j ∧32p
2,j)),

where Jτp is some finite index set. Given a (sorted) substitution τ and an L3-formula γ, let
τ(γ) denote the result of applying τ to γ. �

As will become more clear when we prove Proposition 8.8, sorted substitutions are the syn-
tactic counterpart of the definition of the collection of admissible sets in a general simulation
frame, cf. Definition 3.6.

The following rather technical lemma states that on ‘middle occurrences’ of a proposi-
tional list π, a sorting substitution τ has the effect of ‘spreading’ the information of π over
‘neighboring’ base occurrences.
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Proposition 8.5 There is an effective procedure which on an input consisting of a proposi-
tional list π and a sorting substitution τ , returns a finite set {πτi,k | k ∈ Kτ,π} of propositional
lists such that

`Sim m → (τ(π)↔
∨

k∈Kτ,π

(30π
τ
0,k ∧31π

τ
1,k ∧32π

τ
2,k)).

Note that we do not require the formulas πτi,k to be substitution instances of π.

Proof. Assume that π is the propositional list p1 ∧ . . . ∧ pn ∧ ¬q1 ∧ . . . ∧ ¬qm, then τ(π) is
the formula

τ(p1) ∧ . . . ∧ τ(pn) ∧ ¬τ(q1) ∧ . . . ∧ ¬τ(qm)

We first consider the positive literals. Suppose that τ(p) is the formula (b ∧ pb) ∨ (m ∧∨
j(30p

0,j ∧ 31p
1,j ∧ 32p

2,j)). Obviously then, at middle points, τ(π) is equivalent to the
formula

∨
j(30p

0,j ∧31p
1,j ∧32p

2,j).
Our second observations concerns the negative literals of π. Let ¬q be an arbitrary

example, and suppose that τ(q) is the formula (b ∧ qb) ∨ (m ∧
∨
j(30q

0,j ∧31q
1,j ∧32q

2,j)).
At middle points, the negation of this formula is equivalent to

∧
j(30¬q0,j∨31¬q1,j∨32¬q2,j).

Hence, using the Boolean distributive laws we can show that at middle points, the formula
τ(π) is equivalent to a disjunction

∨
k γk of conjunctions γk of formulas of the form 3ip and

3i¬q. Since each diamond 3i distributes over conjunctions (modulo Sim), we can rewrite
each of these conjunctions into the form 30π0,k∧31π1,k∧32π2,k with each πi,k a propositional
list. This proves the proposition. qed

Now we have sufficient material to define the residuals.

Definition 8.6 Let τ be a sorting substitution. We first define, by induction to the com-
plexity of bnf-formulas, the untranslation θτ of an L3-formula θ in base normal form:

pτ = pb,

(¬θ)τ = ¬θτ ,
(θ1 ∧ θ2)τ = θτ1 ∧ θτ2 ,

(3s(π ∧31θ1 ∧32θ2))τ =
∨

k∈Kτ,π

(πτ0,k ∧ (πτ1,k ∧ θτ1)∇(πτ2,k ∧ θτ2)).

Of a formula θ in normal form, the τ -residual resτ (θ) is defined as follows. Assume that
θ has the form (7):

(b ∧ θ0) ∨ (m ∧
∨
j∈J

(πj ∧30θ0,j ∧31θ1,j ∧32θ2,j)),

where all the π formulas are propositional lists and all the θ formulas are in base normal form.
Let ηi,j,k abbreviate the formula (πj)τi,k ∧θτi,j , and let Jτ (θ) denote the set {(j, k) | k ∈ Kτ,πj}.
The residual resτ (θ) is defined as the following formula:

θτ0 ∧ (>∇> →
∨

L⊆Jτ (θ)

(
∧

(j,k)∈L

η0,j,k ∧
∧
M⊆L

∆(
∨

(j,k)∈M

η1,j,k,
∨

(j,k) 6∈M

η2,j,k))).(14)
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For an arbitrary L3-formula γ we define the τ -residual resτ (γ) as the L∇-formula resτ (γn);
that is, as the τ -residual of the normal form of γ.

Finally, we define the residual set of an L3-formula γ as the set of L∇-formulas Res(γ) =
{resτ (γn) | τ a sorting substitution }. If Γ is a set of L3-formulas, we write Res(Γ) to denote
the set

⋃
γ∈Γ Res(γ)). �

Forbidding as these definitions may look, it is not hard to check syntactically that the
formula resτ (θ) is at least a well-formed L∇-formula. Its meaning should become clear from
the (proofs of the) following propositions.

