Axiomatizing complex algebras by games

IAN HODKINSON* SZABOLCS MIKULAST YDE VENEMA#Y

October 15, 2003

Abstract

Given a variety V, we provide an axiomatization ®(V) of the class SCmV of complex
algebras of algebras in V. ®(V) can be obtained effectively from the axiomatization of V;
in fact, if this axiomatization is recursively enumerable, then ®(V) is recursive.
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1 Introduction

The construction of complexes of structures is a standard procedure in mathematics. Probably
the oldest and best known example is found in group theory: given a group, consider the
algebra whose carrier is the power set of the group elements and whose operations are the
power lifts of the group operations, for instance,

XoY = {zoy|lzeX,yeY}

In lattice theory it is well known that the set of ideals of a distributive lattice £ again forms
a lattice, of which the meet and join coincide with the lifted meet and join operations of L,
respectively:

LVI, = {al\/a2|a1€I1,a2€IQ},
LNy = {al/\a2|a1€.71,a2612}.

And as a last example we mention formal language theory, where we may see the product of
two languages as the lift of word concatenation:

Li; Ly = {wlwg | wy € L1, wy € LQ}.

Obviously, this construction can be carried out for an arbitrary operation, giving rise
to the power algebra of an algebra (formal definitions are found in the next section). Since
the universe of such an algebra is a power set algebra, it is natural to include the Boolean
operations into the similarity type; thus we obtain the full complex algebra LT of an algebra
L. If instead of all subsets of £ we take as carrier of the algebra some non-empty collection of
subsets of £ that is closed under the Boolean operations and under the lifted operations, we
get an arbitrary complex algebra over L; formulated more concisely, a complex algebra over
L is any subalgebra of £7.

For some notation, given a class K of algebras, we denote the class of full complex algebras
over (algebras in) K by CmK; SCmK denotes the class of isomorphism types of complex
algebras over K, and Vark, the variety generated by CmK.

The construction gives rise to various questions of a universal algebraic nature, for instance
concerning the relation between a class K of algebras and the class SCmK of associated complex
algebras. For a survey of known results and references to the literature we refer the reader to
Brink [1] and Goldblatt [4] (the second paper takes a more general perspective, considering
complex algebras of arbitrary relational structures).

In this paper, we are interested in finding an axiomatization of the class of complex
algebras of a given variety V. It seems that in the general case, not much is known. There
are some known results relating the validity of an equation in an algebra to its validity in the
power algebra. For instance, a result by Gautam [3] states that the validity of an equation
is preserved under moving to the power algebra if and only if every variable in the equation
occurs exactly once on each side of the equation. This makes it improbable that an equational
axiomatization of a variety V will be of direct use in finding an axiomatization of SCmV.

Recently, Goranko and Vakarelov [5] have given complete axiomatizations of the modal
logic of various classes of relational structures, including varieties of algebras. Translated into
algebraic terms, their result yields a derivation system for the set Equ(CmV) of equations
valid in the class CmV for an arbitrary variety V. Their result crucially involves the exten-
sion of the lifted algebraic language with a so-called difference operator, and an extension



of the derivation system with an non-structural derivation rule. However, for some varieties
V, including groups and (thus) Boolean algebras, this difference operator is term-definable
over the class CmV. Hence, for such a variety V, the result of Goranko and Vakarelov pro-
vides a derivation system for the equational theory Equ(CmV) within the language of the
complex algebras — but since this system has a non-structural rule, it is not an equational
axiomatization in the traditional sense, or an equational characterization of the variety Vary.
Independently, Venema [17] obtained the same result for the case of groups.

In the case of groups, some other results are known. Complex algebras of groups appear
in the literature on algebraic logic as group relation algebras, GRAs. Tarski [15] showed that
GRA is axiomatizable by a set of equations over the class of integral relation algebras, while
McKenzie [13] proved that no finite axiomatization of GRA can be found. McKenzie [13,
p.282] writes:

“It would certainly be of interest to have a reasonably elegant system of first-order
axioms characterizing [GRA].”

The aim of this paper is to give such a characterization, not just for group relation algebras
but in general for the class of complex algebras of any (recursively axiomatizable) variety of
algebras. We will use two-player games in the characterization, and translate the existence
of a winning strategy for one of the players into a set of first-order axioms; thus, we find,
for an arbitrary class of the form SCmV, an axiomatization with strong intuitive content.
Similar techniques were used to construct axiomatizations in [16, 6, 8, 7, 14]. The method is
implicitly used in the much earlier [12], although games are not mentioned per se.

Formulated precisely, in this paper we will prove the following Theorem.

Theorem 1.1 LetV be a variety of ¥-algebras, where X2 is a finite functional similarity type.
There is a set ®(V) of universal first-order sentences in the language of complex algebras
over V such that whenever A is a Boolean algebra with X-operators, A = ®(V) if and only
if A is representable as a complex algebra over V. ®(V) can be obtained effectively from the
aziomatization of V; in fact, if this axiomatization is recursively enumerable, then ®(V) is
recursive.

There is no special reason to restrict ourselves to either a finite similarity type or to
complex algebras over a variety. Similar techniques serve to axiomatize the class of complex
algebras over any universally axiomatized class of relational structures and indeed, over any
elementary class (for instance, by using Skolem functions to reduce to universal case). This
covers representable relation algebras, and representable cylindric algebras of finite or count-
able dimension. In a more model-theoretic vein, any pseudo-elementary class of structures
(see, e.g., [2]) that is closed under substructures can also be universally axiomatized by games
[9].

We have mentioned the universal form of the axiomatization explicitly because of the
following. Suppose that we are (also) interested in an equational axiomatization of the variety
Vark. Now if we have a discriminator term at our disposal for the class CmK (which is the case
for, e.g., group relation algebras), then the universal axiomatization ®(K) can be effectively
converted into an equational axiomatization for the variety Vark. This can be seen as follows.
Let ¢(z) be a unary discriminator term over the class CmK. It is well-known (cf. Jipsen [11])
that there is a set of equations D. such that (i) the variety V. of Boolean algebras with
operators defined by D, is generated by the algebras for which ¢ is a discriminator term,



and (ii) ¢ is a unary discriminator term in all subdirectly irreducible members of V.. It is
equally well-known that given a unary discriminator term c, there is an effective translation
(-)¢ mapping universal formulas to equations such that ¢ is equivalent to ¢ in every algebra
for which ¢ is a discriminator term. From this it is straightforward to show that Var(K) is
axiomatized by the set of equations D. U {¢° | ¢ € ®(K)}, together with the set of equations
axiomatizing Boolean algebras with operators of this similarity type. (Also, in such a case it
follows that Var is identical to the class SPCmK consisting of isomorphic copies of subalgebras
of products elements of CmK.)

