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Abstract.
The aim of this paper is to study the n-variable fragment of first order logic from a

modal perspective. We define a modal formalism called cylindric mirror modal logic, and
show how it is a modal version of first order logic with substitution. In this approach,
we can define a semantics for the language which is closely related to algebraic logic,
as we find Polyadic Equality Algebras as the modal or complex algebras of our system.
The main contribution of the paper is a characterization of the intended ‘mirror cubic’
frames of the formalisms and, a consequence of the special form of this characterization,
a completeness theorem for these intended frames. As a consequence, we find complete
finite yet unorthodox derivation systems for the equational theory of finite-dimensional
representable polyadic equality algebras.
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1 Introduction

This paper forms part of a program to connect various traditions in logic, viz. first-order logic,
modal logic and algebraic logic. In particular, we will show how the n-variable fragment of
the predicate calculus of n-ary relations (n < ω) can be seen as a modal formalism, which
we will call Cylindric Mirror Modal Logic (CMML)1. A distinctive feature of this system is
that simultaneous substitutions of variables for variables in first-order formulas are treated
as modal diamonds. In this way CMML is an extension of the formalism CML (cf. Venema

[13]) which has diamonds for the existential quantification, and a modal constant for the
identity formulas. The connection with algebraic logic lies in the fact that the modal algebras
of CMML are known in the literature as Polyadic Equality Algebras (of finite dimension)
(cf. Henkin, Monk & Tarski [6]).

Note that any modal language can be interpreted in a relational structure of the appro-
priate signature, i.e. where the structure provides an n+ 1-ary accessibility relation for each
n-adic operator of the language. Therefore, a consequence of the modal approach towards
first-order logic is that it provides us with a wider class of (Kripke) models for first-order
logic. Within this more general framework, the standard semantics of first-order logic forms a
subclass of frames that will be called mirror cubes here. An interesting aspect of the ‘modal-
ization’ of first-order logic is that it allows us to play around with this intended semantics;
for instance, Andréka and Németi (cf. [2]) have studied an alternative model theory for the
predicate calculus where not every n-tuple of elements of the domain is available for evalua-
tion; they show that some negative features of first-order logic, like its undecidability, do not
apply for this alternative framework.

The main contribution of this note is a finite sound and complete axiomatization of the
CMML-formulas that are valid in the mirror cubes. As a consequence of results by Andréka
(cf. [1]), a finite axiomatization is not possible, if we confine ourselves to the orthodox modal
derivation rules (Modus Ponens, Universal Generalization and Substitution). In fact Andréka
and Tuza show [3] that the variety of Representable Polyadic Equality Algebras is not even
finitely axiomatizable over the variety of Representable Cylindric Algebras. On the modal side
of the picture this means that even if one has an oracle providing all CML-theorems, one still
has to add infinitely many axioms to axiomatize the mirror cubes — under the same restriction
qua derivation rules. The strategy we adopt here to circumvent these negative results is by
considering unorthodox derivation systems. The crucial part of these systems is formed by
a so-called non-ξ rule; such rules originate with Gabbay [4], and are discussed in detail in
Venema [14]. Our main result concerns the completeness for the class of mirror cubes of a
finite unorthodox derivation system. As a corollary of our result, we find a finite derivation
system for the variety of Representable Polyadic Equality Algebras of finite dimension. It
is interesting to note that this system is a finite extension of a complete derivation system
for the Representable Cylindric Algebras. One might conclude that the heart of the non-
finite axiomatizability problem of RPEA does not lie in its complexity with respect to RCA,
but rather in the inadequacy of a purely equational approach to axiomatizations in algebraic

1One can approach the unrestricted predicate calculus from the same modal perspective. As there are many
(mainly technical) problems involved in doing so, we have confine ourselves to a fragment of first-order logic
here.
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logic.
Therefore, the question becomes relevant what the exact algebraic counterpart is of non-ξ

rules. We will come back to this matter in section 4, where we will also discuss briefly some
generalizations to our results that were obtained recently by Sz. Mikulás.

This paper is organized as follows: in the following section we go into detail as to how the
n-variable fragment of the predicate calculus of n-ary relations (n < ω) can be ‘modalized’
into the formalism CMML. In section 3 we introduce a relational (Kripke) semantics for our
language, and we prove our main completeness result. Section 4 contains all the material
on the algebraic connection: in particular, we define the finite derivation system for the
equational theory of the class RPEAn of Representable Polyadic Equality Algebras.

