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Abstract. There are two natural ways to extend an arbitrary map between (the carriers

of) two lattices, to a map between their MacNeille completions. In this paper we investigate

which properties of lattice maps are preserved under these constructions, and for which kind
of maps the two extensions coincide.

Our perspective involves a number of topologies on lattice completions, including the
Scott topologies and topologies that are induced by the original lattice. We provide a

characterization of the MacNeille completion in terms of these induced topologies.

We then turn to expansions of lattices with additional operations, and address the
question which equational properties of such lattice expansions are preserved under various

types of MacNeille completions that can be defined for these algebras. For a number of cases,

including modal algebras and residuated (ortho)lattice expansions, we provide reasonably
sharp sufficient conditions on the syntactic shape of equations that guarantee preservation.

Generally, our results show that the more residuation properties the primitive operations

satisfy, the more equations are preserved.

1. Introduction

Dedekind’s construction [11] of the reals as so-called cuts of the rationals, was
generalized by MacNeille [35] to a method for embedding an arbitrary poset
P into a complete lattice P. This completion has received a lot of attention in
the literature on lattices and order, and goes under various names, including the
(Dedekind-)MacNeille completion, the normal completion, and the completion by
cuts. It has the nice property of preserving all existing meets and joins of the
original partial order P; in particular, if P is a lattice, then it is a sublattice of its
MacNeille completion. Various abstract characterizations are possible; for instance,
both Banaschewski [4] and Schmidt [42] showed that P is determined as the
extension of P, unique modulo isomorphisms that fix P, in which P is both meet-
and join dense. In this paper we will take this characterization as the definition of
the MacNeille completion (see section 2 for the details).

It is natural to ask, which properties of a lattice are MacNeille-canonical, that is,
preserved under taking MacNeille completions. It is well known that the construc-
tion is not very well behaved when it comes to preserving equational properties.
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In particular, Funayama [17] provided an example of a distributive lattice whose
completion is not distributive. A much stronger negative result, due to Hard-
ing [27], states that the only MacNeille-canonical varieties are the trivial variety
and the variety of all lattices. On the other hand, there are positive results as well.
For instance, already MacNeille [35] proved that his construction, when applied
to (the lattice reduct of) a Boolean algebra, yields again a Boolean algebra; and
the same holds for Heyting algebras, see for instance Balbes & Dwinger [3]. For
some properties of complete lattices, including Scott continuity, complete distribu-
tivity and algebraicity, one may isolate a corresponding property of partial orders,
such that an arbitrary partial order has the corresponding property iff its MacNeille
completion satisfies the original one; for details we refer to Erné [15] and references
therein.

Recall however, that Dedekind’s concern was not only the lattice- and order-
theoretic properties of Q and R. He also extended the basic arithmetical opera-
tions on the rationals to operations on the reals, and proved that these extensions
preserved the usual identities of arithmetic. This aspect of Dedekind’s construction
has been generalized to other algebraic structures as well (see the references be-
low). Until fairly recently however, the only study in this direction where general
classes of algebras are considered, seems to be that of Monk [36], where MacNeille
completions of certain Boolean algebras with operators are introduced. The aim of
our paper is to investigate, in a systematic manner, MacNeille completions of the
much wider class of lattice expansions, or lattice-ordered algebras.

Definition 1.1. We will call an algebraic similarity type E a lattice expansion type
if it does not contain any of the lattice symbols ∧, ∨, ⊥ and >; we let E+ denote
the similarity type obtained by adjoining these lattice symbols to E .

The {∨,∧,⊥,>}-reduct, or lattice reduct of an algebra A of type E+ is denoted
as A[. An E-expanded lattice is an E+-algebra A such that A[ is, indeed, a lattice.
�

These structures have been studied in general algebra, but also play a fundamen-
tal role in algebraic logic by providing a natural algebraic semantics for virtually any
formal logic that allows some kind of reasonable conjunction and disjunction [12].
Examples include Heyting and Boolean algebras1, ortholattices, residuated lattices,
modal algebras, relation algebras, Ockham algebras, and many, many more. As dis-
cussed by Ono [39], MacNeille completions of such algebras play an important role
in the completeness theory of the corresponding logics.

It turns out that there are two natural ways to extend a map f between two
lattices L and M to a map between their MacNeille completions L and M, leading
to the lower extension f◦ and the upper extension f• of f , respectively (precise
definitions will be supplied below). Applying this knowledge to the additional
operations of a lattice expansion A, we may form various MacNeille completions
Aψ of A, depending on an extension type ψ which determines for each operation
whether to take the upper or the lower extension. In this paper we mainly (but

1Since the algebraic structure of Heyting and Boolean algebras is completely determined by
their lattice reduct, we can see both of these algebras as special lattices, or as lattice expansions.
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not exclusively) restrict our attention to the lower and upper extensions A◦ and A•
(i.e., the structures we obtain by uniformly taking the lower respectively the upper
extension of each additional operation).

As mentioned earlier, the matter of extending additional operations on lattices
to operations on their MacNeille completion has been addressed in the literature
— we give a brief survey here. We already encountered the examples of Heyt-
ing and Boolean algebras as early examples. Possibly the most extensive litera-
ture appeared on ortholattices and orthomodular lattices. MacLaren [34] showed
that the (unique) MacNeillle completion of an ortholattice is again an ortholattice.
This closure property does not apply to the variety of all orthomodular lattices,
see Adams [1] or Harding [26], but it is again satisfied by those varieties of ortho-
modular lattices that are generated by lattices of bounded depth, see Harding [28].
Monk [36] introduced and studied the lower completion of a Boolean algebra with
operators. Focusing on complete operators, he proved among other things, that
identities not involving the negation symbol are preserved under taking MacNeille
completions. MacNeille completions of residuated lattices and similar structures
play an important role in the algebraic semantics of substructural logics, and partic-
ular, in completeness proofs. This is the main theme in the work of Ono [37, 39, 38],
who shows that many classes of residuated lattices are closed under taking Mac-
Neille completions; see also Rosenthal [40] for a connection with quantale theory.
Givant & Venema [24] took up the work of Monk on Boolean algebras with
operators. Their main result shows that, in case all the primitive operations of
the algebra are conjugated (which is on a Boolean basis the same as being resid-
uated), the validity of all Sahlqvist equations is preserved under taking MacNeille
completions. Hirsch & Hodkinson [29] study MacNeille completions for various
varieties that arise in the algebraic study of relations. Mainly, their results are
negative, for instance, they show that the class of representable relation algebras is
not MacNeille canonical. Bezhanishvili & Harding [7, 6] have interesting recent
work on Heyting algebras and modal algebras. In [7] they prove that only three
varieties of Heyting algebras are closed under taking MacNeille completions: the
trivial variety, the variety of all Heyting algebras, and that of Boolean algebras.
In [6] they characterize the varieties of closure algebras and diagonalizable algebras
that are closed under lower and upper completions. Finally, Santocanale [41]
studies MacNeille completions of modal algebras that are extended with fixpoint
operators.

MacNeille’s construction is not the only way to complete a lattice. A particularly
interesting alternative to the MacNeille completion is the canonical extension which
goes back to the work of Jónsson & Tarski [31, 32] on Boolean algebras. In
recent years, through the work of Gehrke, Jónsson and others, the notion has
been extended to the much wider settings of distributive lattices [20, 21], arbitrary
lattices [18], and partial orders [13], respectively. One may define the canonical
extension Lσ of a lattice L in a concrete way, (for instance, in the case of a Boolean
algebra, as the power set algebra of the dual Stone space), or define it abstractly,
in a very similar fashion as the MacNeille completion. Also, any operation on a
lattice L has a lower extension and an upper extension on Lσ, so that the notion
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of canonical extension applies to lattice expansions as well — again, parametrized
by an extension type.

In the past, the similarities between the two notions have had a substantial
influence on the theory of MacNeille completions of Boolean algebras with oper-
ators. For instance, Monk [36] builds on Jónsson & Tarski [31], and Givant
& Venema [24] were inspired by Jónsson [30]. Likewise, we are indebted to the
approach towards lattice expansions of Gehrke & Harding [18], and the topo-
logical methodology of Gehrke & Jónsson [22]. Finally, apart from similarities
between the two ways of completing a lattice expansion, there are connections as
well. Gehrke, Harding & Venema [19] prove that any canonical extension of a
lattice expansion A, can be embedded in the corresponding MacNeille completion
of some ultrapower of A — here ‘corresponding’ means that the two extension types
agree. From this it follows that every variety (in fact, every universal class) that is
MacNeille canonical for some extension type, is also closed under taking canonical
extensions of the same extension type.
Overview. We first give some basic facts concerning MacNeille completions in sec-
tion 2. In section 3 we show that there are two natural ways to extend an order
preserving lattice map f between two lattices L and M to a map between their
MacNeille completions L and M, leading to the lower extension f◦ and the upper
extension f• of f , respectively. For a number of properties, we discuss whether a
lattice map f with that property is smooth (meaning that f◦ = f•), and whether
the property is preserved under taking lower or upper extensions. We specify the
answers to these questions, depending on the nature of the base lattices: a survey
of our findings can be found in Table 1.

We unfold the topological perspective on MacNeille completions in section 4.
We define three kinds of topologies on (the carrier C of) a complete lattice C with
a fixed sublattice L: two Alexandrov topologies, three Scott topologies, and three
topologies ρ↑, ρ↓ and ρ that are induced by L. We characterize the MacNeille
completion of a lattice L as the unique completion of L on which ρ is Hausdorff. In
the following section we consider the MacNeille extension of lattice maps from this
topological perspective. First we generalize the definition of the lower and upper
MacNeille extension, from order preserving lattice maps to arbitrary ones. Then
we discuss continuity properties (with respect to the earlier given topologies) of
the MacNeille extensions of lattice maps. We find interesting and useful continuity
properties for the primitive lattice operations and for lattice maps satisfying some
kind of residuation property.

In section 6 we turn to preservation results for equational validity; our approach
crucially involves the earlier mentioned continuity properties, applied to term func-
tions. Given our earlier findings on the preservation of properties of lattice maps,
we focus on the following varieties: lattice expansions with order preserving opera-
tions, expansions of Boolean algebras, residuated lattice expansions, and expansions
of lattices with operations that either preserve or reverse the order in each of their
arguments. In each case we provide reasonably sharp sufficient conditions on the
syntactic shape of equations that guarantee preservation.
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2. Lattices and their MacNeille completions

In this paper we presuppose familiarity with the basic concepts and terminology
of universal algebra [9], lattice theory [8, 10], and topology [14]. Our notation and
terminology will be mostly standard; here we just mention a few specific points in
order to avoid confusion in the sequel.

Preliminaries on lattices. All lattices that we consider in this paper will be
bounded, so that for convenience we define a lattice to be an algebra L = 〈L,∧,∨,>,⊥〉
satisfying the familiar laws of bounded lattices. Accordingly, a lattice homomor-
phism is supposed to not only preserve (finite) meets and joins, but also top and
bottom. We will generally ignore the distinctions between isomorphic structures in
this paper. Meets and joins of arbitrary sets are denoted using the symbols

∧
and∨

, respectively.
Given an element a of a lattice L, the principal down-set generated by a is

given as ↓a := {u ∈ L | u ≤ a}. Likewise, the principal up-set is defined as
↑a := {u ∈ L | a ≤ u}. The interval determined by two elements a ≤ b of L is the
set [a, b] := {u ∈ L | a ≤ u ≤ b}.

The order dual of a lattice L = 〈L,∧,∨,>,⊥〉, i.e., the structure 〈L,∨,∧,⊥,>〉
is denoted as L∂ . The fact, that L∂ is a lattice as well, enables us to shorten quite
a lot of definitions and proofs by referring to the principle of order duality : Every
fact concerning lattices remains valid after swapping > with ⊥, ∧ with ∨, etc.

On a few occasions we will need to discuss various distributive laws; for instance,
we will say that a lattice L satisfies (∧,

∨
)-distributivity if a∧

∨
B =

∨
{a∧ b | b ∈

B}, for all a ∈ L and B ⊆ L.

MacNeille completions of lattices. A lattice C is a completion of a lattice L if
C is complete and L is a subalgebra of C. If all existing meets and joins in L agree
with those taken in C, then we call C a regular completion of L, but in general
we do not require completions to be regular. Thus the notation ∨ for finite joins
is unambiguous, but not so for infinite joins. Our convention will be that

∨
X

always denotes
∨C

X, that is, the join taken in the completion. The same applies
to notation like ↑a or [a, b]; in case we want to refer to the elements inside L that
are below a, or in between a and b, we use the notation L↓x and L[a,b], respectively.

Given a subset A of a complete lattice C, we call an element c ∈ C closed (open,
respectively) with respect to A if c is the meet (join, respectively) in C of elements
in A. We let KC(A) and OC(A) denote the collections of closed and open elements,
respectively. In the sequel, we may write KC, K(A), or even K, instead of KC(A),
if the suppressed details are clear from context; and similarly for the set OC(A).
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We say that a set A ⊆ C is meet-dense in C if KC(A) = C, join-dense if OC(A) =
C, doubly dense if it is both join- and meet-dense, and dense if KC(OC(A)) =
OC(KC(A)) = C. In words, A is doubly dense in C if every element of C is both a
meet and a join of elements in A. In practice, we will often work with the following
characterization of join- and meet-density. We omit the straightforward proof of
this proposition.

Proposition 2.1. Let A be some subset of a complete lattice C. Then the following
are equivalent.

(1) A is join-dense in C;
(2) x =

∨
A↓x for all x ∈ C;

(3) for all x, y in C with x 6≤ y there is an a ∈ A with a ≤ x and a 6≤ y.

For our purposes, the following abstract definition of the MacNeille completion
of a lattice is the most convenient.

Definition 2.2. A completion C of a lattice L is called a MacNeille completion of
L if L is doubly dense in C. �

It is in fact a rather strong property for one lattice to be a MacNeille completion
of another. To start with, every lattice has a unique MacNeille completion.