The paper is organized as follows. In the next section, we recall the basic definitions. In
section 3, we introduce a two-player game, and in section 4, a game characterization is given
for representability as a complex algebra. In the last section, we turn this into a first-order
axiomatization.

Acknowledgements We would like to thank Peter Jipsen for stimulating discussions, and
Valentin Goranko for comments on an earlier version of the manuscript. We also thank the
referee for helpful comments.

2 Preliminaries

A similarity type is a set of function symbols, each of which comes with a non-negative arity;
we denote the arity of a symbol V as ar(V). Throughout the paper, we will abbreviate
g = ar(V) in order to ease some notational burden. Given a similarity type X, a X-algebra
is a pair £ = (L,I), where L is some non-empty set and I is a function interpreting each
function symbol V in 3 as an operation Iy : LY — L.

As the similarity type of Boolean algebras we take the set BA = {4, —,0} where ‘+’
denotes the join operation (union U in fields of sets), ‘—’ denotes complementation, and ‘0’
represents the least element (the empty set @ in set algebras). The other function symbols
such as - and 1 are taken as abbreviations. Operations interpreting the Boolean function
symbols are denoted by the function symbols themselves (for instance, we do not write I,
but rather 4+ or U). We assume that the reader is familiar with Boolean algebras and various
notions pertaining to them, such as ultrafilters; see, e.g., [2].

Given a similarity type %, let X p4 be the similarity type consisting of the disjoint union
of ¥ and the Boolean function symbols. (So if 3 should already contain the Boolean symbols,
we add new copies of them; these are not identified with the ones already in 3J; this avoids
confusion in the case we are dealing with complex algebras of Boolean algebras.) In order to
distinguish ¥ ga-algebras from X-algebras, we will usually denote the interpretation function
of a ¥ pg-algebra by a diamond symbol; for example, in an abstractly given ¥ p4-algebra we
denote by Oy the operation interpreting the symbol V.

We define the notion of a complex algebra over a X-algebra £ = (L, I) as follows. For any
function symbol V, the operation I3 is defined as the lift of the operation Iy. That is, for
subsets X1, ..., X, of L we define

I3 (Xy,....Xy) ={Iv(x1,...,2q) | x; € X; for all i}.
Now the power algebra of L is defined as the algebra

(P(L), I3)ves,



where P(-) denotes power set, whereas the full complex algebra LT of L is given as
£+ = (P(L)7 U7 ) Qa I%)VEE-

Any subalgebra of LT is called a complex algebra over L. For a class K of Y-algebras, we
let CmK denote the class of full complex algebras of algebras in K. Since we use S as the
class operation giving isomorphic copies of subalgebras, this means that SCmK denotes the
class of isomorphism types of complex algebras over K. We say that a YXpa-algebra A is
representable over a class of Y-algebras K if it belongs to this class SCmK. If the class K is in
fact a set consisting of one algebra L, we also say that A is representable over L£; observe that
this is equivalent to saying that there is a representation of A over L, that is, an embedding
rep : A— L7,

Complex algebras are the prime examples of Boolean algebras with operators. An operator
on a Boolean algebra (A, +, —,0) is an operation on A that is normal (meaning that its value
equals 0 whenever one of its arguments equals 0) and additive (that is, it distributes over +
in each of its arguments). Given a similarity type X, a Boolean algebra with ¥-operators is
a Ypg-algebra (A,+,—,0,<) such that each operation Oy (V € X)) is an operator on the
Boolean algebra (A, +, —,0).

We will need the following fact.

Theorem 2.1 For any variety V of X-algebras, SCmV is an elementary class of Boolean
algebras with %-operators.

PRrROOF. It is easy to see that complex algebras are Boolean algebras with operators. In order
to prove that SCmV is an elementary class, by the Keisler—Shelah theorem it suffices to show
that it is closed under ultraproducts and ultraroots.

The latter is straightforward: take any ¥ps-type algebra A and an ultrapower A” /U of
it such that A/ /U belongs to SCmV. Since A can be embedded in A’ /U via the diagonal
embedding, it is immediate that A belongs to SSCmV = SCmV.

Now suppose that (A;);cs is a family of ¥ ps-algebras in SCmV. That is, for each j € J
there is an £; in V such that A; — £;7. Consider an ultraproduct A = (IT;esA)/U. Tt is
a well-known fact (cf. [4], Lemma 3.6.5) that

qIzHw — (q[enmw)’

jed jeJ

But (Hje 7L£;5)/U belongs to V, since V is a variety and hence closed under ultraproducts.

Thus the structure ((I[;c, L£;)/U)" is in CmV; it therefore follows from A (ILjes £,5)/U
that A belongs to SCmV, as required. QED

This result actually holds for any elementary class V.

3 Games

Let us fix, for the rest of the paper, a finite! similarity type ¥, and a variety V of Y-algebras.
We will also fix an enumeration (g; : i < w) of a set of equations defining V.

!This is for simplicity; our results hold for any recursive similarity type X. See Remark 5.7 for more details.



It is our aim in this section to define the game that we will use to characterize complex
algebras. The key concept employed in our game — the playing board as it were — is that
of a network. In order to define this, we use the notion of a partial algebra.

Definition 3.1 A partial X-algebra is a structure N' = (N,I) such that I is a function
interpreting each function symbol V in Y as a partial operation Iy on N of arity ¢. We
write ‘Iyv(Z) = 1’ to denote that Iy (Z) is undefined; this convention also applies if not every
element of T is in V.

Analogously to the case of total ¥-algebras, a ¥-term 7(z1,...,x,) can be evaluated in a
partial X-algebra N/ = (N, I) under any assignment 6 of its free variables to values in N; we
denote the resulting value by 7¢. The evaluation is partial in that 7% need not always exist.
Now we say that an equation o = 7 holds in a partial Y-algebra N, or that N satisfies the
equation, if for every assignment 6 of the free variables of o and 7, if both ¢ and 79 exist
then they are equal. A partial Y-algebra N is called a partial V-algebra if it satisfies all the
equations of V, and a partial V-algebra of grade r (where r < w) if it satisfies the equations
{eiri<r}.

Let (N,I) and (N',I') be two partial Y-algebras. Then we say that (N, I) is a partial
subalgebra of (N',I') if N C N’, and for any V € ¥ and ky,...,k; € N, if Iy(k1,...,kq) is
defined then I3 (K1, . .., ky) is also defined and I (K1, ..., kg) = Iv(k1, ..., k). <

Observe that in particular, the constant (zero-ary) function symbols need not obtain an
interpretation in a partial algebra.

Definition 3.2 Given a Ypg-algebra A = (A, +,—,0,<), a network over A is a structure
N = (N, 1, ) such that (N, I) is a finite partial ¥-algebra and A is a map: N — A. Elements
of N are called nodes, and A is called the labelling of the network. The empty network
(9,2, 2) is denoted as Ny.