2 Modalizing first-order logic

In order to explain how the n-variable fragment of the predicate calculus of n-ary relations can
be treated as a modal formalism, let us start with an intuitive exposition, and defer precise
definitions to the end of this section; until then, the reader can think of a version of first-order
logic, where only the first n variables {v0, . . . , vn−1} are available, with the standard semantics
of first-order logic. Consider the basic declarative statement in first-order logic concerning
the truth of a formula in a model under an assignment u:

M |= φ[u]. (1)

The basic observation underlying our approach is that we can read (1) from an abstract modal
perspective as: “the formula φ is true in M at the possible world u”. Note that as we have only
n variables at our disposal, we can identify assignments with maps: n(= {0, . . . , n−1}) 7→ U ,
or equivalently, with n-tuples over the domain U of the structure — we will denote the set of
such n-tuples with nU . Thus we are in a setting of multi-dimensional modal logic where the
universe of a modal model is of the form nU for some base set U . Now the truth definition
of the quantifiers reads as follows:

M |= ∃viφ[u] ⇐⇒ there is an assignment u′ with u ≡i u′ and M |= φ[u′]

where ≡i is given by
u ≡i u′ ⇐⇒ for all j 6= i, uj = u′j .

In other words: the existential quantification behaves like a modal diamond, having ≡i as its
accessibility relation.

As the semantics of the boolean connectives in the predicate calculus is the same as in
modal logic, this shows that the inductive clauses in the truth definition of first-order logic
fit neatly in a modal approach. So let us now concentrate on the atomic formulas. To start
with, we observe that identity formulas do not cause any problem: a formula vi = vj , with
truth definition

M |= vi = vj [u] ⇐⇒ ui = uj

can be seen as a modal constant.
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The case of the other atomic formulas is more involved, however; as we have confined
ourselves to the calculus of n-adic relations, an atomic predicate formula is of the form
Pivν(0) . . . vν(n−1), where ν is a map: n 7→ n. In the model theory of first-order logic the
predicate Pi will be interpreted as a subset of nU ; precisely how the propositional variables are
treated in modal logic by a valuation. So we will identify the set of propositional variables of
the modal formalism with the set of predicate symbols of our first-order language. However,
this implies that there cannot be a one-to-one correspondence between atomic first-order
formulas and atomic modal ones. It follows from our wish to give a modal reading for the
atomic case of (1), that only the formula Piv0 . . . vn−1 will correspond to the modal atom pi.
For the cases where ν is not the identity function, we have to find a different solution.

Atomic formulas with a multiple occurrence of a variable can be rewritten as formulas
with only ‘unproblematic’ atomic subformulas, for instance

Pv1v0v0 ⇐⇒ ∃v2 (v2 = v0 ∧ Pv1v2v2)
⇐⇒ ∃v2 (v2 = v0 ∧ ∃v0 (v0 = v1 ∧ Pv0v2v2))
⇐⇒ ∃v2 (v2 = v0 ∧ ∃v0 (v0 = v1 ∧ ∃v1 (v1 = v2 ∧ Pv0v1v2)))

This leaves the case what to do with atoms of the form Pivσ(0) . . . vσ(n−1), where σ is a
permutation of n, or in other words, atomic formulas where variables have been substituted
simultaneously. The previous trick does not work here: for instance, to write a formula like

∃v3∃v4(v3 = v0 ∧ v4 = v1 ∧ ∃v0∃v1(v0 = v4 ∧ v1 = v3 ∧ Pv0v1v2)),

which is equivalent to Pv1v0v2, one needs extra variables as buffers.
One might consider a solution where a predicate P is translated into various modal propo-

sitional variables pσ, one for every permutation σ of n, but this is not very elegant. One might
also forget about simultaneous substitutions and confine oneself to a fragment of n-variable
logic. In Venema [13] this option is worked out, leading to a modal formalism called Cylindric
Modal Logic.

Here we will investigate a third possibility, which is to take substitution seriously, so to
speak, by adding special ‘substitution operators’ to the language. The crucial observation is
that for any permutation σ, we have that

M |= Pivσ(0) . . . vσ(n−1)[u] ⇐⇒ M |= Piv0 . . . vn−1[σ ◦ u] (2)

where σ ◦ u is the composition2 of σ and u (recall that u is a map: n 7→ U). So, if we define
the relation 1σ⊆ nU × nU by

u 1σ t ⇐⇒ t = σ ◦ u,

we have rephrased (2) in terms of an accessibility relation (in fact, a function):

M |= Pivσ(0) . . . vσ(n−1)[u] ⇐⇒ there is a t with u 1σ t and M |= Piv0 . . . vn−1[t]

So if we add an operator ⊗σ to the modal language for every permutation σ, with 1σ as
its intended accessibility relation, we have found the desired modal equivalent for a formula
Pivσ(0) . . . vσ(n−1) in the form ⊗σPi.

2In our notation, the order of composing the two functions should be read as in the composition of two
relations, i.e., σ ◦ u(i) = u(σ(i)).
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Our last observation before we give the formal definitions of our systems is that we may
use the fact that we are in a finite-variable fragment of first-order logic to simplify the lan-
guage a bit. For, recall that every permutation of a finite set is a product of transpositions,
i.e. permutations swapping two elements and leaving every other element in its place. As we
may infer from (2) that

M |= Pivτ◦σ(0) . . . vτ◦σ(n−1)[u] ⇐⇒ M |= Piv0 . . . vn−1[τ ◦ (σ ◦ u)],

we only need modal operators ⊗τ for transpositions τ : if σ = τ0 ◦ . . . τk, we may consider ⊗σ
as an abbreviated operator:

⊗σφ := ⊗τ0 . . .⊗τn−1 φ.