Proposition 8.7 Let τ be a sorting substitution, let F be a Sim-frame and let V and V ′ be
valuations on F and F•, respectively, such that V (p) = V ′(τ(p)).

1. for any middle point m and for any propositional list π we have that F , V,m  π if and
only if for some k ∈ Kτ,πj it holds for each i ∈ {0, 1, 2} that F•, V ′, rim  πτi,k.

2. for any base point w and for any L3-formula in base normal form: F , V, w  θ if and
only if F•, V ′, w  θτ .

3. for any L3-formula γ: F , V  γ if and only if F•, V ′  resτ (γ).

Proof. The first part of the proposition follows almost immediately from Proposition 8.5;
the details are left to the reader.

Part 2 can be proved by a fairly straightforward induction on the complexity of bnf-
formulas. We will only consider one case of the inductive step, namely, in which θ is of the
form 3s(π ∧31θ1 ∧32θ2). For the sake of a more concise formulation we write w0 instead of
w.

First suppose that M, w0  θ. Then there must be a middle point m and base points
w1 and w2 such that rim = wi for i = 0, 1, 2, M,m  π and M, wi  θi for i = 1, 2. It
follows from part 1 of this proposition that there is a k such that for i = 0, 1, 2 we have that
M, wi  πτi,k. Also, by the induction hypothesis we have that M, wi  θτi for i = 1, 2. From
these facts it is straightforward to derive thatM, w0  πτ0,k ∧ (πτ1,k ∧ θτ1)∇(πτ2,k ∧ θτ2), showing
that M, w0  θτ . The other direction of the equivalence, which can be proved just as easily,
is left to the reader.

For the last part of the proposition, we may assume without loss of generality that γ is
in normal form, say γ is of the form (7). First assume that F , V  γ. In order to prove that
F•, V ′  resτ (γ), take an arbitrary point w in W•; we will show that both conjuncts of θτ ,
cf. (14), hold at w.

First, it follows from F , V  γ and the fact that w is a base point that F , V, w  θ0.
Hence, by the second part of the proposition we have that F•, V ′, w  θτ0 . This takes care of
the first conjunct of θτ .

In order to show that the second conjunct of θτ holds at w as well, assume that F•, V ′, w 
>∇>. That is, w has T -successors in F•; hence, w has S-successors in F . For each S-successor
m of w, by our assumption on the shape of γ there is some j such that F , V,m  πj ∧30θ0,j ∧
31θ1,j ∧32θ2,j . By part 1 of this proposition, we may derive from F , V,m  πj the existence
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of a k ∈ Kτ,πj such that for each i = 0, 1, 2 we have that F , V, rim  (πj)τi,k. Likewise, we
may use part 2 of the proposition to infer from F , V,m  3iθi,j that F•, V ′, rim  θτi,j . Now
suppose that we use the same notation as in Definition 8.6 and define L as the set of pairs
(j, k) in Jτ (θ) such that for each i = 0, 1, 2 we have that F•, V ′, rim  ηi,j,k. It follows from
our earlier remarks that L is not empty. Now we claim that

F•, V ′, w 
∧

(j,k)∈L

η0,j,k ∧
∧
M⊆L

∆(
∨

(j,k)∈M

η1,j,k,
∨

(j,k) 6∈M

η2,j,k).(15)

First, take an arbitrary pair (j, k) ∈ L. By definition of L, there is some S-successor m of w
such that F•, V ′, r0m  η0,j,k. However, since m is an S-successor of w we have that rim = w;
and since (j, k) was an arbitrary element of L this gives that F•, V ′, w 

∧
(j,k)∈L η0,j,k.

Now let v1 and v2 be arbitrary base points such that Twv1v2. By definition of T there
must be a middle point m between w, v1 and v2. Thus by definition of L there must be some
pair (j, k) ∈ L such that for each i = 1, 2 we have F•, V ′, vi  ηi,j,k. But then it follows by
Proposition 7.5 that F•, V ′, w 

∧
M⊆L ∆(

∨
(j,k)∈M η1,j,k,

∨
(j,k) 6∈M η2,j,k).

Thus we proved (15) and hence, we established that the second conjunct of resτ (γ) holds
at w as well. This shows that F•, V ′, w  resτ (γ) and thus finishes the proof of the left to
right direction of the last part of the proposition.

In order to finish our proof of part 3, now suppose that F•, V ′  resτ (γ). We will show
that F , V  γ. To do so, take an arbitrary point in F . Distinguish cases according to the
nature of this point.

If the point is a base point, say w, then it follows from F•, V ′, w  resτ (γ) that F•, V ′, w 
θτ0 , so using the second part of this proposition we obtain that F , V, w  θ0 which immediately
gives that F , V, w  γ.