A network (N, I,)) is called a V-network (of grade r) if (N,I) is a partial V-algebra (of
grade r). (N,I,)) is said to be coherent if A(k) # 0 for each node k € N, and in addition,
A satisfies the following condition, for each function symbol V and all nodes ki,...,k; € N
such that Iy (ki,...,kq) is defined:

AIg(ki, ... kg)) - Ov(A(k1), ..., AMkq)) # 0.

Where A can be recovered from the context, we will simply say ‘network’ instead of ‘network
over A’. <

In order to get some intuition concerning this notion, we make the following definition,
which will also be needed later.

Definition 3.3 Let rep be a representation of the Y p4-algebra A over the algebra £ in V.
We say that the network ' = (N, I, \) matches with rep if (i) (N, I) is a partial subalgebra
of £, and (ii) k € rep(A\(k)) for all nodes k € N. <

Suppose that A is representable over V, say, via the representation rep over the algebra
L in V. Further, suppose that the network N' = (N, I, \) matches with rep. Then N is
a coherent V-network — as an easy calculation shows. Such a network can be seen as a
finite approximation of the representation rep: the network only provides partial information
concerning the representation. However, not every network matches with a representation;



the proper intuition behind the concept is that the existence of a coherent network over an
algebra A is an indication of the ‘representability potential of A’. The more details the
network provides, the higher this potential is.

We are interested in certain relations between networks, like one coherent V-network
approximating a representation better than another. In general, we need to define when one
network extends or provides more information than another.

Definition 3.4 A network N/ = (N’,I’, \) over an algebra A is said to extend or to be an
extension of a network N' = (N, I, \), notation: N' < N’ if (N, I) is a partial subalgebra of
(N',I") and X is a tightening of A: that is, A = N (k) < (k) for all k € N. <

Note that if <t N’ and N is a coherent V-network of grade r then so is V.
In the sequel, we will be interested in a number of ways to extend a network, in particular,
the following three:

1. adding new points, that is, enlarging the network,
2. tightening the labelling,

3. providing more values for the partial operations interpreting the function symbols.

Definition 3.5 Let N' = (N, I,)) be a network over the X pg-algebra A.

1. For an object n (either being a node of the network or not), AM'(n) is defined to be the
network (N U {n}, I, \'), where the labelling \’ is given by

)\,(1;):{1 ifr=né&N,

A(z) otherwise.

Roughly speaking, the network N'(n) is the network N in case n already belongs to N,
while it is the extension of N' with n as a new node otherwise.

2. For anode k € N and an element a € A, N'(k:a) denotes the network (N, X, I), where
the labelling )\ is given by

i AMz)-a ifx=Ek,
M) = { A(z) otherwise.

In words, N (k:a) is the network we obtain by tightening the label of k so that it is
below a.

3. For an operator symbol V € ¥ and nodes ko, k1, . . ., kg of N, the network N(V, kv ko)
(where k is the tuple (ki,...,k,)) is defined to be (N,I’,)), where I, = Io for all
function symbols © different from V, while the interpretation of V is given by

I (T) . ko if 7=k and [V(f) =T,

VT Iv(@) otherwise.

So N(V,k ~ ko) is obtained by giving I'v(k) the value ko, unless Iy (k) was already
defined by N, in which case N'(V,k +— ko) = N.



We are now ready to define the games.

Definition 3.6 Let A be some Y pgy-algebra, let A/ be some network over A and let o < w
be an ordinal. We define a game G, (N, A, V) between two players: V (male) and 3 (female).

A match of the game consists of a rounds, numbered 0,1,...,4,... for i < a. The match
starts with the network Ny = N; during the match, the players build a sequence of networks
(Nit1)i<a- All networks are over A. Each round consists of a move made by V and a response
move made by 3. In round ¢, for each ¢ < «, the playing board consists of the network
N;. The actions of the players during the round define a new network A1 which forms the
playing board for the next round, ¢ + 1; and so on.

The moves of the players are subject to the following constraints. In each round of the
game, V has a choice between four kinds of move, listed below. Suppose that he is about
to make a move in round i of the game and that N; = (N, I, ) is the network forming the
playing board. His move can be seen as a proposal to extend N; in some way; in her response,
3 can choose either to accept or reject his proposal. There is some fixed infinite set @ at I’s
disposal from which to draw new nodes, if her response entails enlarging N;.

(a) (asking for label refinement) In the first type of move, V chooses a node k of the network
N; and an element a of the algebra A. If 3 accepts this move, N, is defined as the
network N;(k:a); otherwise, it is N;(k: —a).

(B) (asking for witnesses) The second type of move consists of ¥V choosing a function symbol
V € X of arity g, say, elements ay, ..., aq of A, and a node k of ;. In this case, rejection
by 3 gives the network

M+1 = M(k H —<>v(a1, oo ,aq)).
If, on the other hand, she accepts V’s proposal, she must choose objects my,...,mq
which may or may not be nodes of N. In the case that these objects already exist and
that Iy(mi,...,mq) is defined, then we require that Iyv(mi,...,my) = k. The new
network is defined as
M-i—l - M(va k)m) a))

where @ = (a1,...,aq), m = (Mmy,...,my) and

Ni(V,k,m,a) = Ni(ma) -« (mg)(V,m = k)(my :a1) - (mg : ag). (1)

(Note that by part 3 of Definition 3.5, this takes care of the case that Iy(mq,...,mq)
was already defined on the old network.)

(7) (asking for function values) In the third kind of move, V points out a function symbol
V € ¥ and nodes ki,...,kq of ;. In this case, 3 has no other choice but to accept,
and she does so by choosing a point m (which may or may not be a node of the old
network). The new network is defined as

Nig1 = Ni(m)(V, (K1, ... kq) — m).

(0) (asking for elements) Finally, in the fourth kind of move, V simply picks a non-zero
element a of the algebra A. 3 has to accept, by providing an object k; the new network
is defined as

Nit1 = Ni(k)(k - a).



3 is said to win the match if Ny and all N;11’s (i < «) are coherent V-networks of grade «;
if she does not win, then V does. <

It is in a sense the aim of the first player, V, in the game G, (N, A,V) to show that the
starting network A is not an approximation of a representation of the algebra A over some
V-algebra, while the second player 3 wants to show the contrary. Less confrontationally, we
can view J as a doctoral student in the Faculty of Representability of Algebras, and V as
examiner of her dissertation on A [10]. The best perspective on the role of the networks
is that for each network A arising during the game, 3 claims the existence of a matching
representation, rep. The idea of a move in the game is then that V challenges 3 to provide
more information about rep. V makes a type («) move to find out whether 3 wants a node
k to belong to rep(a) or to its complement rep(—a). Concerning the type § moves, in a real
representation, if k& belongs to rep($v(aq,. .., aq)) then there must be witnesses my,...,my
such that Iy(mi,...,my) = k and each m; belongs to rep(a;). A move of type () tests
this; just like in a type (a) move, rejection by 3 means that she believes k not to belong to
rep(Ov(at, ..., aq)). If she accepts, however, she must provide the witnessing points, adding
them to the network in case they were not there already, put & as the value of Iy (mq,...,mq),
and tighten, for each 4, the label of k; with a; (for those k; that are new to the network, this
means in effect initializing A(k;) := a;). All of this is expressed by (1). Furthermore, any
function Iy must be defined on all tuples of points of appropriate length, and this is tested in
type (v) moves. Moves of type () test injectivity of the representation, as we will see later
on.