So, to develop some notation concerning transpositions and their associated accessibility
relations: define the transposition [i, j]n : n 7→ n by

[i, j]n(k) =


j if k = i
i if k = j
k otherwise.

(If no confusion can arise, we will drop the superscript n.) The accessibility relation associated
with transpositions has a very simple form (assume i < j):

u 1ij v ⇐⇒ v = (u0, . . . , ui−1, uj , ui+1, . . . , uj−1, ui, uj+1, . . . , un1).

Now we are ready to give formal definitions:

Definition 2.1 Let n be an arbitrary but fixed natural number. The alphabet of Ln and
of Lrn consists of a set of variables {vi | i < n}, it has got a countable set Q of n-adic
relation symbols (P0, P1, . . .), identity (=), the Boolean connectives ¬,∨ and the quantifiers
∃vi. Formulas of Ln and Lrn are defined as usual in first-order logic, with the restriction that
the atomic formulas of Lrn are of the form vi = vj or Pl(v0v1 . . . vn); for Ln, we also allow
atomic formulas of the form Pl(vσ0vσ1 . . . vσn), where σ is a permutation on n.

A first-order structure for L(r)
n is a pair M = (U, V ) such that U is a set called the domain

of the structure and V is an interpretation function mapping every Pl to a subset of nU .
Truth of a formula in a model is defined as usual: let u be in nU , then

M |= vi = vj [u] if ui = uj ,
M |= Pl(v0v1 . . . vn)[u]; if u ∈ V (Pl),
M |= Pl(vσ0vσ1 . . . vσn)[u] if (uσ(o), . . . , uσ(n−1)) ∈ V (Pl),
M |= ∃viφ[u] if there is a v with u ≡i v and M |= φ[v],
etc.

An L
(r)
n -formula φ is valid in M (notation: M |= φ) if M |= φ[u] for all u ∈ nU , first-order

valid (notation: |=fo φ) if it is valid in every first-order structure of L(r)
n .

The modal versions of Lrn and Ln, on which we will concentrate from now on, are given
in the following definition:
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Definition 2.2 Let n be an arbitrary but fixed natural number. CMMLn is the modal simi-
larity type having constants δij and unary operators 3i, ⊗ij (for all i, j < n). For a set of
propositional variables Q, the language of n-dimensional cylindric modal formulas in Q, or
shortly, CMMLn-formulas (in Q), is built up as usual: the atomic formulas are the (modal or
boolean) constants and the propositional variables, and a formula is either atomic or of the
form ¬φ, φ∨ψ, 3iφ or ⊗ijφ, where φ, ψ are formulas. We abbreviate 2iφ ≡ ¬3i¬φ. CMLn
is the fragment of CMMLn-formulas in which no mirror operator ⊗ij occurs.

CML and CMML are interpreted in first-order structures in the obvious way; for instance
we have

M, u  δij ⇐⇒ ui = uj
M, u  ⊗ijφ ⇐⇒ there is a v with u 1ij v and M, v  φ
M, u  3iφ ⇐⇒ there is a v with u ≡i v and M, v  φ

A CMMLn-formula φ is valid, notation: MCn |= φ, if it valid in all first-order structures 3.

The modal disguise of Lrn in CMMLn is so thin, that we feel free to give the details below
without further comments resp. proof:

Definition 2.3 Let µ be the following translation from Ln to CMMLn:
µ(Pv0 . . . vn−1) = p
µ(Pvσ(0) . . . vσ(n−1)) = ⊗r1s1 . . .⊗rksk p
µ(vi = vj) = δij
µ(¬φ) = ¬µ(φ)
µ(φ ∨ ψ) = µ(φ) ∨ µ(ψ)
µ(∃viφ) = 3iµ(φ)

where we assume that we have a canonical definition of numbers r1, . . . , rk and s1, . . . , sk such
that σ = [r1s1] ◦ . . . ◦ [rksk].

Proposition 2.4 Let φ be a formula in Lrn, then

|=fo φ ⇐⇒ MCn |= µ(φ).

Note that the modal language is in fact the stronger formalism: where in first-order logic,
the simultaneous substitution of two variables for each other can only be defined by induction,
in CMML it is a primitive operator.