Theorem 2.3. Let L be some lattice. Then

(1) (existence) L has a MacNeille completion;
(2) (unicity) any two MacNeille completions of L are isomorphic via a unique

isomorphism that restricts to the identity on L.

Proof. Fix a lattice L; we first consider existence. Given a subset A of L, let Au

be the set of upper bounds of A, and Al the set of its lower bounds. Then a cut
is a pair (A,B) of subsets of L such that A = Bl and B = Au. If we order the
collection of cuts by putting

(A,B) ≤ (A′, B′) ⇐⇒ A ⊆ A′( ⇐⇒ B′ ⊆ B),

we obtain a complete lattice M. This is not hard to prove, using the observation that
the cuts of L can be identified with the stable sets of the Galois connection induced
by the order relation of the lattice. It is easy to see that the map x 7→ (↓x, ↑x) is
a lattice embedding of L into M, and that (the image of) L is in fact doubly dense
inside M. The details of these well-known results can be found in for instance [10].

For unicity, suppose that L is doubly dense in both M and M′; define the map
f : M →M ′ by

f(x) :=
∨

′L↓x.

Again, it is not hard to prove that f is in fact an isomorphism, and that f(x) = x
for all x ∈ L. For details, again, we refer to [10]. �

Since we generally identify isomorphic structures in this paper, Theorem 2.3
allows us to speak of the MacNeille completion of a lattice.
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Definition 2.4. The MacNeille completion of a lattice L will be denoted as the
structure L. Abusing notation, we will usually denote the carrier of the MacNeille
completion L as L. �

As a further introductory remark, we note that MacNeille completions interact
well with products and order duals.

Proposition 2.5. Let L a lattice, and {Li | i ∈ I} a family of lattices. Then

(1)
∏
i∈I Li ∼=

∏
i∈I Li,

(2) (L∂) ∼= (L)
∂
.

Proof. Both statements can be proved on the basis of Theorem 2.3. For instance,
using Proposition 2.1, it is easy to show that the product

∏
i∈I Li is a MacNeille

completion of the product
∏
i∈I Li. And using facts like K(L∂) = O(L), the second

statement of the proposition immediately follows from the principle of order duality.
�

Given our policy of identifying isomorphic structures, the previous proposition
justifies our taking the product

∏
i∈I Li of the MacNeille completions to be the

MacNeille completion of the product lattice
∏
i∈I Li. In particular, this will enable

us to identify any element x of
∏
i∈I Li with a tuple (xi)i∈I of elements of the

individual lattices Li. A similar convention applies to the MacNeille completion of
the order dual of a lattice.

We finish the section with some technical details concerning the relation between
MacNeille completions and the canonical extensions mentioned in the introduction.

Remark 2.6. In order to define the notion of canonical extension of a lattice,
we need the following definition concerning a completion C of a lattice L. We
say that L is compact in C if for all sets X and Y of closed and open elements,
respectively,

∧
X ≤

∨
Y implies the existence of finite sets X0 ⊆ X, Y0 ⊆ Y such

that
∧
X0 ≤

∨
Y0. Now, analogous to Theorem 2.3 on MacNeille completions,

Gehrke & Harding [18] prove that every lattice L has a unique completion in
which L is both dense and compact. In the case that L is a Boolean algebra, one
may take for Lσ the ‘double dual’ of L, that is, the power set of the underlying set
of the dual Stone space. A similar construction involving Priestley duality works
for distributive lattices.

Nevertheless, there are also noteworthy differences between the canonical ex-
tension and the MacNeille completion of a lattice. To name one: whereas the
MacNeille completion agrees with all meets and joins that exist in the original lat-
tice, the canonical extension agrees with none of the existing infinite meets or joins.
Related to this is the fact that taking canonical extensions commutes with taking
finite products only: the analogue of the first part of Proposition 2.5 fails for the
case that I is infinite.
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3. Extensions of order preserving lattice maps

In order to investigate how additional operations on a lattice L can be extended
to operations on the MacNeille completion L of the lattice, it makes sense to slightly
broaden the issue to the following question. Given two lattices L and M, and a
map f : L→M , how can we systematically define a map g : L→M which extends
f , that is, satisfies g�L = f? In this section we take up this question, for the time
being confining ourselves to order preserving maps. It is also convenient to have
some terminology.

Definition 3.1. Given two lattices L and M, a lattice map between L and M is
nothing but a map f : L→M . We will also use the notation f : L → M.

A lattice map f : L → M is isotone or order preserving if for all x, y ∈ L it holds
that x ≤L y only if f(x) ≤M f(y), and order reversing or antitone if x ≤L y only if
f(x) ≥M f(y). �

Note that the lattice structure of the domain and codomain lattice is part of
the definition of a lattice map. This facilitates the discussion of properties of such
maps; for instance, a map f : L → M is order preserving as a lattice map from L
to M if and only if it is order reversing as a lattice map from L∂ to M.

General observations. Given the fact that every element of the MacNeille com-
pletion L of a lattice L is both a join and a meet of elements of L, any isotone
map between two lattices L and M naturally induces two operations between the
respective MacNeille completions L and M.

Definition 3.2. Let f : L → M be an isotone lattice map. Then we define the
lattice maps f◦, f• : L → M as follows:

f◦(x) :=
∨
{f(a) | x ≥ a ∈ L},

f•(x) :=
∧
{f(a) | x ≤ a ∈ L}.

These f◦ and f• are called the lower and upper (MacNeille) extension of f , respec-
tively. �

The following proposition gathers some basic properties of these two operations.
We omit its proof, which is completely straightforward.

Proposition 3.3. Let f : L → M be an isotone lattice map. Then
(1) both f◦ and f• extend f ;
(2) f◦ ≤ f• (that is, f◦(x) ≤ f•(x) for all x in L);
(3) both f◦ and f• are isotone lattice maps between L and M.

Many natural issues arise concerning these notions. In this section we will address
the following questions:

◦ How do standard lattice operations behave under these constructions?
◦ Which properties of lattice operations are preserved by the lower/upper

extension?
◦ For which operations do the lower and the upper extension coincide?
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Smoothness and canonicity. Starting with the latter question, we first introduce
some terminology.

Definition 3.4. An isotone lattice map f : L → M for which f◦ = f• is called
smooth. The extension of a smooth operation f is sometimes denoted as f . �

It goes without saying that smoothness is an interesting and important notion,
but, as we will see, it is the exception rather than the rule. Fortunately however,
the lattice operations themselves are smooth. In addition, their extensions agree
with the lattice operations of the MacNeille completion.

Proposition 3.5. Let L be a lattice. Then
(1) the join operation ∨ : L × L → L is smooth, and the operation ∨◦ = ∨•

coincides with the join operation ∨ : L× L → L.
(2) the meet operation ∧ : L × L → L is smooth, and the operation ∧◦ = ∧•

coincides with the meet operation ∧ : L× L → L.

Proof. We only prove the part concerning the join operation, the second statement
then follows by order duality. It suffices to prove that ∨• ≤ ∨ ≤ ∨◦, since we
already know that ∨◦ ≤ ∨• by Proposition 3.3.

For the first inequality, take x1 and x2 in L, and c in L such that x1∨x2 ≤ c.
Then both x1 and x2 are below c, so (x1, x2) ≤ (c, c) ∈ L2. By definition of ∨•, we
have

x1 ∨• x2 =
∧
{a1 ∨ a2 | (x1, x2) ≤ (a1, a2) ∈ L2},

so x1∨•x2 ≤ a1∨a2 for all a1, a2 in L with (x1, x2) ≤ (a1, a2). So, in particular, we
find that x1∨• x2 ≤ c∨c = c. And since c was an arbitrary element of L, we obtain
x1∨•x2 ≤ x1∨x2 by meet-density of L in L and (the order dual of) Proposition 2.1.

For the second inequality, take elements x1 and x2 in L, and a c in L satisfying
x1 ∨◦ x2 ≤ c. Then for all a1 ≤ x1 and a2 ≤ x2 we have a1 ∨ a2 ≤ c, whence
x1∨x2 =

∨
L↓x1∨

∨
L↓x2 =

∨
{a1 ∨ a2 | ai ∈ L↓xi} ≤ c. Thus we see, again using

meet-density, that x1∨x2 ≤ x1 ∨◦ x2. �

In the sequel we will see more examples of smooth operations, but we first turn
to the second of the above mentioned questions.

Definition 3.6. A property of lattice maps is lower MacNeille canonical, or briefly:
MacN◦-canonical, if f◦ has the property whenever f does. The notion of upper
MacNeille canonicity, briefly: MacN•-canonicity is defined analogously. �

In the remainder of this section we will discuss which properties of maps are
MacNeille canonical, and which ones guarantee smoothness. The properties that
we will consider are listed below.

Definition 3.7. Let f : L → M be some lattice map. Then we call f
- isotone if it is order preserving,
- normal if f(⊥) = ⊥,
- additive or join preserving if f(x ∨ y) = f(x) ∨ f(y), for all x, y ∈ L,
- multiplicative or meet preserving if f(x ∧ y) = f(x) ∧ f(y), for all x, y ∈ L,
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- a lattice homomorphism if it is normal, additive, multiplicative and satisfies
f(>) = >,

- an operator if L = L1×· · ·×Ln such that f is additive in each of its arguments,
- a dual operator if L = L1× · · · ×Ln such that f is multiplicative in each of its

arguments,
- completely additive if f(

∨
X) =

∨
f [X] for all X ⊆ L such that

∨
X exists,

- completely multiplicative if f(
∧
X) =

∧
f [X] for all X ⊆ L such that

∨
X

exists,
- a complete lattice homomorphism if it is both completely additive and com-

pletely multiplicative,
- a complete (dual) operator if L = L1 × · · · × Ln such that f is completely

additive (completely multiplicative, respectively) in each of its arguments,
- residuated if it has a residual, i.e., a lattice map g : M → L such that for all

x ∈ L, y ∈ M we have f(x) ≤ y iff x ≤ g(y); such f and g are called a residual
pair;

- left residuated if L = L1 × L2 and f has a left residual, that is, a lattice map
g : L2×M → L1 such that for all x1 ∈ L1, x2 ∈ L2 and y ∈M we have f(x1, x2) ≤ y
iff x1 ≤ g(x2, y). The notion of right residuation is defined analogously. �

We will now see how these properties fare under taking MacNeille completions.
As we will see, in some cases better results are possible on the condition that the
lattices involved satisfy some additional distributivity laws. As a consequence, maps
between Heyting algebras or Boolean algebras in general display better behavior
than maps between arbitrary lattices.

Towards the end of this section, we summarize our findings in Table 1.

Isotonicity and normality. There is little of interest to say about the notions of
isotonicity and normality: it follows from Proposition 3.3 that isotonicity is both
MacN◦-canonical and MacN•-canonical, while we will provide various counterexam-
ples to smoothness below. Concerning normality, both upper- and lower MacNeille
canonicity are trivial to prove; and a counterexample to smoothness can be found
in Example 3.8 below.

Additivity, multiplicativity and homomorphisms. The properties of addi-
tivity and multiplicativity mark a pronounced difference between MacNeille com-
pletions and canonical extensions (as discussed at the end of the previous section).
In the latter case, these properties do not only imply smoothness, but one may
also show that the canonical extensions of additive (multiplicative) maps are in
fact completely additive (completely multiplicative), see Gehrke & Harding [18].
For MacNeille completions however, the picture is far less nice. Neither additivity,
nor multiplicativity, nor their combination implies smoothness, and furthermore,
neither property is preserved under taking either lower or upper MacNeille exten-
sions. Most of these observations even apply in the context of Boolean algebras, as
is witnessed by the following example which goes back to Monk [36].

Example 3.8. Let B be the Boolean algebra of the finite and cofinite sets of natural
numbers, and 2 the two element Boolean algebra. Now let f : B → 2 be the lattice
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map mapping finite sets to 0 and cofinite ones to 1. Then f is both additive and
multiplicative — in fact, f is a Boolean homomorphism.

It is easy to see that the MacNeille completion of B is the full power set algebra
of the natural numbers, and that f◦ and f• are given by

f◦(x) =
{

1 if x is cofinite,
0 otherwise.

f•(x) =
{

1 if x is infinite,
0 otherwise.

Clearly then, f is not smooth, f◦ is not additive, and f• is not multiplicative. To
see that f◦ is not additive, let u and v be the sets of all even and all odd numbers,
respectively. Then f◦(u ∨ v) = f◦(>) = 1, while f◦(u) ∨ f◦(v) = 0 ∨ 0 = 0.

In Example 3.8 f◦ is multiplicative and f• is additive. This is no coincidence: in
case the codomain of a lattice map satisfies some additional distributivity property,
multiplicativity becomes MacN◦-canonical.

Proposition 3.9. Let f : L → M be some multiplicative lattice map, and assume
that M is (∧,

∨
)-distributive. Then f◦ is multiplicative.

We omit the proof of this proposition, since it it is a special case of Proposi-
tion 3.16 below.

As a corollary to Proposition 3.9, we find that multiplicativity is MacN◦-canonical
on the class of Heyting algebras. Note however, that the principle of order duality
does not apply to Heyting algebras (that is, the order dual of a Heyting algebra
is not necessarily a Heyting algebra). Hence, we may not infer that additivity is
MacN•-canonical on the class of Heyting algebras. Boolean algebras on the other
hand, form a class of Heyting algebras to which the principle of order duality does
apply, so on this class we find not only that multiplicativity is MacN◦-canonical,
but also that additivity is MacN•-canonical.

That the distributivity condition is really needed in Proposition 3.9 can be see
from the following example, which shows that on arbitrary lattices, multiplicativity
is not MacN◦-canonical.