Definition 3.7 3 is said to have a winning strategy for the game G (N, A, V) if there is a
set of rules that tells her how to respond to V in each round of a match, depending on play
so far, such that she wins any match in which she follows these rules. <

The notion of a winning strategy can be formalized by certain functions but it is not helpful
here to do so.

In the sequel, we will make tacitly use of the observation that if 4 uses a winning strategy
in a match of the game G, (N, A, V), then at each round i she has a winning strategy for the
game G, (N;, A,V). A similar observation holds for the finite-length games, except that we
must remember that games of different finite lengths require networks of different grades (the
reason for this requirement will be seen in section 5). Observe furthermore that it follows
from the definitions that the sequence of networks obtained in any match of the game is in
fact a chain: Nog <N1 < ---.

Remark 3.8 From Definition 3.6, it may seem that the game G, (N, A, V) is not well-defined,
in that it depends on the set @ of ‘new’ nodes available to 3. It may also seem that to some
moves of ¥V, 3 has an infinite choice of networks to respond with; it is crucial for our later
results that this infinite choice in fact boils down to a finite one. These two issues are closely
related. We felt that dealing with them more formally in the definition of the game would
have gone at the cost of transparency. Nevertheless, in section 5 we need more precision
concerning this issue, so let us discuss it now in some detail.

As to the first point, it is easily seen that if J has a winning strategy in the game
Ga(N, A, V) using some set @ of spare nodes, even a finite one, then she has a winning
strategy with () = w, because it does not matter what the elements of () actually are, and
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during the « rounds of any match she will only need at most w new nodes. So we will formally
take Q = w in the game definition, but sometimes allow other sets () in practice.

In more detail, and addressing the second point, consider the situation arising after V has
made a type () move, choosing the function symbol V and the nodes ki, ..., k, (recall that
q denotes the arity of V), and suppose that Iy (ki,...,k,) is undefined for the old network
N = (N,I,)\). Then 3 is forced to give a value for the new interpretation function Iy, on
the tuple (k1,...,kq). It is obvious that there are only finitely many old candidates, but if
she chooses to enlarge the network with a new object, isn’t there the whole infinite set Q to
choose from? The formal answer to this question is of course affirmative, but the point is
that if 3 chooses to enlarge the network, it does not matter at all which object from the set
Q@ she chooses. We might as well have required that whenever 3 needs to extend a network
N with a new node, she takes some canonically chosen object #y from @ \ N. In fact, we
may (and later on, will) assume that # is a recursive function on sets of nodes of networks.
For instance, we may require that the nodes of a network are always taken from the set of
natural numbers, and indeed that the set of nodes of any network form an initial subset of w,
i.e., a set of the form {0,...,i}. This would mean that we could take #xy to be the size of
the network — this example in fact inspired our notation. In this alternative but equivalent
set-up, it is clear that to any type (7) move of V, the only choice that 3 has is which object
to pick from the finite set N* = N U {#n}.

Obviously, the same applies to the other kinds of move for the first player. Concerning
’s response to a type () move of V, it is convenient to introduce some notation. Recall that
in case 3 accepts V’s move, she has to choose ¢ witnesses (where ¢ denotes the arity of the
function symbol involved) which may but need not be nodes of the old network. Assume that
she chooses the nodes mq,...,mg in this order, and that when she chooses a new node m;
then this will canonically be the object #xU{m,,...m;_,}- In other words, let K?(N) be the
set of those g-tuples (my,...,my) such that each m; belongs to (N U {my,...,m;—1})". Then
an affirmative answer of 3 to a type () move of V on the network A consists of choosing a
tuple from the finite set K9(N).

4 A game characterization
It is our aim in this section to prove the following result:

Theorem 4.1 Let A be a countable Boolean algebra with ¥-operators. Then 3 has a winning
strategy for the game G, (Ng, A, V) if and only if A belongs to SCmV.

Later on we will see that this theorem in fact holds for algebras of arbitrary cardinality.
For the soundness part of the game characterization (that is, the right to left direction of the
theorem), we may lift the restriction to countable algebras straight away.

Proposition 4.2 Let A be an algebra in SCmV. Then 3 has a winning strateqy for the game
Guw(Ng, A, V).

Proor. If A = (A,<) belongs to SCmV, then there is some algebra £ = (L, f) and a
representation map rep : A — P(L) which embeds A into £7.

By Remark 3.8, it suffices to prove the proposition under the assumption that the set
of spare nodes available to 3 during play is in fact the carrier set L of £. The idea of the
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winning strategy for 3 is that during a match of the game, she will maintain the condition
that the current network matches with rep. As we said before, it is not hard to show that
any such network is a coherent V-network. So in order to show that this strategy works, it
is sufficient to prove that that the initial, empty network matches with rep, and that the
strategy sees 3 through one single round of the game. The first task is rather trivial since Ny
matches with any representation. In order to establish the other fact, we have to prove that
if N = (N, I,)) is a network matching with rep, then 3 can counter any move of V on this
network by proposing a new network A7 = (N’, I, \') that also matches with rep. We only
treat the case in which V makes a type () move, asking for witnesses. Say that V picks the
function symbol V, the node m, and the elements a1, ...,aq, of A (here, ¢ denotes the arity
of V). The first thing that 3 does is to check whether m belongs to rep(< vy (a)); if this is
not the case, then (naturally) she rejects the proposal, whence the new network is defined as
N = N(m:—<g(a)). Since the only difference between N and N’ concerns the new label of
m, in order to show that N matches with rep it suffices to check that m € rep(\N(m)). But
N(m) = X(m)-—<y (@), whence rep(N(m)) = rep(A(m)) \ rep(Cw(@)). By our assumption on
N we have that m € rep(A(m)) and by our case assumption we have that m & rep(Ov(a)).
Thus we find that indeed, m € rep(X (m)).