3 Completeness

In this section we discuss the modal semantics and axiomatics of CMMLn (and hence, of Ln).
To start with the semantics, recall that in our intended n-dimensional structures for CMMLn,

3This definition is slightly ambiguous. For, let m,n be two natural numbers with m < n, and φ a CMMLm-
formula. Then by definition φ is also a CMMLn-formula. So, when checking the validity of φ, in principle it
might make a difference whether one considers assignments in mU or in nU . A fairly straightforward proof
showing this not to be the case, justifies our definition.
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the accessibility relations Idij , ≡ij and 1ij for δij , 3ij and ⊗ij are given as

u ∈ Idij ⇐⇒ ui = uj
u ≡i v ⇐⇒ for all j 6= i: uj = vj
u 1ij v ⇐⇒ ui = vj , uj = vi & for all k 6= i, j: uk = vk.

In the relational semantics for CMMLn we abstract away from this background and define
models where the universe is an arbitrary set and the accessibility relations are arbitrary
relations, of the appropriate arity. The key questions then are how to distinguish the intended
structures within this more general semantics, and how to axiomatize their theory. For the
CML-fragment of the language, these questions have been discussed in detail in Venema [13].
The main results of that paper will be used here, as we will take the characterization and
axiomatization results of the CML-cubes as a starting point.

Definition 3.1 A CMMLn-frame or simply a frame, is a tuple (W,Ti, Eij ,Mij)i,j<n, where
Eij is a subset of the universe W , and Ti and Mij are binary relations over W . A (CMMLn-
)model is a pair M = (F, V ) with F a frame and V a valuation, i.e. a map assigning subsets of
W to propositional variables. The cylindric reduct of a frame F = (W,Ti, Eij ,Mij)i,j<n, nota-
tion Fcyl, is the tuple obtained from F by suppressing all the mirror relations Mij, i.e. Fcyl =
(W,Ti, Eij)i,j<n. A CMMLn-frame is called a mirror cube if it is isomorphic to a frame of the
form (nU,≡i, Idij ,1ij)i,j<n, where ≡i, Idij and 1ij are as defined above. Cylindric reducts
of mirror cubes are called cubes. The classes of n-dimensional mirror cubes and cubes are
denoted as MCn resp. Cn.

Truth of a formula at a world is defined as usual in modal logic:

M, w  p ⇐⇒ w ∈ V (p),
M, w  δij ⇐⇒ w ∈ Eij ,
M, w  ¬φ ⇐⇒ M, w 6 φ,
M, w  φ ∧ ψ ⇐⇒ M, w  φ & M, w  ψ,
M, w  3iφ ⇐⇒ there is a v with Tiwv & M, v  φ,
M, w  ⊗ijφ ⇐⇒ there is a v with Mijwv & M, v  φ.

Validity of a formula/set of formulas in a model/frame or class of models/frames, is defined
as usual; for instance, MCn |= φ denotes validity of φ in the class of miror cubes4.

This definition provides us with an alternative, more general semantics for the n-variable
fragment of the predicate calculus as well. This more abstract perspective on first-order logic
allows one to play more freely with the intended structures for L(r)

n . For instance, Andréka
and Németi [2] argue that Lrn behaves in a much nicer way if we allow relativized (mirror)
cubes as models, i.e. not every tuple (u0, . . . , un−1) in nU is available as a possible world of the

4It may seem that our notation has become even more ambiguous (cf. footnote 3). For, now we use
‘MCn |= φ’ to denote both validity of φ in first-order structures (Definition 2.2) and validity of φ in a class of
modal frames, viz. the mirror cubes. It is easy to see that this ambiguity is only apparent, due to the technical
fact that the domain U of a first-order structure is not identical to the universe nU of the corresponding
n-dimensional mirror cube.
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model. For instance, they show that for this relativized-cube semantics both a decidability
and a finite axiomatizability result can be obtained.

Now, to start with a characterization of the mirror cubes, consider the following formulas:

Definition 3.2 We define the following CMMLn-formulas, and their counterparts in the as-
sociated first-order language for talking about frames:
(M1ij) ⊗ijp↔ ¬⊗ij ¬p
(M2ij) p→ ¬⊗ij ¬ ⊗ij p
(M3ij) ⊗ijp→ [3i(δij ∧3jp) ∧3j(δij ∧3ip)]

(M1sij) ∀u∃!vMijuv

(M2sij) ∀uv(Mijuv →Mijvu)
(M3sij) ∀uv(Mijuv → [∃w(Tiuw ∧ Eijw ∧ Tjwv) ∧ ∃w(Tjuw ∧ Eijw ∧ Tiwv)]

We set M1 =
∧
i,j<nM1ij, etc.

Proposition 3.3 Let F = (W,Ti, Eij ,Mij)i,j<n be a frame. Then
(i) F |= Mkij ⇐⇒ F satisfies Mksij, for k = 1, 2 or 3, and i, j < n.
(ii) F is a mirror cube iff Fcyl is a cube and F satisfies M1, M2 and M3.