If, on the other hand, we are dealing with a middle point, say m, there is more work to do.
We first turn to the (unique!) R0-successor r0m of m; note that it follows from the assumption
that F•, V ′, r0m  resτ (γ). In particular, this gives that there is some subset L of Jτ (θ) such
that F•, V ′, r0m 

∧
(j,k)∈L η0,j,k and F•, V ′, r0m 

∧
M⊆L ∆(

∨
(j,k)∈M η1,j,k,

∨
(j,k) 6∈M η2,j,k).

From the latter fact we may infer, using Proposition 7.5, that there is some pair (j, k) ∈ L
such that F•, V ′, r1m  η1,j,k and F•, V ′, r2m  η2,j,k. Taking this together with the first fact
we may certainly conclude that for some pair (j, k) ∈ L it holds that

F•, V ′, rim  ηi,j,k, for each i ∈ {0, 1, 2}.

Unraveling the definition of ηi,j,k we may draw two conclusions. First, for each i ∈ {0, 1, 2}
we have F•, V ′, rim  (πj)τi,k, so by the first part of this proposition we may conclude that
F , V,m  πj . And second, for each i ∈ {0, 1, 2} we have F•, V ′, rim  θτi,j , whence by
the second part of this proposition we may infer that for each i = 0, 1, 2, it holds that
F , V, rim  θi,j . All in all, we find that F , V,m  πj ∧ 30θ0,j ∧ 31θ1,j ∧ 32θ2,j , which
immediately gives that F , V,m  θ. qed

Proposition 8.8 1. Let G be a descriptive general L∇-frame. If G  Res(γ) then G•  γ.

2. Conversely, let H be a descriptive general Sim-frame. If H  γ then H•  Res(γ).
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Proof. For the first part of the proposition, let G be a descriptive general L∇-frame such
that G  Res(γ). Let V be an arbitrary admissible valuation on G•. By definition of G•, for
each p there are admissible subsets ap, api,k (i ∈ {0, 1, 2}, k in some finite set K) such that
V (p) = ap ∪

⋃
k(a

p
0,k × a

p
1,k × a

p
2,k). Let τ be the substitution given by

τ(p) = pb ∧
∨
k

(30p0,k ∧31p1,k ∧32p2,k),

and consider the valuation V ′ given by V ′(pb) = ap and V ′(pi,k) = api,k.
Clearly, τ is a sorted substitution and V and V ′ satisfy the conditions of Proposition 8.7.

Thus we may conclude that G•, V  γ. Since V was arbitrary this implies that G•  γ.
For the other direction, suppose that γ is valid on the descriptive general Sim-frame H.

In order to show that H•  Res(γ), take an arbitrary sorted substitution τ , and an arbitrary
H•-admissible valuation V ′. Let V be the valuation on the underlying frame of H which is
given by V (p) = V ′(τ(p)). Then obviously, V is admissible on H, whence by assumption we
have that H, V  γ. It follows by the definition of V that we may apply Proposition 8.7 which
yields H•, V ′  resτ (γ). Since both V ′ and τ were arbitrary this shows that H•  Res(γ).
qed

Proposition 8.9 Let Θ be an L∇-logic extending Sim. If Θ is axiomatized by Γ, then the
set
⋃
γ∈Γ Res(γ) axiomatizes Θsim .

Proof. By Proposition 8.2 it suffices to prove that for all L∇-formulas ϕ we have the following
equivalence:

ϕ ∈ K∇.Res(Γ) iff ϕ3 ∈ Sim.Γ.

For the direction from left to right, suppose that ϕ3 does not belong to Sim.Γ. Then for some
descriptive general Sim-frame G we have that G  Γ, G 6 ϕ3. It follows from Proposition 8.8
that G•  Res(Γ) and from Proposition 4.17 that G• 6 ϕ. But then it is immediate that ϕ
does not belong to K∇.Res(Γ).

For the other direction, suppose that ϕ 6∈ K∇.Res(Γ). It follows that there must be
a descriptive general L∇-frame G such that Res(Γ) is valid on G but ϕ is not. Then by
Proposition 8.8 we have that G•  Γ while Proposition 3.8 implies that G 6 ϕ3. From this it
is immediate that ϕ3 does not belong to Sim.Γ. qed

Using some well known tricks, Proposition 8.9 can be used to show that (·)sim reflects
finite and recursive axiomatizability.

Proposition 8.10 Let Λ be an L∇-logic.