Now suppose that on the other hand, m does belong to rep($vw(a)). Note that since rep
is a homomorphism, we have that

rep(Ov (@) = fo(rep(ar), ..., rep(aq));

recall that fo is the lift of the L-operation fy. Thus by definition of f$, there must be
elements ki,...,k, € L such that m = fy(k) and k; € rep(a;) for each i. Naturally, 3
picks such objects ki,..., k, as her response to V’s move. The new network N is defined
as N(V,m,k,a), see (1). It is obvious from the definitions that N” satisfies property (ii)
of Definition 3.3, so let us check now that the underlying partial algebra (N, I’) of N" is a
partial subalgebra of £. But since (N, I) is a partial subalgebra of £ and I’ is like I save
perhaps for its value on k, this follows from our assumption that fg (k) = m. This shows that
indeed, N matches with rep.

So it turns out that no matter which type () move ¥V makes, 3 manages to reach the end
of the round with a network that matches the representation. The proof for the other move
types is very similar. QED

The completeness part of Theorem 4.1 is the hard direction.

Proposition 4.3 Let A be a countable Boolean algebra with Y-operators, and suppose that
3 has a winning strategy for the game G,(Ng, A,V). Then A is representable as a complex
algebra over V.

ProOF. We will consider a match of the game in which both players play according to a
special strategy. Basically, the strategy of V will consist of (i) listing all moves that become
possible during the match and (ii) actually making each one of these moves at some stage
of the play; obviously, 3 will use her winning strategy. We will prove that we can ‘read off’
a representation of the algebra A from the chain of networks arising during this particular
match of the game.

For notational simplicity, we assume that the similarity type ¥ has only one function
symbol V, of arity ¢q. Let @ be some (countable) set of objects from which the nodes of the
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networks are taken during play. First of all, we define the set of all potential moves for V in
this context. For instance, any type (a) move involves a node of a network and an element of
the algebra; since the nodes of the network will always be elements of (), the set of potential
moves of type («) is the set @ x A. Likewise, A7 x @, Q9 and A are the sets of potential
moves of type (), (7) and (0), respectively. The four sets are pairwise disjoint. Thus the
(countable) set of all potential moves can be defined as follows:

P:i=(@QxA) U(ATxQ)UQIU A.

For any given network A with nodes in @Q, a given potential move may be possible or not,
according to whether the elements of @) that occur in the potential move are nodes of A/ or
not.

We may assume that the strategy of V is thus that whenever a potential move p becomes
possible during the match (in the sense that a network arises during play in which p is a
possible move), then V will actually make this move at some stage during the game. (This
could be done by enumerating the set of potential moves as P = {pg, p1,p2, ... }, and requiring
V at each round to make the move p that has the least index among all possible moves that
he has not made yet.) Observe that such an assumption can only be justified for a countable
algebra A. We also assume that 3 plays according to a winning strategy.

Consider the chain of networks arising in such a match of the game: Ny <N <---. We
will use this chain to define a partial ¥-algebra £ = (N, I). Its carrier N is given as the union

of all the N;:
N=|]JN.
1€W

Recall, for the definition of the function Iy : ¢N — N, that the sequence of networks asso-
ciated with any match of the game form a chain. In particular, the underlying algebra of a
network will be a partial subalgebra of the underlying algebra of any network arising later;
hence, if I5 (k) is defined at some stage i, we have that IS (k) = I% (k) for all stages j at
which I% (k) is defined. This means that the following is an unambiguous definition for the
interpretation Iy of the function symbol V on N in L:

o (F) = IL (k) for any i such that IS (k) is defined,
AR if no 1L (k) is defined.

Finally, we define a labelling A\ : N — P(A) by
Ak) ={a € A|a> \(k) for some i € w}.

Observe that unlike the labellings that we have seen so far, A labels nodes with subsets of the
algebra A, not with elements of it.

It is our ultimate aim to show that (N, I) is in fact a total algebra belonging to V, and
that the following map rep : A — (N, I)7 is a representation of A over (N, I):

rep: a— {ke N |aec \k)}.

To this end, we will prove the following claims. We will use the fact that, since 3 plays
according to her winning strategy, she wins this match of the game; this means that each N
is a coherent V-network.
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Claim 1 (N, ) is a total algebra and belongs to V.

Proor or CraiM We first show that Iy is a total operation. Take some elements k1, ..., kg
in N; since all elements of A/ are drawn from the set Q, it follows that k belongs to the set
P of potential moves. By our definition of N, there must be some stage i of the match at
which each object k; is present as a node of the network N;. Hence, from stage 7 onwards,
(V,k1,...,kqg) is a possible type (y) move for V. By our assumption on his strategy, this
means that at some stage j of the game, V will actually make this move, picking V as the
operator symbol together with the nodes k1, ..., k. It then follows from the rules of the game
that I%H(E) is defined; but then by our definition of Iy, we have that Iy is also defined on
k.

Then, once we know that (IV,I) is a total algebra, it is trivial to show that it satisfies
all equations of V. For, since each N is a V-network, (N, I) is a partial V-algebra, so by its
totality it belongs to V. <

Claim 2 For all k € N, A(k) is an ultrafilter of A.

ProoF OF CLAIM From the fact that A\;(k) < A;(k) for i > j it easily follows that, for each
node k, \(k) is a filter of (the Boolean reduct of) A. Since each network N; (i < w) is
coherent, these filters A\(k) (k € N) must all be proper.

In order to show that A in fact labels with ultrafilters, take some node k£ € N and an
element a of the algebra. It follows from our assumption on the strategy of V that at some
stage i of the match, V makes the type () move picking k& and a. This means that at the
next stage of the game we have either \j11(k) < a or Aiy1(k) < —a. In the first case we
obtain that a € A(k), in the second case that —a € A(k). This proves that indeed A(k) is an
ultrafilter. <

Claim 3 rep is a homomorphism.

PrOOF OF CLAIM Since A(k) is an ultrafilter of A for each node k € N, it is straightforward to
show that rep is a homomorphism with respect to the Boolean operations. Hence, we restrict
ourselves to proving that rep is a homomorphism with respect to the operation interpreting
V. In other words, we have to show that

rep(Ov(a, b)) = Ig(rep(a), rep(b)) for all a,b € A

(in order to keep notation simple here, we assume that V is binary).

We first establish the left-to-right inclusion: assume that k € rep(< v (a, b)). By definition,
this means that Oy (a,b) > A;(k), for some stage i € w. It follows from our assumption on
V’s strategy that at some stage j of the match, he makes a type (8) move picking k, V,
a, and b. It is clear that 3 does not reject this proposal, for if she did, we would have
k € rep(—<v(a,b)) contradicting k € rep(Cv(a,b)). So she accepts: this means that at stage
j+1, there are nodes k, and k; in N, with Ijvﬂ(ka, ky) =k, Ajp1(ka) < aand \jpq1(kp) < 0.
From this it easily follows that Iy (kq, ks) = k, ko € rep(a) and ky € rep(b) and thus that
k € I3 (rep(a), rep(b)).