Proof.
(i) This is immediate by the fact that all M -formulas are standard Sahlqvist forms, cf. Sahl-

qvist [12], or Venema [14].
(ii) We only show the direction from right to left. Let F be a frame such that Fcyl is

a cube, and such that all M -formulas are valid in F. We may assume that F is of the form
(nU,≡i, Idij ,Mij)i,j<n. From (i) it follows that F satisfies M1s and M3s. As Mij is functional,
we may write mij(u) for the unique v such that Mijuv. To show that F is a mirror cube, we
have to prove that for arbitrary u, v in nU :

(∗) v = mij(u) ⇐⇒ u 1ij v.

From left to right: Without loss of generality we may assume that i = 0, j = 1; let v = m01(u).
By the validity of M3s in F, and the fact that Fcyl is a cube, we find tuples w,w′ such that
u ≡0 w, w0 = w1 & w ≡1 v and u ≡1 w

′, w′0 = w′1 & w′ ≡0 v. From u ≡0 w and w0 = w1 it
follows that w is of the form w = (u1, u1, u2, . . . , un−1), so the fact that w ≡1 v gives u1 = v0

and uk = vk for k > 1. Analogous reasoning with w′ yields that u0 = v1, so indeed we have
found u 1ij v.

From right to left: In a cube, the condition on the righthandside of (∗) determines a unique
v for a given u. So mij(u) (which exists by the fact that F satisfies M1s), must be identical
to v, as both mij(u) and v satisfy this condition. 2

Proposition 3.3(ii) forms the crucial observation in our completeness proof below. Before
we proceed to define the derivation system and prove its completeness, let us briefly discuss
two essential aspects of it: (i) the D-operator, and (ii) the non-ξ rules.

To start with (i): the D-operator is a diamond with a rather special accessibility relation,
viz. the inequality relation (6=):

M, w  Dφ ⇐⇒ there is a different v (i.e. w 6= v) with M, v  φ.
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The D-operator enlarges the expressive power of modal languages; for instance, it enables one
to define irreflexivity of the accessibility relation, viz. by the formula 3p → Dp. For more
general information about the D-operator, we refer to de Rijke [11].

In the present context, we are so fortunate to have the D-operator as a defined operator,
at least over the class of (mirror) cubes: set

Dnφ =
∨
j 6=i

3j(δij ∧3i(¬δij ∧30 . . .3i−13i+1 . . .3n−1φ)),

In Venema [13] we show that for a cube model M, indeed we have that Dnφ is true at a world
iff there is a different world where φ holds. (The key observation here is that two n-tuples
are different iff they differ in at least one coordinate.)

Note that in fact, we can associate an accessibility relation with Dn in arbitrary frames
(i.e. define a relation RDn in terms of the relations Ti and Eij) such that in a model M based
on F, we have M, w  Dnφ iff there is a v with RDnwv and M, v  φ. One of the main results of
Venema [13] states that a frame F is isomorphic to a cube iff F satisfies some straightforward
properties expressible by modal formulas, plus the fact that RDn is the inequality relation.

Turning to axiomatics, this is the spot where the unorthodox derivation rules (mentioned
in the introduction) will come in. To give some intuitions, let us consider the problem how to
axiomatize irreflexivity in a standard modal context with one diamond 3. It is well-known
that there is no axiom for irreflexivity in the way that 33p → 3p axiomatizes transitivity,
so we have to take resort to different means. Consider a formula φ which is satisfiable in an
irreflexive frame F, i.e. there is a valuation V and a world w such that F, V, w  φ. As we have
¬Rww, we find that F, V ′, w  p∧¬3p under any valuation V ′ with V ′(p) = {w}. Now if we
take a propositional variable p which does not occur in φ, it will be clear that we can combine
V and V ′ into a valuation V ′′ for which F, V ′′, w  φ∧(p∧¬3p). In other words: φ∧(p∧¬3p)
is satisfiable. Turning from satisfiability to validity, we have shown that if (p ∧ ¬3p) → ¬φ
is valid, then so is ¬φ. Or equivalently, the derivation rule “` (p ∧ ¬3p) → ψ ⇒ ` ψ,
provided that p does not occur in ψ”, is sound. In Venema [14], it is proved that under
certain conditions, these rules will also give complete calculi.

Now we are ready to define an axiom system for the mirror cubes, and prove its complete-
ness:

Definition 3.4 A+
n is the derivation system with the following axioms:

(CM1i) p→ 3ip
(CM2i) p→ 2i3ip
(CM3i) 3i3ip→ 3ip
(CM4ij) 3i3jp→ 3j3ip
(CM5i) δii
(CM6ij) 3i(δij ∧ p)→ 2i(δij → p))
(CM7ijk) δij → 3k(δik ∧ δkj)
(CM8ij) (δij ∧3i(¬p ∧3jp))→ 3j(¬δij ∧3ip)

Its orthodox derivation rules are Modus Ponens, Universal Generalization and Substitution:
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(MP ) φ, φ→ ψ / ψ
(UG) φ / 2φ for 2 ∈ {2i | i < n}
(SUB) φ / σφ, for any substitution σ of formulas for propositional variables.