Example 3.10. In general, multiplicativity of a lattice map is not preserved under
taking lower MacNeille extensions (and hence, by order duality, additivity of a
lattice map is generally not MacN•-canonical). Our counterexample is based on
a fairly well-known example, due to Funayama [17], showing that the MacNeille
completion of a distributive lattice is not necessarily distributive. Without going
into the (rather involved) details of this example, we base ourselves on the existence
of a lattice E with the following properties (for details, see the description on p. 238
of [3]).

E is a distributive lattice, containing two points a0 and a1, while the non-
distributivity of E is witnessed by three points u0, u1 and v such that the five
mentioned points form a sublattice of E in the shape of the lattice N5, see Figure 1.

Now define the operation 2 : E → E by putting

2x := a0 ∨ x,
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Figure 1. the lattice N5.

then clearly, 2 is multiplicative by the distributivity of E. It is also easy to see that

2◦x =
∨
{a0 ∨ b | x ≥ b ∈ E} = a0 ∨

∨
{b | x ≥ b ∈ E} = a0 ∨ x

for every x in E. But then it immediately follows that 2◦v ∧2◦a1 = u1 ∧ a1 = a1,
while 2◦(v ∧ a1) = 2◦u0 = a0. Thus 2◦ is not multiplicative.

Complete additivity, multiplicativity and homomorphisms. The next kind
of map that we consider are the lattice maps that preserve all (existing) joins,
meets, or both. Generally, the results are still negative here: the following example
shows that even complete lattice homomorphisms between Heyting algebras need
not be smooth, and need not have a completely additive upper MacNeille extension.

Example 3.11. Let D be the Heyting algebra obtained by putting, on top of the
lattice N of the natural numbers (based on the standard ordering ≤ ω), a copy of
the order dual N∂ of N. Formally, define ω̆ := {n̆ | n ∈ ω} be a copy of the natural
numbers, and put k̆ ≤ω̆ n̆ iff n ≤ k. Now define

D := ω ∪ ω̆
≤D := ≤ω ∪ ≤ω̆ ∪ (ω × ω̆).

We leave it as an exercise for the reader to verify that D is obtained from D by
adjoining a single element, to be called ∞, to D, and place it right between the two
copies of the natural numbers inside D, as in Figure 2.

Now consider, for some fixed natural number n > 0, the map fn : D → D given
by

fn(x) :=

 x if n > x ∈ ω,
n if n ≤ x ∈ ω,
x if x ∈ ω̆.

It is easy to see that f preserves all existing joins and meets.
Concerning the MacNeille extensions of fn, one readily checks that f◦n(∞) = n,

and f•n(∞) = ∞. This clearly witnesses the non–smoothness of fn.
In addition, f◦ is not completely multiplicative. Let A = ω̆ be the ‘upper part’

of D, then f◦n(
∧
A) = f◦n(∞) = n, while

∧
f◦n[A] =

∧
A = ∞. Finally, it is equally

easy to see that f•n is not completely additive: taking B = ω as the ‘lower part’ of
D, we see that f•n(

∨
B) = ∞, but

∨
f•n[B] = n.
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Figure 2. the lattice D.

The next example shows that for arbitrary lattices, it is not only the upper
extension that fails to preserve complete additivity, the lower extension does so as
well.

Example 3.12. Consider the lattices F and F depicted in Figure 3. F is the lattice
with carrier A∪B ∪C, where A = {ai | i ∈ ω}, etc. It is easy to see that we obtain
its completion F by adjoining the single element ∞, as in the figure.

Let 2 denote the two element lattice, and consider the lattice map f : F → 2
given by

f(x) :=
{

0 if x ∈ B,
1 otherwise.

Clearly then, f is completely additive. However, for its lower extension f◦ we
obtain f◦(∞) =

∨
{f(x) | x ∈ F↓∞} = 1, whereas

∨
f◦[B] = 0. Since ∞ =

∨
B,

this clearly shows that f◦ does not preserve arbitrary joins.

However, in case that the codomain of a lattice map satisfies some infinite dis-
tributivity properties, there is good news to report about the lower extension.

Proposition 3.13. Let f : L → M be some completely additive lattice map, and
assume that L is (∧,

∨
)-distributive. Then f◦ is completely additive.

Proof. Let X be an arbitrary subset of L. Completely additive maps are certainly
isotone, so by Proposition 3.3 it follows that f◦ is isotone as well. This implies that∨
f◦[X] ≤ f◦(

∨
X); hence, in order to prove the Proposition, it suffices to show

the opposite inequality.
First, note that it follows by the join-density of L inside L that∨

X =
∨
{
∨
L↓x | x ∈ X} =

∨ ( ⋃
x∈X

L↓x

)
.
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Now take an a ∈ L with a ≤
∨
X. Given the (∧,

∨
)-distributivity of L, the

following holds:

a = a ∧
∨
X = a ∧

∨ ( ⋃
x∈X

L↓x

)
=

∨
{a ∧ b | b ∈

⋃
x∈X

L↓x}.

As f is completely additive, this implies that

f(a) =
∨
{f(a ∧ b) | b ∈

⋃
x∈X

L↓x},

so that by isotonicity, and the definition of f◦, we find

f(a) ≤
∨
{f(b) | b ∈

⋃
x∈X

L↓x} ≤
∨
f◦[X].

Since the above holds for arbitrary a ∈ L with a ≤
∨
X, this implies

f◦(
∨
X) =

∨
{f(a) |

∨
X ≥ a ∈ L} ≤

∨
f◦[X],

as required. �

Finally, in the specific case of a complete lattice homomorphism between Boolean
algebras, the situation improves completely. The following observation (which was
made in a discussion between the second author and N. Bezhanishvili) follows from
results by Banaschewski & Bruns [5].

Proposition 3.14. Let f : L → M be a complete lattice homomorphism between the
Boolean algebras L and M. Then f is smooth, and f is a complete homomorphism
between L and M.

Proof. First observe that it follows from Proposition 3.13 (and its order dual) that
f◦ preserves

∨
and that f• preserves

∧
. Also, since f preserves the empty meet
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and the empty join, it follows that f is normal, and, dually, satisfies f(>) = >;
but then both f◦ and f• must satisfy these properties as well. From this we obtain
that for all x in L: {

f◦(x) ∨ f◦(¬x) = >,
f•(x) ∧ f•(¬x) = ⊥. (1)

From the second identity we may derive that f•(x) ≤ ¬f•(¬x), while it follows
from Proposition 3.3 that f•(¬x) ≥ f◦(¬x), so that ¬f•(¬x) ≤ ¬f◦(¬x). But the
first identity of (1) gives that ¬f◦(¬x) ≤ f◦(x). Putting these three inequalities
together, we find that f•(x) ≤ f◦(x). This suffices to prove smoothness of f . �

In the above proposition, the map f needs to preserve both infinite meets and
infinite joins, as the following example witnesses.

Example 3.15. Let B be the Boolean algebra of the finite and cofinite sets of
natural numbers, and let 2 be the two element Boolean algebra.

Consider the map f : B → (2× 2) defined as follows:

f(a) =


(1, 0) if a ⊆ e
(0, 1) if a ⊆ ¬e
(0, 0) if a = ∅
(1, 1) otherwise,

where e and ¬e are the sets of even and odd numbers, respectively. It is fairly easy
to show that f preserves all existing joins — we leave the details as an exercise for
the reader.

As we saw already, the MacNeille completion of B is the full power set algebra of
the natural numbers, whereas 2×2, being finite, is its own completion. Concerning
f◦ and f•, it is straightforward to verify that

f◦(e) = (1, 0)
f•(e) = (1, 1),

and that∨
{f•(a) | e ⊇ a ∈ B} =

∨
{f(a) | e ⊇ a ∈ B} = (1, 0) 6= (1, 1) = f•(e).

This clearly shows that f is not smooth, and that f• is not completely additive.

Operators, dual operators and complete (dual) operators. Since additive
(multiplicative) maps are particular instances of operators (dual operators), and
likewise for complete (dual) operators, all negative results carry over immediately.
Fortunately, however, the positive results that we have found in the Propositions 3.9
and 3.13, can also be obtained for dual operators, and complete operators, respec-
tively.

Proposition 3.16. Let f : K → M be some lattice map.
(1) If f is a dual operator and M is (∧,

∨
)-distributive, then f◦ is a dual

operator.
(2) If f is a complete operator and K is (∧,

∨
)-distributive, then f◦ is a dual

operator.
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Proof. For the first part, without loss of generality we may assume that K is of the
form L×L′ such that f is multiplicative in both arguments. We will show that f◦

is multiplicative in its first argument. Take arbitrary elements x, y in L, z′ in L′.
Then

f◦(x, z′) ∧ f◦(y, z′) =
∨
{f(a, c′) | a ∈ L↓x, c′ ∈ L′↓z′} ∧

∨
{f(b, d′) | b ∈ L↓y, d′ ∈ L′↓z′}

=
∨
{f(a, c′) ∧ f(b, d′) | a ∈ L↓x, b ∈ L↓y, c′, d′ ∈ L′↓z′}

≤
∨
{f(a, c′ ∨ d′) ∧ f(b, c′ ∨ d′) | a ∈ L↓x, b ∈ L↓y, c′, d′ ∈ L′↓z′}

=
∨
{f(a, e′) ∧ f(b, e′) | a ∈ L↓x, b ∈ L↓y, e′ ∈ L′↓z′}

=
∨
{f(a ∧ b, e′) | a ∈ L↓x, b ∈ L↓y, e′ ∈ L′↓z′}

=
∨
{f(c, e′) | c ∈ L↓x∧y, e′ ∈ L′↓z′}

= f◦(x ∧ y, z′)

Since it follows from the isotonicity of f◦ that f◦(x ∧ y, z′) ≤ f◦(x, z′) ∧ f◦(y, z′),
this suffices to prove the first part of the proposition.

For the second part, suppose that f is a complete operator. Without loss of
generality we may assume that K is of the form L × L′ such that f is completely
additive in both arguments. We will show that f◦ is completely additive in its first
argument.

We will show that f◦ is completely additive in its first argument. Take a subset
X ⊆ L and an element x′ in L′. Similar to the proof of Proposition 3.13, it suffices
to show that f◦(

∨
X,x′) ≤

∨
f◦[X,x′], where f◦[X,x′] is shorthand for the set

{f◦(x, x′) | x ∈ X}. Now let a ∈ L and a′ ∈ L′ be arbitrary elements such that
a ≤

∨
X and a′ ≤ x′. Following the argumentation of the proof of Proposition 3.13,

but for the map a 7→ f(a, a′) instead of for f , we find that f(a, a′) ≤
∨
f◦[X,x′].

From this it follows that

f◦(
∨
X,x′) =

∨
{f(a, a′) |

∨
X ≥ a ∈ L, x′ ≥ a′ ∈ L′} ≤

∨
f◦[X,x′],

as required. �

The above proposition has various kinds of consequences for maps between Heyt-
ing algebras or between Boolean algebras, but rather than mentioning these results
explicitly here, we refer instead to Table 1.

Residuation. To finish of this section, we discuss lattice maps that enjoy some
kind of residuation property. As we will now see, residuation guarantees good
behavior under taking MacNeille extensions. To start with, residuation is always
lower MacNeille canonical; as far as we know, this result stems from Ono [37].
For a proof, consider the case of a map f : L1 × L2 → M that has a left residual
the lattice map g : L2 × M → L1. Note that since g is generally not isotone, its
MacNeille extensions have not yet been defined. (MacNeille extensions of arbitrary
maps will be given in section 5.) Here we simply remark that if f is isotone, then
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g is antitone in its first coordinate, and isotone in its second. As we will see in
section 5, in such a case, we may put:

g•(x, y) :=
∧
{g(a, b) | x ≤ a ∈ L2, y ≥ b ∈M}. (2)

Proposition 3.17. Let f : L1 × L2 → M be an order preserving map which is left
residuated by the lattice map g : L2 × M → L1. Then f◦ : L1 × L2 → M is left
residuated by the lattice map g• : L2 ×M → L1.

Proof. Let f and g be as stated above. Then for all x1 ∈ L1, x2 ∈ L2 and y ∈ M
we have the following chain of equivalences:

f◦(x1, x2) ≤ y ⇐⇒ f(a1, a2) ≤ y for all a1 ∈ (L1)↓x1 , a2 ∈ (L2)↓x2 ,

⇐⇒ f(a1, a2) ≤ b for all a1 ∈ (L1)↓x1 , a2 ∈ (L2)↓x2 , b ∈M↑y,

⇐⇒ a1 ≤ g(a2, b) for all a1 ∈ (L1)↓x1 , a2 ∈ (L2)↓x2 , b ∈M↑y,

⇐⇒ x1 ≤ g(a2, b) for all a2 ∈ (L2)↓x2 , b ∈M↑y,

⇐⇒ x1 ≤ g•(x2, y),

which proves the proposition. �

Remark 3.18. As an immediate corollary of Proposition 3.17, it follows that if H
is a Heyting algebra, then so is its upper MacNeille completion H•, which is defined
as the expansion of the MacNeille completion H[ of the lattice reduct H[, with the
upper extension →• of the Heyting implication → of H.

In the case of a residuated unary map, we can even prove smoothness. Recall
that residuated unary maps are order preserving, and so are their residuals.

Proposition 3.19. Let f : L → M and g : M → L form a residual pair. Then both
f and g are smooth, and their extensions f and g also form a residual pair.

Proof. The proof that f◦ and g• form a residual pair is completely analogous to
that of the previous proposition. In order to prove that f is smooth, it suffices to
show that f• ≤ f◦. To that aim, take an arbitrary element x of L, an arbitrary c in
L, and suppose that f◦(x) ≤ c. This means that for all a ∈ L↓x we have f(a) ≤ c, so
a ≤ g(c). From this it follows that x, being the supremum of L↓x, is below g(c). But
then by isotonicity of f• we find that f•(x) ≤ f•(g(c)) = f(g(c)) ≤ c, where the
latter inequality follows from g(c) ≤ g(c), by residuation. Since c was an arbitrary
element of L, it follows from the meet-density of L in L that f•(x) ≤ f◦(x). �

The result concerning smoothness cannot be generalized to maps that are resid-
uated coordinatewise, as the following example, which is due to Givant & Ven-
ema [24], shows.