1. If Λsim is recursively axiomatizable, then so is Λ.

2. If Λsim is finitely axiomatizable, then so is Λ.

Proof. It is fairly easy to derive from Proposition 8.9 that if Λsim has a recursive axiom-
atization, then Λ has a recursively enumerable set of axioms; however, a well known result
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sometimes called Craig’s Lemma implies that then Λ must have a recursive axiomatization
as well.

Now suppose that Λsim is finitely axiomatizable; then we may assume that Λsim is ax-
iomatized over Sim by a single axiom, say, γ. It follows by the previous proposition that
Λ = (Λsim)sim is axiomatized by the set Res(γ). But then by Proposition 5.5, Λsim is axiom-
atized by the set (Res(γ))3 = {resτ (γ)3 | τ a sorting substitution}. Since γ belongs to Λsim ,
there must be a derivation of γ from the axioms in (Res(γ))3. Since derivations are finite,
only finitely many axioms, say, (resτ1(γ))3, . . . , (resτn(γ))3 can be involved in this derivation.
From this it is not difficult to prove that the set {resτ1(γ), . . . , resτn(γ)} axiomatizes Λ. qed

8.2 Reflection of first-order definability

In this subsection we will show that if Λsim defines an elementary class of frames, then so
does Λ. That is, we will prove that (·)sim reflects first-order definability. Roughly speaking,
the proof of this result is similar to the proof of the corresponding preservation result: we will
define a translation (·)e mapping first order Lfo

3 -sentences to Lfo
∇-sentences, and prove that

if the set Σ ⊆ Lfo
3 axiomatizes the class of frames for Λsim , then the set Σe axiomatizes the

class of frames for Λ. There are some technical complications however, mainly due to the fact
that in the direction from Lfo

3 to Lfo
∇ , it is not immediately clear what to do with information

pertaining to middle points. Our approach will be to make a distinction in Lfo
3 between base

variables and middle variables (obviously, this distinction cannot be made absolute since it
is based on a semantic notion). The basic idea underlying our translation from Lfo

3 to Lfo
∇

will be to replace each middle variable y in Lfo
3 with three variables y0, y1 and y2 in Lfo

∇ ; the
semantic intuition is that these variables will refer to the respective (unique) R0-, R1- and
R2-successor of the middle point that y refers to. Now for the technical details.

Definition 8.11 Call a first order formula clean if no variable occurs both free and bound
and no two distinct quantifier occurrences bind the same variable.

Suppose that X and Y are two disjoint sets of variables; a clean formula α is called X,Y -
translatable if all of its free variables and none of its bound variables are taken from X ∪ Y .
�

In the above definition, X and Y are the base and middle variables, respectively. Note
that sentences are ∅,∅-translatable, that each subformula of an X,Y -translatable formula
is X,Y -translatable, and that if ∃xα is X,Y -translatable, then α is both X ∪ {x}, Y and
X,Y ∪ {x}-translatable. These observations show that the following definition is correct.

Definition 8.12 For a set of variables Y , let Y 3 denote the set {y0, y1, y2 | y ∈ Y }. We
define the translation (·)X,Y from X,Y -translatable Lfo

3 -formulas to L∇-formulas.

(x = y)X,Y =


x = y if x, y ∈ X,
x0 = y0 ∧ x1 = y1 ∧ x2 = y2 if x, y ∈ Y ,
⊥ otherwise.

(Rixy)X,Y =
{
x = y0 if x ∈ X and y ∈ Y,
⊥ otherwise.
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(Sxy)X,Y = (R0yx)X,Y
(¬α)X,Y = ¬αX,Y

(α ∧ β)X,Y = αX,Y ∧ βX,Y ,
(∃z α)X,Y = ∃z αX∪{z},Y ∨ ∃z0z1z2 (Tz0z1z2 ∧ αX,Y ∪{z}).

Given a sentence α, let αe denote the sentence α∅,∅. �

It is our aim to show that for every L∇-frame F it holds that F• |= αe iff F |= α.
Since the proof of this statement is based on a formula induction, we need means to compare
assignments on F with those on F•.

Definition 8.13 Let F be an L∇-frame, and let X and Y be two disjoint sets of variables.
An assignment b : (X ∪ Y ) → W • is well-sorted with respect to X and Y , or briefly: well-
sorted, if it maps variables in X and Y to base points and middle points, respectively. Given
a well-sorted assignment b : (X ∪ Y ) → W •, let bX,Y : (X ∪ Y 3) → W be the assignment
given by

bX,Y (x) = b(x) if x ∈ X,
bX,Y (yi) = ri(b(y)) if y ∈ Y .

�

We can now state and prove the main technical lemma of this subsection.