For the other inclusion, assume that k € Ig(rep(a), rep(b)). Using the definition of Ig
as the lift of Iy this is easily seen to imply that at some stage ¢ of the match, there are
witnesses kq, ky € N; such that I (ke ky) = k, Xi(ka) < a, Ai(ky) < b and either \;(k) <
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Ov(a, b) or \i(k) < <>v(a b). Since we know by coherence of N; (Definition 3.2) that
Ai(k) - Ov(Ni(ka), Ai(ky)) # 0, using additivity of Oy we obtain \;(k) - Ov(a,b) # 0. So we

( a b
must have \;(k) < Oy(a,b). From this it follows that k € rep(Ov(a,b)). <
Claim 4 rep is injective.

ProoOF OF CLAIM It is sufficient to prove that rep(a) # 0 for any non-zero element a of the
algebra. But this is taken care of in a type (§) move of V: at some stage i of the game, he
will play the element a. Since N;i; is defined as the network N;(k)(k : a), with k being the
object chosen by 3, we have \;11(k) < a and hence, a € A\(k) and k € rep(a). <

It is immediate by these claims that indeed, rep is a representation embedding A in the
full complex algebra (N, I)" of the V-algebra (N,I). Hence, A belongs to the class SCmV.
QED

5 The axiomatization

Recall that we fixed a variety V of X-algebras, where ¥ is a finite similarity type, and a
sequence (g; : i < w) of equations defining V. It is the aim of this section to prove the
main theorem of this paper. That is, we will provide a collection ®(V) of universal first-order
sentences (in the algebraic language of similarity type X p4) that axiomatizes the class SCmV.
We will proceed in three steps. First, we will prove that for any A" and A, 3 has a winning
strategy in the game G, (N, A, V) if and only if she has winning strategies for all games of
finite length — the G;(N, A, V) for i € w. Second, we will recursively define a collection of
Y pa-sentences (¢;)iec, such that for each i, ¢; holds in a X 4-algebra A if and only if 3 has
a winning strategy for the game G;(Ng,.A,V). In the third and last part of this section, we
show that these two results provide sufficient material for proving the main theorem.

As we announced, we first show that for 4, having a winning strategy in a game of infinite
length is equivalent to having winning strategies in all games of finite length.

Theorem 5.1 For any X pa-algebra A and any network N over A, 3 has a winning strategy
in the game G, (N, A, V) if and only if she has a winning strategy for every game G;(N, A, V)
of finite length i € w.

PRrROOF. The left-to-right direction of the Theorem is obvious, so we will only prove the other
direction. Assume that 3 has a winning strategy for each game G;(N, A, V) of finite length
i. We have to supply her with a winning strategy for the game G, (N, A, V).

Call a network N safe for 3 if for infinitely many j, she has a winning strategy in the
game G;(N, A, V). Note that the initial network N is safe for 3 by assumption, and that any
safe network is a coherent V-network of grade « for every @ < w, and hence is a coherent
V-network. Now the idea of 3’s strategy in G,,(N,.A, V) is to maintain the condition that the
current network is safe for her. Obviously, in order to show that this is a winning strategy, it
suffices to show that she can survive one round of the game maintaining this condition.

Hence, suppose that we are in the i-th round of the game G, (N, A,V); let N; be the
network board of this round, and assume that N; is safe for 3. Now assume that V makes his
i-th move; as we saw in Remark 3.8, 3 has a finite choice of networks to respond with. Since
there are infinitely many j for which she has a winning strategy in the game G;(N;, A, V),
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this means that there must be at least one of these responses, say N’, on which she has a
winning strategy in the game G,_1(N’, A, V) for infinitely many j. Obviously, this means
that this N/ is safe for her; hence, if she chooses it to be her response in the i-th round of the
game of infinite length, she has maintained her condition. QED

We have now arrived at the second and hard part of the section in which we have to
provide the first-order formulas characterizing SCmV. The crucial concept that we employ
here is that of a term network.

Definition 5.2 A term network is a structure N' = (N,I,7) such that (N, ) is a finite
partial X-algebra and 7 is a term labelling, that is, a map assigning a Y p4-term 75 to each
node k € N of the network. (Alternatively, a term network can be seen as an ordinary network
over the absolutely free ¥ p4-algebra.)

Given a term network N, Var(A\') denotes the set of (algebraic) variables occurring in the
term labels of V. <

We will use notation in line with that adopted for networks to denote extensions of term
networks: for instance, given a term network N'= (N, I,7), a node k of N, and a ¥ p4-term
o, we let N'(k: o) denote the term network (N, I,7") where 7’ is defined by 7., = 7, for z € N
such that x # k, while T/{C is the X p4-term 71 - 0. We assume that there is a canonical way of
adding a new node to a term network (cf. Remark 3.8); this new node is denoted #y and we
assume that # is in fact a recursive function.

The basic idea is that term networks provide structure to the indices of the variables
occurring in the formulas characterizing the class SCmV. Later on we will come to this point
in more detail; let us first see how term networks relate to ordinary networks. The connection
is that given a ¥ pg-algebra A, a term network corresponds to a family of (ordinary) networks
over A, in a sense to be made precise in the definition below.

Definition 5.3 Let N = (N, I,7) be a term network and let A be a ¥ p4-algebra. Given an
assignment 6 : Var(N) — A, we will let N? denote the network (N, I, \?) over A, where \?
is given by

M(k) =17f, for any node k € N.

<

In words, the A-network A/? that we associate with an assignment # and a term network N
consists of the finite partial algebra underlying the term network, while the label T,f of a node
k is obtained by interpreting the label term 75 of k£ in A according to the assignment 6. Thus
the term network N corresponds to the family {N? | § : Var(N) — A} of ordinary networks
over A.

The definition of the axiomatization for SCmV is given in Figure 1. Recall that we use
the abbreviations ¢ = ar(V), k = (ki,...,k,), etc. The sets K9(N) and N* are as defined
in Remark 3.8, N = (I, I, \) is an arbitrary term network, and i and r are arbitrary natural
numbers.

The X pg-sentences g, 1, ... are the axioms that taken together form the axiom set
®(V) for SCmV. Observe that the definition of the ¢; uses a recursive definition of formulas
¥! (N); this recursive definition on its turn uses auxiliary formulas o} (N'), 57 (N), v7(N) and

7
07 (N). At the base of this recursion, the formula ¢ is the conjunction of the formulas 7" (N)
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Figure 1: The Axioms
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and x(N). Each of these formulas is indexed by a term network; in general, the free variables
of the formula are the variables occurring in (the term labels of) this network. Putting it
differently, Var(/N) is the set of free variables occurring in any formula of the form {(N). (The
formula 7" (N), having no free variables at all, is the single exception to this rule.) The basic
idea underlying the meaning of such a formula ((N) is that, when evaluated in a ¥ g4-algebra
A under an assignment 6, it corresponds to some property of the network A?. The most
important of these correspondences are listed below:

7"(N) ~ (N,I)is a partial V-algebra of grade r,

x(N) ~ N?is a coherent network,
Y5(N) ~ N?is a coherent V-network of grade r, (2)
Y{N) ~ 3 has a winning strategy in G;(N?, A,V),

©; ~ I has a winning strategy in G;(Ng, A4, V).