Example 3.20. It is easy to see that a binary operation f on a Boolean algebra
B is both left- and right-residuated in case it is self-conjugated, that is, satisfies

f(x, y) ∧ z = ⊥ ⇐⇒ f(z, y) ∧ x = ⊥ ⇐⇒ f(x, z) ∧ y = ⊥.
We will now briefly recount the example, due to Givant and the second author, of
a non-smooth, self-conjugated operation on a Boolean algebra.



18 MARK THEUNISSEN AND YDE VENEMA ALGEBRA UNIVERS.

Let S be the set of ordinals less than or equal to ω, and let B be the field of
subsets of S that are either finite or cofinite. Now let R be the ternary relation
on the set S that consists of all triples (n, n, n) with n < ω, together with all
permutations of the triples (2n, 2n + 1, ω) with n < ω. We leave it for the reader
to verify that the operation fR, given by

fR(a1, a2) := {n0 ∈ S | (n0, n1, n2) ∈ R for some n1 ∈ a1, n2 ∈ a2}, (3)

provides a self-conjugated operation on B. It is easy to see that the lower MacNeille
extension of fR is the map f◦R : P(S)×P(S) → P(S) defined by (3). In particular,
one may calculate that f◦R(e, e) = e, where e is the set of even natural numbers. On
the other hand, for the upper extension f•R of fR, it can be proven that f•R(e, e) =
e∪{ω}. This proves that fR is not smooth, and that f◦R(e, e) is not left-residuated;
in fact, it is not even a complete operator.

To finish this discussion of residuation and MacNeille completions, let us mention
some examples.

Example 3.21. As a first example, we use Proposition 3.19 to show that every
projection function πi : L1 × · · ·Ln → Li is smooth. In order to simplify notation
we assume that n = 2 and i = 1.

It is straightforward to verify that the lattice map x 7→ (x,>) between L1 and
L1 × L2 is the residual of π1, and that π1 itself is the residual of the map x 7→
(x,⊥) : L1 → L1 × L2. Thus πi is both a residual and residuated, and hence,
smoothness follows from Proposition 3.19. The fact that πi coincides with the i-th
projection function from L1 × · · ·Ln onto Li is immediate from the definitions and
Proposition 2.5.

Example 3.22. Our second and last example concerns the global discriminator �.
Given a lattice L, define the function �L : L→ L to be the map

�Lx :=
{
⊥ if x = ⊥,
> otherwise.

The name ‘global discriminator’ stems from the context of Boolean algebras with
operators, where the existence of such an operator is equivalent to the existence of
a discriminator term in the ordinary universal algebraic sense of the word, see [43]
for details.

It is in fact easy to see that �L is residuated by the map �L : L→ L given by

�Lx :=
{
⊥ if x < >,
> otherwise.

It then follows that both �L and �L are smooth, and that �L is residuated by
�L. In fact, one can also show that the MacNeille extension of �L is the global
discriminator of L.

Summary. We summarize our findings in Table 1, which lists the properties dis-
cussed in this section, indicating (i) how the property fares under taking lower and
upper extensions, respectively, and (ii) whether the property guarantees smooth-
ness of the operation. Each of these questions is answered separately for the case
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that the domain and target are arbitrary lattices, Heyting algebras, or Boolean
algebras. Possible answers are ‘+’ (positive), ‘−’ (negative) and ‘?’ (unknown).

Roughly speaking, what the table seems to indicate is that positive results con-
cerning MacNeille extensions of lattice maps are possible in the following two cases:

(1) the lattices satisfy some infinite distributive laws, and/or
(2) the lattice map satisfies some residuation properties.

In order to facilitate the verification of the entries provided by the table, all
definite entries (‘+’ and ‘−’) are accompanied by an explicit justification, in the form
of the number of the corresponding item (either counterexample or proposition)
in the text. Note that this justification may be somewhat indirect in that the
mentioned item may refer to the order dual of the corresponding property.

For instance, consider the entries ‘
−
3.8’ for the upper extension of a dual operator.

Example 3.8 is not about dual operators directly. However, it does show that
additivity of an operation is not preserved under taking lower extension, even in
the underlying lattices are Boolean algebras. In fact, the example shows that the
operation f◦ is not an operator either, and so by order duality the upper extension
of a double operator is not necessarily a double operator. If this does not hold for
a double operator between Boolean algebras then a fortiori the answer is negative
for Heyting algebras and arbitrary lattices.

Also, observe that in many cases of a negative answer, the text of this section
in fact provides more than one counterexample. For instance, the fact that being a
complete operator is not preserved under upper MacNeille extensions, is not only
witnessed by Example 3.20 as indicated by the entry in the Table, but also by
Example 3.11.

Finally, the question marks indicate open problems. (Note that other than for
lattices and Boolean algebras, we may not apply the the principle of order duality
here, since the order dual of a Heyting algebra need to be a Heyting algebra.) In
each of these cases we expect the answers to be negative, but were not able to find
examples witnessing this conjecture.

4. Topologies

In this section we introduce the topological perspective on the MacNeille com-
pletion, following the approach taken by Gehrke & Jónsson [22] towards the
canonical extension of a (distributive) lattice. As we will see in section 6, an
important application of the topological approach lies in the study of MacNeille-
canonical equations, that is, equations that remain valid when we move from a
lattice expansion to its MacNeille completion.

We will consider no less than eight topologies on the carrier set L of the MacNeille
completion of a lattice L. This may seem to be somewhat overwhelming at first, but
fortunately, these topologies can be neatly divided in three families, two of which
consist of an upper, a lower, and a join topology, and one simply of an upper and
a lower topology. Furthermore, two of these families consist of quite well-known
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3.19
+

3.19
+

3.19
+

3.19
+

3.19
+

3.19
+

3.19
+

3.19
+

3.19

left residuated
+

3.17
+

3.17
+

3.17
−

3.20
−

3.20
−

3.20
−

3.20
−

3.20
−

3.20

Table 1. Properties of MacNeille extensions of lattice maps

topologies, and finally, there are many connections between the topologies from
different families.

In any case, the reason for introducing these topologies is that many interesting
properties of lattice maps can be formulated as continuity properties with respect
to some of these topologies. As a terminological convention, let us call a map
between the sets A and B (τ, τ ′)-continuous, if it is a continuous function between
the topological spaces 〈A, τ〉 and 〈B, τ ′〉.

We start with the definition of the two well-known families of topologies; both
of them can in fact be defined on arbitrary partial orders.
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Definition 4.1. Fix a partial order P = (P,≤). The Alexandrov topology α↑ on
P is defined as the collection of all up-sets of P, and the co-Alexandrov topology
α↓ is given, using the principle of order duality, as the collection of all down-sets.

A subset U of P is called Scott open if U is an up-set such that U∩D 6= ∅ for every
up-directed set D with

∨
D ∈ U . The Scott topology is defined as the collection

γ↑ of Scott open sets; the co-Scott topology γ↓ is defined through the principle of
order duality, and we define γ as the join of γ↑ and γ↓ (in the lattice of topologies
on P ). That is, as a basis for γ we may take the set {U ∩ V | U ∈ γ↑, V ∈ γ↓}. �

Both the Alexandrov and the Scott topologies are defined purely in terms of the
order relation, and it should come as no surprise that some familiar order-related
properties of lattice maps can be expressed very naturally as continuity properties
with respect to these topologies. For instance, it is easy to see that any map between
partial orders is isotone iff it is (α↑, α↑)-continuous iff it is (α↓, α↓)-continuous. As
a second (well-known) example, a map between partial orders is Scott continuous
(that is, (γ↑, γ↑)-continuous) iff it preserves up-directed joins. This can be easily
derived using the characterization of the Scott closed sets as the down-sets that are
closed under taking up-directed joins. In the sequel, the two just mentioned facts
will be used without further notice.

We now turn to the second family of topologies. It is easy to see that for any
completion C of a lattice L, the following collections of subsets of C are closed
under taking finite intersections: {↑a ⊆ C | a ∈ L}, {↓a ⊆ C | a ∈ L} and
{[a, b] ⊆ C | a, b ∈ L}. It follows that these sets may be taken as bases for
topologies.

Definition 4.2. Let C be a completion of the lattice L. The topology on C that
is generated by the basis {↑a ⊆ C | a ∈ L} is denoted as ρ↑L(C); dually, ρ↓L(C) is
generated by the basis {↓a ⊆ C | a ∈ L}. Finally, we define ρL(C) as the topology
on C that is obtained from taking the set {[a, b] ⊆ C | a, b ∈ L} as a basis.

In case C is the completion of L, we will denote these topologies as ρ↑L, ρ↓L and
ρL, respectively. We may also write ρ↑, ρ↓ and ρ, if the lattice L is clear from
context. �

Remark 4.3. These ρ topologies are a variation of the σ topologies (σ↑, σ↓ and σ)
introduced by Gehrke & Jónsson [22] on the canonical extension Lσ of a lattice
L. For instance, where ρ↑ on L is generated by the sets of the form ↑a with a a
clopen element of L (that is, a ∈ L), σ↑ is generated by sets of the form ↑p with p
a closed element, that is, p ∈ KLσ (L).

As we will see in the next section, the value of the ρ-topological family lies in the
theory of the extension of maps between lattices to maps between their MacNeille
completions. The next theorem is the key in this application.

Theorem 4.4. Let L be some lattice, and L its MacNeille completion. Then
(1) (L, ρL) is a zerodimensional Hausdorff space;
(2) L is a (topologically) dense subset of (L, ρL);
(3) L provides the collection of isolated points of ρL.
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Proof. For the first part, take two distinct points x and y in L, then without loss of
generality we may assume that x 6≤ y. Hence by Proposition 2.1 there is an element
a in L such that x 6≤ a, while y ≤ a. Using the same proposition once more, we
find a b ∈ L with b ≤ x, b 6≤ a. Then ↓a and ↑b are disjoint open sets separating x
and y, which proves that (L, ρL) is Hausdorff.

It also follows from the above reasoning that

L \ ↓a =
⋃
{↑b | a 6≥ b ∈ L},

which shows that L \ ↓a is ρ-open, and hence, ρ-clopen. From this it is almost
immediate that the set {[a, b] ⊆ L | a, b ∈ L} is in fact a clopen basis for ρ. Thus ρ
is zerodimensional indeed.

Part 2 and 3 of the Theorem are easy consequences of the definitions. For
instance, density of L is immediate from the fact that ρL is generated from basic
opens of the form [a, b] with a and b in L. It follows from precisely the same fact
that every singleton {a} = [a, a] is open, if a belongs to L; this shows that every
element of L is an isolated point of ρL. �

In passing we note that the ρ topology provides a nice way to characterize the
MacNeille completion of a lattice (or in fact, of a partial order).

Theorem 4.5. Let L be some lattice, and C some completion of L. Then C is the
MacNeille completion of L iff (C, ρC

L) is a Hausdorff space.

Proof. The direction from left to right has been proven in the previous theorem.
For the other direction, let x and y be arbitrary elements of C such that x 6= y.
Without loss of generality we may assume that x 6≤ y, so that x ∧ y < x.

Now since ρL(C) is Hausdorff, there are disjoint basic ρL(C)-open sets Uxy and
Ux containing x ∧ y and x, respectively. Then by definition, there are points axy,
bxy, ax and bx, all in L, such that Uxy = [axy, bxy] and Ux = [ax, bx]. Now suppose
for contradiction that ax ≤ x ∧ y; then we find that ax ≤ x ∧ y ≤ x ≤ bx, implying
that x ∧ y ∈ [ax, bx] and thus contradicting the disjointness of Uxy and Ux.

Hence we see that ax ≤ x but ax 6≤ x∧y, from which it immediately follows that
ax 6≤ y. Since ax ∈ L, this establishes the join-density of L in C by Proposition 2.1.
Meet-density then follows by order duality, and so we have proved that L is doubly
dense in C, i.e., C is the MacNeille completion of L. �

To finish this section, we gather some useful basic facts connecting the three
topological families.

Proposition 4.6. Let L be the MacNeille completion of some lattice L. Then
(1) γ↑ = γ ∩ α↑ and γ↓ = γ ∩ α↓,
(2) ρ↑ = ρ ∩ α↑ and ρ↓ = ρ ∩ α↓,
(3) γ↑ ⊆ ρ↑, γ↓ ⊆ ρ↓ and γ ⊆ ρ.

Proof. The proofs of the first two items are trivial and hence, omitted. For the last
part, we only prove that γ↑ ⊆ ρ↑; the second statement is then immediate by order
duality, and the last statement is easily seen to follow from the first two.
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Let U be some γ↑-open set, and take an arbitrary element x ∈ U . As the set
L↓x = {a ∈ L | a ≤ x} is an up-directed set with

∨
L↓x = x ∈ U , it follows from

U ∈ γ↑ that L↓x ∩ U 6= ∅. That is, there must be some a ∈ L ∩ U with a ≤ x. In
other words, we have x ∈ ↑a ∈ ρ↑, but also ↑a ⊆ U since a ∈ U and U is upwards
closed. Since x was an arbitrary element of U , this gives U =

⋃
{↑a | a ∈ U ∩ L},

so clearly U ∈ ρ↑. �

5. Topological properties of extended operations

Following the approach of Gehrke & Jónsson [22] towards the canonical ex-
tension of lattice expansions, in this section we develop the topological perspective
on the extension of lattice maps to maps between the MacNeille completions.

Topological definition of map extensions. In (2) we already encountered a
MacNeille extension of a lattice map that was not order preserving. Now we will
see how to extend an arbitrary map between two lattices L and M to maps between
the MacNeille completions L and M. We base ourselves on the following definition
from Gehrke & Jónsson [22].