Proposition 8.14 Let F be an L∇-frame, and let X and Y be two disjoint sets of variables.
Let α be an Lfo

3 -formula, and let b : (X ∪ Y ) → W • be a well-sorted assignment. Then we
have

F• |= α[b] iff F |= αX,Y [bX,Y ].

In particular, if α is a sentence, we may take X and Y to be empty and obtain

F• |= α iff F |= αe.

Proof. We prove this proposition by induction on the complexity of α.
For the base case of the induction we consider the various atomic formulas separately.

First assume that α is of the form x = y. Distinguish cases:

1. If x and y both belong to X, then bX,Y (x) = b(x) and bX,Y (y) = b(y), so indeed we find
that F• |= x = y[b] iff F |= x = y[bX,Y ].

2. If only one of the two variables, say x, belongs to X, then by well-sortedness, b maps x to
a base point and y to a middle point. Hence, we have F• 6|= x = y[b] and F 6|= ⊥[bX,Y ],
as required.

3. If both x and y belong to Y , then b maps both of them to middle points of F•. Since
two middle points in a simulation frame are identical if and only if their Ri-successors
are identical, we have F• |= x = y[b] iff b(x) = b(y) iff for all i, ri(b(x)) = ri(b(y)) iff for
all i, bX,Y (xi) = bX,Y (yi) iff F |= x0 = y0 ∧ x1 = y1 ∧ x2 = y2[bX,Y ], as required.
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If α is an atomic formula of the form Rixy, then again distinguish cases:

1. If x belongs to X and y belongs to Y , then we have that F• |= Rixy[b] iff b(x) = ri(b(y))
iff bX,Y (x) = bX,Y (yi) iff F |= x = yi[bX,Y ].

2. In all other cases, it follows from well-sortedness of b that F• 6|= Rixy[b]. This is fine,
since we also have F 6|= ⊥[bX,Y ]

The case that α is an atomic formula of the form Sxy is immediate.
The boolean cases of the induction step have a straightforward proof, so we concentrate

on the case that α is of the form ∃z β.
First suppose that F• |= ∃z β[b]. Then there is a point u in F• such that F• |= β[b′],

where b′ is the assignment which may differ from β only in mapping z to u. Distinguish cases
as to the nature of u:

1. If u is a base point, then b′ is well-sorted with respect to X∪{z} and Y . Hence, it follows
from the induction hypothesis that F |= βX∪{z},Y [b′X∪{z},Y ]. Clearly, b′X∪{z},Y differs
from bX,Y at most in what it maps z to. Hence, we have that F |= ∃z βX∪{z},Y [bX,Y ].
That is, the left conjunct of αX,Y holds in F under bX,Y ; but then we clearly have
F |= αX,Y [bX,Y ].

2. If, on the other hand, u is a middle point, then b′ is well-sorted with respect to X and
Y ∪ {z}. Note that by definition of b′X,Y ∪{z}, we have that F |= Tz0z1z2[b′X,Y ∪{z}],
and that it follows from the induction hypothesis that F |= βX,Y ∪{z}[b′X,Y ∪{z}]. Since
b′X,Y ∪{z} differs from bX,Y at most in what it maps z0, z1 and z2 to, this means that
F |= ∃z0z1z2 (Tz0z1z2 ∧ βX,Y ∪{z})[bX,Y ], so the right disjunct of αX,Y holds in F under
bX,Y . Again, we find that F |= αX,Y [bX,Y ].

For the other direction, suppose that F |= (∃z β)X,Y [bX,Y ]. By the definition of (∃z β)X,Y
we have either F |= ∃z βX∪{z},Y or F |= ∃z0z1z2 (Tz0z1z2 ∧ βX,Y ∪{z})[bX,Y ]. We leave it for
the reader that in the first case we may reverse the reasoning in item 1 above, and similarly
for the second case and item 2. In both cases we find a (base, respectively middle) point u in
F such that F |= β[b′] where b′ is the assignment which may differ from β only in mapping z
to u. This shows that F |= α[b]. qed

Proposition 8.15 Let Λ be an L∇-logic. If the class of L3-frames for Λsim is axiomatized
by the set Σ of Lfo

3 -formulas, then the set Σe axiomatizes the class of L∇-frames for Λ.
Hence, if Λsim is elementary (∆-elementary), then so is Λ.

Proof. Assume that Λ and Σ are as in the statement of the proposition. The proposition
follows from the following chain of equivalences:

F  Λ
iff (Prop’s 3.5 and 5.5) F•  Λsim ,
iff (assumption) F• |= Σ,
iff (Proposition 8.14)) F |= Σe. qed
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