In fact, the formulas are fairly literal transcriptions of concepts pertaining to the game, as we
will see further on.

Before we explain the meaning of the axioms in more detail it seems a good idea to
discuss the fairly intricate role that the term networks play in the definition. To start with, it
is crucial to realize that any formula of the form ((N) is evaluated on a ¥ g4-algebra A and
thus ezpresses a property of such an algebra A (under an assignment 6 : Var(N) — A). The
formulas ((N) do not express properties of the network N; rather, the role of the network
is to allow a concise formulation of the axioms by providing structure on the indices of the
terms that occur in the formula.

This kind of structuring is ubiquitous in axiomatizations, but usually it is far less intricate.
For instance, the reader will certainly be used to examples using natural numbers as indices
to variables, in formulas such as Ao, ;.5 V(vi,v;) > 0. To give a somewhat more involved
example, suppose that we have a number of terms 7y, ..., 79, and consider the formula
No<itj<o V(7is ) ~ 7itj. This is a short way of saying V(79,70) ~ 70 A ... A V(79,79) =
Tg. It is important to note that the formula A, ;<9 V(7,7j) & Tiy; is not about the
additive structure on the set {0,...,9}. It only uses this structure for a concise formulation
of some connections between (the elements referred to by) the variables occurring in the terms
TOs- -+ 379

Likewise, consider the formula y(N), with N'= (N, I,7) a term network based on, say,
the set of nodes N = {0,...,9}. This formula expresses some connections between (the
elements referred to by) the free variables of y; however, the formula is phrased using the
terms 79, ..., T9. For instance, suppose that in the partial algebra (N, I) underlying N we
have that Iy(1,2) = 0, and that 79, 71 and 75 are the X ps-terms vs, —(vy - v1) and V(vs,0),
respectively. Then the conjunct of the formula x(A) corresponding to the triple (1,2,0)
would be the formula vz - V(—(vg - v1), V(v3,0)) % 0. Again, the formula x(N) is not about
the structure of N; it uses this structure to give a concise formulation of the required relation
between the elements referred to by the variables occurring in the terms of the network. As
a rather special example, it might be instructive to look at the formula 7" (N'). This formula
is either of the form L or of the form T; which of the two formulas it is depends on the
network N, but this does not mean that it is evaluated at the network. (It is evaluated at
Y. pa-algebras, but we will come back to this issue further on.)

The following remark may be skipped on a first reading of this explanation of the axiom-
atization.
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Remark 5.4 It should be emphasized here that term networks are finite structures that can
be coded up and serve as input to Turing machines; all operations on networks that are used
in the formulation of the axioms in Figure 1 can in fact be programmed as recursive functions
on such codings of networks. This means for example that if we fix a number r, we may
define a Turing machine deciding whether the underlying partial algebra (N,I) of a given
term network A" = (N, I, 7) is a partial V-algebra of grade r; but then, such a machine could
also be used to effectively produce the formula 7" (N') on a given input N. Likewise, it is fairly
easy to write an algorithm that, given as input a term network A, produces the conjunctions
Nren T # 0 and Ages; A wrginn Tho * V(Tkyy -+ Th,) % 0 and thus effectively produces the

ko=Ig (k)
formula y (V).

In fact, if we keep r fixed for the time being, we may give a computational reading of
the definition of the ¢"-formulas: it provides an algorithm for effectively constructing the
formula ¢](N), as output on a given input consisting of a term network N and a number
7. Our remarks in the previous paragraph show how the algorithm takes care of the case
that ¢ = 0: ¢{(N) is simply defined as the conjunction of the formula 7"(A) and x(N).
For the case that ¢ > 0, say i = j + 1, the algorithm first computes the formulas oeg Jr1(/\[ ),

T (N, A (V) and 0% (N); it then renders the conjunction of these formulas as the
output formula ¢§ +1(N ). As an example, we show how the algorithm proceeds with the
definition of the formula o}, (N). Given the term network N, for each node k of N we may
easily compute the term network N (k:v) and N (k:—v); the algorithm now recursively calls
itself, asking for the formulas o7 (N (k:v)) and 9% (N (k:—v)); it then computes af ;(N) as
the formula Vo Aoy (¥ (N (k:0)) V5N (k: —v))).

We can now prove one of the claims made in Theorem 1.1, namely, that the axiomatization
©(V) can be effectively constructed from a given axiomatization of V. For suppose that we
have a set {¢; | j < w} of equations defining V; that is, given a natural number r, we may
look up in this list what the first r equations €qg, ..., ,_1 are, and thus, we may construct
the formula 7" (A). But then it is easy to modify the algorithm discussed in the previous
paragraph to one that that produces the formula ¢! (N) on input A, ¢ and r. This modified
algorithm can then be used to produce, one by one, the formulas wf(/\/g) that form the
axiomatization ®(V).

Finally, suppose that we start from a recursively enumerable axiomatization of V; that
is, suppose that we have an algorithm that recursively enumerates the set {¢; | j < w} of
equations defining V. It is not difficult to see that by putting this algorithm together with the
the one described in the preceding paragraph, we obtain a recursive enumeration {¢; | i < w}
of ®(V). But since the formulas ¢! grow in length when we increase i, this shows via a
standard argument that the collection ®(V) is recursive, even if our axiomatization for V is
only recursively enumerable. This finishes Remark 5.4.

Now that the syntactic problems concerning the axiomatization are out of the way, we
can start discussing the meaning of the axioms. Fortunately, this aspect is much easier to
understand since the inductive definition of the formulas almost literally follows the definition
of moves in the game. For instance, consider the formula 9] ;(N). Its intended meaning is
the following:

A =i (N)[A] iff 3 has a winning strategy of degree r in the game Girt(N? A V). (3)

Here and in the sequel, having a winning strategy of degree r for 3 means that she can arrange
that the final network of the game is based on a partial V-algebra of grade r. Observe that
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Y7, (V) is a conjunction of four formulas, corresponding to the four kinds of move (a—d) that
the first player (V) may make.

To see how this works, fix a X pga-algebra A and an assignment 6. The first conjunct,
aj 1 (N), of the formula ¢} | (NV) corresponds to a type (a) move of V; it states that for every
choice of an element a of the algebra (represented by the universal quantification Vv) and
of a node of the network (represented by the conjunction A, y), 3 has a winning strategy
for the game of length i on one of the networks N?(k : a) or N?(k : —a). Recursively, the
latter statement is expressed by the formula ¢} (N (k:v)) V¢l (N (k: —v))), provided that this
formula is evaluated on A under the assignment 6’ which is like 6 except that it sends v to a
— but this is taken care of by the truth definition of the universal quantifier Vov.