Definition 5.1. Let X be a dense set in a topological space S = 〈S, τ〉, and let
f : X → C be a map from X to the carrier C of a complete lattice C. Then

limτf(x) :=
∨
{
∧
f [U ∩X] | x ∈ U ∈ τ},

limτf(x) :=
∧
{
∨
f [U ∩X] | x ∈ U ∈ τ}.

(4)

are maps from S to C. �

We first list some properties of these maps. For a proof of the first proposition,
the reader is referred to Gehrke & Jónsson [22].

Proposition 5.2. Let S = 〈S, τ〉 be some topological space, and let X be some
(topologically) dense subset of S. Then

(1) restricted to X, limτf ≤ f ≤ limτf , with identity holding on isolated points;
(2) limτf ≤ limτf ;
(3) limτf is (τ, γ↑)-continuous, and limτf is (τ, γ↓)-continuous.

The following Proposition states that the maps defined above really provide a
generalization of the upper and lower MacNeille extensions of a isotone map. For
its proof, recall from Theorem 4.4 that for any lattice L, its carrier L forms a dense
set of the topological space 〈L, ρ〉, and consists entirely of isolated points.

Proposition 5.3. Let f be an isotone lattice map between L and M. Then f◦ =
limρf and f• = limρf .

Proof. It is immediate to prove, from the fact that the set {[a, b] ⊆ L | a, b ∈
L with a ≤ b} is a basis for ρL, that

limρf(x) =
∨
{
∧
f [L[a,b]] | L 3 a ≤ x ≤ b ∈ L}.
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But if f is isotone, then it holds for all a, b ∈ L that∧
f [L[a,b]] = f(a),

so that we find
limρf(x) =

∨
{f(a) | x ≥ a ∈ L},

from which it easily follows that limρf(x) = f◦(x). The proof for limρf(x) follows
by order duality. �

These observations justify the following definition.

Definition 5.4. Let f : L → M be a lattice map. Then the lower MacNeille
extension of f is defined as the map f◦ : L → M given as f◦ = limρf , and the
upper MacNeille extension of f is likewise defined as f• = limρf . �

Remark 5.5. The above definition is based on that of the two canonical extensions
of a lattice map, from Gehrke & Jónsson [22]. Their idea was to define, for a
lattice map f : L → M, two lattice maps fσ, fπ : Lσ → Mσ, by putting fσ := limσf
and fπ := limσf .

We first gather some basic properties of these extensions. The following is im-
mediate by the Propositions 5.2 and 5.3.

Proposition 5.6. Let f be a lattice map between L and M. Then
(1) both f◦ and f• extend f , and f◦ ≤ f•,
(2) f◦ is (ρ, γ↑)-continuous and f• is (ρ, γ↓)-continuous.

Uniform maps. Most of the properties that hold for isotone maps can in fact be
generalized to the wider class of uniform maps. These are the ones that can be
presented as a map from some lattice L0 × · · ·Ln−1 to a lattice M which is order
preserving in some, and order reversing in the other coordinates.

Definition 5.7. An element µ ∈ {1, ∂}n will be called an order type or mono-
tonicity type. Given such an order type µ = (µ0, . . . , µn−1), a map f : L → M is
µ-monotone if there is a finite direct decomposition L ∼= L0 × · · ·Ln−1 such that f
is isotone when seen as a lattice map between Lµ0

0 × . . .×Lµn−1
n−1 and M. f : L → M

is uniform if it is µ-monotone for some monotonicity type µ. �

Example 5.8. Heyting implications and other left residuals maps are order revers-
ing in their first argument, and order preserving in their second argument. In the
terminology of Definition 5.7 then, they are (∂, 1)-monotone. Order reversing maps
are simply ∂-monotone.

One of the properties of order preserving maps that extend to uniform maps, is
that the MacNeille extensions have a simpler definition than in the general case.
For instance, if f : L0 × . . .× Ln−1 →M is µ-monotone, then we have:

f◦(x0, . . . , xn−1) =
∨
{f(a0, . . . , an−1) | xi ≥µi ai ∈ L},

where ≥1 and ≥∂ denote ≥ and ≤, respectively. Recall that in (2) on page 17 we
already saw an example of this simpler definition, for the upper extension.
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Even more important is the following proposition, which gives some useful char-
acterizations of the extensions of uniform maps.

Proposition 5.9. Let, for some monotonicity type µ, f be an µ-monotone lattice
map between L and M. Then

(1) f◦ is the largest (ρ, γ↑)-continuous extension of f ,
(2) f• is the smallest (ρ, γ↓)-continuous extension of f ,
(3) f is smooth iff f◦ is (ρ, γ↓)-continuous iff f• is (ρ, γ↑)-continuous.

Proof. We will only provide the proof for the case that f is order preserving, the
more general case can easily be derived from this by the principle of order duality.

For the first part of the proposition, we already know by earlier results that f◦

is a (ρ, γ↑)-continuous lattice map that agrees with f on L. In order to prove that
f is the largest such map, we need the following property of the Scott topology:

L \ ↓u is Scott open for any u in L. (5)

For a proof of this, let D be an up-directed set in L such that
∨
D ∈ L\↓u. Suppose

for contradiction that D ∩ (L \ ↓u) = ∅, that is, D ⊆ ↓u. But then u is an upper
bound of D, so that

∨
D ≤ u, which gives the desired contradiction

∨
D ∈ ↓u.

This proves (5).
Now let g : L → M be some (ρ, γ↑)-continuous extension of f , but suppose

for contradiction that g(x) 6≤ f◦(x) for some x ∈ L. By (5), the set M \ ↓f◦(x)
is a γ↑-open neighborhood of g(x). Hence by (ρ, γ↑)-continuity there is some ρ-
basic open [a, b] around x with g[a, b] ⊆ M \ ↓f◦(x); in particular, we have that
g(a) 6≤ f◦(x). But g(a) = f(a), and as f is order preserving, so is f◦. This gives
g(a) = f(a) ≤ f◦(x), which provides the desired contradiction.

The second part of the Proposition follows by order duality, and the last part is
immediate from the earlier parts and the fact that f◦ ≤ f•. �

For arbitrary, non-uniform lattice maps, the statements of the previous Propo-
sition need not hold, as the following example witnesses.

Example 5.10. Here we show the existence of a (non-uniform) lattice map f :
D → E and a (ρ, γ↑)-continuous extension g : D → E such that g 6≤ f◦.

Take the lattice D of Example 3.11, and let E be the lattice depicted in Figure 4.
E is complete and hence coincides with its MacNeille completion: E = E. Consider
the map f : D → E given by

f(x) :=
{
an if x = n ∈ ω,
bn if x = n̆ ∈ ω̆.

Clearly f is not uniform, so for the definition of f◦(∞), we have to consider intervals
surrounding ∞. Given such an interval, say [n, m̆] with n,m ∈ ω, both n and
m̆ belong to the set D[n,m̆] = D ∩ [n, m̆]. From this it follows that f [D[n,m̆]]
contains both an and bm, whence

∧
f [D[n,m̆]] = ⊥. Thus we find that f◦(∞) =∨

{
∧
f [D[n,m̆]] | n,m ∈ ω} = ⊥.

Now consider the map g, defined as the extension of f mapping ∞ to the element
t∞. Clearly then we have that g(∞) 6≤ f◦(∞), so that it is left to show that g is
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Figure 4. the lattice E.

(ρ, γ↑)-continuous. The key observation here is that any Scott open set of E which
contains t∞, must also contain elements ak and bm for some k,m ∈ ω. From this it
follows that every Scott open set of E must have one of the following forms: ∅, E,
↑tk with k ∈ ω, or ↑ak ∪ ↑bm with k,m ∈ ω. We have g−1(∅) = ∅, g−1(E) = D,
g−1(↑tk) = ∅, and g−1(↑ak ∪ ↑bm) = [k, m̆]. From this the (ρ, γ↑)-continuity of g
is immediate.

Continuity properties. We will now see how some important properties of lattice
maps are reflected as continuity properties. We start with the lattice operations
themselves.

Proposition 5.11. Let L be a lattice. Then
(1) the join operation ∨ on L is both (γ↑, γ↑)- and (ρ↓, ρ↓)-continuous,
(2) the meet operation ∧ on L is both (γ↓, γ↓)- and (ρ↑, ρ↑)-continuous,

Proof. Since ∨ is completely additive, it certainly preserves directed joins, that is,
it is Scott continuous. For (ρ↓, ρ↓)-continuity, take some basic open set, say, ↓b, in
the topology ρ↓M . It is easy to check that

∨−1[↓b] = {(x, y) ∈ L× L | x∨y ≤ b} = L↓b × L↓b = L2

↓(b,b).

Clearly then, ∨−1[↓b] is a basic open set of the ρ↓ topology on (L)2 = L2, and so it
follows that ∨ is (ρ↓, ρ↓)-continuous. The results for the meet operation are then
immediate by order duality. �

Next, we turn to continuity properties of residuated maps. First we consider
maps that are left- and right residuated, such as the conjunction in a Heyting
algebra.
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Proposition 5.12. Let f : L1 × L2 → M be both left- and right residuated. Then
f◦ is (γ↑, γ↑)-continuous.

Proof. If f is both left- and right residuated, then so is f◦, cf. Proposition 3.17.
Then it follows by standard results that f◦ is a complete operator, and from this it
is immediate that f◦ preserves all directed joins, and hence, is Scott continuous. �

In case we are dealing with a (unary) residuated map, we can prove an even
stronger, and very useful, result. Recall from Proposition 3.19 that both residuated
maps and their residuals are smooth.

Proposition 5.13. Let f : L → M be a residuated map between the lattices L and
M, with residual g : M → L. Then

(1) f is both (γ↑, γ↑) and (ρ↓, ρ↓)-continuous,
(2) g is both (γ↓, γ↓) and (ρ↑, ρ↑)-continuous.

Proof. Assume that the lattice maps f : L → M and g : M → L form a residual
pair, let x be an arbitrary element of L, and take some ρ↓M -basic neighborhood of
f(x), say, ↓b with b ∈M . Recall from Proposition 3.19 that f and g form a residual
pair. Hence we find

(f)−1[↓b] = {x ∈ L | f(x) ≤ b}
= {x ∈ L | x ≤ g(b) = g(b)}
= ↓g(b).

In other words, we see that the inverse image of ↓b under f is the ρL-open set
↓g(b). This proves the (ρ↓, ρ↓)-continuity of f . The (γ↑, γ↑)-continuity of f is a
direct consequence of its complete additivity, and the results for g follow by order
duality. �

As a corollary, we see that if f is both residuated and a residual, then f is a
complete homomorphism, and (τ, τ)-continuous for every τ ∈ {ρ↑, ρ↓, ρ, γ↑, γ↓, γ}.
As a particular instance of this, we mention the following fact (see Example 3.21
for the residuation properties of projection maps).

Proposition 5.14. Let L1, . . . ,Ln be lattices. Then each projection operation πi :
L1 × · · · × Ln → M is (τ, τ)-continuous for all τ ∈ {γ↑, γ↓, γ, ρ↑, ρ↓, ρ}.

Products and composition. In the next section, where we discuss term func-
tions, we will need some results concerning the continuity properties of product
maps and compositions of maps. We start with products.

Definition 5.15. Let {fi : A → Bi} be a collection of maps, then the product
map 〈fi〉i∈I : A→

∏
i∈I Bi is given by

〈fi〉i∈I(a)(i) := fi(a).

In case I is the set {1, . . . , n}, this product map is denoted as 〈f1, . . . , fn〉. �

Proposition 5.16. Let {fi : L → Mi | i ∈ I} be a family of lattice maps. Then

(〈fi〉i∈I)◦ = 〈f◦i 〉i∈I . (6)
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Proof. Straightforward by the definitions and the observation that we may take∏
Mi as the MacNeille completion of the product

∏
Mi. �

Proposition 5.17. Let L and, for each i with 1 ≤ i ≤ n, Mi lattices, and let, for
each i, fi : L → Mi be some lattice map. Then for each topology τ from the set
{γ↑, γ↓, ρ↑, ρ↓, ρ}, the following holds:

〈f1, . . . , fn〉 is (τ, τ)-continuous iff each fi is (τ, τ)-continuous. (7)

Proof. We only prove the proposition for the cases that τ = γ↑ and τ = ρ↑, since
the remaining cases are immediate consequences of this. Also, we only consider the
direction from right to left in (7), since the other direction can easily be derived
from properties of the projection operators given in Proposition 5.14. Let f denote
the map 〈f1, . . . , fn〉, and let M be the lattice

∏
Mi, then M represents the product∏

Mi.
First suppose that each fi : L → Mi is (ρ↑, ρ↑)-continuous. Since the set {↑a ⊆

M | a ∈M} forms a basis for ρ↑M , in order to prove that f : L → M is also (ρ↑, ρ↑)-
continuous, it suffices to show that f−1[↑a] ∈ ρ↑L for each a = (a1, . . . , an) in M. But
it follows immediately from the definitions that f−1[↑a] =

⋂
1≤i≤n f

−1
i [↑ai]. From

this the result is immediate, since each set f−1
i [↑ai] is ρ↑L-open by the assumed

(ρ↑, ρ↑)-continuity of fi.
The result for τ = γ↑ easily follows from the characterization of Scott continuity

as the preservation of upward directed joins. That is, suppose that each fi : L → Mi

preserves upward directed joins, and let D ⊆ L be an upward directed set. Since
by the assumption on the fi we have that

f(
∨
D) = (f1(

∨
D), . . . , fn(

∨
D)) = (

∨
f1[D], . . . ,

∨
fn[D]),

in order to show that f preserves upward directed joins, it suffices to show that

(
∨
f1[D], . . . ,

∨
fn[D]) =

∨
f [D].

This proof is completely straightforward, and hence we leave it for the reader. �

Remark 5.18. We do not know whether Proposition 5.17 applies to (γ, γ)-continuity
as well. In case the maps involved are µ-monotone, a fairly straightforward adap-
tation of the proof for (γ↑, γ↑)-continuity can be used to prove that indeed, (7) also
holds in case τ = γ.