Its non-ξ rule is the irreflexivity rule for Dn, viz
(IRDn) (p ∧ ¬Dnp)→ φ / φ, provided that p does not occur in φ.

B+
n is the extension of A+

n with the axioms M1, M2 and M3, and the Universal Gener-
alization rule for every ⊗ij (i.e. φ / ¬ ⊗ij ¬φ).

Notions like derivation, theorems and such are defined as usual. Theoremhood of φ in A+
n

(B+
n ) is denoted by A+

n ` φ (B+
n ` φ). We will refer to A+

n as the cylindric part of B+
n .

Note that in Venema [13] we proved completeness of A+
n with respect to cube validity.

Now we can show the analogue for B+
n with respect to mirror cubes:

Theorem 3.5 (Soundness & Completeness) For any CMMLn-formula φ,

B+
n ` φ ⇐⇒ MCn |= φ.

Proof.
Soundness is left to the reader; completeness is essentially a straightforward corollary of
Theorem 8.2 of Venema [14], Theorem 2.11 in Venema [13] and Proposition 3.3, but we
have to work through some technical and rather cumbersome details.

Our strategy to prove completeness is as follows: first we extend the language CMMLn
with the difference operator as a primitive symbol D, and we extend B+

n to a derivation
system EB+

n in the extended language. Then we apply one of the mentioned theorems
directly, obtaining a completeness result for EB+

n with respect to a certain class K of frames.
The third step of the proof is to show that K consists precisely of the disjoint unions of
mirror cubes, whence EB+

n is complete with respect to MC. Finally, we show that EB+
n is

conservative over B+
n .

i So let us start with considering the language X, which is an extension of CMMLn with a
new unary operator D. We abbreviate Dφ = ¬D¬φ. The derivation system EB+

n is obtained
by adding the following axioms and rules to B+

n :
(D1) p→ DDp
(D2) DDp→ (p ∨Dp)
(D3) 3ip→ (p ∨Dp)

⊗ijp→ (p ∨Dp)
(UGD) φ / Dφ
(IRD) (p ∧ ¬Dp)→ φ / φ, provided that p does not occur in φ.

ii Note that all axioms of this system are in Sahlqvist tense form (cf. [14]), that all diamonds
are self-conjugate, and that D has indeed all the axioms and the rule IRD needed to make
it the difference operator. Therefore, Theorem 8.2 of Venema [14] yields that EB+

n is sound
and complete with respect to the class Kn of frames F such that (1) all axioms of EB+

n are
valid in F and (2) the accessibility relation of RDn is irreflexive.
iii We will now prove that Kn is precisely the class of disjoint unions of mirror cubes, or

formally
Kn = Pf (MCn).
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The inclusion ⊇ is trivial, so we concentrate on the other direction. Let F be a frame in
Kn; consider the cylindric reduct of F, which must be a disjoint union of cubes by Theorem
2.11 of [13]. As F is in Kn, the M -axioms are valid in F, so it is a trivial consequence of
Proposition 3.3 that F is a disjoint union of mirror cubes.
iv Finally, to show that EB+

n is conservative over B+
n , we first define an embedding trans-

lation (·)−:
p− = p,
(Dφ)− = Dnφ

−,
(φ ∧ ψ)− = φ− ∧ ψ−,
(♥φ)− = ♥φ− for ♥ ∈ {¬,⊗ij ,3i | i, j < n}.

The essential claim is that for all EB+
n -formulas φ we have

EB+
n ` φ ⇐⇒ B+

n ` φ−. (3)

The direction from right to left is trivial; the other direction is proved by induction on
derivations in EB+

n .
For the basic step, let φ be an axiom of EB+

n . Unless φ is of the form ⊗ijp→ (p∨Dp), the
fact that B+

n ` φ− follows from the proof of Theorem 3.4 in Venema [13]. For the remaining
case, we have B+

n ` φ by the following derivation:

⊗ijp→ 3i(δij ∧3jp) (axiom)
⊗ijp→ 3i(δij ∧ (p ∨Dnp)) (as A+

n ` [3jp→ (p ∨Dp)]−)
⊗ijp→ 3i(p ∨Dnp) (monotonicity of 3i)
⊗ijp→ [(p ∨Dnp) ∨Dn(p ∨Dnp)] (as A+

n ` [3iψ → (ψ ∨Dψ)]−)
⊗ijp→ (p ∨Dnp ∨Dnp ∨DnDnp) (distributivity of Dn)
⊗ijp→ (p ∨Dnp) (as A+

n ` [DDp→ (p ∨Dp)]−)

All cases of the induction step of the proof are either trivial (Universal Generalization for ⊗ij),
or can be found again in Venema [13]. This proves (3); the fact that EB+

n is conservative
over B+

n then follows by the observation that for a CMMLn-formula φ we have φ− = φ. 2

4 Representable Polyadic Equality Algebras

In this section we look at the algebraic connection of first-order logic with finitely many
variables, and of our modal system CMML. In the algebraic approach towards first-order
model theory, one is interested in such operations on the power set algebra of models as are
defined by the semantic truth definition of the operators of the language.