The third conjunct of )}, (NV) corresponds to a type () move of V. The formula 7, ; (V)
expresses that for every choice by V of a connective V (represented by the conjunction Agcsx)
and a sequence ki,...,k; of nodes in the network (represented by the conjunction Az; ), 3
can choose a node m from the set N* = N U {#x} (represented by the disjunction \/, )
such that she has a winning strategy of degree r in the game G;(N?(V,k +— m), A, V) (this
again is recursively expressed by the formula ¢! (N(V, k — m))).

The formulation of the other conjuncts of ¥, ;(N) is as direct, but we do not go into
detail here because it is either fairly obvious (in the case of type (J) moves) or technically
rather involved (in the case of type () moves).

Finally, the formula ¢; is defined as the formula ¥¢(Ny); since Var(Ng) = @, ¢; expresses
that 3 has a winning strategy of degree i in the game G;(Ng,A,V). This is equivalent to
stating that she has an ordinary winning strategy in this game (if she can arrange to end
with a coherent V-network of grade i, all intermediate networks must have been coherent
V-networks of grade i as well).

The reader may wonder why the equations holding in the variety V do not show up
explicitly in the axiomatization ®(V). The point is that our axiomatization is about ¥ pa-
algebras, not Y-algebras; hence, we cannot use variables to refer to X-algebras, so we have to
use this more roundabout method. The only way in which we do have access to information
about V is through the underlying partial algebra of a network, and this is precisely what the
first conjunct of ¥f(N) is about: the formula 7" (N) is simply set to be false if the underlying
partial algebra of ' does not satisfy the first r equations defining V. This formula should be
seen in the context of the t-formulas: for instance, if to some type (v) move (V, ki,..., ky)
of ¥, none of the responses of the second player in a game of length 1 over a network N led
to a network based on a partial V-algebra of grade 1, then the formula vi (NV') would evaluate
to be false under the assignment 6, simply because each of the disjuncts (for m € N*)

YSN(V,k:m)) = 7 (N(V,E—m))AxWN(V,k— m))

of v#(N) would have L as its first conjunct.
This finishes our explanatory discussion of the axiomatization ®(V) — let us now see that
this set is indeed an axiomatization of the class SCmV.

Proposition 5.5 Let A be a Boolean algebra with Y-operators. Then A = ®(V) if and only
if 3 has a winning strategy in the game G, (Ng, A, V) for every n < w.

PROOF. Since we have given a fairly detailed explanation of the meaning of all the formulas
involved in the axiomatization ®(V), we allow ourselves to be very sketchy about the proof
of this proposition. Let NV = (N,I,7) be a term network and let 7,7 < w. We claim that
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(3) holds for any Y pa-algebra A and any assignment 6 : Var(N) — A, i.e., that we have
A = ¢r(NV)[0] if and only if 3 has a winning strategy of degree r in G;(N?, A, V).

The proof is by induction on i. For i = 0, it is clear by definition of 7" (N) and x(N) that
the following are equivalent:

(1) A | g5

(2) A 7" (N) A X(N)[6];

(3)(NV, I) is a partial V-algebra of grade r and N? is coherent;

(4) N is a coherent V-network of grade 7;

(5) 3 has a winning strategy of degree r in Go(N?, A, V).

Inductively, assume the claim for some ¢ < w. Then the following are equivalent:

(1) A= i (N)[];

(2) A o V) A B N) A N) A S (V)18

(3 — by definition of the formulas involved) for any move that V makes in the starting
round of the game Gy 1(N?, A, V), 3 can respond with a network which is of the form (N)?',
where A is a term network and 6’ D 6 an assignment, such that A = ¢! (N')[¢];

(4 — by the inductive hypothesis) for any move that V makes in the starting round of
Gir1(N9, A, V), 3 can respond legally with a network ANt such that she has a winning strategy
of degree r in Gij11(NT, A, V);

(5) 3 has a winning strategy of degree r in G, 1(N?, A, V).

Thus, the claim holds for ¢ 4+ 1. This completes the induction, and proves the claim.

By the claim and the definition of ¢; = ¥¢(Ny), we have A |= ¢; if and only if 3 has a
winning strategy of degree i in G;(Ng, A, V) — put simply, she has a winning strategy in this
game. Since ®(V) = {p; | i < w}, the proof is complete. QED

As we mentioned in the introduction to this section, we have now gathered sufficient
material to prove the main result of the paper.

Theorem 5.6 Let A be a Boolean algebra with Y -operators, and let V be a variety of X-
algebras. Then the following are equivalent:

1. A belongs to the class SCmV,
2. 3 has a winning strategy in the game G ,(Ng, A, V),
3. 3 has a winning strategy in the game G, (Ng, A, V), for any n < w,

4. AEDV).

PRrOOF. The implications 1 = 2, 2 = 3 and 3 = 4 follow from Proposition 4.2, Theorem 5.1
and Proposition 5.5, respectively.

For the other implication 4 = 1, we first consider the countable case. Hence, let A be
a countable Boolean algebra with ¥-operators and assume that A = ®(V). It follows from
Proposition 5.5 and Theorem 5.1 that 3 can win the game G, (Ng, A, V). As A is countable,
Proposition 4.3 yields that A must be representable over V.

Now suppose that A is an arbitrary (not necessarily countable) Boolean algebra with -
operators satisfying ®(V). Since the ¢; are evidently universal sentences, ®(V) is valid in
every subalgebra of 4. But then it follows by the previous argument that every countable
subalgebra of A belongs to SCmV. Now SCmV is an elementary class by Theorem 2.1, and
Y pa is countable, so a simple Lowenheim—Skolem argument shows that A itself must be
representable over V as well. QED
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Finally, Theorem 1.1 easily follows from Theorem 5.6 and from Remark 5.4 on the syntactic
shape of the ¢; axioms. As we just said, it is easily checked that the (; are all universal.

Remark 5.7 A completely analogous result can be obtained for the class SPCmV by consid-
ering a version of the game where V is only allowed to make a type d move in the first round
of the game. The assumption that the similarity type is finite can be eliminated in favour of
any recursive similarity type {Vo, V1,...}, by arranging that in the recursive axiomatisation
{e; + i < w} of V, the function symbols in ¢; (for each i < w) are all in {V; : j < i}, and
by redefining the game G,(Ng, A,V) for r < w (Definition 3.6) so that in moves of types /3
and 7, V may only choose function symbols from {V; : i < r}. The corresponding changes in
proofs, for example in Theorem 5.1 and Remark 5.4, are straightforward.
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