We finish this section with an investigation of the interaction between the oper-
ation of composing two lattice maps, and that of taking their MacNeille extensions.
That is, we will take a look at the relation between the maps (gf)◦ and g◦f◦ for
maps f : K → L, and g : L → M (and likewise for the upper extensions). We are
obviously eager to find cases in which we have (gf)◦ = g◦f◦, but also conditions
under which one of the inequalities (≤ or ≥) apply will turn out to be of inter-
est. As we will see shortly, many of these conditions can naturally be described in
topological terms.

Our main tool will be the following result.

Proposition 5.19. Let f : K → L and g : L → M be isotone lattice maps. Then
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(1) (gf)◦ ≤ g◦f◦ ≤
{
g◦f•

g•f◦

}
≤ g•f• ≤ (gf)•,

(2) (gf)◦ ≥ g◦f◦ whenever g◦f◦ is (ρ, γ↑)-continuous,
(3) (gf)• ≤ g•f• whenever g•f• is (ρ, γ↓)-continuous.

Proof. We start with the first inequality of the first part of the proposition. By
definition it holds that

(gf)◦(x) =
∨
{gf(a) | x ≥ a ∈ K} ≤

∨
{g(b) | f◦(x) ≥ b ∈ L} = g◦(f◦(x)).

Here the first and last step are by definition of (gf)◦ and of g◦, respectively. The
crucial second step follows from the fact that monotonicity of f implies that f(a) ≤
f◦(x) whenever a ≤ x, so that every joinand of

∨
{gf(a) | x ≥ a ∈ K} also occurs

in
∨
{g(b) | f◦(x) ≥ b ∈ L}. The last inequality of part 1 immediately follows from

this by the principle of order duality. The other inequalities are consequences of
the fact that MacNeille extensions of isotone maps are isotone, and the inequalities
f◦ ≤ f• and g◦ ≤ g•.

The second and third part of the proposition are straightforward corollaries of
Proposition 5.9. �

6. Preservation of equations

6.1. Introduction. In this section we address the question which (equational)
properties of lattice expansions are preserved under taking MacNeille completions.
Clearly, we have to start with making this question more precise, since it will be
clear from the previous section that there are various ways to complete a lattice
expansion. Given an E-expanded lattice A, for each function symbol ∇ ∈ E , one
may take the lower or the upper extension of ∇A; to distinguish the various possible
extensions of A, we introduce the notion of an extension type.

Definition 6.1. Given an expansion type E , an extension type ψ is a map ψ : E →
{◦, •}. The ψ-MacNeille extension of an E-expanded lattice A is the E-expanded
lattice Aψ of which the lattice reduct (Aψ)[ is the MacNeille completion of A[, while
for ∇ ∈ E we define

∇Aψ := (∇A)ψ(∇).

That is, ψ determines whether we take the lower or the upper extension of ∇A. In
case we have ψ(∇) = ◦ for all ∇ ∈ E we write A◦ rather than Aψ; this structure is
called the lower MacNeille extension of A. A similar definition applies to the upper
MacNeille extension A•.

An E-expanded lattice A is called smooth if it interprets each of the function
symbols in E as a smooth operation. Such an algebra has a unique MacNeille
extension, which will be denoted as A. �

Definition 6.2. Let K be some class of lattice expansions, and let P be some
property of lattice expansions. Then we say that P is MacNeille ψ-canonical on K
if it is preserved under taking MacNeille ψ-completions; that is, if Aψ has property
P for every algebra A in K that has property P . We restrict our attention to
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properties that are definable by equations. In accordance with the just defined
notion, we say that an equation s ≈ t is MacNeille ψ-canonical on K, if Aψ |= s ≈ t
for all algebras A in K such that A |= s ≈ t.

The notions of lower and upper MacNeille canonicity are defined analogously.
In case K consists of smooth algebras, all versions of MacNeille canonicity coincide,
and we will speak of MacNeille canonicity per se. �

Two explanatory, or motivating, remarks may be in order. First, we made the
definition of MacNeille canonicity relative to a base class K of lattice expansions.
This is not without reason: as we will see, the better the class K fares under
taking a certain type of MacNeille completions, the more equations are MacNeille
canonical for that type. Now in general, it will be undecidable whether a given
equation is MacNeille canonical (for any fixed extension type) on some given class
K. (For varieties of modal algebras, this can be proved using standard methods
from modal logic, see Kracht & Wolter [33, page 137]). This already indicates
that the general picture may be rather complex, and that we cannot hope to give a
comprehensive survey here. In many cases however, fairly sharp sufficient conditions
can be formulated.

Second, while in this paper we will generally restrict our attention to lower
and upper extension type (that is, the ones in which we uniformly take the lower
respectively the upper extension of each additional operation), there are situations
in which it is more natural to consider mixed extension types. For instance, the only
extension type ψ for which the variety of lattices with residuated binary operations
is MacNeille ψ-canonical, is the one in which we take the lower extension of the
residuated operation, and the upper extension of the residuated one.

It seems sensible to restrict our attention to a context of lattice expansions that
are, themselves, already closed under taking MacNeille completions. In section 3
we identified two reasons why a class of lattice expansions is closed under taking
MacNeille completions: it may be either because the additional operations manifest
some kind of residuation properties, or because the lattice reducts satisfy some kind
of distributive laws. Taking the class of Boolean algebras as an example of the
latter case, we arrive at the following choice of classes of order preserving lattice
expansions to be studied in this section:

• arbitrary lattices with arbitrary order preserving operations;
• expansions of Boolean algebras;
• (arbitrary) lattices expanded with operations that are all (left/right) resid-

uated.

After that, we also briefly look at lattices that are expanded with operations that
are not necessarily order preserving, but still uniform.

Before we turn to these individual classes, let us briefly describe our method for
proving canonicity in general. This method ultimately goes back to the seminal
paper by Jónsson & Tarski on canonical extensions of Boolean algebras with
operators; much of our notation and terminology is taken from Jónsson [30]. Con-
sider an E+-term t(x1, . . . , xn). Recall that on each E+-algebra A, t gives rise to
a term function tA : An → A, and that the validity of an equation s ≈ t can be
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formulated using these terms functions:

A |= s ≈ t iff sA = tA. (8)

Hence, for the ψ-MacNeille extension Aψ, we find that

Aψ |= s ≈ t iff sAψ = tA
ψ

. (9)

However, it trivially follows from (8) that, for instance,

A |= s ≈ t iff (sA)◦ = (tA)◦. (10)

Hence, in order to prove the ψ-MacNeille canonicity of the equation s ≈ t, it would
suffice to prove that sAψ = (sA)◦ and tA

ψ

= (tA)◦. This motivates a careful analysis
of the relation between functions of the form tA

ψ

(the term function of t in Aψ,
and those of the form (tA)◦ and (tA)• (the lower and upper extension of the term
function tA). Such an analysis will be carried out in the sequel; here we restrict our
attention to the extensions A◦ and A•.

Definition 6.3. Let E be some lattice expansion type, and K some class of E-
expanded lattices. We call an E+-term t lower expanding on K if (tA)◦ ≤ tA

◦
for all

A in K, lower contracting if (tA)◦ ≥ tA
◦

for all A in K, and lower stable if (tA)◦ = tA
◦

for all A in K. Similar definitions apply to the notions of upper expanding, upper
contracting, and upper stable. �

It is important to realize that, even if we are dealing with a smooth algebra
A, the upper and the lower version of the just defined notions need not coincide.
Indeed, we will encounter examples of terms t and smooth algebras A such that
(tA)◦ = tA 6= (tA)•. That is, smoothness of the primitive operations does not
guarantee smoothness of the term functions.

Our last general definition concerns syntax. It will come in very handy in the
remainder of this section, when we discuss properties of various kinds of terms and
equations.

Definition 6.4. Let E be some lattice expansion type. Given subsets F ,F ′ of
E+, we define an F-term to be any E+-term that only uses symbols from F . An
F/F ′-term is a term of the form s(u1, . . . , un) such that s is an F-term and each
ui, an F ′-term. A lattice term is simply a {∨,∧,⊥,>}-term, and a term is basic if
it has at most one occurrence of a function symbol. �

Observe that both F and F ′-terms are special instances of F/F ′-terms, and that
variables are F-terms for any set F .

6.2. Order preserving lattice expansions. We start our discussion of Mac-
Neille canonical equations with the class of order preserving lattice expansions.

Definition 6.5. For a lattice expansion type E we let MLEE denote the class of
E-expanded lattices in which every function symbol ∇ in E is interpreted as an
order preserving operation. �

About this rather general class there is not much to be said. The following
proposition states some useful results concerning terms.
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Proposition 6.6. Let E be some lattice expansion type, and let t be some E+-term.
Then

(1) tA is order preserving for any lattice expansion A in MLEE ;
(2) t is lower expanding and upper contracting on MLEE ;
(3) for any A in MLEE : if tA

◦
is (ρ, γ↑)-continuous, then t is lower stable on

A, and if tA
•

is (ρ, γ↓)-continuous, then t is upper stable on A.

Proof. The first part of the proposition follows by a straightforward term induction.
Concerning the second part, we only show that E+-terms are lower expanding;
the statement on upper contraction follows by order duality. The proof that E+-
terms are lower expanding, proceeds via a term induction, of which we only treat
the induction step. That is, let t be the term ∇(s1, . . . , sn), and let A be an E-
expanded lattice in which all the primitive function symbols are interpreted as order
preserving operations. Then we have

(tA)◦ = (∇A ◦ 〈sA
1 , . . . , s

A
n〉)◦

≤ (∇A)◦ ◦ 〈sA
1 , . . . , s

A
n〉◦

= ∇A◦ ◦ 〈(sA
1 )◦, . . . , (sA

1 )◦〉
≤ ∇A◦ ◦ 〈sA◦

1 , . . . , sA◦
n 〉

= tA
◦
.

Here the first and last steps are by definition, the second step is by Proposition 5.19
(using the fact that both (∇A)◦ : An → A and 〈sA

1 , . . . , s
A
n〉◦ : An → An are order

preserving maps), the third step is by Proposition 5.16, and the fourth step is by
the inductive hypothesis and the monotonicity of the map ∇A◦ .

For the final statement of the proposition, consider some algebra A in MLEE . It
follows from the first part of the proposition that tA is order preserving, so that
by Proposition 5.9, (tA)◦ is the largest (ρ, γ↑)-continuous extension of tA. Now it
is easy to see that tA

◦
is an extension of tA as well, so if tA

◦
is (ρ, γ↑)-continuous,

then we have tA
◦ ≤ (tA)◦. This proves that t is lower contracting on A, so with the

second part of the proposition we see that t is in fact lower stable. �

When it comes to MacNeille canonicity of equations, we can prove the following
result.

Theorem 6.7. Let E be some lattice expansion type, let ∇ be some operation symbol
in E, and let t be some E+-term. Then

(1) the inequality ∇(x1, . . . , xn) � t is lower MacNeille canonical on MLEE ;
(2) the inequality t � ∇(x1, . . . , xn) is upper MacNeille canonical on MLEE .

Proof. We only prove the first part of the proposition, the second part is then
immediate by order duality. Let A be an order preserving E-expanded lattice such
that A |= ∇(x1, . . . , xn) � t, that is, ∇A ≤ tA. Then ∇A◦ = (∇A)◦ ≤ (tA)◦ ≤ tA

◦
.

Here the first identity is by definition, the first inequality is a basic property of the
lower MacNeille extension, and the last inequality is by Proposition 6.6. �
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Example 6.8. A closure operation on a lattice is an order preserving map satisfying
the inequalities x � ∇x and ∇∇x � ∇x. It is then an immediate consequence of
Theorem 6.7 that the upper extension of a closure operation is again a closure
operation.

As far as we know, not much more can be proved in the full generality of isotone
lattice expansions.

Example 6.9. For instance, consider the inequality ∇(x ∨ y) � ∇x ∨ ∇y, which
looks like a rather innocent extension of the examples covered by Theorem 6.7. Note
that in the case that ∇ is order preserving, this inequality states that ∇ is additive.
From the Examples 3.8 and 3.10 we may then derive that the given inequality is
neither lower nor upper MacNeille canonical.

6.3. Expansions of Boolean algebras. In section 3 we saw that in case the base
lattice satisfies some infinite distributive law, more properties of the additional op-
erations may be preserved under taking one of the MacNeille completions (but not
necessarily under the other). We now investigate this phenomenon in some more
detail, and from an equational perspective. For convenience we restrict our atten-
tion to expansions of Boolean algebras (although similar results can be obtained
for expanded Heyting algebras).

Definition 6.10. For a lattice expansion type E , let MBAEE denote the class of
E-expanded Boolean algebras in which every function symbol ∇ in E is interpreted
as an order preserving operation. �

The key technical result is the following. Recall that a term is basic if it has at
most one occurrence of a function symbol.

Proposition 6.11. Let E be some lattice expansion type. Then

(1) conjunctions of basic terms are lower stable on MBAEE ,
(2) disjunctions of basic terms are upper stable on MBAEE .

Proof. By Proposition 6.6, in order to prove the first part of the proposition, it
suffices to show that for an arbitrary conjunction of basic terms t, the map tA

◦

is (ρ↑, γ↑)-continuous, for an arbitrary E-expanded Boolean algebra A. Consider
such a term t; for simplicity we may assume without loss of generality that t is of
the form ∇1(x1, . . . , xn) ∧ ∇2(x1, . . . , xn). Then it follows that tA

◦
is given as the

map ∧A◦ ◦ 〈∇A◦
1 ,∇A◦

2 〉. Now ∧A◦ is (γ↑, γ↑)-continuous by Proposition 5.12, while
〈∇A◦

1 ,∇A◦
2 〉 = 〈(∇A

1 )◦, (∇A
2 )◦〉 = 〈∇A

1 ,∇A
2 〉◦ by definition and Proposition 5.16, and

so 〈∇A◦
1 ,∇A◦

2 〉 is (ρ, γ↑)-continuous by Proposition 5.6. From this it follows that
tA

◦
is the composition of a (γ↑, γ↑)− and a (ρ, γ↑)-continuous map, and hence,

(ρ, γ↑)-continuous, as required.
The second part of the proposition is immediate by order duality. �

As an immediate consequence of this proposition we can prove the following
extension of Theorem 6.7.
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Theorem 6.12. Let E be some lattice expansion type, and let t be some E+-term.
Then on MBAEE :

(1) inequalities of the form s � t, with s a conjunction of basic terms, are lower
MacNeille canonical;

(2) inequalities of the form t � s, with s a disjunction of basic terms, are upper
MacNeille canonical.