Consider the case of Ln: let φ(i/j) denote the Ln-formula φ where the variables vi and vj
are interchanged, and let for an arbitrary structure M, φM denote the set of tuples where φ
holds. Then

(∃viφ)M = {u ∈n U | ∃t[u ≡i t & t ∈ φM]},
φ(i/j)M = {u ∈n U | ∃t[u 1ij t & t ∈ φM]},
(¬φ)M = nU − φM,
etc.

11



So algebraists study (besides the booleans) the operations Ci, Sij and Dij on the power set
algebra of nU , given by:

Ci(X) = {u ∈n U | ∃t[u ≡i t & t ∈ X]},
Sij(X) = {u ∈n U | ∃t[u 1ij t & v ∈ X]},
Dij(X) = {u ∈n U | ui = uj}.

(4)

In other words, one is interested in the complex algebras of structures, and just like in the
modal approach, one abstracts away from this intended class of algebras where the elements
are ‘real’ relations to the class of all boolean algebras with operators of the appropriate
similarity type. An aim of the algebraic theory is then to find necessary and sufficient criteria
for the representability of an abstract algebra as a concrete algebra of relations.

Definition 4.1 A PEA-type algebra of dimension n is an algebra of the form

A = (A,+,−, ci, dij , sij)i,j<n

where (A,+,−) is a boolean algebra, every dij a constant and every ci and every sij a normal,
additive, unary operator.

We define the following classes of algebras: FCMSn is the class of full n-dimensional
polyadic equality algebras over some set U , i.e. algebras of the form

(P(nU),∪,−, Ci, Dij , Sij)i,j<n,

with Ci, Dij and Sij as defined in (4). The class RPEAn of n-dimensional representable
polyadic equality algebras consists of all ‘real’ relational algebras, i.e. of the subalgebras of
direct products of algebras in FCMSn.

For the similarity type without the sij-operators, we have analogous terminology: CA-type
algebras, full cylindric set algebras (FCS) and representable cylindric algebras (RCA).

Polyadic Equality Algebras (or Polyadic Algebras with Equality, as they were called in the
past) are known from the literature on algebraic logic5, mainly through the work of Halmos,
cf. Halmos [5] for his collected articles on these algebras and on their diagonal free reducts,
the Polyadic Algebras. More recent surveys on algebras of relations can be found in Henkin,

Monk & Tarski [6] or Németi [10].
The symmetry with the classes of relational frames defined in the previous section is

obvious, for instance the class FCMSn consists of the complex algebras of the mirror cubes.
Therefore, recursively enumerating the ‘true’ polyadic equality equations (i.e. the equational
theory of FCMSn) and axiomatizing the modal theory of MCn amounts to the same thing.
Recall from the previous section that we used the ‘defined difference operator’ Dn in our
axiomatization; in the algebraic language we define

dny =
∨
j 6=i

cj(dij · ci(−dij · c0 . . . ci−1ci+1 . . . cn−1x)).

5Note that our approach slightly deviates from the standard definition, where operations sσ are considered
for every map σ: n 7→ n; however, the fact that we only treat the finite-dimensional case ensures that every
such operator is term-definable in our system, cf. the discussion in section 2.
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Definition 4.2 Let n be an arbitrary natural number. Let Ωn be the smallest set of PEA-type
equations6 satisfying

1. Ωn contains axioms stating that the algebra is a Boolean Algebra with (normal and
additive) Operators,

2. Ωn contains the following axioms:
(C1i) ci0 = 0
(C2i) x ≤ cix
(C3i) ci(x · ciy) ≤ cix · ciy
(C4ij cicjx ≤ cjcix
(C5i) dii = 1
(C6ij) ci(dij · x) · ci(dij · −x)) = 0
(C7ijk) dij = ck(dik · dkj)
(C8ij) dij · ci(−x · cjx) ≤ cj(−dij · cix)
(P1ij) pijx = −pij − x
(P2ij) x ≤ −pij − pijx
(P3ij) pijx ≤ ci(dij · cjx) · cj(dij · cix)

3. Ωn is closed under the ordinary algebraic deduction rules (i.e. identity, symmetry, tran-
sitivity, substitution and replacement),

4. Ωn is closed under the algebraic version of the Dn-irreflexivity rule:

y · −dn(y) ≤ t(x0, . . . , xn−1) / t(x0, . . . , xn−1) = 1
if y does not occur among the ~x.

(5)

Ωn is easily seen to be an algebraic counterpart of B+
n (in a sense to be made precise in

(6) below). So the following result is an almost immediate corollary of Theorem 3.5.

Theorem 4.3 (Enumerating ‘true’ Polyadic Equality Equations) For every n:

Ωn = Equ(RPEAn).