Proof. Let E , s and t be as in part 1 of the Theorem, and let A be some E-expanded
Boolean algebra such that A |= s � t. It follows from Proposition 6.11 that s is
lower stable on A and from Proposition 6.6 that t is upper contracting. From this
we see that sA◦ ≤ (sA)◦ ≤ (tA)◦ ≤ tA

◦
, so that A◦ |= s � t, as required. �

Example 6.13. It easily follows from the above theorem that the inequality ∇(x∨
y) � ∇x ∨ ∇y is preserved under taking upper MacNeille completions of Boolean
algebras. This explains the upper MacNeille canonicity of the property of additivity,
and reveals why the variety of modal algebras is upper MacNeille canonical.

Another example of an upper McN-canonical equation is ∇∇x � x ∨∇x.

Unfortunately however, the fact that we are dealing with Boolean algebras does
not allow for much improvement on Theorem 6.12, unless we consider residuated
Boolean algebra expansions, see [24] (or the next subsection). More precisely, we
are not aware of any example of a MacNeille canonical variety of Boolean algebra
expansions, that is not covered by Theorem 6.12 or Theorem 6.33.

Also, counterexamples abound if we weaken the assumptions of Theorem 6.12.
For instance, we already saw in Example 3.8 that additivity is not preserved under
taking lower MacNeille completions, even if the base lattice is a Boolean algebra.
And in the case that we focus on upper completions, and assume that all of the
additional operations are unary operators, there is not much good news to report
either. Not even the strictly positive equations (that is, equations not involving the
negation symbol at all) are upper MacNeille canonical, as the following example,
which was obtained in cooperation with Guram and Nick Bezhanishvili and Johh
Harding, witnesses.

Example 6.14. Let Lin be the inequality

3x ∧3y � 3(x ∧ y) ∨3(3x ∧ y) ∨3(x ∧3y).

Now let B be the Boolean algebra consisting of the finite and cofinite sets of natural
numbers, and consider the following interpretation of 3 on B× 2:

3(a, b) :=
{

(a, b) if a is finite
(a, 1) if a is cofinite

It is then a tedious but straightforward exercise to show that this gives a normal
and additive operation on B×2, and that Lin is valid on the resulting modal algebra
A = 〈B× 2,3〉.

Clearly, P(ω) — the power set algebra of the set ω of natural numbers is the
MacNeille completion of B, and we may take P(ω) × 2 to be the MacNeille com-
pletion of the algebra B× 2. It is easy to see that the upper extension of 3 is the
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map 3• on P(ω)× 2 given by

3•(a, b) :=
{

(a, b) if a is finite
(a, 1) if a is infinite

Now let E be the set of even numbers, and O the set of odds. A straightforward
calculation will reveal that the left and right hand side of Lin, when applied to the
elements x = (E, 0) and y = (O, 0), will evaluate to the elements (∅, 1) and (∅, 0),
respectively. This shows that Lin is not valid on the algebra A. Thus the validity
of Lin is not preserved under taking upper MacNeille completions.

In passing, we note that it is an open problem whether lower Macneille canonicity
implies upper MacNeille canonicity for modal algebras. That is, if V is a variety of
modal algebras that is closed under taking lower MacNeille completions, is V then
also closed under taking upper MacNeille completions?

6.4. Residuated lattice expansions. As was to be expected given the results
in section 3, the best results on MacNeille canonicity of equations can be obtained
for lattice expansions in which all primitive operations are either residuated or
residuals. In the case of Boolean algebras with operators, this was known already
from the work of Givant & Venema, who prove in [24] that every Sahlqvist
equation is MacNeille canonical on the class of baos such that every non-Boolean
primitive operation is residuated. We will see now (that is, here and in the next
subsection), that this result does not depend on the Boolean nature of the base
lattice.

Definition 6.15. Let R be an arbitrary but fixed lattice expansion type that can
be divided into two sets {3i | i ∈ I} and {2j | j ∈ J} of unary operation symbols
to be called diamonds and boxes, respectively.

A residuated lattice expansion (of type R) is any R-expanded lattice A such
that every diamond is interpreted as a residuated operation, and every box, as a
residual. The class of these algebras is denoted as RLER. �

In order to make our results as general as possible, when defining RLER we
imposed no requirements on the nature of the residuals of the interpreted diamonds,
or on that of the operations residuated by the boxes. In particular, we do not
demand that the residuals of the diamonds are given by the boxes, or term definable
in some other way. Note however, that residuated lattice expansions are smooth.
Hence, there is no distinction between the upper and lower versions of MacNeille
canonicity. Recall that in this case we write A for the unique MacNeille completion
of a residuated lattice expansion A.

Proposition 6.16. Let t be an R-term, and let A be some residuated lattice ex-
pansion for the similarity type R. Then

(1) if t is a {3,∨}-term, then tA is both (γ↑, γ↑)- and (ρ↓, ρ↓)-continuous.
(2) if t is a {2,∧}-term, then tA is both (γ↓, γ↓)- and (ρ↑, ρ↑)-continuous.
(3) if t is a {3,∨}/{2,∧}-term, then tA is (ρ, γ↑)-continuous.
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Proof. The first part of the Proposition can be proved via a straightforward induc-
tion on the complexity of {3,∨}-terms. For the base step of this induction, where
the term t is a variable, we use the fact that the projection operations extend to
operations that are both (γ↑, γ↑) and (ρ↓, ρ↓)-continuous (see Proposition 5.14).
For the inductive step, first let t be of the form t = u1 ∨ u2, and let τ denote either
γ↑ or ρ↓. Then tA = (u1 ∨ u2)A = ∨A ◦ 〈uA

1 , u
A
2 〉. Now ∨A is (τ, τ)-continuous by

Proposition 5.11, and 〈uA
1 , u

A
2 〉 is (τ, τ)-continuous by the induction hypothesis and

Proposition 5.17. But then tA, being the composition of two (τ, τ)-continuous maps,
is (τ, τ)-continuous itself. In the other inductive case, that is, with t of the form 3u,
we proceed in a similar way, now using Proposition 5.13 instead of Proposition 5.11.

The second part of the proposition follows by order duality. For the third part,
suppose that t is of the form s(u1, . . . , sn), with s an {3,∨}-term, and each ui an
{2,∧}-term. Then by the second part of the proposition, the map 〈uA

1 , . . . , u
A
n〉 is

(ρ↑, ρ↑)-continuous, and thus, since γ↑ ⊆ ρ↑ by Proposition 4.6, (ρ↑, γ↑)-continuous.
Hence, now using the first part of the proposition, we see that tA = sA◦〈uA

1 , . . . , u
A
n〉

is the composition of a (γ↑, γ↑)- and a (ρ↑, γ↑)-continuous map, and thus itself
(ρ↑, γ↑)-continuous. Clearly, the key principle at work here is that of two matching
continuities. �

As a corollary to Proposition 6.16 we obtain the following.

Proposition 6.17. On the class RLER of residuated lattice expansions:
(1) {3,∨}/{2,∧}-terms are lower stable,
(2) {2,∧}/{3,∨}-terms are upper stable,
(3) {3,∨} and {2,∧}-terms are both lower and upper stable.

Proof. The first part of the proposition is an immediate corollary of the previous
result, together with Proposition 6.6. The second part then follows through the
principle of order duality, and the third part follows since the terms considered
there all fall under the scope of both the first two parts. �

The two previous propositions yield the following harvest.

Theorem 6.18. The following equations and inequalities are MacNeille canonical
on the class RLER of residuated lattice expansions:

(1) equations s ≈ t with s and t both {3,∨}/{2,∧}-terms, or both {2,∧}/{3,∨}-
terms,

(2) inequalities s � t with s a {3,∨}/{2,∧}-term and t any term,
(3) inequalities s � t with s any term, and t a {2,∧}/{3,∨}-term.

Example 6.19. As examples of MacNeille canonical equations for residuated lat-
tices we mention the following:

3(x1 ∨ x2) ≈ 2(x1 ∧ x2)
2(3(x1 ∨ x2) ∧ (3x3 ∨ x4)) ≈ 2(x1 ∨ x2) ∧ (x3 ∨ x4)

32x � 23x.
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The first equation is preserved under taking MacNeille completions because both
its left and its right hand side are {3,∨}/{2,∧} terms, and the second, because
both sides are {2,∧}/{3,∨}-terms. The inequality is preserved because 32x is a
{3,∨}/{2,∧} term.

Note that the converse inequality, 23x � 32x does not fall under the scope of
Theorem 6.18. In fact, it can easily be shown that this inequality is not MacNeille
canonical. Consider the Boolean algebra B of the finite and cofinite sets of natural
numbers, interpret 3 as the map sending a set X ⊆ ω to the collection of natural
numbers n that are below some x ∈ X, and let 2 be the Boolean dual of 3, i.e.,
2x = ¬3¬x.

As a last example, it is interesting to look at the (finitary) distributive law

x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z) (11)

from the current perspective. Note that all the function symbols occurring in (11)
evaluate to smooth operations. Regardless of that, it follows from Proposition 6.17
that the left hand side l(x, y, z) of (11) is lower stable, while the right hand side
r(x, y, z) is upper stable. From this we obtain, for any lattice L, that lL = (lL)◦ ≤
(lL)• = (rL)• = rL. However, this already follows from the fact that the MacNeille
completion of a lattice is again a lattice: the inequality l � r holds for every lattice.
Unfortunately, there is nothing we can say about the converse inequality r � l
being valid in L. And in fact, as is well known, there are distributive lattices of
which the MacNeille completion is not distributive.

Remark 6.20. Similar results can be obtained for binary operations that are both
left- and right residuated, even if these operations are not smooth. Note that the
lower MacNeille extension of such an operation is (γ↑, γ↑)-continuous. From this
it follows that {?,3,∨}/{2,∧} terms are lower MacNeille stable (here ? denotes
the operation symbol for the doubly residuated binary operations). It is then not
hard to derive that, for instance, the associativity and commutativity of ? are
lower MacNeille canonical properties. Also, inequalities of the form s � t with s a
{?,3,∨}/{2,∧} term and t an arbitrary term, are lower MacNeille canonical. It
would be interesting to check whether all the results of Ono [37, 39, 38] can be
proved via this topological method.

6.5. Uniform lattice expansions. Finally, we turn to expansions of lattices with
operations that are not necessarily order preserving. We restrict our attention to
uniform operations, and, given our experiences with order preserving operations,
we also impose some kind of residuation constraints on the additional operations.

Definition 6.21. Two lattice maps f : L → M and g : M → L are said to form a
Galois connection if they satisfy, for all x ∈ L and y ∈M :

y ≤ f(x) iff x ≤ g(y).

A dual Galois connection is a pair (f, g) of lattice maps such that, for all x ∈ L,
y ∈M it holds that y ≥ f(x) iff x ≥ g(y). �
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It is not difficult to see that the maps f : L → M and g : M → L form a Galois
connection iff f , when seen as a lattice map from L to the order dual M∂ of M, is
residuated by g, seen as a lattice map between the lattices M∂ and L. Likewise,
f : L → M and g : M → L form a dual Galois connection iff f : L∂ → M is
residuated by g : M → L∂ . From this the following proposition is an immediate
consequence of earlier results on residuated pairs, by the principle of order duality.

Proposition 6.22. Let f and g form a (dual) Galois connection between the lattices
L and M. Then

(1) both f and g are antitone, completely join reversing (meet reversing) lattice
maps,

(2) both f and g are smooth,
(3) f and g form a (dual) Galois connection between L and M,
(4) both f and g are (ρ↓, ρ↑) and (γ↑, γ↓)-continuous ((ρ↑, ρ↓) and (γ↓, γ↑)-

continuous).

Let us now study the class of lattice expansions in which the added operations
all display some kind of residuation.

Definition 6.23. Let U be an arbitrary but fixed lattice expansion type that can
be divided into four sets {3i | i ∈ I}, {2j | j ∈ J}, {�k | k ∈ K} and {�l | l ∈ L}.

A uniform residuated lattice expansion (of type U) is any U-expanded lattice A
in which every diamond is interpreted as a residuated operation, every box as a
residual, every symbol � as part of a Galois connection, and every symbol � as
part of a dual Galois connection. The class of these algebras is denoted as URLEU .
�

When it comes to MacNeille canonicity, the results for the smaller class of resid-
uated lattice expansions can be extended to the class URLEU . We briefly mention
one of the key results here.

Definition 6.24. An occurrence of a variable in a U+-term is positive (negative)
if it is in the scope of an even (odd, respectively) number of symbols in {�,�}. An
U+-term t is uniform if each variable occurs either only positively or only negatively
in t, and positive (negative) if each variable occurs only positively (negatively,
respectively) in t. �

Proposition 6.25. Let t be some uniform U+-term, and let A be an algebra in
URLEU . Then

(1) both tA and tA are uniform, and µ-monotone for the same monotonicity
type µ,

(2) t is lower expanding and upper contracting,
(3) t is lower stable if tA is (ρ, γ↑)-continuous, and upper stable if tA is (ρ, γ↓)-

continuous.