Proof.
Let µ be the translation mapping PEA-terms to their corresponding modal formulas (i.e µ
is inductively defined with clauses like µ(sijt) = ⊗ijµt, etc.) By a standard inductive proof
on the length of derivations one proves that for all equations t0 = t1 one has

t0 = t1 ∈ Ωn ⇐⇒ B+
n ` µt0 ↔ µt1. (6)

The observation that FCMSn is the class of complex algebras of frames in MCn implies that
for all equations t0 = t1:

FCMSn |= t0 = t1 ⇐⇒ MCn |= µt0 ↔ µt1.

6We will use s ≤ t to abbreviate the equation s · t = s.
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By these two observations, taken together with Theorem 3.5, we find that

Ωn = Equ(FCMSn),

which is sufficient to prove the theorem, as RPEAn is the variety generated by FCMSn, and
therefore shares its equational theory. 2

Note that in Venema [13] it was proved that the system Σn obtained by leaving out from
Ωn all axioms referring to the substitution operators, is a recursive enumeration of Equ(RCAn).
So in contrast to the results obtained by Andréka and Tuza mentioned before, Ωn is an
extension of Σn with finitely many axioms. In other words, for non-finite axiomatizability
results, the kind of the derivation system one is referring to, plays an essential rôle.

The algebraically oriented reader might find (5) not so appealing — it is the literal trans-
lation of the modal rule (IRDn). A perhaps more intuitive variant can be found as follows:
define fn as the union of the equational axioms of Ωn plus the non-equational axiom

∀x∃y(x 6= 0→ (0 6= y · −dny ∧ y · −dny ≤ x)). (7)

To explain the meaning of (7), let us note that it is valid in FCMSn. The crucial fact is
that in a full n-dimensional polyadic equality algebra A = (P(nU),∪,−, Ci, Dij , Sij)i,j<n we
have, for an arbitrary subset Y of nU :

dn(Y ) =


∅ if Y = ∅,
nU \ Y if Y is a singleton,
nU otherwise.

We leave the proof of this claim to the reader; the key observation is that over the class of
mirror cubes, Dn (the modal version of dn) has the inequality relation as its accessibility
relation. Now it is straightforward to show the validity of (7) in FCMSn: let U be some set,
and X a non-empty subset of nU . Then X contains an element x. Clearly we find

∅ 6= {x} = {x} ∩ −dn({x}) ⊆ X,

which is what we were after.
Note that (7) can be replaced by a ∀∃-formula with an equational matrix. For, let cn be

the term defined by
cnx = c0 . . . cn−1x,

then, given the axioms (C1) . . . (C4), cn has the property that over simple algebras

cnx =

{
0 if x = 0,
1 if x 6= 0,

(we are in a discriminator variety!) whence (7) can be replaced by

∀x∃y[cnx ≤ cn(y · −dny) · −cn(y · −dny · −x)].
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Now let us give a brief proof of the equivalence of Ωn and fn, i.e. prove that for any
equation η:

η ∈ Ωn ⇐⇒ fn ` η (8)

The direction from right to left is almost immediate: if fn ` η, then FCMSn |= η by the
soundness of fn, and so η ∈ Ωn by the completeness of Ωn. The other direction is proved by
induction on the length of Ωn-derivations. The only important step is where the unorthodox
derivation rule (5) is involved: we have to show that it can be derived form fn. So, suppose
that

fn ` y · −dny ≤ t(~x),

where y does not occur among the t(~x). As an instantiation of (7), we have

fn ` ∃y [ − t(~x) 6= 0→ [0 6= y · −dny ∧ y · −dny ≤ −t(~x)] ],

so
fn ` t(~x) 6= 1→ ∃y [ 0 6= y · −dny ∧ y · −dny ≤ −t(~x) ∧ y · −dny ≤ t(~x)],

whence
fn ` t(~x) 6= 1→ ∃y [ 0 6= y · −dny ∧ y · −dny ≤ 0].

From this it follows that fn ` t(~x) = 1; so (5) is a derived rule of fn. This proves (8).
So, what is really behind the fact that a simple finite equational extension of the non-

equational axiomatization of RCAn gives an axiomatization for RPEAn, is that the universal-
existential axiom takes us down to the class P(FCSn) of direct products of complex algebras
of cubes, and that on this class, the class P(FCMSn) of direct products of complex algebras
of mirror cubes is definable by finitely many equations.

Finally, it is interesting to note that recently, generalizations to the results reported on
here and in Venema [13] were obtained by Sz. Mikulás (cf. [8]). Applying an algebraic
representation theorem, Mikulás finds finite complete derivation systems for various logics
and classes of representable algebras of relations. A nice aspect of his approach is that his
unorthodox rules do not refer to the algebraic/modal difference operator: for instance, one of
his completeness results concerns n-variable logic without equality — a system in which the
D-operator is not even definable.
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[9] U. Mönnich (ed.), Aspects of Philosophical Logic, Reidel, Dordrecht, 1981.
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