Proof. The first part is proved by a straightforward induction on the complexity
of the term t. For part 2 we also use term induction. Omitting the cases that are



Vol. 00, XXXX MACNEILLE COMPLETIONS OF LATTICE EXPANSIONS 39

the same as in the proof of Proposition 6.6, we focus on one of the more interesting
cases that involves an order reversing operation, say, when t is of the form �s.

Then (tA)◦ = (�A ◦ sA)◦, by definition of term functions. Now tA is µ-monotone
for some monotonicity type µ by the first part of the proposition, so that tA : Aµ →
A is isotone. It is easy to see that s is uniform as well, and that sA : Aµ → A is
antitone.

Now let, given a lattice map f : L → M, and elements ε, η ∈ {1, ∂}, f ε,η be
the lattice map from Lε to Mη that agrees with f as a set-theoretic function.
The point is that tA can now be written as a composition of two isotone maps
(sA)1,∂ : Aµ → A∂ and (�A)∂,1 : A∂ → A.

We may then apply Proposition 5.19, obtaining

(tA)◦ ≤
(
(�A)∂,1 ◦ (sA)1,∂)

)◦ ≤ (
(�A)∂,1

)◦ ◦ (
(sA)1,∂

)◦
Now it is easy to see that for any map f , we have (f1,∂)◦ = f• and (f∂,1)◦ = f◦,
so that we find

(tA)◦ ≤ (�A)◦ ◦ (sA)• = �A ◦ (sA)•.

This gives, by the inductive hypothesis on s and the antitonicity of �A, that

(tA)◦ ≤ �A ◦ sA,

which shows that, indeed, t is lower expanding. For the proof that t is upper
contracting we refer to the principle of order duality.

Finally, the last part of the proof is again a completely straightforward general-
ization of Proposition 6.6 �

On the basis of the Propositions 6.22 and 6.25, many results may be proved
concerning the MacNeille canonicity of U+-equations, analogous to the results in
the previous subsection. However, it is less straightforward to give a concise, gen-
eral, formulation of the analogue of Theorem 6.18, see Gehrke, Nagahashi &
Venema [23] for the analogous situation in the theory of canonical extensions.
Therefore, we omit further details concerning the most general case, and focus on
the special case of (residuated expansions of) ortholattices. First however, we dis-
cuss one representative example in the general setting of uniform residuated lattice
expansions.

Example 6.26. Consider the U+-equation

3(2(x1 ∧ x2) ∨�x3) ≈ �2(x1 ∧ x3). (12)

For any algebra A in URLEU , both the left- and the right hand side term of (12)
are interpreted as (ρ, γ↑)-continuous term functions in the algebra A. From this,
the MacNeille canonicity of (12) is immediate, by Proposition 6.25.

For instance, for the (ρ, γ↑)-continuity of (3(2(x1 ∧ x2) ∨ �x3))A, first observe
that the term function (2(x1∧x2))A is (ρ↑, ρ↑)-continuous, while (�x3)A is (ρ↓, ρ↑)-
continuous. Hence, both term functions are (ρ, ρ↑)-continuous, and hence, (ρ, γ↑)-
continuous. But then the term function associated with the disjunction 2(x1∧x2)∨
�x3 is (ρ, γ↑)-continuous as well. Finally then, using the (γ↑, γ↑)-continuity of 3A
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we find that indeed, the left hand side of (12) is interpreted as a (ρ, γ↑)-continuous
term function.

The last kind of lattice expansion that we consider is that of residuated expan-
sions of ortholattices. We first discuss ortholattices.

Definition 6.27. Let L = 〈L,∧,∨,>,⊥〉 be some lattice. A complementation on
L is a map n : L → L such that a ∨ n(a) = > and a ∧ n(a) = ⊥ for all a ∈ L.
An orthocomplementation or orthonegation on L is a complementation n which is
both antitone and idempotent: n(n(a)) = a for each a ∈ L. An ortholattice is an
algebra O = 〈O,∧,∨,>,⊥,¬〉 such that ¬ : O → O is an orthonegation on the
lattice 〈O,∧,∨,>,⊥〉. �

As we already mentioned in the introduction, it is well known that the class
of ortholattices, which happens to be a variety, is closed under taking MacNeille
completions. Our analysis of this phenomenon is as follows.

Proposition 6.28. Let ¬ be an orthocomplementation on the lattice L. Then
(1) ¬ forms both a Galois connection and a dual Galois connection with itself,
(2) ¬ is smooth,
(3) ¬ is (ρ↓, ρ↑), (ρ↑, ρ↓), (γ↓, γ↑) and (γ↑, γ↓)-continuous,
(4) ¬ is an orthocomplementation on L.

Proof. In order to see that ¬ forms a Galois connection with itself, assume that
a ≤ ¬b. Then b = ¬¬b by idempotence, and ¬¬b ≤ ¬a since ¬ reverses the order.
Taken together, we find that b ≤ ¬a, as required. We leave it as an exercise for
the reader to prove that (¬,¬) is a dual Galois connection. Part 2 and 3 are then
immediate by Proposition 6.22.

For the last part of the proposition, antitonicity of ¬ follows from Proposi-
tion 6.22. For idempotence of ¬, first observe that the term function (¬¬x)A is
(γ↑, γ↑)-continuous by part three of this proposition, and hence (ρ, γ↑)-continuous
since γ↑ ⊆ ρ. Thus the term ¬¬x is lower stable by Proposition 6.25, and from this
MacNeille canonicity of the equation ¬¬x ≈ x is immediate.

Finally, note that in order to show that ¬ is a complementation on A, we cannot
use any of our earlier propositions, since the terms x∧¬x and x∨¬x are not uniform.
Fortunately, the proof is not very hard. In order to arrive at a contradiction,
suppose that for some x in A, x∧¬x > ⊥, then by meet density of L, there is some
a ∈ L such that a ≤ x∧¬x but a 6≤ ⊥, that is, a > ⊥. It follows from a ≤ ¬x that
x ≤ ¬a = ¬a, so that a ≤ x ≤ ¬a. From this we may derive that a ≤ a ∧ ¬a = ⊥,
which gives the desired contradiction. �

The following is an (almost) immediate corollary.

Corollary 6.29. The varieties of ortholattices and of Boolean algebras are Mac-
Neille canonical.

Proof. The result on ortholattices is immediate from part 4 of the previous propo-
sition. For the result on Boolean algebras we need the (easily proved) facts that an
ortholattice O is a Boolean algebra iff the lattice reduct O[ is distributive iff the
term ¬x ∨ y provides a Heyting implication on O. �
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Some interesting observations can be made of expansions of ortholattices. To
start with, we do not need to consider (dual) Galois connections separately, since
they can be encoded as residual pairs using the orthocomplementation. The pair
(f, g) between L and M is a Galois connection iff the composition ¬L ◦ g : M → L
is residuated by the map f ◦ ¬L : L → M.

Definition 6.30. Let RO be an arbitrary but fixed lattice expansion type that
can be divided into three sets, {¬}, {3i | i ∈ I} and {2j | j ∈ J}. A residuated
ortholattice expansion (of type RO) is any RO-expanded lattice A in which every
diamond is interpreted as a residuated operation, every box as a residual, and ¬ as
an orthocomplementation. �

It is not hard to prove an analog of Theorem 6.18 in this setting. As we will see
now, we can generalize the Sahlqvist theorem of Givant & Venema to this more
general setting.

Definition 6.31. A left Sahqlvist term is any term that can be obtained from a
{3,∨}/{2,∧}-term by (uniformly) substituting some variables with negative terms.
A Sahlqvist inequality is an equality of the form s � t, with s a left Sahlqvist term,
and t a positive term. �

Example 6.32. Typical examples of Sahlqvist inequalities are:

3(x1 ∧3¬x1 ∧2¬2x2 ∧ x2) � 2(x1 ∨ x2)
32x � 23x.

The left hand side of the first inequality can be obtained from the term 3(x1∧y1∧
2y2 ∧ x2), by substituting 3¬x1 for y1, and ¬2x2 for y2.

A typical counterexample is 23x � 32x; in Example 6.19 we already saw that
this equation is not preserved under taking MacNeille completions.

Theorem 6.33. Sahlqvist inequalities are MacNeille canonical over the variety of
residuated ortholattice expansions.

Proof. Consider an arbitrary Sahlqvist inequality s′ � t. Without loss of generality
we may assume that s′ is of the form sτ = u(vτ1 , . . . , v

τ
k), such that u is a {∨,3}-

term, the vi are {∧,2}-terms, and τ is a substitution replacing each variable xi
(1 ≤ i ≤ n) with a term of the form ¬wi, with wi positive. Also without loss
of generality we may assume that the xi do not occur in the wj , and hence, by
definition of τ , do not occur in sτ either (if this is not the case, then change to a
different s and τ). Then it is easy to see that on the class of residuated ortholattice
expansions, the inequality s′ � t is equivalent to the quasi-equation(

&
1≤i≤n

xi � ¬wi
)
⇒ u(v1, . . . , vk) � t. (13)

Here we use the symbol & to denote the conjunction of formulas (equations). The
key in proving the equivalence of s′ ≤ t and (13) is the fact that u will always be
interpreted as an order preserving function.

Now suppose that we add a binary operation symbol 1 to the language, and
that we interpret this symbol as the ortho-order discriminator on every algebra.
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(The idea of expanding the similarity type with such a special operator goes back
to Jónsson [30].) That is, we have

1A (a, b) =
{
⊥ if a ≤ ¬b,
> if a 6≤ ¬b.

Then clearly the quasi-equation (13) is equivalent to the formula

u(v1, . . . , vk) � t ∨
∨

1≤j≤n

xj 1 wj . (14)

It is then straightforward to check that the left hand side of (14) is a {∨,3}/{∧,2}-
term, and the right hand side is positive. Hence, it follows from the results in
the previous subsection that (14) is MacNeille-canonical. And since the (unique)
MacNeille extension of 1A is the ortho-order discriminator 1A of A, from the fact
that (14) holds on A we may deduce that our original inequality s′ � t holds on A
as well. In other words, s′ � t is a MacNeille canonical inequality. �

Using ideas from Gehrke, Nagahashi & Venema [23], one may formulate
more general versions of Theorem 6.33. Alternatively, note that residuated ortho-
lattice expansions provide a very versatile context for the manipulation of equations
and inequalities. Many formulas that are not in the proper shape of a Sahlqvist in-
equality, can be transformed into an equivalent inequality that is covered by either
Theorem 6.33 or 6.18, or their order duals.

Example 6.34. Consider for instance the equation 23(x1 ∨ ¬x2) ≈ 2(x1 ∨ x2).
To start with, this equation is equivalent to the conjunction of the inequality

23(x1 ∨ ¬x2) � 2(x1 ∨ x2) and its opposite 23(x1 ∨ ¬x2) � 2(x1 ∨ x2).
Using the idempotence of the orthocomplementation it is immediate that the first

inequality is equivalent to 23(¬y1 ∨ ¬x2) � 2(¬y1 ∨ x2), and hence to ¬2(¬y1 ∨
x2) � ¬23(¬y1 ∨ ¬x2). Introduce a new diamond 3′z := ¬2¬z; it is easy to see
that 3′ is residuated, and since the last version of the inequality is equivalent to
3′(y1 ∧¬x2) � ¬23(¬y1 ∨¬x2), MacNeille canonicity follows from Theorem 6.33.

MacNeille canonicity of the opposite inequality follows in fact from Theorem 6.33
by the principle of order duality: the term 23(x1 ∨ ¬x2) can be obtained from
23(x1 ∨ z2) by the substitution z2 7→ ¬x2, and the term 2(x1 ∨ x2) is positive.

7. Further research

There are several problems that seem to be of interest for further investiga-
tions. To start with, some questions come up naturally when we compare Mac-
Neille canonicity with preservation results that involve the canonical extension. In
the introduction we mentioned already the result of Gehrke, Harding & Ven-
ema [19], that every MacNeille canonical variety of uniform lattice expansions is
canonical (i.e., closed under taking canonical extensions).

(1) Given a finite, uniform, lattice expansion, when does it generate a MacNeille
canonical variety? In particular, is this a decidable problem?
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Gehrke & Harding [18] proved that every such algebra generates a
canonical variety. In the case of MacNeille completions this is not true, as
is witnessed by the variety of distributive lattices. Baker’s theorem [2]
may be of use here, providing finite axiomatizations for finitely generated
varieties of lattice expansions. However, since in general it is not decid-
able whether a given equation is MacNeille canonical, a straightforward
application of this result will not suffice.

(2) Can MacNeille canonicity of a variety always be proved using the syntactic
shape of the equations defining the variety?

In the case of the canonical extension, there are ‘semantic’ results as
well. In particular, a result in modal logic, originating with Fine [16],
states that if K is an elementary class of relational structures, its associated
class of complex algebras generates a canonical variety, see Goldblatt,
Hodkinson & Venema [25] for further discussion. It would be interesting
to have such results for MacNeille completions as well, and to investigate
whether these results can be derived from the syntactic proofs in this paper.

(3) Is every MacNeille canonical variety of lattice expansions generated by some
elementary class of relational structures?

This question is related to another result of Gehrke, Harding & Ven-
ema [19], and to the previous question. In the case of Boolean algebras with
operators, the cited paper proves that every MacNeille canonical variety is
not just canonical, but elementarily generated (that is: generated by the
complex algebras of some elementary class of relational structures). The
problem is whether this result carries over to other kinds of lattice expan-
sions; obviously, this problem involves the duality theory for lattices and
their expansions, see for instance [13].

And finally, we mention two more specific problems for further research.

(4) First, it would we interesting to undertake a more systematic study of
residuated lattices (that is, lattices expanded with a residuated binary op-
eration), perhaps with additional structure. Apart from Remark 6.20, we
did not discuss this in any kind of detail.

(5) Second, an intrigueing technical question concerning modal algebras is
whether lower MacNeille canonicity implies upper MacNeille canonicity.

Of the above questions, the first and last originate with G. Bezhanishvili and
J. Harding.
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